

Oskar Rönnberg

Reinforcement learning with AWS
DeepRacer

Metropolia University of Applied Sciences

Bachelor of Engineering

Programme in Information and Communication Technology

Bachelor’s Thesis

1 June 2021

Abstract

Author: Oskar Rönnberg

Title: Reinforced learning with AWS DeepRacer

Number of Pages: 60 pages

Date: 1 June 2021

Degree: Bachelor of Engineering

Degree Programme: Information and Communication Technology

Professional Major: Smart Systems

Instructors: Erik Pätynen, Senior Lecturer

The main purpose of this project was to take a look at reinforcement learning with
AWS DeepRacer by providing good policies to use when training reinforcement
learning models. Another goal was to analyse model performance and how to tune
the performance of a model to achieve a better model.

AWS DeepRacer is a 1/18th scale autonomous vehicle which is taught to drive by
itself with reinforcement learning along various tracks. Currently DeepRacers are
trained for three types of objectives: time trials, object avoidance and head-to-head
racing. In this project DeepRacer was trained for time trials and object avoidance.
DeepRacer was trained to drive within a simulation created by AWS RoboMaker, and
its neural network was updated within AWS SageMaker. DeepRacer could either be
driven in simulation or on a physical track.

In this project, estimates were created for a required amount of training time for a
model. In addition, estimates for the initial training time for a model were created.
Moreover, the thesis discusses how significantly agent parameters affect model
performance; which approaches work the best in reward functions; how changing
hyperparameters affects the model and its performance; how to evaluate model
performance from log files; and how to improve the quality of training and model
performance by doing log analysis.

The results can be used as general guidelines for model training and improvement in
reinforcement learning with AWS DeepRacer. Following the policies recommended in
the thesis, better and more stable models can be achieved.

Keywords: Reinforcement learning, neural networks, autonomous

driving

Tiivistelmä

Tekijä: Oskar Rönnberg

Otsikko: Reinforced learning with AWS DeepRacer

Sivumäärä: 60 sivua

Aika: 1.6.2021

Tutkinto: Insinööri (AMK)

Tutkinto-ohjelma: Tieto- ja viestintätekniikka

Ammatillinen pääaine: Smart Systems

Ohjaajat: Lehtori Erik Pätynen

Opinnäytetyön päätarkoitus oli tarkastella AWS DeepRaceriä
vahvistusoppimisen kautta. Tavoitteena oli tarjota hyviä käytäntöjä, joita
käytetään, kun harjoitetaan vahvistusoppimisen malleja. Kun analysoidaan
mallin suoriutumista ja kun muutetaan mallia, jotta saavutettaisiin parempi
mallin suoritus.

AWS DeepRacer on 1/18-suhteessa oleva autonominen ajoneuvo, jota
opetetaan ajamaan itsenäisesti eri radoilla vahvistetulla oppimisella. Tällä
hetkellä DeepRaceriä harjoitetaan kolmeen eri tehtävään: aikakisoihin,
esineiden väistelyyn ja osallistuja-vs-osallistuja kisaan. DeepRacer treenataan
AWS RoboMaker -simulaatiossa ja mallin neuroverkko harjoitetaan AWS
SageMakerissa. DeepRaceriä voi ajaa joko simulaatiossa tai fyysisellä radalla.

Tämän työn tuloksia ovat: arviot riittävästä harjoitusajasta mallille tai
ensimmäisen kerran harjoitussessiolle, agentin parametrien merkittävyys mallin
suorituskykyyn. Myös parhaiden suoriutuneiden palkintofunktioiden esittely sekä
se, miten hyperparametrien muutto vaikuttaa malliin. Lisäksi tutkitaan, kuinka
arvioidaan mallin suoritusta lokeista sekä kuinka parannetaan mallin
harjoituksen ja suorituksen laatua lokien analyysillä.

Tämän opinnäytetyön tuloksen tarjoavat yleisen ohjeistuksen mallien
harjoittamiseen ja mallien parantamiseen vahvistusoppimisessa AWS
DeepRacerilla. Seuraamalla tuloksissa suositeltuja käytäntöjä pitäisi saavuttaa
parempi vakaampi malli.

Avainsanat: Vahvistettu oppiminen, neuroverkot, autonominen

ajaminen

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical background 2

2.1 Reinforcement learning 2

2.2 Model 5

2.3 Race type 5

2.4 Action space 6

2.5 Reward function 9

2.6 Training algorithms 12

2.7 Hyperparameters 14

2.8 Overfitting and underfitting 17

2.9 Convergence 18

2.10 Model stability and universality 19

2.11 Simulated-to-real performance gap 20

3 Methods 20

3.1 AWS DeepRacer client and service architecture 20

3.2 AWS vehicle – DeepRacer 22

3.3 Jupyter lab 25

3.4 Amazon SageMaker and RoboMaker logs 25

4 Results 27

4.1 Time trials 27

4.2 Object avoidance 43

4.3 Head-to-head racing 58

4.4 Hyperparameters and training 58

4.5 What to look for with log analysis 58

5 Conclusions 59

5.1 What was achieved? 59

5.2 Next steps 59

5.3 Suggestions for further examination 60

References 61

List of Abbreviations

Redis: Redis is an open source (BSD licensed), in-memory

data structure store, used as a database, cache, and

message broker. Redis provides data structures such as

strings, hashes, lists, sets, sorted sets with range

queries, bitmaps, hyperloglogs, geospatial indexes, and

streams.

Neural network: A neural network is a collection of connected nodes that

are used to build information models based on a

biological neural system. Each node is called an artificial

neuron, and it mimics biological neurons in that it

receives input and produces an output depending on the

node weights.

Tuple: A tuple is used to store multiple items in a single variable

in the Python programming language. Tuple is one of

the four built-in data types in Python used for storing

data.

1

1 Introduction

Machine learning has been growing in popularity over the recent years. In the

past, machine learning was heavily restricted by the demand in computational

power and amount of data available. Development of better algorithms has also

helped the field of machine learning to progress. Since machine learning started

to flourish, it has quickly become the most popular and successful subfield of AI.

Machine learning has multiple applications such as voice and image

recognition, and as time passes, it is being applied to further applications.

Compared to traditional programming, machine learning is all about the

computer finding its own answers to given problems based on the data it is

provided with. Machine learning differs from traditional programming in a sense

that instead of giving the computer data and rules from which the computer

produces results, the computer is given data and results from which the

computer will determine on its own the rules and how it will achieve the desired

results. Machine learning is divided into various fields such as supervised

learning, unsupervised learning, self-supervised learning and reinforcement

learning, which will looked into in this thesis.

This thesis documents an individual project carried out for Metropolia University

of Applied Sciences. This thesis will examine reinforcement learning with AWS

DeepRacer. The aim of the thesis is to examine three racing types of AWS

DeepRacer: time trial, object avoidance and head-to-head racing. The focus of

the thesis will be on time trial and object avoidance. The head-to-head racing

format will be examined briefly. Various approaches to make a model perform

better will be examined. In addition, suggestions are provided for further studies

since this thesis can only take a general look at AWS DeepRacer. In general,

the goal of this thesis is to give an overview of AWS DeepRacer and its

applications and also provide good policies to use in reinforcement learning

when building models with AWS DeepRacer.

2

2 Theoretical background

2.1 Reinforcement learning

Humans have learned through trial and error. Our learning process is based on

our own reward mechanisms that provide a certain reward for our actions. The

goal of our learning process is through repeated, incentivized repetitions to

trigger even more positive responses and disincentivize repetitions of actions

triggering negative responses. Through this, we learn how to interact with the

world around us and learn how to solve even more complex problems. [1.]

Reinforcement learning is inspired by how humans learn, it is built around the

idea of trial and error from interactions with an environment. [1.]

What reinforcement learning really is

Reinforcement learning is one of four types of machine learning: supervised

learning, unsupervised learning, self-supervised learning and reinforced

learning [2].

Reinforcement learning deals with sequential decision-making trying to reach its

desired goals [1]. For example, its desired goal could be learning how to drive

itself along a track. In a nutshell reinforcement learning is all about a decision-

maker called an agent receiving information concerning its environment and

learning to choose actions which in turn will give the agent the highest reward

[2].

First, the agent takes an action in the provided environment, virtual or physical.

After its action the agent will receive a reward based on the reward function.

The reward can either be positive or negative. After that, the agent will reach a

new state in its environment and then change its policies(strategy) to gain even

more rewards from its actions. The agent’s objective is to maximize the agent’s

total reward. The reward amount of an action is the desirability of the action.

3

This cycle will repeat itself as long as the training persists, as illustrated in

Figure 1. [3.]

The agent’s goal is to learn an optimal policy in its given environment. Learning

is an iterative process of trial and error. At the start, the agent takes random

actions to arrive at a new state. Then through iterative process the agent

proceeds from the new state to the next state. Through iterations, the agent

discovers which actions will lead to maximum long-term rewards. The agent’s

journey from the initial state to the terminal state is called an episode. [3.]

Figure 1. Reinforcement learning in a nutshell. Copied from Google ai blog [4].

AWS DeepRacer

In DeepRacer, the agent represents a neural network the function of which

approximates the agent’s policy. The environment state is the equivalent of the

image from the vehicle’s front camera (see Figure 2) and the agent’s actions

are defined by speed and steering angles.

4

If the agent stays on-track to finish the race, it will receive positive rewards, if it

fails, it will receive negative rewards. An episode starts with the agent being

placed somewhere along the track and finishing when the agent either

completes a lap around the track, goes off-track or crashes into an object or

another vehicle. [3.]

Figure 2. DeepRacer state. Copied from DeepRacer blog [5].

A note from AWS DeepRacer Developer Guide

Strictly speaking, the environment state refers to everything to the
problem. For example, the vehicle’s position on the tracks as well
as the shape of the tracks. The image fed, though the camera
mounted the vehicle’s front does not capture the entire environment
state. Hence, the environment is deemed partially observed and the
input to the agent is referred to as observation rather state. For
simplicity, we use state and observation interchangeably
throughout this documentation. [3.]

5

2.2 Model

Model is an essential component of DeepRacer. The model is all the various

parameters and settings combined to form an environment in which the agent

acts. It has three separate forms: the agent’s state, the agent’s action and the

agent’s reward for taking action. Policy is the strategy with which the agent

makes its decisions, policy’s input being environment state and output as the

action to take. The policy is often represented by a deep neural network and in

DeepRacer it is referred to as the reinforcement learning model. Each training

session generates one model. Even if the training is stopped before completion,

a model is formed. A model is unchangeable, which means that it cannot be

modified after creation, but a model can be cloned and then trained with

different parameters. [3.]

2.3 Race type

Currently there are three DeepRacer racing categories: time trial, object

avoidance and head-to-head racing as shown in Figure 3.

In Time trials, the agent tries to get through the track as fast as possible.

In Object avoidance, the agent tries to get through the track while avoiding

objects placed at either static or random locations.

In Head-to-head racing, the agent tries to get through the track while racing

against bots with static speed or other agents.

6

Figure 3. AWS DeepRacer console race type selection. Copied from AWS client
console [13].

2.4 Action space

Reinforcement learning requires a certain set of valid actions or choices from

which an agent can choose, as the agent interacts with its environment. This is

called action space. In AWS DeepRacer, action space is either discrete or

continuous. [3.]

Discrete action space

Action space that is discrete represents all possible actions an agent can take in

each of its states in a finite set. For every different scenario in the track, AWS

DeepRacer’s neural network responds with a certain speed and turning angle

for the agent based on input from its camera(s) and optionally its LiDAR sensor.

The choices are in predetermined action numbers, in which the car has a

certain steering angle and a throttle combination. [3.]

AWS DeepRacer can turn left, right, accelerate, decelerate and go straight

forward. The actions mentioned are combined to form a list of actions for the

agent to choose from. For example, an agent could have the action space of 14

7

actions. The action numbers are, 0 (-30 degrees and 0.5 m/s), 5 (-10 degrees

and 1 m/s), 10 (20 degrees and 0.5 m/s) and so forth as shown in Figure 4. [3.]

Figure 4. Discrete action space from an object avoidance agent. Copied from
AWS client console [13].

Continuous action space

In a continuous action space, the agent has the liberty to choose from an infinite

range of values for each state by itself. Just as in a discrete action space, the

car makes its decision based on the input it gets from its camera(s) and

possibly the LiDAR sensor. For example, in continuous action space, it is

possible to set the range of values to be between -30 to 30 degrees for steering

and from 0.5 m/s to 1 m/s with the throttle. What makes continuous action

space stand apart from discrete action space is the fact the agent chooses

freely values from the range it is given. In addition, it has no predetermined

action list as shown in Figure 5. [3.]

8

Figure 5. Agent with continuous action space. Copied from AWS client console
[13].

Discrete or continuous?

Should one use discrete or continuous action space? Both have their own

advantages compared to each other.

The discrete action space gives better comprehension of the agent’s choices

since they are limited to a list of actions. It is possible to tailor make action

space based on the environment you are working with. For example, if the track

the model is trained on only has turns to right, is it possible to make an action

list only consist of various turns to right and driving forwards. Using the discrete

action space also require less training than the continuous action space since

there are fewer actions to choose from and to learn. [3.]

9

The continuous action space would in turn, give you more options when writing

reward functions since you can incentivize different behaviours such as steering

or throttle depending on which specific point the agent is at along the track.

Having a range of action instead of an action list also gives smoother updates to

speed and turning angles, which in turn may benefit the model, especially when

the model is used in a physical DeepRacer car. [3.]

2.5 Reward function

Policy

The agent’s policy defines how it will select an action in a given state. The

policy will choose actions which result in the best possible cumulative reward. It

will not choose actions for an immediate higher reward. In a nutshell, the policy

always tries to achieve its ultimate objective first, meaning that the policy could

choose actions which in its current state are not optimal actions. [1.]

Value function

Value function represents the quality of state in the long-term. It is the

cumulative reward that the agent expects to be given in the future state from the

current state. The reward measures the agent’s immediate performance in the

state. The value function measures the agent’s performance in the long run.

This indicates that a high reward does not necessarily correlate to a high reward

function or otherwise. [1.] For example, DeepRacer could dodge an object or

another DeepRacer on track and be given a high reward for that action but drive

out in the next turn.

Reward

The agent takes an action in each step and the value function tells the agent

how good that action was. This is called a reward. As already mentioned, the

agent’s goal is to maximize the cumulative rewards it receives. [1.]

10

Rewards can both appear frequently or sparsely. Frequently appearing rewards

are called dense rewards and sparsely appearing rewards are called sparse

rewards. [1.] For example, DeepRacer staying on-track is a dense reward since

the car will either stay on-track for the full track length or drive out of the track.

DeepRacer dodging an object is a sparse reward since even with six objects on

track they are still within a relatively short distance of the track.

Reward function

The agent learns the value function by exploring the environment. The value

function shows the agent which actions are good and which actions are bad.

The value function uses the reward function, which is written to score actions.

The reward function is written in Python in DeepRacer. Listing 1 is an example

of what a default DeepRacer (following the center line function) does.

def reward_function(params):

 '''

 Example of rewarding the agent to follow center line

 '''

 # Read input parameters

 track_width = params['track_width']

 distance_from_center = params['distance_from_center']

 # Calculate 3 markers that are increasingly further away from the center

line

 marker_1 = 0.1 * track_width

 marker_2 = 0.25 * track_width

 marker_3 = 0.5 * track_width

 # Give higher reward if the car is closer to center line and vice versa

 if distance_from_center <= marker_1:

 reward = 1

 elif distance_from_center <= marker_2:

 reward = 0.5

 elif distance_from_center <= marker_3:

 reward = 0.1

 else:

 reward = 1e-3 # likely crashed/ close to off track

 return reward

Listing 1. Simple reward function. Copied from AWS client [6].

In the function above the agent is rewarded when it stays inside the track and

the reward gets better the closer to the center line the agent is. The agent’s

reward is minimal for driving off-course.

11

At the start, the agent takes random actions to explore the environment but as

time passes the agent learns which actions will keep it within the center line and

its maximal reward. If the agent keeps taking continuous random actions, it will

take longer time to get around the track for a full lap. As the model’s policy

begins to learn good actions, it will do fewer random actions. However, if the

agent only uses already learned actions it will not explore the environment

anymore and thus will not learn new actions. This trade-off mentioned above is

often called exploration vs exploitation problem in reinforcement learning. [3.]

It is possible to get around the track with surprisingly good results with the

default (following the center line function) showed listing 1 [7]. The function

seen in Listing 1 has its downsides too, since following the center line is not

optimal pathing along the track most of the time. This default function reward

function was shown because building a good model does not necessarily

require you to have an advanced and complicated reward function, although

having a better reward function is always good and rewarding the agent for

correct actions is very important. [8.]

Figure 6 shows what the reward function mentioned above will look like in grid

form, each column representing a possible state and its reward.

12

Figure 6. Reward function grid.

2.6 Training algorithms

AWS DeepRacer has two training algorithms which are Proximal Policy

Optimization (PPO) and Soft Actor Critic (SAC). Both algorithms learn policies

and value function at the same time, but their strategies vary in three notable

ways as shown below in Table 1. [3.]

Table 1. Differences between the two algorithms. Copied from AWS Developer
Guide [3].

As can be seen in the table, both algorithms have their own requirements and

approaches concerning how to learn. In this context, it is not necessary to go

13

through the mathematical side of the algorithms; instead, the focus should be

on how they are used in DeepRacer and what the advantages are in either of

the algorithms. The differences between the algorithms include what has

already been described: action space requirement, whether they are on-policy

or off-policy and how the algorithms manage entropy.

Entropy

Entropy is the measure of uncertainty in the policy decision-making, it can be

thought of as the measure of confidence for the policy to choose its actions.

Low entropy means that the policy is very confident in its decision-making; high

entropy leads to the policy finding trouble at choosing which action to take. [3.]

Generally, when training a model, you have high entropy at the start of the

training, and then as the training progresses, the entropy should lower over time

since the model it has explored its environment and learned its value function.

Exploration or exploitation?

Should you either explore or exploit action space? This is one of the biggest

questions in reinforcement learning. To achieve a higher cumulative reward, an

algorithm should exploit already learned information, but it should also explore

for more information, so it can be used for finding an optimal policy. As the

training progresses over multiple iterations within an environment, the policy

learns and begins to make certain decisions for a given state. However, this can

lead to problems if the policy does not explore the environment enough. Then

the policy will only use already learned information and it will not explore for

more information within the environment that could lead to an optimal policy. [3.]

PPO

As shown above in the table 1, PPO uses on-policy learning, meaning that PPO

learns its value function from the current policy exploring its environment. You

could say that it learns from the same data that it generates. On-policy

algorithms need more data for training most of the time, but they are in return

14

more stable. Over time, the policy becomes less random since updates on

weights encourage exploiting already found rewards. [1; 3; 9.]

The PPO algorithm uses entropy regularization which will prevent the agent

from converging at local maxima. PPO encourages exploration by that. Entropy

regularization makes PPO less efficient with data. [3.]

SAC

SAC uses off-policy learning. Off-policy learning consists of two policies:

behaviour policy and target policy. The behaviour policy interacts with the

environment and collects data for the target policy to improve itself. The target

policy can learn from previous policies. [1; 3.] Off-policy algorithms are less

stable most of the time, but they require less data for training. [3.]

SAC uses entropy maximization. It encourages wider exploration while also

avoiding convergence at bad local maxima. SAC does this by preferring the

agent to choose actions with higher entropy. SAC also has the unique

advantage giving up on policies that choose inflexible behaviour which is one of

the reasons why SAC seems to be more data efficient. [3; 10.]

2.7 Hyperparameters

One of the ways to improve model performance is to have more efficient

training. To obtain a stable, robust model means that the training must give your

agent evenly distributed sampling over its own action space. To achieve this,

the model should have a decently balanced mixture of exploration and

exploitation. A lot of variables affect this outcome such as: number of episodes

between each training, batch size, learning rate and entropy. [3.] Tuning

hyperparameters can prove to be valuable, but they will not turn a bad model

into a good model, and you can ruin a good model with too much

hyperparameter tuning. [8.] What these various hyperparameters are is

explained below.

15

Data point

Data point or experience is a tuple of (s, a, r, s’): s for state, a for action, r for

reward and s’ for new state [3].

Episode

Episode is a period in which the agent starts at its given starting point and either

drives round the track to that same exact point or drives off-track. Episode

lengths can and will vary from each other. An episode is a collection of data

points. [3.]

Experience buffer

Experience buffer has a certain number of ordered data points which are

collected over a fixed period of episodes of various lengths over training. In

DeepRacer, it correlates to images taken by the vehicle’s camera and the

photos taken serve as the source from which the input data is drawn. [3.]

Batch

Batch is a list of ordered data points. They represent a portion of simulation

over a certain amount of time, used to update the weights of the policy network.

The batch is a subset of the experience buffer. [3.]

Training data

Training data is a set of batches sampled in randomized order from the

experience buffer. The training data is used for updating policy network weights.

[3.]

16

Gradient descent batch size

Gradient descent batch size is the number of recent agent data points sampled

at random from an experience buffer and they are used to update weights in the

neural network. There is inherent correlation in the input data. The correlation is

reduced by random sampling. Larger batch sizes lead to more stable and

smoother updates to the weights, but the training time of the model probably is

longer and slower. [3.]

Epoch

The number of epochs is how many times the training data is passed through in

order to update the weights of the neural network during its gradient descent.

The training data is a certain amount of random samples from the experience

buffer. Using a larger amount of epochs will lead to more stable training which

in turn will be slower. [3.]

Learning rate

The learning rate controls at which rate the model learns. It does this by

regulating how much gradient descent (or ascent) changes the values of neural

network weights. A larger learning rate leads to faster training since the weights

are updated more frequently, but if the learning rate is too large, the model

might not be able to converge at all. [3.]

Entropy

Entropy is the factor of uncertainty within the policy allocation. The model with

higher entropy has more randomness in its actions than a model with low

entropy. Higher entropy leads to better and more thorough exploration of action

space. [3.]

17

Discount factor

Specifies how far ahead into the future states rewards the agent will estimate

with reward function when considering taking an action. A larger value leads to

more steps being taken into consideration when making a move, but the training

will be slower because of it. [3.]

Loss type

Loss type is an objective function used to update the weights of the neural

network. The goal of loss type is to achieve incremental changes in the agent’s

policy, so it converts from random actions to policy influenced actions over time.

The loss type in DeepRacer is either Huber loss or Mean squared error loss.

When the weigh updates are small, both behave in the same way. Differences

occur when the changes to the weights are larger. The mean squared error

starts making larger increments compared to the Huber loss. [3.]

Episodes between each policy update

The size of the experience buffer orders how many data points there are within

an experience buffer. Larger buffers lead to slower but more stable updates.

Especially more complex solutions require more data points since there is more

to learn. Less complicated problems require less. [3.]

2.8 Overfitting and underfitting

In reinforcement learning, it is very important to learn how to spot overfitting or

underfitting. Overfitting and underfitting will both heavily influence how your

model behaves and performs if you do not take actions in order to counter them

or at least lessen their impact on the model’s performance.

18

Overfitting

When the model starts to overfit, it grows too accustomed to its training

environment. At some point, the model starts to perfectly perform within its

environment at the cost of its performance dropping massively on any other

environment. The model grows incapable of not performing outside of its

training environment. A simple way to recognize overfitting with a model is to

see if the model can perform relatively well on other tracks. [7; 11.]

Underfitting

Before the model has explored all its action space and environment, it will

underfit. The underfitting model is easily spotted when the agent cannot even

finish one lap in within a batch or even in the entire training session. [7, 11]

2.9 Convergence

Convergence means that the model is performing at its best. It is the optimal

spot the model should be trained for. After convergence, it is possible that the

model will slowly start to overfit and its performance within any other

environment except its training environment will start to fall. As training

progresses, entropy should decrease according to time since the agent is

exploring its action space. When rewards and average progress start to even

out, entropy too should even out because entropy can be used to spot

convergence. When the rewards, average progression and entropy of the model

start to even out, the model has converged (see Figure 7). [12.]

19

Figure 7. The convergence of a good model. It is important to notice the three
separate peaks within the end of the training session. Copied from blog post
[12].

2.10 Model stability and universality

In DeepRacer, you want your models to be as stable as they can. Stability leads

to the model’s performing better overall without having any significant drops in

performance. Generally, if you do not have just one goal in mind, your models

should be as universal as possible. If your models are universal, you can use

them on multiple tracks and you can clone them for further training for other

purposes or do something else with them. Models that are not universal have

very limited usage since they probably have already overfitted to a particular

training track. [7; 8.]

Stability

In generally, you want your models to be as stable as they can. The stability of

a model is the key for thorough solid performance. The behaviour of a stable

20

model is also at least relatively predictable while unstable models are very hard

to predict. [7; 8; 12.]

Universality

For a model to be universal, it needs to be able to perform in multiple different

environments even if it is only being trained in one environment or sometimes a

few. In the universal model, you want the model to learn general rules and

principles behind actions which the model can apply on various tracks. For a

model to be universal, it should not preferably overfitting at all. [7; 12.]

2.11 Simulated-to-real performance gap

Since a simulated environment cannot capture the real world entirely with all of

its aspects, the models trained in simulations may not work so well within real

world environments. These inconsistencies are often called by the following

term: simulated-to-real performance gap or sim2real performance gap.

In DeepRacer, actions have been taken to mimize this performance gap. In the

simulation, the agent takes ten actions per second, and in DeepRacer, the

vehicle runs at ten states per second. The starting position of the vehicle is

always randomized so that the agent learns all parts of the track equally. [3.]

3 Methods

3.1 AWS DeepRacer client and service architecture

The architecture of AWS DeepRacer or in short DeepRacer, is built upon

Amazon SageMaker, Amazon RoboMaker and other services such as Amazon

S3. (See Figure 8.) [3.]

21

SageMaker is an Amazon AWS machine learning platform. In general,

SageMaker is used to train various machine learning models such as

DeepRacer. Amazon RoboMaker is a cloudbased service for developing,

testing and deploying various robotic products. In DeepRacer, RoboMaker is

used to create the agent and its environment. S3 is used for cloud-based

storage capacity. DeepRacer also stores its models in S3. An in-memory

database called Redis is used as an experience buffer for selecting training

data to form the model’s policy network. [3.]

RoboMaker creates a simulated environment within the DeepRacer framework

in which the agent drives on a chosen track. The model’s policy decides the

agent’s actions. It is trained in SageMaker in the training sessions. Each run is

represented by an episode. The training track is divided into a fixed number of

steps. This is done in every episode. One step equals one data point mentioned

in section 2.7 about hyperparameters. All the data points are then stored in

Redis as an experience buffer. The experience buffer is then randomly drawn

from by SageMaker in batches and fed to the neural network as the input data

for updating the weights. After the model has been updated, it is stored to S3 so

SageMaker can use the updated model for more training. This cycle only ends

when training time stops. [3.]

In the beginning of the training session, SageMaker initializes the experience

buffer with random actions. The amount of randomness in the agent’s actions

should lessen as training time passes. [3.]

22

Figure 8. The AWS DeepRacer service architecture. Copied from AWS
Developer guide [3].

3.2 AWS vehicle – DeepRacer

AWS DeepRacer also known as DeepRacer is a 1/18th scale model car.

DeepRacer has a mounted camera, a LiDAR sensor, an on-board compute

module and WiFi-connection. In order to drive itself within the track, DeepRacer

makes decisions with its compute module. It can also be driven manually.

DeepRacer has its own dedicated batteries for the computing and driving,

respectively known as compute battery and driving battery. Figure 9 shows all

the DeepRacer parts separately. Further details can be seen in Tables 2 and 3.

[3.]

23

Figure 9. AWS DeepRacer vehicle in parts. Copied from AWS Developer guide
[3].

Table 2. AWS DeepRacer vehicle parts 1. Copied from AWS developer guide
[3].

24

Table 3. AWS DeepRacer vehicle parts 2. Copied from AWS developer guide
[3].

Physical DeepRacer

As mentioned before in section 2.11 simulated-to-real performance gap, there

are differences between the physical car and the simulated car. This does not

only include differences between performances. The physical DeepRacer needs

its batteries to be charged, its compute module tested and physical parts

calibrated. It also needs to be connected to a WiFi-network. When all this is

done, you can upload a model into the car. [3.] This thesis will not go into details

about how all of this is done since, only a simulated environment was used in

the project.

Physical track

To drive DeepRacer autonomously and test your models in a physical

DeepRacer vehicle, you will need to build a physical track. The physical track

should resemble the simulated track as much as possible. There are certain

requirements concerning the dimensions of the track and materials used. [3.]

Since physical tracks were not used at all in this project, they are just mentioned

here briefly.

25

3.3 Jupyter lab

JupyterLab is a web-based development environment for Jupyter notebooks,

code and data. It is flexible with a multitude of configuration and arrangement

options. The Jupyter lab has many applications in data science, scientific

computing and machine learning. The Jupyter lab was used to run log analysis

for Sagemaker and Robomaker logs.

3.4 Amazon SageMaker and RoboMaker logs

Training a DeepRacer model can be arduous. It possible that the changes

made are not that great after all. Knowing how to improve a model can be hard.

Achieving a good model or improving the model can be difficult. Relying only on

the default graph and evaluation results from DeepRacer do not tell you that

much. You will know a bad mode from a good model, but it does not show how

to improve your model (see Figure 10). Can you tell the difference in the models

with these pictures? Yes, but only in a very broad way. Of course, you could do

multiple training session and change the settings little by little and see the

changes in the reward graphs but that is not very efficient. For example, there is

always the possibility that the vehicle could over or understeer in a certain part

of the track and you do not know it from the graph. To save money and time, it

is recommended to do log analysis. [8.]

26

Figure 10. Two different models trained on the same track for 2 hours.

To help you understand the training process, how your model learns and

interacts within its environment, there are logs for analysis. Within a log file for a

model, there are logs for Amazon SageMaker and RoboMaker, metrics a in

JSON file and SIMtrace in CVS files. After each training session is over, you

can download logs for your model from the AWS client. Only SageMaker and

RoboMaker logs are analysed here.

SageMaker logs contain data concerning the underlying neural network, its loss

function and weights and their updates (see Figure 11). The RoboMaker logs

have inside them the entire simulated training session. Each step has its own

log line with various parameters such as iteration, episode, steps, start_at,

progress, time, new_reward, speed, reward, time_if_complete,

reward_if_complete, quintile and complete (see Figure 12).

27

Figure 11. SageMaker log file.

As mentioned before, SageMaker logs contain the neural network updates and

RoboMaker logs contain the simulated training session actions and results.

Figure 12. RoboMaker log file.

4 Results

The results are divided into 3 racing types: time trial, object avoidance and

head-to-head racing. In time trial and object avoidance categories there are

recommended amounts of training for each specific trial whatever training on a

simpler track or a more complicated one. Various recommendations concerning

agent parameters. How changing agent parameters affect the model. Then

showcasing the best model from both categories. After this has been discussed,

there are insights concerning hyperparameters and training. Finally, what

should be looked at when doing log analysis.

4.1 Time trials

Recommended amount of training for simpler tracks

In time trial, for simpler tracks such as The 2019 DeepRacer Championship

Cup, re:Invent 2018, AWS Summit Raceway and Oval Track (see Figure 13),

28

the recommend training time is two hours with default hyperparameters. .

Modified hyperparameters could be tried out but it is important to keep in mind

that increasing or decreasing default hyperparameters will either increase or

decrease the required amount of training. In general, for simpler tracks in time

trial, you will know within two hours of training if your model is good or not and

whether you should train your model more or just analyse the logs and move

on.

Figure 13. Racing tracks: 1. The 2019 DeepRacer Championship Cup, 2.
re:Invent 2018, 3. AWS Summit Raceway and 4. Oval Track. Copied from AWS
Client [13].

29

Figures 14, 15 and 16 show the results of the models trained in these tracks. In

this context we can look at the reward function and evaluation results provided

within the AWS DeepRacer console, so as to determine whether a model is

good and whether the model has been trained for long enough.

Figure 14. One of the earliest models. (Cf. Figure 13, track 2.)

30

Figure 15. A model testing to increase the entropy hyperparameter. A highly
unstable model.

Figure 16. A later model in Time Trial trained at the 2019 DeepRacer
Championship Cup

31

Recommended amount of training for more complex tracks

For more complex tracks, it will probably take significantly more training time

than for more simple tracks. The recommended training time for a model for

initial training time is three to four hours. Then it is important do the log analysis

to see if the model shows promise. It is also important to evaluate the quality of

the training for the model (see Figure 17). In Figure 17, after three hours of

training, we can see the relatively steady rise of rewards and progress per

iteration. Most of the progress is from zero to thirty percentage. The model has

not completed a lap yet, but the model is quite steadily rising in performance per

iteration, so the model is worth training for more. In general, it is wiser to train

your models in smaller training time sessions since you will have more control

over your training periods. Figure 18 shows the Lars Loop track in which the

model in figure 17 was trained in.

Figure 17. The training progress of the model displayed in graphs.

32

Figure 18. The Lars Loop track. Copied from AWS client [13].

Agent parameters

In Time Trials, you will be fine with just the regular camera. Since the track is

empty, you do not need the stereo camera for depth of view or the LiDAR for

sensing objects.

As mentioned already in section 2.4, both the continuous and discrete actions

space have their own benefits. Most of the models created during this project

were discrete models. At the start of the testing period of the models, the

discrete models did a little bit better than the continuous models, but it could just

be because of the limited training time. As already mentioned in section 2.4,

continuous models likely train slower than discrete models. There is not enough

data to show whether the discrete or continuous action space should be

preferred.

Speed is the most critical factor in agent parameters. The model’s speed has

the most significant impact on the performance of the model. More speed

equals fewer mistakes the model can make in difficult turns. In addition, training

will take longer since the model is going off-track more often during the starting

periods of training and in sharp turns the agent can start to drift or even spin if

the steering angle is too large. More speed makes the models less stable. The

testing did not give any conclusive evidence of where the sweet spot for the

agent’s speed would be, but as figures 19, 20 and 21 show, there is significant

difference between model A with maximum speed of 2 m/s and model B with

33

maximum speed of 3 m/s. Other than the difference in speeds, the models

share the same action space.

Between Model A and B there are significant differences in rewards per

iteration, times per iteration and progress per iteration. Model A’s and B’s total

reward also shows a clear difference. Model A has more evenly split reward

across all the episodes than model B. Meaning that as can been seen from

figures 19 and 20 total rewards to episodes graph, model A clearly has more

balanced growth over the iterations than model B. Model A also has around five

times better average completion rate compared to model B. Model A’s

completion rate also grows as iterations go by significantly more than model

B’s.

Figure 19. Progress of models A and B over a training period.

34

Figure 20. Model A

35

Figure 21. Model B

Best reward function

When you begin to examine DeepRacer and build your first model, you will

probably use the default follow the center line function showed in Listing 1. The

first model done in this project used a reward function fairly similar to the one

showed in Listing 1. During this project various reward functions were tried.

Most of the reward functions tried were quite good, some bad, but the best

model was trained with a reward function originating from a AWS DeepRacer

re:Invent 2019 youtube video. In the video one of the reward functions of the

models showcased was simple but yet it seemed quite effective and it felt

36

interesting to try out. [7] After deciding to give the reward function a try, the

reward function seemed to work the best out of all the reward functions tried

during this project, thus it is showed here. It is a simple reward function, where

you heavily reward the agent for the amount of progress it has made divided

with the steps it has taken to incentivize fewer steps being taken in a lap. Since

time trial is all about speed, you should reward the agent for its speed too.

Minimal reward if conditions are not met.

 def reward_function(params):

 if params['all_wheels_on_track'] and params['steps'] > 0:

 reward =

((params['progress'])/params['steps'*100)+(params['speed']**2)

 else:

 reward = 0.01

 return float(reward)

Listing 2. The Time Trial reward function

Best model

The model trained for the LarsLoop track is probably the best time trial model

done in this project. The model has not converged. It would need more training

to converge. However, the model is the best out of all the time trial models,

because the model has proven to be able to learn more after multiple training

sessions and it has the potential to reach a state where you could possibly use

the model in an AWS community race.

Probably a batch size of 64 would have been fine but desiring a little more

stable and smoother updates, the batch size was increased to 128. The default

learning rate and episodes between each policy update was raised to 40

experience episodes from 20. The model would have probably been just fine

with 20 experience episodes between policy-updates. The decision to increase

experience episodes to 40 was made in order for the agent to surely learn all

the actions needed. Figures 22 and 23 show the model’s hyperparameters and

action space.

37

Figure 22. Model hyperparameters.

Figure 23. Model action space.

Next, it is important to look at model performance graphs after initial training of

three hours. The graphs are shown in Figures 24 and 25. The model cannot

complete even a single lap after the first training session in evaluation, but its

progress, reward and total reward grow so nicely intact it is worth training for

more. In Figure 25, it can be seen that the model is still within its early learning

period since most of the episodes have a track completion rate of 0 to 20

percent. The model clearly needs to be trained for more.

38

Figure 24. Model reward graph and evaluation results. Training session 1.

Figure 25. Model training performance graphs. Training session 1.

After three more hours of training with same hyperparameters, the model shows

improvement yet again. In evaluation, the model completes one lap round the

39

track (see Figure 26). It is also important to look at Figure 27 for more details

about the training session.

Figure 26. Model reward graph and evaluation results. Training session 2.

Figure 27. Model training performance graphs. Training session 2.

40

Figure 27 shows how the model now has more evenly split episode progress

and that the model’s average completion rate has grown to 2.3 %. Progress and

rewards per iteration continue to grow, but both start to scatter in the plot as

iterations pass. To counter the increasing scattering within rewards and

progress, learning rate for the next training session should be lowered. The

model can still learn more and has not converged.

For the third training session, the learning rate is lowered from 0.0003 to

0.0001. Other hyperparameters stay the same. In evaluation, the agent

completes yet again only one lap (see Figure 28).

Figure 28. Model reward graph and evaluation results. Training session 3.

Figure 29 shows that rewards, times and progress per iteration looks little bit

less scattered and they do increase over the training session, probably lowering

the learning rate even more would probably have been fine, maybe to 0.00008

or 0.00007. The average completion rate looks a lot better than in the second

training session. Over the iterations, the completion rate grows steadily up

reaching a 25 percent mark within iteration 21 reaching its local maxima. Before

the training ends, the completion rate rapidly falls to 0 %. This is because the

41

model reaches local minima just at the end of the training. Considering that

rewards, progress and total reward increase over the training time, it would be

fair to say the model still can be trained for more and it has not converged. The

model has not been trained for the fourth training session, but the graphs of this

iteration should show enough evidence that the model is still within its learning

period and should be trained for at least one or more sessions until it

converges.

Figure 29. Model training performance graphs. Training session 3.

Figure 30 demonstrates the fastest lap the model had in training session 3.

Figure 31 demonstrates the optimal racing line for the Lars Loop.

42

Figure 30. The fastest lap in the third training session of the model. 24.2
seconds.

The optimal racing line calculated by an algorithm for the LarsLoop track can be

seen in Figure 31. There is still considerable room for improvement especially

concerning the racing line the vehicle takes. The vehicle is clearly oversteering

in more than one turn round the track. This can be fixed either by adjustments in

the reward function or by simply training the model for more since the fewer

steps the models takes to complete the lap, more rewards the model will

receive. It is probably faster to get results from the first option, but the second

option is probably better in the long run since the model learns an optimal policy

on its own without outside interference.

43

Figure 31. Optimized racing line on the Lars Loop track.

4.2 Object avoidance

Recommended amount of training for simpler tracks

For object avoidance, you can choose between from one to six objects either

randomly or statically placed. There is a huge difference between having 1 or 6

objects. There is even a larger difference between randomly and statically

placed objects. Statically placed objects can be passed without the model

learning that there is actually an object there, the same cannot be said

concerning randomly placed objects. Models, which have statically placed

objects, train faster than randomly placed objects. Models 1 and 2 in figure 32

are not compatible with each other since model 1 has maximum speed of 2 m/s

and model 2 has maximum speed of 1 m/s. In addition, there are minor

differences between their reward functions. The aim here is to prove that

around 4 hours should be enough for the initial training time for object

avoidance models. For additional information see Figures 33 and 34.

44

Figure 32. Model 1 has stationary objects and Model 2 has randomly placed
objects. Both have six objects on track.

45

Figure 33. Model 1 performance graph.

Figure 34. Model 2 performance graph.

In figures 33 and 34 we can clearly see that both models can still be trained for

more. In both figures progress steadily grows. The total reward grows as the

training continues.

46

Recommended amount of training for more complex tracks

None of the object avoidance models were trained on more complicated tracks.

All the models were trained on the 2019 DeepRacer Championship Cup track. It

can be concluded that training will take more time than on simpler tracks.

Agent parameters

The agent should have either a mono camera with a LiDAR sensor or a stereo

camera with a LiDAR sensor. Mono camera can learn over time how to avoid

statically placed objects, since the vehicle will just learn to pass the stationary

object in order to gain more rewards. Randomly placed objects require you to

use a stereo camera or LiDAR or both in order to avoid them reliably. It could be

possible to effectively avoid randomly placed objects with a mono camera and a

LiDAR sensor.

All the object avoidance models had a discrete action space with differences

being between action lists. The recommendation is to use the discrete action

space for faster training and convergence.

Speed is again a limiting factor. The more speed you have, the more

challenging the training is going to be, as was shown in Figures 19, 20 and 21

in section 4.1.

Best reward function

Listing 3 illustrates the reward function with the best results.

47

import math

def reward_function(params):

 objects_distance = params['objects_distance']

 _, next_object_index = params['closest_objects']

 objects_left_of_center = params['objects_left_of_center']

 is_left_of_center = params['is_left_of_center']

 objects_location = params['objects_location']

 # Initial reward

 reward = 1e-3

 # Reward if the agent stays inside the two borders of the track and gets

rewarded more for better progress/steps ratio

 if params['all_wheels_on_track'] and params['steps'] > 0:

 reward_lane = 1 + (params['progress']/params['steps']*100)

 else:

 reward_lane = 1e-3

 # Penalize if car is too close to the next object

 reward_avoid = 1.0

 # Distance to the next object

 next_object_loc = objects_location[next_object_index]

 distance_closest_object = math.sqrt((params['x'] - next_object_loc[0])**2

+ (params['y'] -

next_object_loc[1])**2)

 # Decide if the agent and the next object is on the same lane

 is_same_lane = objects_left_of_center[next_object_index] ==

is_left_of_center

 if is_same_lane:

 if 0.5 <= distance_closest_object < 0.8:

 reward_avoid *= 0.5

 elif 0.3 <= distance_closest_object < 0.5:

 reward_avoid *= 0.2

 elif distance_closest_object < 0.3:

 reward_avoid = 1e-3 # Likely crashed

#I decided to reward more for avoiding than driving so that the agent would

prioritize the avoidance and preferably still stay inside the track

 reward += 1.5 * reward_lane + 3.0 * reward_avoid

 return reward

Listing 3. Object avoidance reward function.

Listing 3 shows the reward function. First, it is important to check if the agent is

inside the two borders and if steps are larger than 0. The reward is minimal if

the agent is not inside the two borders. It is necessary to give the initial reward

for avoidance and then calculate the distance toward the next object using

pythagoras. Then use a Boolean value to check if the agent and the object are

on the same lane. If they are on the same lane, depending on the distance

between the object and the agent, it is possible to decrease the reward_avoid

by either multiplying the reward_avoid with 0.5 or 0.2 or if reward_avoid is very

close to the object, it can be given just a flat minimal reward. After this, it is

necessary to add both rewards together for a final reward.

48

Note: While writing this thesis, it has become quite clear that weights are

unbalanced since the reward function rewards heavily for progress, but reward

for avoidance is too small, the initial reward being 1. This imbalance should

have been taken into account, probably reward ratios not being ideal has

impacted the model performance.

Best model

In object avoidance, there was a lot of problems with the stability and learning

efficiency of the models. Most of the problems come with speed of the models

and probably the fact that there is significant room for improvement for skills

when tuning reward functions, hyperparameters and such. When you have six

randomly placed objects, the model has to learn, how to detect an object and

dodge it. After trying out various models with higher speeds, it became quite

clear that currently is it not possible to build a model with higher top speeds

than 1 m/s while trying to avoid six randomly placed objects. That is why the

model’s top speed is 1 m/s and the model’s initial training time is four hours.

Figures 35 and 36 show the initial hyperparameters and action space.

Figure 35. Model hyperparameters.

Figure 36. Model action space

49

Batch size of 256 was chosen since the previous models had had problems with

the stability of the training and increasing the batch size would give more stable

updates. The experience episodes between policy-updates of 40 were chosen

from the default 20 because the model needed more time to learn its policy

since the model needs to be able to avoid six randomly placed objects while still

staying on-track.

The model has not yet converged, but the results the model has shown look

promising. The model was trained for 4 hours initial training time. A model

reward graph and evaluation can be seen in Figure 37. Even though the model

cannot complete even a single lap in the evaluation, the reward graph shows

promise, but to know better, logs need to be taken a look at. As can be seen

from the graphs in Figure 38, the model learns at a good rate and it is already

able to complete a few laps within the training session, which is good.

Figure 37. Model reward graph and evaluation results. Training session 1.

50

Figure 38. Model training performance graphs. Training session 1.

As can be seen from Figures 37 and 38, progress, rewards, total reward and

average progression increase nicely by iteration. The next step is to clone the

model and training it for 4 more hours.

After training the model for 4 more hours, the model completed one lap in

evaluation (see Figure 39).

51

Figure 39. Model reward graph and evaluation results. Training session 2.

The learning rate of this training session was reduced from 0.0003 to 0.0001 to

keep progress made by iterations tighter. In hindsight, lowering the learning rate

by 0.00005 or 0.0001 not 0.0002 would probably have been a better choice,

because lowering the learning rate, the model’s learning in this iteration is

slower. The graphs still look quite good in terms of the average completion rate,

progress and reward growing nicely (see Figure 40).

52

Figure 40. Model training performance graphs. Training session 2.

For next training session, the learning rate is kept at 0.0001. After the third

training session, the model completes one out of three laps in evaluation (see

Figure 41). A lap was completed around 3 seconds slower, which raises

questions. For answers, the graphs in Figure 42 should be taken a look at.

Figure 41. Model reward graph and evaluation results. Training session 3.

53

Figure 42. Model training performance graphs. Training session 3.

As the graphs from the third training session show, reward and progress grow

over training time. The average completion rate is 9.05 % larger than after the

second training session. The model has definitely improved over the training

period. There is no question about it. What caused the 3-second increase in lap

time was probably caused by deviation in the lap times, as can be seen in

Figure 43. In session 2, the completion times are more apart from each other

than in session 3. In addition, the completed laps have larger gaps between

them in session 2. In session 3, most of the completion times are within 31-34

seconds. In session 2, they are within 31 to 33 seconds. Therefore, there

seems to be a small time shift towards slower lap times in session 3 but its

completion times are more consistent compared to session 2 which is more

spread apart in its completion times as can be seen from the graph. Probably

the slower lap should improve over training time.

54

Figure 43. Comparison of lap completion time between training sessions 2 and
3.

For the fourth training session, the learning rate was increased back to 0.0003,

which is in fact quite questionable since in most cases, you only want to

decrease your learning rate as your training proceeds. Training did not turn out

that bad and in evaluation the lap time improved in the one lap the model

completed (see figure 44).

55

Figure 44. Model reward graph and evaluation results. Training session 4.

The increasement of learning rate can clearly be seen in Figure 45 as increased

scattering between the rewards, times and progress per iteration. The average

completion rate has risen to 15.9 %. Progress from 0 to 50 % starts to even out

more which is promising because the model is by then completing more of the

track with each training episode than before. This means that the training model

moves towards higher stable completion rates and convergence. This is the last

training session for this model, but there is ample proof that continuing to train

this model will lead to better results. For further training, the learning rate should

be lowered.

56

Figure 45. Model training performance graphs. Training session 4.

Figure 46 demonstrates the fastest completed lap time from training session 4.

Figure 47 shows the optimized racing line. Concerning this training session in

Figure 46, it is important to remember that there are six randomly placed

objects in the track meaning that some steering which might be otherwise

considered as oversteering is probably just the agent avoiding an object. Still at

multiple places at the track, the agent is driving inefficiently because of the

unnecessary steering actions. By training the model more, these inefficiencies

will at least lessen or disappear entirely.

57

Figure 46. Fastest lap in model’s 4th training session. 29.61 seconds.

Figure 47. Optimized racing line on the 2019 DeepRacer Championship Cup
track.

58

4.3 Head-to-head racing

In this thesis, not a single model for the head-to-head racing was trained. Head-

to-head racing seems to be like object avoidance but, in turn, the objects you

must avoid are moving, possibly even at varying speeds. A recommendation

cannot be made based on any evidence, but probably reasonable results could

be gotten from head-to-head racing with just regular randomly placed object

avoidance in mind.

4.4 Hyperparameters and training

Lastly a few words about hyperparameters. In general, if you want more stable

training use larger batch sizes but do keep in mind that training is going to be

slower. Learning rate tuning over the training is the most important part of the

hyperparameter tuning if you want consistent improvement to your model. All in

all, you definitely should try tuning various hyperparameters but remember that

changing hyperparameters will not save a bad model but with too much

tinkering you will ruin a good model for sure.

4.5 What to look for with log analysis

Sections 4.1 and 4.2 discussed the log analysis and what should be paid

attention to when doing the log analysis. Preferably you want your model to

improve over the training session with smooth updates to progress. What was

not mentioned before was that you should also pay attention to how fast you

agent goes at various parts of the track and does your agent understeer or

oversteer. The faster your agent is, more likely it is to drift or even lose control if

the agent’s speed is high and especially when the agent steers too much.

Optimising your action space is also a good way to improve your model’s

performance.

59

5 Conclusions

5.1 What was achieved?

The goal of this project was to take a general look into AWS DeepRacer,

including training models, evaluating them and analysing their data in order to

improve them. The models discussed in this thesis were either time trial or

object avoidance models. Head-to-head racing models were not built at all. In

this project, estimates have been given about the required training time to know

if the model’s performance is good and how much to initially train a model when

training with models requiring longer training times. Agent parameters were

looked into and data was presented in order to show the significance of the

agent’s speed in model stability. How to train models more efficiently was

looked at and recommendations were given based on the gathered data. The

models log files were also analysed and it was showed which parameters

should be taken into account when training a model. As a result, multiple good

practises were suggested with evidence from the data. The models discussed in

sections 4.1 and 4.2 should have been trained until convergence since a model

is as good as it can be proved to be. However, enough evidence was presented

that these models can and should be trained for more and that their

performance is still improving. All in all, the initial goals of this project were met.

5.2 Next steps

After training and evaluating the models in simulation, the next step would be to

test DeepRacer in a physical environment. As briefly mentioned in section 3.2,

there is lot of preparation to be done in order to get the physical DeepRacer

working. For example, it is necessary to build the track on which DeepRacer will

be driven.

60

5.3 Suggestions for further examination

Since the scope, resources and time for this project were limited, there was not

enough time to look at everything. Reward function customization was not

looked well into. A possible point of investigation is reward function optimization.

If there were already have a very good reward function, the model would

converge faster while also learning a better policy. It is very important to reward

the model for correct actions.

Another option would be to build a model for the AWS DeepRacer community

race.

61

References

1 Lonza Andrea. 2019. Reinforcement Learning Algorithms with Python.
Packt.

2 Chollet Francois. 2018. Deep Learning with Python. Manning Publications
Co.

3 Amazon. 2021. AWS DeepRacer: Developer Guide. Amazon Web
services.

4 Ali Mousavi, AI Resident and Lihong Li. 2020. Off-Policy Estimation for
Infinite-Horizon Reinforcement Learning. Google AI Blog.
<https://ai.googleblog.com/2020/04/off-policy-estimation-for-infinite.html>
24 April 2021.

5 Albert Lai. 2019. Reinforcement Learning with AWS DeepRacer. Toward
Data Science.
<https://towardsdatascience.com/reinforcement-learning-with-aws-
deepracer-99b5dd2557c8> 24 April 2021.

6 Amazon Web Services. 2021. AWS DeepRacer Reward Function
Examples. Amazon Web Services.
<https://docs.aws.amazon.com/deepracer/latest/developerguide/deeprace
r-reward-function-examples.html> 25 April 2021.

7 O’Brien Tim. 2020. DeepRacer Expert Bootcamp: How Much Training Is
Enough?
<https://www.youtube.com/watch?v=qOEqW-xTClE> 26 April 2021

8 Ptak Tomasz. 2020. DeepRacer Expert Bootcamp: Through the log & into
the AWS DeepRacer’s mind with log analysis tools
<https://www.youtube.com/watch?v=v7SXfYSWvBU> 26 April 2021

9 OpenAI. 2018. Proximal Policy Optimization. OpenAI.
<https://spinningup.openai.com/en/latest/algorithms/ppo.html>
27 April 2021.

10 OpenAI. 2018. Soft Actor-Critic. OpenAI.
<https://spinningup.openai.com/en/latest/algorithms/sac.html>
27 April 2021.

11 Will Koehrsen. 2018. Overfitting vs. Underfitting: A Complete Example.
Towards data science.
<https://towardsdatascience.com/overfitting-vs-underfitting-a-complete-
example-d05dd7e19765> 28 April 2021.

12 Ray Goh. October 13, 2020. Using log analysis to drive experiments and
win the AWS DeepRacer F1 ProAm Race. AWS Amazon.

62

<https://aws.amazon.com/blogs/machine-learning/using-log-analysis-to-
drive-experiments-and-win-the-aws-deepracer-f1-proam-race/>
28 April 2021.

13 Amazon. 2021. Amazon AWS client. Amazon Web Services.
<https://console.aws.amazon.com/deepracer/home?region=us-east-
1#createModel> 5 May 2021.

	1 Introduction
	2 Theoretical background
	2.1 Reinforcement learning
	2.2 Model
	2.3 Race type
	2.4 Action space
	2.5 Reward function
	2.6 Training algorithms
	2.7 Hyperparameters
	2.8 Overfitting and underfitting
	2.9 Convergence
	2.10 Model stability and universality
	2.11 Simulated-to-real performance gap

	3 Methods
	3.1 AWS DeepRacer client and service architecture
	3.2 AWS vehicle – DeepRacer
	3.3 Jupyter lab
	3.4 Amazon SageMaker and RoboMaker logs

	4 Results
	4.1 Time trials
	4.2 Object avoidance
	4.3 Head-to-head racing
	4.4 Hyperparameters and training
	4.5 What to look for with log analysis

	5 Conclusions
	5.1 What was achieved?
	5.2 Next steps
	5.3 Suggestions for further examination

	References

