

Anh Dang (D5057)

AUTOMATED APPLICATION
DEPLOYMENT TO KUBERNETES ON

GOOGLE CLOUD PLATFORM

Bachelor’s thesis

Bachelor of Engineering, Information Technology

2021

Author (authors) Degree title

Time

Anh Dang

Bachelor of
Engineering,
Information Technology

May 2021

Thesis title

Automated Deployment to Kubernetes on Google Cloud Platform

35 pages

Commissioned by

Supervisor
Matti Juutilainen

Abstract
This work explores the capabilities of an automated continuous delivery to Kubernetes in a cloud
native environment. With Kubernetes becoming such a prominent technology in the software
development field, its advantages provide an opportunity to further optimize the development
process. In addition, the utilities of Kubernetes also facilitate the drive towards microservices
architecture. All these new technologies were explored in this work and examined closely through
an implementation of an example project.

A cloud native approach through Google Cloud Platform was chosen as the example, as the author
had ample experience with the cloud provider and also engaged in a similar project during his time
as an intern for CloudAce Vietnam.

The research method for this thesis relies on analysis of the components involved and how they fit
in the context of automated deployment. The deployment process was closely explained so as to
provide a detailed view of a functioning Kubernetes and Cloud Build system.

The key result for the project was the correct delivery and deployment of an application to
Kubernetes through a cloud native continuous delivery pipeline. Since this project served as a
model for a deployment pipeline, it could be used as a reference point for developers looking to
deploy their application on GKE.

Keywords

Kubernetes, continuous delivery, Google Cloud Platform, Cloud Build, automation

CONTENTS

LIST OF FIGURES ... 4

USED ABBREVIATIONS.. 5

1 INTRODUCTION ... 6

2 THEORY ... 7

2.1 Microservices architecture ... 7

2.2 Containerization .. 7

2.3 Kubernetes .. 10

2.3.1 Kubernetes components.. 11

2.3.2 Kubernetes objects .. 12

2.3.3 Workloads ... 14

2.4 CI/CD Pipelines ... 15

2.4.1 Application Deployment Strategies .. 15

2.5 Google Cloud Platform .. 17

2.5.1 Google Kubernetes Engine ... 18

2.5.2 Cloud Source Repository and Container Registry 19

2.5.3 Cloud Build .. 19

3 IMPLEMENTATION .. 20

3.1 Application Structure ... 21

3.2 Deploy to Kubernetes .. 23

3.3 Automation .. 29

3.3.1 Setting up repositories and environments 30

3.3.2 Build processes and triggers ... 30

3.3.3 Deployment to branches.. 35

3.3.4 Canary deployment to production .. 37

3.3.5 Deployment to the entire production environment with tags 38

4 RESULTS AND CONCLUSION .. 38

REFERENCES ... 40

LIST OF FIGURES

Figure 1: Virtualization ... 8

Figure 2: Containerization ... 9

Figure 3: Kubernetes ... 11

Figure 4: Example deployment.yaml file .. 13

Figure 5: Deployment strategies (Google 2021) .. 16

Figure 6: GCP data centers as of 2021 (Google 2021) 17

Figure 7: GKE .. 18

Figure 8: Application deployment pipeline ... 21

Figure 9: Application structure ... 22

Figure 10: Frontend mode ... 23

Figure 11: Backend mode ... 23

Figure 12: Image built .. 24

Figure 13: frontend-production.yaml .. 25

Figure 14: backend-production.yaml ... 26

Figure 15: frontend.yaml.. 27

Figure 16: backend.yaml ... 27

Figure 17: Kubernetes system deployed ... 28

Figure 18: Returned webpage ... 29

Figure 19: Master branch .. 30

Figure 20: Build step ... 31

Figure 21: Publish step .. 32

Figure 22: Deploy step for a new development branch 32

Figure 23: Deploy step for canary deployment .. 33

Figure 24: Deploy step for live rollout .. 33

Figure 25: IAM role for Cloud Build service account .. 34

Figure 26: Build success ... 35

Figure 27: new-feature environment .. 36

Figure 28: Application v2.0.0 ... 36

Figure 29: Running pods ... 37

Figure 30: Canary deployment serving new version .. 37

Figure 31: Live environment deployment... 38

Used Abbreviations

CI/CD Continuous Integration and Continuous Delivery/Deployment

GCP Google Cloud Platform

GKE Google Kubernetes Engine

AWS Amazon Web Services

SRE Software Reliability Engineer

DevOps Developer and Operator

VM Virtual Machine

OS Operating System

TLS/SSL Transport Layer Security and Secure Socket Layer

IAM Identity and Access Manager

SLA Service Level Agreement

1 INTRODUCTION

In modern software development, it is clear that more and more companies are

putting a larger emphasis on shorter programming cycles and faster delivery

time. They are adopting more modular microservices architecture, pursuing an

Agile focused development cycle or implementing automated CI/CD pipelines in

their product delivery system. Along with that, the push for modern cloud hosting

and open-source utilities only accelerates the modernizing process of software

development as a whole. Many large corporations have stepped up and provided

an entire fleet of services that can accommodate developers from start to end,

such as Amazon with AWS, Microsoft with Azure or Google with Google Cloud

Platform. In parallel, small companies are also very active in the market,

providing high quality programs and services that would make the lives of

developers, system administrators or the more modern SRE and DevOps

engineers much simpler. Yet the plethora of options available sometimes

confuses the average programmer rendering them unable to choose between

similar products to use in their applications. This problem raises the importance

of having a clear direction coordinating the use of external services in software

development.

As a latecomer to the public cloud provider space, Google has been active and

strategic in their growth and target customer space. Leveraging their experience

in Kubernetes and coordinating large and reliable infrastructure systems, Google

offers a Kubernetes managed service as a top-of-the-line selection for deploying

microservices applications. Along with their obvious strength in Kubernetes,

Google also offers plenty of developer tools as a service, raising the quality of life

for customers opting for a full cloud native experience on Google Cloud Platform.

The main goal of this thesis is to offer a model automated deployment to the

Google Kubernetes Engine, following a modern microservice oriented CI/CD

architecture that would deploy the application to multiple environments suitable

for testing and production right when code is merged to the program repository.

2 THEORY

This part of the thesis explains the technical theory behind the pipeline design

and the services and applications used in order to achieve the goal of building a

model automated delivery pipeline.

2.1 Microservices architecture

Originally, applications are put into one singular server entity that processes all

the user requests and requests to the database as well as other functionalities.

As the application and the development team grows, the fact that each change to

the monolithic architecture would require the verification and authorization of all

parties would significantly delay the development process. In addition, a small

error could potentially risk paralyzing the entire production environment.

To combat this problem, development teams have adopted a more loosely

coupled architecture that promotes the decoupling of different components within

a monolithic server and turn them into collaborating modules called services

(Richardson 2020). This adoption results in a system that consists of components

that can be deployed independently, rolling out updates feature by feature and

can roll back errors modularly, which helps in quickly addressing problems and

returning the application to a stable state.

2.2 Containerization

Containerization is an increasingly popular method of designing and deploying

Microservices applications. A container is a unit of software with the application

code along with all the configuration files, libraries and dependencies packed into

a sandbox that can run quickly and similarly across multiple different computing

environments. Some definitive features of containers include being efficient,

portable and secure. These factors help containers become a welcome

alternative to the extensive use of Virtual Machines in modern application

development. The research firm Gartner projects that by 2022, more than 75% of

global organizations will be running containerized applications in production, up

from less than 30% in 2019 (Gartner, 2020).

The main difference between Containers and VMs is that each VM runs its own

OS under the Hypervisor while Containers share the host OS and runs under the

container engine layer. The differences are shown through figure 1 and 2.

Figure 1: Virtualization

Figure 2: Containerization

Some benefits of containerization include:

- Efficiency: Applications running on the same containerized environment

share the OS kernel. Furthermore, application layers within a container

can be shared across multiple containers. Because they do not have to

run a separate OS for each application, containers require much less

startup time compared to VMs, therefore optimizing system performance

and reducing licensing costs.

- Portability: A container creates a running environment that is independent

from the host OS, therefore it can be run consistently across multiple

machine environments and maintains consistency even when running.

This feature allows some companies to run hybrid workloads across both

cloud and on-premise environments through container orchestration

platforms.

- Security: The isolation of containerized applications inherently prevents

the invasion of malicious code from affecting other containers, as they run

in separate environments. In addition, there are multiple security

appliances that can be applied to containers to further fortify the security of

application environments.

By offering the creation and operation of stable modules of small artifacts,

containerization fits the description of a microservice architecture of decoupling

applications into smaller size services. Containers serve as a perfect vessel for

deploying such services on a large scale, and that is why Docker and Kubernetes

are rising in popularity day by day.

2.3 Kubernetes

Since containerizing is such a great way to package and deploy applications,

development teams and companies are using it more and more every day.

However, this poses another problem. Containers are so efficient and

consistently deployable that users would want to deploy multiple instances of

them. Here lies a problem: if each container has to be configured manually for

networking, storage and interaction with other components of the system,

managing an increasingly high number of them would be unsustainable. In

addition, there are some important external services such as autoscaling, OS

image update, configuring TLS/SSL and so on. Managing all these container by

container would be a very tall task. With this problem in mind, some engineers at

Google started an open-sourced project called Kubernetes that aims to solve

these issues and bring the idea of containerization closer to being a common

reality. Since then, Kubernetes has grown into a highly scalable and reliable

container orchestration platform that also provides a multitude of support services

that greatly enhances the experience of using containers. According to “The

State of Kubernetes 2020” report by VMWare, 59% of respondents were using

Kubernetes in their production environment, and over 95% of respondents said

that they see a clear benefit in Kubernetes adoption (VMWare 2020).

The following sections further explains some details about how Kubernetes work,

based on

2.3.1 Kubernetes components

In order to manage so many additional services, Kubernetes introduces a few

concepts to provide a centralized orchestration platform.

Figure 3: Kubernetes

In abstract, a Kubernetes Cluster is comprised of 2 main planes: Control plane

(master nodes) and Worker nodes. The Control plane is in charge of deciding

what happens over the entire cluster. It has the ability to schedule when to start a

node, when to delete a node as well as keeping the cluster up to date with cluster

events. A Kubernetes cluster is comprised of multiple small components both in

the control plane and in the worker nodes, each in charge of a specific set of

tasks that contributes to the orchestration and operation of the entire cluster

Control plane components include:

- kube-apiserver: This component works as a frontend to the Kubernetes

API, providing an interface for all cluster components to interact with each

other.

- kube-controller-manager: This component works as a background process

that embeds the non-terminating loop that always regulates the state of the

system. This is the part that defines the automation characteristic of

Kubernetes, as it always checks and makes changes to the cluster state to

be in sync with the desired state specified in the yaml files.

- etcd: Key-value storage for all cluster data.

- kube-scheduler: The scheduler oversees newly created pods and assigns

which node to run them on.

- cloud-controller-manager: this is a special component used for integration

with cloud providers’ APIs.

Worker node components include:

- kubelet: This component is also known as the kube agent, which exists

within a node to make sure that containers are running in a Pod.

- kube-proxy: This component is used to maintain network rules on nodes.

With this network, pods within a cluster can reliably communicate with

each other without having to use external networks.

- Container Runtime: This is the software that is responsible for running

containers. Kubernetes currently supports Docker, containerd, CRI-O and

any implementation of the Kubernetes CRI.

In addition to these crucial components, Kubernetes also provides some other

features such as DNS, dashboard, cluster-level logging and monitoring for ease

of management and monitoring.

2.3.2 Kubernetes objects

By definition, Kubernetes objects are persistent entities within the Kubernetes

system. In Kubernetes, objects are defined within a yaml file and the Kubernetes

system will constantly work to make sure that all the cluster state matches the

desired state written in those yaml files.

Figure 4: Example deployment.yaml file

As seen in figure 4, a yaml file is a declarative file that describes the desired state

of an object in Kubernetes. Kubernetes will convert this format into JSON when

making an API request. For a Kubernetes yaml file, there are some fields that are

required in order for the object to be properly created:

- apiVersion: the version of the Kubernetes API that the user wants to use

for this object.

- kind: which type of object does the user want to create.

- metadata: data that helps in identifying an object, such as name, uid,

namespace and label.

- spec: the desired state of the object.

It is through the creation and maintenance of these objects that Kubernetes

provision infrastructure and resource. In these object declaration files developers

can choose the amount of computing resource allocated to a container, or how

many containers to run for the job.

2.3.3 Workloads

A Workload is an application that runs on Kubernetes. With Kubernetes, users

can run an application as one single component or multiple components that

cooperate, but either way, users must run it inside a set of pods. Pods are the

smallest unit of computing resource that users can assign in Kubernetes. It is a

group of one or more containers with a set of common networking and storage

resources. Everything inside a single Pod is always scheduled together and put

in the same location. Workload resources manage a fleet of these pods as

declared. Kubernetes provide several built-in workload resources:

- Deployment and ReplicaSet: These workloads are suitable for stateless

applications since any pods within a Deployment are replaceable and a

new one can easily take its place if needed.

- StatefulSet: This kind of workload is used for applications that do track the

state of the machine somehow. If the workload needs to store persistent

data, it can be connected to a PersistentVolume object for storage.

- DaemonSet: This type of workload provides node-local appliances. Once

deployed, DaemonSet will make sure that all (or some) of the nodes have

one copy of a Pod.

- Job and CronJob: Tasks that run to completion and then stop. Jobs are

tasks that run only once and CronJobs are tasks that runs according to a

schedule.

In addition to Kubernetes native workloads, developers can utilize additional

third-party resources to further coordinate and manage their clusters. Some of

the most used external tools include Helm for package management, Istio for

service mesh management and Prometheus for monitoring. This is one of the

true wonders of Kubernetes, that since it is open-sourced, everyone can join

and contribute to the development of the entire ecosystem.

2.4 CI/CD Pipelines

The modern Software Development Cycle implements the Agile methodology or

DevOps/SRE approach, which revolves around a continuous cycle of developing,

testing and deploying the application in short sprints. In order for this process to

be feasible, lots of companies implement a system called a CI/CD pipeline. A

CI/CD pipeline introduces monitoring and automation to improve the process of

application development, especially in the testing and deployment phases. Every

part of the CI/CD pipeline can be done manually, but its true potential lies in the

automation of the process.

Continuous Deployment refers to the pipeline from when code changes are

merged and pushed to the repository to when the application is deployed to the

servers and served to users. An automated continuous delivery pipeline provides

developers with the ability to instantly react to events such as customer

feedbacks or disasters. It also allows companies to test new ideas, deliver new

features and rollback quickly.

2.4.1 Application Deployment Strategies

In order to reliably release new versions of an application, developers nowadays

rely heavily on customer and system feedback to make sure that everything runs

well before the final push to production. To achieve this, they would try to have

some customers use the new version first, see if the server and the users have

any feedback. There are multiple ways to go about this endeavor, called

application deployment strategies.

Figure 5: Deployment strategies (Google 2021)

All the deployment strategies have their pros and cons, as seen in figure 5. For

this specific project, I would want a deployment strategy that involves no

downtime, with actual user traffic routed to the testing instances so that

customers can test and give feedback on the newly deployed version. As seen

from the chart above, A/B testing would be the perfect choice. However, A/B

testing involves some additional trigger applied to the load balancer in order to

serve to users based on specific conditions. Since the application I would be

using does not include features that are specific to device types or user

metadata, the benefits of using A/B testing compared to canary deployment

would be nullified. Therefore, the canary deployment pattern would be chosen to

be demonstrated in this project.

2.5 Google Cloud Platform

Google Cloud Platform is one of the Leaders for Cloud Infrastructure and

Services in 2020 according to Gartner’s report (Raja et al. 2020). With the third

largest market share, GCP is proving itself to be a growing competitor to

Microsoft’s reliable Azure and Amazon’s giant AWS. GCP provides a wide range

of products, from traditional VMs and storage to managed services such as

Google Kubernetes Engine, CloudSQL and so on. In addition, GCP also provides

powerful cloud Big Data and data analytics platform with BigQuery. Google also

wants to make GCP an ecosystem for developers with all open-sourced services

like Kubernetes and the push for Anthos for hybrid deployment to Kubernetes for

GKE. With such a strong base for deploying Kubernetes, I found it deploying a

pipeline around Google Kubernetes Engine a highly simple yet effective and

rewarding process for companies looking to develop a cloud native application.

Figure 6: GCP data centers as of 2021 (Google 2021)

Figure 6 shows the global scale of Google Cloud Platform and Google’s plan to

further expand its operation scope. Compared to other cloud providers, Google

has already dedicated much resource into building its own network, connecting

data centers with Google’s own infrastructure to avoid having to utilize external

internet traffic. This dedication shows their true willingness to enter the market

and potentially to be a large player, bringing more and more options that would

benefit users and developers.

2.5.1 Google Kubernetes Engine

Google Kubernetes Engine is GKE’s managed Kubernetes service on GCP. By

managed service, Google means that the provision, creation and management of

sufficient infrastructure would be Google’s responsibility and customers only need

to focus on the application and products that they would be running on top of the

provisioned resources. Google makes sure that the resources provisioned would

be guaranteed to function properly with an SLA for each managed service

product. The GKE environment consists of multiple machines grouped together

to form a cluster. Google Kubernetes Engine management scope

Figure 7: GKE

By offloading the management of the control plane to GKE, developers eliminate

the high overhead of setting up management components like the scheduler or

the api server, as well as the need for setting up utilities such as autoscaling,

auto-healing and OS image management, to name a few. Previously the

management overhead for running a Kubernetes cluster has been a significant

problem. There are so many problems that needed to be addressed and so many

detailed components that could raise a conflict. To name a few, problems might

arise when creating master node replicas, bootstrapping a high availability etcd

storage cluster or configuring remote access with role-based access control.

Furthermore, GKE has strong integration with other GCP services such as load

balancing or centralized monitoring, which immensely simplify the operation and

deployment process for companies.

2.5.2 Cloud Source Repository and Container Registry

Cloud Source Repository is Google’s own version control platform hosted on

Google Cloud Platform. CSR is a git platform, not too different from Github, Gitlab

or Bitbucket. Each project on GCP has its own Cloud Source Repository and

CSR can also integrate with both Github and Bitbucket. To Google, CSR is more

like an extension to GCP rather than a direct opponent to Github or Bitbucket.

Because it is a natural extension to GCP, CSR provides seamless integration

with Cloud Build, App Engine, Cloud Pub/Sub and Cloud Monitoring and Logging

to facilitate deployment automation to users’ workflow. (Hajdarbegovic 2015)

Container Registry is GCP’s repository for Container Images. More than just an

Image repository, the Container Registry also provides additional services like

build automation for Cloud Build or direct deployment to GKE, App Engine, Cloud

Function or Firebase. Furthermore, Container Registry provides an in-depth

vulnerability scanning service that checks the container images for all possible

vulnerabilities available on Google’s up-to-date database.

2.5.3 Cloud Build

Cloud Build is a service that executes the code builds on Google Cloud

Platform’s infrastructure. Cloud Build can import source code from multiple

different repositories or even cloud storage spaces to produce artifacts such as

Docker containers or Java archives.

In order to run Cloud Build, users can write a build config file to provide Cloud

Build with instruction on what task to perform. Users can configure builds to fetch

dependencies, run tests, analysis and create artifacts with tools such as docker,

gradle, maven, bazel and gulp. Cloud Build executes this config as a series of

build steps, where each step is run inside a Docker container. Executing build

step is largely similar to executing commands in a script.

In addition to writing build steps, Cloud Build and the Cloud Build community

provides a set of supported open-source build steps as well as community-

contributed build steps for everyone to use as directly or use as reference for

their own file.

3 IMPLEMENTATION

This section will explain my implementation of an autonomous Continuous

Delivery pipeline. The project is fairly simple. As shown in figure 8, there are two

logical environments for code deployment, production and development.

Whenever the developers push the code to a branch of the repository, the Cloud

Build will build the container image and apply the container image to the cluster

according to the branch of deployment. In addition, I would be deploying my

application in different ways to show the flexibility of such a pipeline. For the main

production environment, I would create the environments first and then deploy to

it. I would also use canary deployment to roll out new versions of the application

to show the possibility of having this done to a multitude of deployment

strategies. For the development environment, I would create resources

programmatically through the automated pipeline to show that Cloud Build can

make CI/CD very flexible for development teams to automate everything as will.

Figure 8: Application deployment pipeline

3.1 Application Structure

The application I would be using for the demo is an open-sourced application

made by Google called gceme. This application would return the VM metadata of

the Compute Engine instance that hosts the application. In addition, the

application would also show its version number, so that users can track whether

their code was deployed to the environments properly. Gceme is an application

built specifically for the testing of a Deployment pipeline, and that is why I chose

to run this application in this project.

Figure 9: Application structure

As shown in figure 9, the application works as follows: When the user sends a

request to the load balancer, it automatically sends the package to one of the

frontends. Then, the frontend sends the request to the backend service which in

turn sends the request to the backend pod. From there, the backend pod returns

its Instance metadata to the user.

This single application has 2 modes of operation, frontend mode and backend

mode. While creating the deployment, users can declare which mode of

operation they would want to use.

Figure 10: Frontend mode

Figure 11: Backend mode

With the application components ready for deployment, the next step is to build a

first Image and deploy the application to a GKE cluster.

3.2 Deploy to Kubernetes

First, in order to store my Container Image for the cluster to pull from, I created a

Container Register repository called on my GCP project. Afterwards, I proceeded

to build and push the container image version 1.0.0 to the image repository as

shown in the figure below.

Figure 12: Image built

For this application, the GKE cluster is split into 4 main parts. The first part is the

Load Balancer service that exposes the Frontend pods to the Internet. The

second part is the deployment for Frontend pods. For these pods, I first created

the deployment without declaring the desired number of pods and then I enabled

autoscaling for the frontend pods. With this architecture, we could fully leverage

the use of a load balancer, automatically splitting traffic to all pods within the

deployment. The third part of the cluster is the Backend services, which acts as

a proxy between the Frontend pods and Backend pods. The following figures

show the yaml files for deploying the Kubernetes cluster. In the two

deployment.yaml files, focus on the spec/spec/containers part where the

specification for the containers is declared. The difference between frontend and

backend pods are in the command part where I inserted the bash script

commands to choose to deploy the application as either the backend or the

frontend pod to serve traffic. In the other two yaml files, we only need to focus on

the type of service that they would be creating, which is a load balancer and a

service proxy called ClusterIP to connect frontend services with backend pods.

Figure 13: frontend-production.yaml

About the Kubernetes yaml files, first it must define the type of object that this file

is about, in case of figure 13, it is a deployment yaml file. Next is the apiVersion

for Kubernetes, which normally is version one. After that is the specification for

the entire deployment, which has the template for the pods used. In the template

part, the file defines containers that it would deploy, what image that container

would run and other commands to operate that container.

The frontend pod will send traffic towards the backend service to port 8080

through port 80 as defined in the spec/template/spec/container/command part of

the yaml file in figure 13.

Figure 14: backend-production.yaml

The backend port will open port 8080 to wait for service calls from frontend as

seen in figure 14.

Figure 15: frontend.yaml

Figure 16: backend.yaml

In figure 15 and 16, services such as load balancers and cluster IP services are

also declared as object to be created with specifications on which port to open

and which pods to select as their backend.

Figure 17: Kubernetes system deployed

In addition to the production environment with four active frontend pod, one

instance of frontend and backend canary deployment was also created to serve

20% of users with the canary version of the application.

We can see from figure 17 that we have a Load Balancer service for the frontend

that is exposing our application to the internet through the external IP address

34.80.217.174 and a ClusterIP service that is exposing our backend to our

frontend through the TCP port 8080.

With the Kubernetes system deployed, I could access the external IP address of

the frontend Load Balancer. The web page is served as in figure 18, whereas it

shows the information of the Compute Engine instance that the backend pod was

running on. In addition, it shows that the application version that was running was

version 1.0.0. This is important since I would later deploy a different version of

the application and it would show that the application was deployed as desired.

Figure 18: Returned webpage

As I have had the application up and running as desired, the next step is to

prepare the environment for automation on Cloud Build.

3.3 Automation

In this section, set up the automation pipeline on Cloud Build to automate the

deployment process to Kubernetes, from when the code was pushed to the

repository to when the system serves the requests to end-users.

3.3.1 Setting up repositories and environments

I began this step by creating a repository on Cloud Source Repository called

default. Then, I initialized git on my local application file and set the default

repository I just created as remote. After that, I pushed the code to the repository

master branch for the initial commit. Now, the codebase is available on the

repository and ready for setting up a build pipeline.

Figure 19: Master branch

The master branch on the repository contains the files on figure 19. The main

application file is main.go and from there I would update the code version. From

the figure, we could also see I made the kubernetes/ directory for storing yaml

files regarding the GKE cluster, while the builder/directory is for storing yaml files

to run the Cloud Build pipeline.

3.3.2 Build processes and triggers

Cloud Build has a system to listen to events from other places, which is called

triggers. Here, I created three triggers in place so that in the event of codes being

pushed to different branches of the code repository, the pipeline will automatically

build and deploy accordingly to appropriate environments.

One trigger would be for when there is a code pushed to a new branch other than

the master branch. Codes of this nature are normally pushed to run on the

Development environment, so my trigger is to create the Development

environment with the application from the new branch created.

Another trigger is for deploying to the deployment environment itself. However,

since the pipeline uses a canary deployment rollout scheme, the build process

only deploys the application to canary deployments and serves a small portion of

traffic to users for live testing purposes.

The last trigger runs when the code was merged directly to the master branch,

effectively announcing that the applied version should be the live version served

to all customers. Cloud Build will perform accordingly and apply patches to all

deployment namespace pods and serve the newest live version.

The following figures are all from the build.yaml files to deploy from different

branches to different parts of the cluster.

Figure 20: Build step

Figure 20 describes the Build step for the process. Here, the yaml file runs a

bash script that runs the command docker build -t to build the docker image and

tag it with a name.

Figure 21: Publish step

Figure 21 describes the publishing process to push the image to cloud source

repository.

Figure 22: Deploy step for a new development branch

Figure 23: Deploy step for canary deployment

Figure 24: Deploy step for live rollout

In figure 22, 23 and 24 are deployment steps for different ways to deploy. All

three begin by getting the environment variable for the cluster name, project

name and running zone to operate on.

Next, they get the credentials for the Kubernetes cluster in order to be allowed to

operate on the cluster. However, the Cloud Build API itself has to be allowed

through Cloud Identity and Access Management system by a service account

with the appropriate roles and permissions to interact with GKE and its clusters.

Figure 25: IAM role for Cloud Build service account

There is an interesting command in this deployment phase, which is the sed -I

command. With this, whenever a new image is created, Cloud Build will replace

the image repository address of the previously live image with newly built

container image. There is also another way to do this, which is to let the

deployment pull the latest image, so that whenever a new image is pushed to the

Container Registry, the cluster will automatically update as well. However, letting

Kubernetes always pull the latest image is not always a good thing, since there

could be a mistake in the code pushed. Therefore, a substitution command to the

deployment.yaml file should do the trick.

From there, the rest of the deployment files are commands directly to the

Kubernetes cluster to deploy our code to the appropriate environment. The

development branch creates a new namespace and creates an environment

there, the canary deployment rolls out canary deployment and split traffic and the

live tag deployment deploys the tags to the entire production environment.

Figure 26: Build success

The figure 26 above shows that our Build step is complete, and the application is

rolled out accordingly.

3.3.3 Deployment to branches

With everything setup, it was time to run and test the whole deployment pipeline.

Here, developers push the code to a new branch on the repository. Cloud Build

will be triggered to create a new environment on Kubernetes with the same name

as the new branch

For the development environment, I push the code with version 2.0.0 and

changed the application color scheme to a new branch called “new-feature”.

Since this branch did not exist before and needs an environment to run on, Cloud

Build creates a new namespace for developers to test out the application. The

information about the namespace is in figure 27 below.

Figure 27: new-feature environment

Figure 28: Application v2.0.0

From figure 28, we could see that the color for the application was changed along

with the version number. This shows that the environment is updated and ready

for developers to test and work on.

3.3.4 Canary deployment to production

After the developing phase, when everything is ready for release, the application

is merged to the master branch. However, this does not mean that it was ready

for a full release. For the deployment model of this project, the application has to

go through a phase of canary live testing to get user feedback. In this phase,

some pods will run a version of the application for testing. The trigger in place for

this process deploys the code merged to master branch of the repository to the

production environment.

Figure 29: Running pods

As seen in figure 29, 4 backend pods were running the live version and one

backend canary pod was running the new version for testing.

Figure 30: Canary deployment serving new version

In figure 30, I ran a command to continuously request the application to return the

value of the version that the pod serving the request was running. As we can see,

some of the pods were running a newer version while most were running the old

2.0.0 version.

3.3.5 Deployment to the entire production environment with tags

After thoroughly testing and analyzing feedback from users, developers would

want to fully deploy that version to the live production environment. On git, this

process would be to tag the master branch with a tag named after the version of

the application like in figure. A Cloud Build trigger listens to the push command to

a new tag and applies the deployment to the entire fleet of pods.

Figure 31: Live environment deployment

We could see all pods running the latest version of the application in Figure 31.

4 RESULTS AND CONCLUSION

From a theoretical standpoint, this thesis provided information and analysis on

how developers can create a simple yet effective pipeline to automatically deploy

their program to Kubernetes. The implementation was based on a functional

implementation, as well as the use of an application by Google created

specifically for the demonstration purpose really showed how a reliable delivery

pipeline can easily be created.

However, due to the scope of the thesis, there lies plenty of room for

improvement. Most glaringly, since the implementation demonstrated only the

Deployment side of the pipeline, the automated testing part of the pipeline was

neglected and not implemented. In addition, some more triggers for Cloud Build

as well as a more detailed implementation of the load balancer could

accommodate more application deployment strategies.

Furthermore, not all applications would have such a simple frontend and backend

architecture, so a thorough analysis of each application is required in order to be

able to design a working pipeline for automation. For example, compared to the

production application that this implementation was based on, the Kubernetes

cluster design was significantly different and therefore the Cloud Build trigger had

to be altered accordingly. There are also additional trending utilities for a CI/CD

pipeline that involve new models such as DevOpsSec, the alignment of all

development, operation and security to the process. This involves newer

concepts such as Compliance as code and has services to run such as Chef

Inspec.

References

Richardson, C. 2020. Pattern: Microservices architectures. WWW document.

Available at https://microservices.io/patterns/microservices.html [Accessed 16

April 2021].

VMWare. 2020. The state of Kubernetes 2020. WWW document. Available at

https://k8s.vmware.com/state-of-kubernetes-2020/ [Accessed 10 May 2021].

The Kubernetes Author. 2020. Kubernetes concepts. WWW document. Available

at https://kubernetes.io/docs/concepts/ [Accessed 15 May 2021].

Google. 2021. Application deployment and testing strategies. WWW document.

Available at https://cloud.google.com/architecture/application-deployment-and-

testing-strategies [Accessed 16 May 2021].

Hajdarbegovic, N. 2015. Google Cloud Source Repository vs. Bitbucket vs.

Github: a worthy alternative? WWW document. Available at

https://www.toptal.com/git/google-cloud-source-repositories-vs-github-a-worthy-

alternative [Accessed 2 May 2021]

https://microservices.io/patterns/microservices.html
https://k8s.vmware.com/state-of-kubernetes-2020/
https://kubernetes.io/docs/concepts/
https://cloud.google.com/architecture/application-deployment-and-testing-strategies
https://cloud.google.com/architecture/application-deployment-and-testing-strategies
https://www.toptal.com/git/google-cloud-source-repositories-vs-github-a-worthy-alternative
https://www.toptal.com/git/google-cloud-source-repositories-vs-github-a-worthy-alternative

