

Ali Bahrami

Classification of invasive species in
Finland with deep learning

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

13 April 2021

 Abstract

Author
Title

Number of Pages
Date

Ali Bahrami
Classification of invasive species in Finland with deep learning

40 pages + 3 appendices
13 April 2021

Degree Bachelor of Engineering

Degree Programme Information and Communication Technologies

Professional Major Software Engineering

Instructors

Peter Hjort, Senior Lecturer

In this project, an application was developed in order to classify whether a plant is lupine,
hogweeds or impatiens, based on the image of the plant. These plants are considered as
invasive species in Finland. The first step in order to remove an invasive plant from the
environment is to recognize it, either by a human or a machine. The aim of this project was
to create an application that can, with deep learning, recognize a plant in an image as lupine,
hogweeds or impatiens. The application was developed by experimenting with different pa-
rameters in the learning algorithm and by observing their effects on results.

The algorithm is based on deep learning techniques. The main language to develop the
code was Python. Most of the code is based on PyTorch and fastai libraries and the imple-
mentations of artificial intelligence theories. Google Research Colab was used to do the
experiments in the cloud. The application was deployed to Heroku.

The application can recognize invasive plants and the success rate of the test results is over
ninety percent. Since recognition is the first and vital step to take in order to remove invasive
plants from an environment, the results of this project can be applied to robotics engineering
in the future.

In conclusion, it is possible to use deep learning in order to clean nature from invasive plants.
This means that the next step for this project is to apply the learning model to robots. How-
ever, robotics regulations and the ethical aspects concerning the use of robots should be
studied first.

Keywords Deep learning, invasive plants

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical background 2

2.1 Data gathering 5

Data augmentation 6

2.2 Training 6

2.2.1 Learning types 6

2.2.2 Artificial neural networks 7

2.2.3 Regularization 9

2.2.4 Hyperparameters 10

2.2.5 Transfer learning 12

2.3 Troubleshooting 13

3 Tools and technologies 13

4 Strategy of development 14

5 Data gathering 15

5.1 Gathering images 15

5.2 Creating DataLoaders 17

5.3 Training 18

5.4 Results 19

6 Training the model 20

7 Improvements in training 27

7.1 Data gathering 27

8 Inference results for an online application 34

9 Further implementation 35

10 Conclusion 36

References 40

Appendices

Appendix 1. DataLoaders and model summary for first experiment

Appendix 2. DataLoaders summary for second experiment

Appendix 3. Application

List of Abbreviations

AI Artificial Intelligence

DL Deep Learning

CNN Convolutional Neural Network

RESNET Residual Neural Network

NN Neural Network

ANN Artificial Neural Network

RNN Recurrent Neural Network

1

1 Introduction

In Finland, around one thousand species have been identified as alien species and

among them are some harmful plant species, bringing risks to their environment. The

plant species that affect their environment negatively are considered as invasive ones.

Among these species, lupine (Lupinus polyphyllus), hogweeds (Heracleum mantegazzi-

anum) and impatiens (Impatiens glandulifera) are among the top five invasive species in

Finland and continue to invade the forests of Finland. (Yle, 2015.)

The giant hogweed, illustrated in figure 1, is a toxic and tall plant, which endangers both

local species and humans. One needs to cover hands and eyes before getting close to

it due to sever damages to skin. There is also a risk of getting blind. It can spread vastly,

and there is a high chance that the dormant seeds germinate easily.

Figure 1. Hogweed. Copied from Rahjola (Yle, 2015).

The impatiens or, to be more precise, the Impatiens glandulifera, which is illustrated in

figure 2, is native to Himalayas. When established in an area, it will eventually dominate

the land as the single species. If it grows along water resources, it can endanger the fish

population too.

Figure 2. Impatiens. Copied from Flinck (Yle, 2015).

2

Lupine (Lupinus polyphyllus) is a flowering plant with large leaves growing next to the

roads and rivers. The plant, which is illustrated in figure 3, is toxic to domesticated ani-

mals and butterflies since it has toxic alkaloids. Efforts to remove it from urban areas in

Finland have been ineffective and they continue to grow in large groups.

Figure 3. The herbaceous lupine. Copied from Heikkinen (Yle, 2015).

What is a threat to Finland’s nature is not necessarily a threat in other parts of the world.

For example, there are cases where the impatiens is cultivated for its flowers and lupine

for its seeds. The seeds of the lupine, for instance, can be used as an alternative to soy-

beans. Eighty five percent of lupine in the world is produced by cultivation in Australia

(Ross, 2011). Lupine seeds enrich the soil with nitrogen, and it resists pests better than

soybeans. Moreover, in Finland there are some local products out of lupine, such as

Jalotempe Lupiini. However, despite different types of solutions and money spent to fight

against the uncontrolled spread of the lupine, it seems that the plant is winning the battle

in nature.

The effort in this project includes methods to classify lupine, hogweeds, and impatiens

and to take the first steps to protect the endangering Finnish nature. In order to use

machines to remove invasive species, there should be a mechanism to recognize plants

and classify them. Since this is a classification problem, deep learning techniques can

be instrumented for recognition of these species. The results of this approach along with

the code used to produce it are explained in detail in the following sections.

2 Theoretical background

Machine learning solutions have evolved historically by numerous scientists. The first

attempt to create a model that represents neurons was done by Warren S. McCul-

loch and Walter Pitts. It is possible to use propositional logic to describe the relations

3

among neurons since neurons have “all-or-none” behaviors in their activities (McCulloch

& Walter Pitts , 1943).

Mark I perceptron machine, invented by Frank Rosenblatt, was the first implementation

of the perceptron algorithm he created, based on an artificial neuron model that had

weight variables. In his work on algorithms, he defines a system from which simple pat-

terns could be recognized without previous knowledge of the shapes. The proposed ma-

chine consisted of three systems: sensory, association, response systems. (Rosenblatt,

1957.).

One of the first efforts to solve a problem with learning was done by Arthur Samuel. In

his paper, “Some Studies in Machine Learning Using the Game of Checkers” (Samuel,

1959), he verified two different procedures that could be described as the process of

learning if done by humans or animals. In his paper, he proposes that such a system

includes characteristics that might be enumerated. Samuel (1959) intorduces the

characteristics in the following way:

 The activity must not be deterministic in the practical sense. A definite goal must
exist. The rules of the activity must be definite, and they should be known. There
should be a background of knowledge concerning the activity against which the
learning progress can be tested. The activity should be one that is familiar to a
substantial body of people so that the behavior of the program can be made un-
derstandable to them.

He concludes from the tests that an effective learning technique must include a proce-

dure to give the program a sense of direction. It must also contain a refined system for

cataloguing and storing information. This is what is later used as a data gathering pro-

cess and labelling the data.

Samuel, in his second paper (Samuel, 1962) , not only tries to answer to already negative

perceptions of machine learning but also clarifies elements of such a system. He uses

previous studies of perception and the structure of human neurons as a base for his

proposal. He defines the idea of machine learning as follows (Samuel, 1962):

Suppose we arrange for some automatic means of testing the effectiveness of any
current weight assignment in terms of actual performance and provide a mecha-
nism for altering the weight assignment so as to maximize the performance. We

4

need not go into the details of such a procedure to see that it could be made en-
tirely automatic and to see that a machine so programmed would “learn” from its
experience.

From the previously mentioned works, one can conclude that the architecture of such a

program consists of weights, an update for them and a mechanism to test it. However, it

was not any time before the 1980s advances in processing power that such an architect

could be comprehensively evaluated. In the second chapter of Parallel Distributed Pro-

cessing, the research group proposed a general framework that can act in the same way

as the human brain to solve a natural processing problem. Such a framework consists

of the following (Rumelhart, et al., 1986):

• a set of processing units

• a state of activation

• an output function for each unit

• a pattern of connectivity among units

• a propagation rule for propagating patterns of activities through the network
of connectivity

• an activation rule for combining the inputs impinging on a unit with the cur-
rent state of that unit to produce a new level of activation for the unit

• a learning rule whereby patterns of connectivity are modified by experience

• an environment within which the system must operate

Today, such a framework is the base of deep learning solutions. One of the main differ-

ences is the number of layers, instrumented to solve problems. Models with more than

one layer can avoid an early obstacle, discovered by Marvin Minsky. The problem was

that XOR could not be taught to perceptron with only one layer (Marvin Minsky &

Seymour Papert, 1969.). Adding another layer could overcome part of the challenges,

one faces in creating an intelligence system. However, to solve natural processing prob-

lems with machine learning, one needs to add multiple layers, or in other words, use

deep learning models. A deep learning model consists of the following (Howard, 2020.):

• functional architecture which is the model’s structure of layers of nodes

• the input data without labels or independent variables

• the output results or prediction, which is calculated from input

5

To create such a model, there are a few phases to pass and a few parameters to set.

The phases are gathering input data for the model, training the model with a selected

learning algorithm, and choosing the right parameters for it, optimizing, and troubleshoot-

ing the model and finally, deployment of results. These phases of development along

with the parameters are explained in the following sections in detail.

2.1 Data gathering

The first step to take for training a model was to prepare the right input. Depending on

the learning algorithm and development strategy, which are discussed in next sections,

the input might contain correct labels too. In this project, the images of the species were

correct input data, and the labels were the names of the species accordingly. Image files

for the same species were gathered into the same directory and each directory had the

species name for the images. The name of the directory was then used as a label for the

group of image files that represented the same species.

There are other methods which could be used in more advanced cases, for instance it is

possible to label each category of plants in more details (flower, leaf). If there are more

details for each category a map file or a table could be used. An example of such a map

is a table with a column for the path of image files and a column or more for labels of the

data. Each row then connects an image file to one or more related labels.

The amount of data and the quality of it are equally important for the learning model in

the training and testing phase. This is an easier step to take if the training model has

already been developed in other projects or studies. For this purpose, the first action

should be to search for existing datasets and reuse them for new models.

A classic example of an appropriate dataset for a study is The MNIST database of hand-

written digits. The MNIST contains a training set of 60,000 examples, and a test set of

10,000 examples. (LeCun, 1998.)Searching for datasets in the Google dataset search

engine and Kaggle are two good options to start with. For computer vision datasets,

ImageNet is also a good source to navigate for data gathering.

6

Data augmentation

Despite all the available datasets for classification problems, like the one which is the

topic of this work, one might need to either create datasets from scratch or add more

data for an optimized training phase. If finding enough data for input is not possible, then

the data gathering could be improved by using a technique called data augmentation.

The methods of creating alternative versions of gathered data in a way that the meaning

of the data is preserved while its appearance for the model is different is called data

augmentation. (Howard, 2020.) Data augmentation should be done with care, to have

better training and to keep the dataset valid. There are a few methods to do such a

procedure. However, all these methods have their pros and cons since any modification

of images will reduce the quality or meaning of the image. Rotation, flipping, perspective

warping, brightness changes and contrast changes are examples of changes to the orig-

inal data.

2.2 Training

The second phase in the development of a DL model is to train it based on gathered

data. The training phase consists of choosing the appropriate learning method with an

appropriate structure. The weights in the model are set to receive the desirable output

from the gathered data.

2.2.1 Learning types

The improvements in results from the DL model are related to how the model learns from

the gathered data. There are four different types of learning: unsupervised, supervised,

reinforcement and semi-supervised learning. The semi-supervised learning is the prac-

tical choice in many cases. (Russel & Norvig, 2010.)

Unsupervised learning is to learn without feedback or to understand patterns in input

data. In reinforcement learning a group of actions is taken by the model and it receives

a reward or punishment. The model will choose which actions were related to rewards

7

or punishments. Supervised learning is when the model has valid pairs of input and out-

put data and the mapping function between them is found by algorithm. Finally, semi-

supervised learning is to learn from some pairs of input and output data which might not

necessarily be correct. The model continues to recognize patterns in the rest of the data,

which is without feedback, or in other words, from data which is not labeled (Russel &

Norvig, 2010.).

2.2.2 Artificial neural networks

Artificial neural networks (ANNs or simply NNs) are layers of artificial neurons that are

connected to each other via some mathematical operations. They include an input and

output layer. Between the input and output layers there are hidden layers. The neural

networks vary in the usage and behaviour based on how the nodes are connected to

each other and what kind of mathematical operation is used in each layer. A deep neural

network is a neural network which consists of many hidden layers in between the input

and output layer. The hidden layers are modified and controlled by the learning algorithm.

(Goodfellow , et al., 2016.)

A neural network can pass on feedback from the output layer to the input layer too. This

kind of an NN is called a recurrent neural network or RNN. If the connections between

nodes do not form a cycle, or in other words, if there is no feedback from the output layer

to the input layer, then there is a feed forward network. (Goodfellow , et al., 2016.)

A CNN is a type of deep feed forwarding neural network that has widely been used for

image recognition since its introduction (LeCun, et al., 1989). The operation in hidden

layers is based on convolution which is a mathematical operation. Hence, if any layer of

DL model uses the convolution operation, then it is a CNN. (Goodfellow , et al., 2016.)

The convolution for functions f and g is:

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

∞

−∞

8

In signal processing the variable t is normally used to represent time. The first function

or f can be results from a sensor and the function g could be the average value based

on previously obtained results. In a CNN, function f is usually considered as input or a

tensor (multidimensional array) of input data, while function g is the kernel, or a tensor

of variables that change through the learning algorithm, and the result of the convolu-

tional operation is a feature map (Goodfellow , et al., 2016.)

If the kernel width, or the number of variables in the kernel is less than the input, then

the convolution operates on a subset of the input for each node and is called sparse

interaction. Images consist of thousands of pixels while the feature map could be a small

subset of the image. An example of this is the borders of shapes in an image which

consists of considerably fewer pixels. Hence, the kernel or variables in a convolutional

model could consist of much less variables. This is beneficial in the performance of an

algorithm and the algorithm would need less memory (Goodfellow , et al., 2016.)

Another important feature of a CNN is parameter sharing. Since the kernel is a subset of

input, the calculation of output (the multiplication of weights) is done for several outputs

with the same kernel variables. The use of the same parameters in calculation is called

parameter sharing (Goodfellow , et al., 2016.)

Equivariance is the third feature in a CNN, which means that the same type of changes

in input will be represented in the output. For instance, shifting the input will appear as

shifting in output. However, not all types of transforms are translated into output in a

CNN. An example of these transforms is rotation of input or change in the scale. The

transforms need some other algorithms along with a CNN to make them appear in the

output (Goodfellow , et al., 2016.)

From the previous layer to the next layer, a CNN transforms input with a convolutional

operation and creates a series of linear activations. Then a nonlinear activation is calcu-

lated for the values and the result is passed to a pooling function. The result from the

pooling function is passed to the next layer. A pooling function can be described as fol-

lows (Goodfellow, et al. 2016):

A pooling function replaces the output of the net at a certain location with a sum-
mary statistic of the nearby outputs.

9

There are different kinds of pooling functions. Max pooling or average pooling are exam-

ples of those. The goal of a pooling function is to keep the important features in the input

data and disregard the ones the changes of which will not affect the output.

It was not obvious until a recent study that CNN is an appropriate solution for many

classification problems. Each layer of the model can learn features from images on top

of each other, and eventually have a perception of the object, which functions like the

human eye. The CNN, in fact, resembles the animal’s visual cortex behavior. (Zeiler &

Rob Fergus, 2013.)

The depth (number of layers) of a CNN plays an important role in the level of output

features (low/mid/high). Deep CNNs have been instrumented in image recognition for

this purpose. However, when the number of layers increases, another issue appears in

the CNN model. Adding more layers will eventually affect the accuracy and result in more

training errors. Since this is not an overfitting problem, a modification in the CNN was

introduced by the Resnet models.

Resnet stands for deep residual learning for image recognition. It instruments techniques

to overcome a few common issues in deeper convolutional neural networks. The struc-

ture in Resnet consists of residual connections which create escapes on layers and pass

values to the next layers of the network. (He, et al., 2015.) Resnet solves overfitting and

vanishing gradients problems while it reduces the overall time spent on training. There

are different Resnet models, each named with a number at the end, which represents

the number of layers in each model.

2.2.3 Regularization

The goal of any deep learning model is not only an optimized behavior with the training

data but also optimized results from any source of data including new and unseen data.

This is referred to as the generalization ability or the capability of the model to generalize

from learning to perform well on unseen data. Modifications that are done to the learning

algorithms which results in fewer errors in generalization are called regularizations.

(Goodfellow , et al., 2016.)

10

In practice, these modifications should affect the training errors less but errors during

testing phase more. There are a few regularization strategies in DL models, including

dropout, activity regularization, weight constraint, data augmentation and early stopping.

In data augmentation for this project, images were cropped and resized into multiple new

images. Practically, the meaning of an image is the same even if it has been modified by

cropping and shifting. This feature is available in CNNs that are used for this work and

is part of regularization techniques. (Goodfellow , et al., 2016.)

Regularization techniques can also omit the overfitting problem in learning. Overfitting is

the status of learning when the model memorizes unrelated aspects of input data as

features of it and cannot make generalization about new data.

2.2.4 Hyperparameters

One common approach in different DL algorithms is to choose some parameters that are

supposed to be set appropriately to gain optimized performance and results. These pa-

rameters are called hyperparameters. (Goodfellow , et al., 2016.) Hyperparameters can

be set either manually or through automations (Marc Claesen & Bart De Moor, 2015).

The amount of training data processed by a learning algorithm before updating the

model’s parameters is called batch size. The number of times that a learning algorithm

has processed the whole dataset of training is called an epoch. An epoch consists of one

or more batches. Iteration indicates the number of batches to complete one epoch in

training. (SHARMA, 2017.)

The performance of the classifier can be measured with quantitative measures. Accuracy

is the ratio of correct results compared to the total number of results. Error rate is the

ratio of wrong results compared to the total result. (Goodfellow , et al., 2016.) While the

accuracy or error rate could give an insight of how the model is performing on each epoch

or in total, the algorithm needs an indicator of how the update of weights has affected

the predictions compared to the labels. An indicator, which is a function, is called a loss

function. (Howard, 2020.)

11

Choosing a loss function depends on what kind of output the model creates. For this

project as the outputs are categories, a cross entropy loss function is chosen. The cross

entropy is defined in the following way (Goodfellow , et al., 2016):

[T]he average number of bits needed to encode data coming from a source with
distribution p when we use model q.

Reducing the loss function to minimum is a mathematical optimization problem. The

slope of a function f(x) is optimal when the derivative of the function is equal to zero.

Hence, the problem is to find how much should be added to x to reach to minimize f(x).

Figure 4. Function and its derivative

In figure 4, one can see that the minimum occurs at zero. If x<0, then the derivative of

f(x) or f’(x) is negative, and to reach 0, small positive values should be added to x. On

the other hand, if x>0, then the derivative is positive, and some negative value should be

added to x to gain the minimum of function f(x). The technique or algorithm for calculating

the sign and the amount of the step for x, to optimize f(x), is called gradient descent.

(Goodfellow , et al., 2016.)

When there are multiple inputs, derivatives are calculated with respect to each input var-

iable. The derivatives of multiple inputs are called a partial derivative. The Gradient is a

vector of all the partial derivatives of a function. The minimum of a function occurs when

the elements of a vector are all zeros. One denotation for gradient is ∇𝑥 𝔣(𝑥). The new x

for a multiple input variable function f(x), when the results have a trend to a critical point,

is evaluated with:

𝑥𝑛𝑒𝑤 = 𝑥 − 𝜖 ∇𝑥 𝔣(𝑥)

12

In this formula, 𝜖 is the size of the step for updating x (weights of the model) in order to

minimize the loss. In machine learning, 𝜖 is called the learning rate. (Goodfellow , et al.,

2016.) The learning rate, in practice, is the vital hyperparameter in DL development and

should be set appropriately in each algorithm. Since the manual task of finding the right

learning rate is challenging, there have been some successful efforts in finding it via

automations. For instance, there is a way to find a better learning rate for the model

based on a study on Resnet networks. The proposed solution in the study was to find

the possibilities for this parameter via one round of training. (Smith, 2015.)

Generalization error or test error is the number of errors for the model with new inputs.

This is evaluated by using a different dataset from the training set, which is called the

validation set. The validation set is used to evaluate hyperparameters and eventually the

generalization error. (Goodfellow , et al., 2016.)

In practice, the division of the dataset into test, validation and train sets can be achieved

by creating random subsets of the data. A common algorithm for creating these subsets

is called k-fold cross-validation. This approach has better performance when the training

dataset is relatively small. (Goodfellow , et al., 2016.)

2.2.5 Transfer learning

Many classification problems are already implemented by DL architectures. One way of

benefiting from the architectures is to transfer the learning model and tune it for a new

problem with an appropriate number of outputs. Tuning the model is the process of

changing the structure of the last layer of the network based on the new inputs and new

categories of results. Such a process is called transfer learning. (Howard, 2020.)

In the experimental part of this project, different Resnet models were fine-tuned, to have

the new outputs, or categories, concerning this project. This method facilitated the ex-

perimental part as it was possible to concentrate on setting other parameters in the

model, instead of creating the network from scratch.

13

2.3 Troubleshooting

There are many challenges in front of any deep learning model development. It has been

a common experience for many to write code that has compilation errors or that gives

wrong results. The model might also only work in specific cases. This poor performance

in the model is due to four factors: implementation bugs, hyperparameter choices, model

fit and dataset construction. (Tobin, 2021.)

The troubleshooting strategy should have a pessimistic approach. All aspects of the

model should be restudied and considered as the source of the problem. Troubleshoot-

ing starts with investigating the input of the model or making sure the gathered datasets

are appropriate. This step includes the verification of the quality and quantity of data as

the structure of data might be one of the reasons for poor performances. Then the

model’s hyperparameters should be investigated and changed to achieve different re-

sults. (Tobin, 2021.)

The troubleshooting process should start with choosing the simplest possible model and

the simplest implementation with the least values for batches and the least number of

iterations. Then an evaluation of hyperparameters could be done for the small model.

After achieving results without errors, the larger values for batches and epochs could be

verified with increasing layers in the network. (Tobin, 2021.)

3 Tools and technologies

Along with all the tools that a developer uses for software development (programming

languages, IDEs, and VS), two libraries were used for creating the model. PyTorch, de-

veloped by Facebook AI research team, is tensor library for deep learning. A PyTorch

tensor is an n-dimensional array similar to NumPy array. The library not only provides

mathematical functions for the tensors but also keeps important data such as gradients

for deep learning development. (Johnson, 2021.)

The second library used was fastai. It is a Python library which has developed PyTorch

concepts with a practical concept for deep learning developers. It provides all the

14

tools for developing a model. It is mostly used in Jupyter notebooks and it even has

some features for presenting results (fast.ai, 2021). A lot of code in this work is based

on methods in fastai and how to set the parameters. The fastai methods combined

with PyTorch API facilitate focusing on technical details compared to development

challenges.

Training the model on local environments needs expensive hardware and is a time-con-

suming process. Colab, Gradient and Sagemaker are good options for running Python

code in the cloud. For instance, the code in this work has been tested and run in Colab

by using Azure API for image grabbing.

Colaboratory, or "Colab" for short, is a cloud service by Google. Users can run Python

code in Jupyter notebooks with free GPU and CPU options. It can be directly connected

to Google drive too. (Google, 2021). Colab runs Jupyter Notebook with a free GPU and

makes tests and tries very easy. One good feature is the direct access to GitHub to load

notebooks from repository. The setup for the service does not support creation of graph-

ical applications from the notebooks.

The code of this project is also available in the Lupo repository on GitHub (Bahrami,

2020). The Lupo code contains features to gather data and create an appropriate model

for it. It is entirely written in Python.

The environment of Jupyter Notebook is not suitable for a production application. Voilà

turns Jupyter notebooks into standalone web applications (QuantStack, 2019). The main

purpose of Voilà is to transfer the interactive widgets of a notebook and disregard the

other parts. For this project, due to some poor performance of Voilà in production, a new

flask app was developed to use the trained model. (Bahrami, 2021.)

4 Strategy of development

In this project, the development was done from data gathering to deployment by experi-

menting different techniques in each phase and observing the results. Training was done

through experimenting different hyperparameters and verifying their results. The goal

15

was to gain better performance and accuracy in each experiment compared to the pre-

vious one and eventually to deploy the model as a web application.

 The development of the model started with the study of a simple classifier that could

only recognize the input as one valid category among three categories. Then a model

was developed that could predict if an input belongs to one of the three species or the

input is not related to any of them. Different parameters in each model were changed to

study their effects in the learning process.

5 Data gathering

5.1 Gathering images

For the species in this study, there was no previously available dataset that could be

used. Hence, steps had to be taken to prepare a valid dataset containing images of the

invasive plants for training. By searching for these species in search engines, one can

web scrape from a good number of web results. Google, Bing and DuckDuckGo were

tested for this purpose, and a repository with tools to use Bing API (Microsoft, 2021) and

collect a dataset was developed (Bahrami, 2020). The tools in the repository contain

basic web scraping methods and a hashing algorithm to remove duplicates and faulty

images from results since web search contains all sort of results.

However, with later development of the model, the methods of fastai were also tried

successfully to gather data. There were two reasons behind choosing fastai as a base

for developing the model. The first reason was the availability of the results in the Jupyter

notebook for the model. The second reason was the availability of data augmentation

methods, which could give more data for training compared to the original collected re-

sults as the original collected images were multiplied.

from time import sleep

invasive_plant_types = {

 "Lupine": [

 "Lupinus polyphyllus",

 "Komealupiini",

 "lupiini",

 "Lupine",

16

],

 "Hogweed": [

 "Heracleum mantegazzianum",

 "Kaukasianjättiputki",

 "Hogweed",

],

 "Impatiens": [

 "Impatiens glandulifera",

 "Jättipalsami",

]

}

if not path.exists():

 path.mkdir()

 for item in invasive_plant_types.items():

 directory_name = item[0]

 destination_directory = (path/directory_name)

 destination_directory.mkdir(exist_ok=True)

 for entry in item[1]:

 results = search_images_bing(key, f'"{entry}"')

 download_images(destination_directory,

 urls=results.attrgot('contentUrl'))

Listing 1. Python script for downloading images from the Bing engine copied from Howard
(Howard, 2020).

After downloading the images, if the service in use is Colab, it is wise to move the files

to a shared drive (for example Google Drive) to keep the files for later use. In addition, it

is important to verify the files for similar or faulty ones.

clean paths from failed cases

failed = verify_images(fns)

failed.map(Path.unlink);

Listing 2. Python script to verify and remove faulty images copied from Howard (Howard, 2020).

Another method used to clean the images was to check and remove similar photos by a

hash algorithm. This will to some extent avoid the overfitting issue in the training phase.

bypass limitation of search API by introducing relative keywords

def make_reference_hashes():

 print_status("referencing")

 reference_files = os.listdir(output_directory)

 for ref_file in reference_files:

 img = load_image(output_directory+ref_file)

 if not img:

 continue

 img_hash = imagehash.average_hash(img)

 reference_image_hashes.update({img_hash:ref_file})

def mark_duplicates():

17

 print_status("marking")

 input_files = os.listdir(input_directory)

 for in_file in input_files:

 img = load_image(input_directory + in_file)

 if not img:

 continue

 img_hash = imagehash.average_hash(img)

 ref_data = reference_image_hashes.get(img_hash, None)

 if not ref_data:

 shutil.move(input_directory + in_file, output_directory +

str(img_hash) + in_file)

 reference_image_hashes.update({img_hash:in_file})

 else:

 print_status(f"Image {in_file} is not unique. duplicate of

{ref_data}")

Listing 3. Python script to verify and remove similar images copied from Bahrami (Bahrami,
2020).

Finally, the gathered images could still have wrong labels and include images that are

not at all related to the categories. API calls return related and unrelated results, and a

simple (and faulty) training model can facilitate in determining the wrong images to com-

plete the data cleaning phase. Along with the semi-trained model, one should verify im-

ages and clean the data from any unrelated ones that remain at the end. This process

needs prior knowledge of the species and their visual features.

5.2 Creating DataLoaders

The first step in creating the cleaning phase model is to define an instance of DataLoad-

ers. DataLoaders is a fastai class which stores DataLoader objects and contains the valid

and train sets (Howard, 2020.). DataLoader, itself, is a PyTorch utility class which

(PyTorch, 2021):

 combines a dataset and a sampler and provides an instance of Iterable over the
given dataset.

To create DataLoaders, a DataBlock class was used. To create Datasets and Data-

Loaders, one should define a DataBlock. An example of such a definition is in listing 4.

invasive_plants = DataBlock(

 blocks=(ImageBlock, CategoryBlock),

 get_items=get_image_files,

18

 splitter=RandomSplitter(valid_pct=0.2, seed=42),

 batch_tfms=aug_transforms(),

 get_y=parent_label,

 item_tfms=RandomResizedCrop(224, min_scale=0.5))

dataloaders = invasive_plants.dataloaders(path)

Listing 4. Python script to define aDataBlock and DataLoaders copied from Howard (Howard,
2020).

Blocks defines the independent variables as image files, and the dependent variables,

labels or targets as categories (the type of plants). Items are retrieved via the get_im-

age_files call, and then images are selected with a random seed and a preservation of

twenty percent of the whole data for the valid set. This means that twenty percent of all

images will never be used for training the model. To set the labels, using the directory

name where they are stored, a method parameter, get_y, is set to parent_label. Item

transform (item_tfms) is a method that processes each individual piece of data (in this

case an image) with the method defined for it. Here the method passed as a parameter

does a random crop over each image and resizes the result to a 224-pixel square.

5.3 Training

After defining dependent and independent variables and the images used for the model,

a learner is called to use them for training. This is where a trained model will be used

and adjusted for the new data. The term for this operation is transfer learning.

learner = cnn_learner(dataloaders, resnet18, metrics=error_rate)

learner.fine_tune(3)

Listing 5. Python script to train a CNN model copied from Howard (Howard, 2020).

The call for cnn_learner creates a convolutional neural network (CNN) with the Data-

Loaders defined earlier. A resnet18 architecture and metrics of choice (here error_rate)

were defined as the parameters of the learner. For the cleaning model, a resnet18 is

chosen so the overall cleanup phase would take less time than the real training phase.

Fine tuning is where the transfer learning takes place, with the number of epochs for the

process. This call will change the weights of the model, to adjust with the new data intro-

duced to it. As the goal of this phase is just to help the cleaning phase, the results from

19

the model do not need to be optimized. Hence, the number of epochs could be a range

of numbers that reduces errors to some extent, with the minimum training time.

5.4 Results

The following table represents the results of three epochs of training. The metrics defined

in the process represent train and valid loss and an erorr_rate. These values are num-

bers between 0 and 1. The results have an error rate of 0.25 which is of course not the

final goal of the classification but appropriate enough to help with the cleaning phase.

Table 1. Learner results with resnet18

epoch train_loss valid_loss error_rate time

0 0.554928 0.742238 0.285714 00:21

1 0.436820 0.719783 0.250000 00:20

2 0.360749 0.721695 0.250000 00:20

 The learner model will then be used to clean and classify the rest of the images, by

calling an ImageClassifierCleaner. ImageClassifierCleaner is an interface which loads

the images of the trained and valid model with some functionalities to change their cate-

gories. After each call and assigning the images that are in the wrong category or re-

moving the ones which are not at all related to the models, one can unlink them from the

paths of images.

cleaner = ImageClassifierCleaner(learner)

for idx in cleaner.delete():

 try:

 cleaner.fns[idx].unlink()

 cleaner.fns.remove(cleaner.fns[idx])

 print(f"cleaned {idx}")

 except:

 print(f"index issue {idx}")

Listing 6. Cleaning the images after the first training copied from Howard (Howard, 2020).

However, investigating the files thoroughly is inevitable as this tool is limited to a few

cases in each training. For example, if the images are too small or blurry, they will lead

20

to a poor performance in training if augmentation techniques are applied to them. After

all, it is necessary to remove low resolution and small images. Another check point is if

the images are representing one plant at a time. As the model is not multi-labeled at this

stage, it will help the training model to classify correctly.

6 Training the model

The next step after the first (or more) rounds of data cleaning is to adjust the model for

better learning. There are a few aspects that should be noticed for proceeding in this

phase: the choice of model, the amount of data for it and at least the learning rate to use.

The number of images for the learner is limited by the API to around 150 images per

category after all cleaning and multiple filtering of them for each category (the total num-

ber of images after multiple API calls and clean-up is 485). The first experiment is to train

the model without changing the input.

invasive_plants = DataBlock(

 blocks=(ImageBlock, CategoryBlock),

 get_items=get_image_files,

 splitter=RandomSplitter(valid_pct=0.2, seed=42),

 get_y=parent_label,

 item_tfms=Resize(224)

)

learner = cnn_learner(dataloaders, resnet18, metrics=error_rate)

learner.fine_tune(8)

Listing 7. DataBlock for training with the calls to train the model copied from Howard (Howard,
2020).

The results for the experiment are in the following table. The summary of DataLoaders

and the model used for this training is in appendix 1. This summary is important to be

verified before training to avoid later troubleshooting issues. The loss function used by

the algorithm is Cross Entropy Loss which was explained in the previous sections.

Table 2. Training results without augmentation

epoch train_loss valid_loss error_rate time

0 0.389732 0.405033 0.206186 00:20

21

epoch train_loss valid_loss error_rate time

1 0.340786 0.350985 0.164948 00:20

2 0.268097 0.349396 0.134021 00:20

3 0.197201 0.390821 0.123711 00:20

4 0.154201 0.452041 0.154639 00:20

5 0.128261 0.485184 0.216495 00:20

6 0.106235 0.521717 0.247423 00:21

7 0.090579 0.539667 0.247423 00:20

From the table it is obvious that despite the reduction of training loss, has not been learn-

ing since the fifth epoch. Not only the overall performance of the model is poor at this

stage, but it also looks like overfitting is occurring due to the rise of valid_loss and er-

ror_rate, despite the reduction of train loss. The confusion matrix is described in the

following figure. The figure shows where the model made the least accurate prediction

for each category.

Figure 5. Confusion matrix

 One way to multiply the number of images, is to use data augmentation in DataLoaders.

There are different functions to use for data augmentation and here a padding with zero

was chosen. The images for this second experiment were resized to 460 pixels.

22

 invasive_plants = DataBlock(

 blocks=(ImageBlock, CategoryBlock),

 get_items=get_image_files,

 splitter=RandomSplitter(valid_pct=0.2, seed=42),

 get_y=parent_label,

 item_tfms=Resize(460, ResizeMethod.Pad, pad_mode='zeros'),

 batch_tfms=aug_transforms(size=224, min_scale=0.2)

)

 learner = cnn_learner(dataloaders, resnet34, metrics=error_rate)

 learner.fine_tune(10)

Listing 8. The transform augmentation parameters and learning call copied from Howard
(Howard, 2020).

One good method of augmentation is to resize the image to a large scale and crop ran-

domly and resize to smaller size again. However, any augmentation method affects the

quality or meaning of the image to some extent. For example, it might be very challenging

if there is a landscape image of a small flower like impatient and unrelated parts of it are

cropped for training.

As shown in the listing 8, after resizing the image to 460 pixels, augmentation takes

place, and the final size of the image will be 224 pixels. In addition, for this phase, one

can choose a more layered model like resnet34 instead of resnet18.

Table 3. Results with data augmentation and resnet34

epoch train_loss valid_loss error_rate time

0 0.564891 0.419421 0.164948 00:28

1 0.461261 0.353335 0.164948 00:28

2 0.328840 0.324274 0.113402 00:28

3 0.265119 0.395922 0.092784 00:28

4 0.216781 0.383086 0.103093 00:27

5 0.177755 0.335392 0.113402 00:28

6 0.153971 0.317839 0.113402 00:28

7 0.156042 0.287527 0.092784 00:28

8 0.137733 0.284104 0.092784 00:28

23

epoch train_loss valid_loss error_rate time

9 0.125611 0.291761 0.092784 00:28

The summary of how the input data was defined is in appendix 2. Based on the results,

it is obvious that the results have some improvement but still one can at least change

the learning rate to obtain better performance.

Figure 6. Confusion matrix

As discussed earlier, it is possible to find better learning rates automatically via one round

of training.

lr_min, lr_steep = learner.lr_find()

print(f"Minimum/10: {lr_min:.2e}, steepest point: {lr_steep:.2e}")

Listing 9. Call for finding learning rate copied from Howard (Howard, 2020).

The results show that the model is learning between 1e-4 and 1e-1; hence, the model

might achieve better accuracy by choosing a learning rate in between the values.

24

Figure 7. Learning rate with minimum/10: 1.74e-02, steepest point: 2.09e-03

Considering the logarithmic nature of the plot in figure 8, and 1e-1 being very close to

the maximum rate for learning, a mean value between 1e-4 and 1e-1 is calculated. Next

the model was trained with this base.

learning_rate_start=1e-04

learning_rate_end=0.5e-01

mean_value_for_learning_rate = math.exp((math.log(learn-

ing_rate_start)+math.log(learning_rate_end))/2)

learner.fine_tune(15,base_lr=mean_value_for_learning_rate)

Figure 8. Mean value for learning rate is 2.2e-3 copied from Howard (Howard, 2020).

The results have more improvements compared to previous trainings, considering the

valid loss and error rates.

Table 4. Results with a specific learning rate

epoch train_loss valid_loss error_rate time

0 0.542325 0.414703 0.185567 00:27

1 0.418154 0.321694 0.154639 00:27

2 0.369949 0.320884 0.154639 00:27

3 0.301590 0.223288 0.113402 00:27

4 0.241585 0.241257 0.103093 00:27

5 0.197737 0.267305 0.134021 00:27

25

epoch train_loss valid_loss error_rate time

6 0.166188 0.167674 0.082474 00:27

7 0.143127 0.170643 0.072165 00:27

8 0.119068 0.178128 0.092784 00:28

9 0.101612 0.170208 0.103093 00:27

10 0.092394 0.164317 0.072165 00:28

11 0.080940 0.178523 0.072165 00:27

12 0.072939 0.171817 0.061856 00:27

13 0.067267 0.183079 0.082474 00:27

14 0.066202 0.178010 0.082474 00:27

Considering the metrics in the table, one can conclude that epoch 10 provides the best

results on validation sets while the error rate is 0.07 which is better than in the previous

experiment. Increasing epochs to 20 resulted in higher error rates and validation loss in

another experiment that is not described in this work.

In the next experiment, the aim is to change the values of the last layer of the model for

some rounds. Then based on the calculated learning rate and an early stop strategy, a

second round of training is done by unfreezing all layers. The values for the learning rate

were calculated from the first phase of training and they are shown in the following figure.

Figure 9. Calculation of learning rate before unfreezing the layers

26

One can see from the figure 10, that learning rate does not change in between 10e-6

and 10e-3 in a desired way. Hence the avarage and a max value of learning rate is

calculated in the listing 10.

learner = cnn_learner(dataloaders, resnet34, metrics=error_rate)

learner.fit_one_cycle(4, lr_max= 2.2e-3)

learner.unfreeze()

learner.fit_one_cycle(20,

 lr_max=slice(1e-5,1e-3),

 cbs=EarlyStoppingCallback(moni-

tor='valid_loss', min_delta=0.01, patience=3))

Listing 10. Running the model with dynamic learning rate and early stop copied from Howard
(Howard, 2020).

The result from listing 10 is shown in table 5. In this table one can see that in the first

four epochs the model was run with a maximum learning rate of 2.2e-3.

Table 5. Training with dynamic learning rate and Resnet34

epoch train_loss valid_loss error_rate time

0 1.598841 0.693668 0.257732 00:26

1 1.050845 0.436337 0.144330 00:26

2 0.750245 0.412175 0.175258 00:27

3 0.571162 0.428932 0.185567 00:26

epoch train_loss valid_loss error_rate time

0 0.166017 0.405545 0.175258 00:26

1 0.150558 0.403779 0.175258 00:27

2 0.154601 0.393397 0.164948 00:27

3 0.152246 0.369193 0.164948 00:27

4 0.133295 0.767276 0.216495 00:27

5 0.116160 0.763293 0.195876 00:27

6 0.114661 0.596657 0.237113 00:27

27

However, the results from this experiment do not show improvements in error rate and

valid loss. To have progress in the results, another set of experiments were done with

new data, gathered from different sources and processed with tools written for this pro-

ject. This is discussed in the following sections.

7 Improvements in training

7.1 Data gathering

As the amount of data in the training set is one important factor in learning, other ways

to retrieve appropriate data could be used. One option is to use the DuckDuckGo search

engine and Lupo tools to clean the final results.

def search_images_ddg(term, max_images=200):

 "Search for `term` with DuckDuckGo and re-

turn a unique urls of about `max_images` images"

 assert max_images<1000

 url = 'https://duckduckgo.com/'

 res = urlread(url,data={'q':term})

 searchObj = re.search(r'vqd=([\d-]+)\&', res)

 assert searchObj

 requestUrl = url + 'i.js'

 params = dict(l='us-

en', o='json', q=term, vqd=searchObj.group(1), f=',,,', p='1', v7exp='a')

 urls,data = set(),{'next':1}

 while len(urls)<max_images and 'next' in data:

 try:

 data = urljson(requestUrl,data=params)

 urls.update(L(data['results']).itemgot('image'))

 requestUrl = url + data['next']

 except (URLError,HTTPError): pass

 time.sleep(0.2)

 return L(urls)

for item in invasive_plant_types.items():

 directory_name = item[0]

 destination_directory = (path/directory_name)

 destination_directory.mkdir(exist_ok=True)

 counter = 0

 for entry in item[1]:

 urls = search_images_ddg(entry)

 print(len(urls))

 for url in urls:

 img_name = str(counter) + ".jpg"

 try:

 download_url(url, destination_directory/img_name)

 except:

 pass

 counter = counter + 1

28

Listing 11. Code to retrieve images from DuckDuckGo (Howard, 2020).

Through this phase, about three thousand images were retrieved and cleaned up for

training. The images were verified for representing each species close enough to camera

and for having dimensions higher than the random crop size used for DataLoaders.

def parent_label_multi(o):

 return [Path(o).parent.name]

invasive_plants = DataBlock(

 blocks=(ImageBlock, MultiCategoryBlock),

 get_items=get_image_files,

 splitter=RandomSplitter(seed=57),

 get_y=parent_label_multi,

 item_tfms=Resize(460),

 batch_tfms=aug_transforms(size=224, min_scale=0.75))

dls = invasive_plants.dataloaders(path)

learner = cnn_learner(dls, resnet34, metrics=partial(accu-

racy_multi, thresh=0.2))

Listing 12. Defining multicategory dataset copied from Howard (Howard, 2020).

Here a different approach for dataloaders was chosen. The output or target of the model

is not one label but multiple labels. The reason behind this change is to consider cases

in which more than one of the species is present in the image or the case that none of

them exist in the image. The result is an array of probabilities of all labels. Such a result

can be filtered with a final function with different thresholds.

The first experiment is done with the unfreezing approach without previous training.

learner = cnn_learner(dls, resnet34, metrics=partial(accuracy_multi),pre-

trained=False)

learner.fit_one_cycle(10, lr_max= 1e-4)

learner.unfreeze()

learner.fit_one_cycle(20,

 lr_max=slice(1e-5,1e-3),

 cbs=EarlyStoppingCallback(moni-

tor='valid_loss', min_delta=0.01, patience=3))

Listing 13. Learning with a non-pretrained model copied from Howard (Howard, 2020).

It is important to note that the values for the learning rate were calculated by lr_find as

shown in the next figure.

29

Figure 10. Learning rate finder results

From the next table one can conclude that more learning epochs are needed to reach

more accuracy if the model is not trained earlier. In addition, it seems that the model gets

overfit in the ninth epoch, since the early stop was triggered and stopped the algorithm.

Table 6. Results from none-pretrained model with early stopping

epoch train_loss valid_loss accuracy_multi time

0 1.023367 0.727853 0.552661 01:51

1 0.973791 0.679177 0.601468 01:52

2 0.901394 0.644051 0.626789 01:51

3 0.847724 0.638964 0.652844 01:49

4 0.795826 0.568082 0.724037 01:48

5 0.761432 0.533857 0.725138 01:50

6 0.719217 0.512053 0.746789 01:49

7 0.690814 0.514395 0.751193 01:50

8 0.677926 0.499088 0.760000 01:49

9 0.666584 0.499246 0.763303 01:50

epoch train_loss valid_loss accuracy_multi time

0 0.644835 0.493133 0.777982 01:48

1 0.636601 0.476382 0.802569 01:48

2 0.620049 0.454817 0.824220 01:47

3 0.597268 0.444143 0.844037 01:47

30

epoch train_loss valid_loss accuracy_multi time

4 0.561061 0.364894 0.909725 01:47

5 0.510549 0.317716 0.926972 01:47

6 0.442570 0.274310 0.922569 01:48

7 0.384005 0.282441 0.905688 01:47

8 0.324080 0.201883 0.927706 01:47

9 0.278073 0.177700 0.931743 01:48

10 0.250769 0.177007 0.926973 01:48

11 0.227466 0.169773 0.930275 01:49

12 0.212655 0.187240 0.926239 01:49

In second experiment, a range of dropout probabilities was added to the layers of the

model by using the ps parameter.

learner = cnn_learner(dls, resnet34, metrics=partial(accu-

racy_multi),ps=[0.001,0.01],pretrained=False)

learner.fit_one_cycle(10, lr_max= 3e-4)

learner.unfreeze()

learner.fit_one_cycle(40,

 lr_max=slice(1e-5,1e-2),

 cbs=EarlyStoppingCallback(moni-

tor='valid_loss', min_delta=0.01, patience=3))

Listing 14. Learner with dropouts copied from Howard (Howard, 2020).

The overall results are shown in the next table. The maximum learning rate for the first

10 epochs was 3e-4.

Table 7. Results from training with dropouts

epoch train_loss valid_loss accuracy_multi time

0 0.785463 0.773172 0.496881 02:10

1 0.698718 0.695730 0.553028 01:23

2 0.610403 0.512827 0.795963 01:22

3 0.533659 0.440671 0.863119 01:22

31

epoch train_loss valid_loss accuracy_multi time

4 0.471950 0.398834 0.899450 01:23

5 0.418938 0.357665 0.928440 01:22

6 0.374647 0.386928 0.909725 01:23

7 0.338999 0.285277 0.939817 01:22

8 0.316869 0.267271 0.948624 01:22

9 0.298119 0.272708 0.950459 01:22

epoch train_loss valid_loss accuracy_multi time

0 0.270823 0.238954 0.943119 01:22

1 0.233599 0.201863 0.927339 01:22

2 0.196451 0.144600 0.946055 01:23

3 0.167771 0.171031 0.935780 01:23

4 0.158691 0.148840 0.939450 01:22

5 0.161442 0.172049 0.929908 01:22

From the table, it is obvious that the model has some improvement compared to the

previous experiment. However, the accuracy could have been better if the model had

had an early stop. Hence, more regularization techniques could be experimented with.

One parameter to experiment with in this section is weight decay.

learner = cnn_learner(dls, resnet34, metrics=partial(accu-

racy_multi),ps=[0.001,0.01],wd=1e-1,pretrained=False)

learner.fit_one_cycle(10, lr_max= 3e-4)

learner.unfreeze()

learner.fit_one_cycle(40,

 lr_max=slice(1e-5,1e-2),

 cbs=EarlyStoppingCallback(moni-

tor='valid_loss', min_delta=0.01, patience=3))

Listing 15. Learning with weight decay copied from Howard (Howard, 2020).

The results are seen in the following table. Maximum learning rate for the first 9 epochs

was 3e-4.

32

Table 8. Results from training with weight decay

epoch train_loss valid_loss accuracy_multi time

0 0.786125 0.741409 0.526972 01:22

1 0.703438 0.583544 0.686239 01:23

2 0.622131 0.505232 0.784220 01:23

3 0.547986 0.438360 0.874862 01:22

4 0.478398 0.389272 0.914128 01:23

5 0.428087 0.366146 0.910459 01:22

6 0.381806 0.333397 0.926973 01:22

7 0.343448 0.300285 0.938349 01:23

8 0.321054 0.275058 0.951193 01:22

9 0.303716 0.270988 0.949358 01:23

epoch train_loss valid_loss accuracy_multi time

0 0.271678 0.205989 0.950826 01:23

1 0.229857 0.152087 0.950459 01:23

2 0.188903 0.131500 0.949358 01:23

3 0.170305 0.199249 0.916330 01:23

4 0.162861 0.174087 0.938349 01:23

5 0.162629 0.174415 0.935780 01:22

From the results, it seems that the best performance of the model is at epoch 2, and the

change of weight decay parameter did have some minor improvement on the results. In

the following experiment, a trained model is used with the fine-tuning technique and a

new data loader.

def parent_label_multi(o):

 return [Path(o).parent.name]

invasive_plants = DataBlock(

 blocks=(ImageBlock, MultiCategoryBlock),

 get_items=get_image_files,

33

 splitter=RandomSplitter(seed=57),

 get_y=parent_label_multi,

 item_tfms=Resize(460),

 batch_tfms=aug_transforms(size=224, min_scale=0.75))

dls = invasive_plants.dataloaders(path)

learner = cnn_learner(dls, resnet34, metrics=partial(accu-

racy_multi, thresh=0.2))

learner.fine_tune(5, base_lr=3e-3,

 cbs=EarlyStoppingCallback(moni-

tor='valid_loss', min_delta=0.01, patience=3)

)

Listing 16. Learner with pretrained model copied from Howard (Howard, 2020).

The results are seen in the following table. The learning rate was 3e-3.

Table 9. Results of trained model

epoch train_loss valid_loss accuracy_multi time

0 0.413757 0.271777 0.630826 01:24

1 0.330806 0.184023 0.825321 01:23

2 0.243575 0.106881 0.965872 01:23

3 0.160268 0.068783 0.979083 01:23

4 0.113618 0.065171 0.975413 01:22

5 0.076197 0.065915 0.979083 01:23

6 0.052048 0.054003 0.982385 01:23

7 0.036738 0.052650 0.980917 01:23

8 0.028893 0.056828 0.982018 01:23

9 0.023527 0.055726 0.980917 01:23

As shown in the table, the accuracy of the model has increased significantly with taking

new steps in data gathering and using multicategory. Epoch 6 is where the model has

performed best. The prediction might increase if better threshold values for tuning are

found.

34

Figure 11. Finding better prediction threshold value

From the figure, one can conclude that taking a threshold of around 0.5 could increase

the accuracy in the tuning process. However, one should consider the overfitting problem

when changing the values of the threshold. If the train set consists of few sample data,

it could eventually be a case of memorizing instead of learning, if the threshold is of high

values.

From the structure of the model (appendices 1 and 2), one can conclude that the changes

in the parameters affect the results in each experiment. For instance, the dropout pa-

rameter for the trained model is [0.25, 0.5], compared to the nontrained one which was

[0.001, 0.01]. Changing the parameter in the model could also be a subject of new ex-

periments.

8 Inference results for an online application

One of the methods to use the model in an application is to deploy the repository to

Heroku. For this purpose, a small web application was developed in the lupo-app repos-

itory. (Bahrami, 2021.) The application which is deployed to Heruko is accessible from

lupo-projekti.herokuapp.com. Since Heruko loads the environment and builds the image

of the application, it is slow and just used for the purpose of demonstrating this project.

Inference is the process of using a deep learning model in an application. The application

is just a simple representation of how the model is trained. However, for future of this

project, there are more steps to take. Among them is to use the model in a drone.

35

9 Further implementation

Reaching higher accuracy in classifying plants can be achieved by expanding the labels

in the model. A research on classification of plants by the entire plant, a flower frontal

and lateral view, and a leaf top and backside view proves an increase level in accuracy

compared to a model trained with entire plant images. (Rzanny, 2019.) For creating such

a model, one should prepare five different packages of photos from each species, and

each package should at least contain forty photographs. The images in the mentioned

research were taken by Flora Capture, a smart phone application which is used for plant

structure studies. (Floraincognita, 2021.)

In order to use the results of this study, one should take photos of the three species with

the application and train the model likewise. Such a step can be taken during summer

when the plants widely grow in nature. The trained model then might work better in a real

environment since it can recognize species in their early stages, while growing and be-

fore seeds or even flowers.

Another round of experiments is planned for this project to take place by instrumenting

continual learning. Continual learning is an effort to create better generalization results

by changing the pipeline from the classic “training to deployment” to the instrumentation

of generative models. (Lesort, 2020.) Since the subjects of this work are species in the

nature, and the model is trained with datasets of static images, such an approach might

improve the performance of the model in a real evolving environment.

Finally, the trained model will be instrumented for robotics engineering. Using drones for

recognizing the invasive species is part of this phase. However, using real drones de-

pends on many factors in the real environment. It is time consuming, expensive. Further-

more, the experiments cannot be fully supervised if real drones are used in the real world.

One approach to reach the goal of instrumenting drones is to use a simulation of flight in

a forest environment. AirSim is a simulator for drones, cars and more, built on Unreal

Engine. (Microsoft, 2021.) The goal of the project is to provide it as a platform for AI

research to experiment with deep learning.

36

10 Conclusion

The invasive plants are threats to the nature. Three examples of the most invasive plants

in Finland are lupine, hogweeds and impatiens. Removing them with the basic farming

tools is a time-consuming and expensive process. Using automated machines to remove

the invasive plants is only possible if the machines can recognize the plants correctly.

Hence, the first step is to recognize and categorize the invasive plants.

This thesis describes an application / In this project/study, an application was developed

that can recognize the mentioned plants in a given image. The application is deployed

on the web for demonstration purposes. The application can also recognize if a plant

belongs to none of the invasive plants, mentioned in this thesis. The overall training and

test results are over ninety percent.

In order to develop the application, data was gathered from different sources and cleaned

with automation and manually. The data was gathered by using different APIs. Then the

results were cleaned first by comparing them with hash codes and testing if the images

are without errors. After cleaning up similar or erroneous images by the script, a simple

model was trained to categorize them. While the model was not trained well enough to

be used for production, it could categorize most of the images in a good manner and

save time. Finally, the results from the automated data gathering was verified manually

to clean the datasets completely.

In the training phase, various techniques in training were tested to reach better results

or observe their effects. It was obvious from the results that the most important parameter

to set was the learning rate. Training on a pretrained model was also helpful and allowed

more tests to be done in shorter periods.

The results were deployed to web as an application to test and demonstrate recognition

of invasive species. First, a graphical version of the notebook was deployed. There were

some incompatibilities between the libraries, and the user interface in the application did

not work as it was expected. Hence, for using the trained model, another Python appli-

cation was written and deployed successfully.

37

Image classification has been the subject of many academic and industrial projects.

There are numerous ways to develop an application based on the already available re-

sults. However, there are many challenges in front of a developer to choose the right

technology and many decisions to make before development starts.

The first challenge in this project was to create appropriate input data for training. Despite

all the available tools, none of them was sufficient and ready to be used. Therefore, a

set of tools was developed to gain images and clean the data from unrelated ones. Sev-

eral hours were spent only on preparing data by manual verification of images. This pro-

cess was repeated later, after the first data gathering failed to produce acceptable results

for production purposes.

Experimenting with different methods on input data was challenging due to the limited

free Colab environment used in this project. The GPU of the environment was not always

available, and several disconnections could make an experiment fail. Consequently, the

learner data of the model was lost multiple times during training and experimenting.

The experiments themselves were not always showing improvements, despite the theo-

retical reasons to achieve better results. The reason behind writing a section about trou-

bleshooting in deep learning was to indicate what was done to achieve meaningful re-

sults from training. Many of these faulty experiments are not described in this thesis in

order to keep the training report clean from unrelated issues in data, design and deploy-

ments.

Overfitting happened in many of the experiments. Some changes in architecture and in

the algorithm were tested to overcome this issue. Early stopping, weight decay and drop-

out were used to prevent overfitting in some of the experiments. Data augmentation was

used to create more data to avoid the same issue. Finally, different learning rates were

calculated by the learning rate finder algorithm to prevent overfitting.

Different CNN models with or without previous training were tested to see the results in

the training phase. Resnet models with different layers were part of the experiments too.

In some experiments, due to the depth of network, overflow occurred. Faulty experiments

38

were not discussed in this work. However, whenever it was possible, modified codes

from the faulty experiments were added to observe their effects on other experiments.

The trained models were also experimented with concerning how to unfreeze and

change the weights of each layer and how to tune each layer to gain new results from

the trained models. Changing the learning rate for deeper layers and having different

learning rates for different layers were part of the experiments which were done with the

trained models. Some very fast tests were done with these trained networks to see the

effect of different techniques and as a result they are good choices for the proof of dif-

ferent concepts.

Through the experiments in this project, many aspects of a deep learning architecture

were studied, and numerous experiments were done. The test results brought new ideas.

Not all the tests that were carried out are discussed in this work, but they were the base

for creating a path to determine a structure for training a model. The experiments, as

mentioned in the previous section, will continue, until the findings of the project are im-

plemented in a real-world environment.

Since online platforms and libraries are constantly changing, multiple developments

were done for the demo application. In the first application, a representation of the note-

book of the work was created. Because of changes in the libraries and inconsistency

between the PyTorch, fastai and voila, the application was written once again entirely in

flask and deployed.

From these experiments, one can conclude that along with the amount of input data,

using a pretrained Resnet model with more layers and choosing the right learning rate

were the most effective parameters. Any changes in them have a direct effect on how

the model performed in experiments. Since the learning rate finder gives a deeper insight

of how to choose the learning rate based on its estimations, it is a necessary tool for any

DL developer to use.

Among the decisions in a classification problem, the ethical ones have not been dis-

cussed in this work. However, it is important to consider the consequence of instrument-

ing any classification model in real life. If such a model is used to clear out forest from

39

invasive plants, then the ethical use of such a system should be investigated in a good

manner.

40

References

Bahrami, Ali. baherami/lupo. Online. Github. < https://github.com/baherami/lupo>.
Accessed 11 May 2021.

Bahrami, Ali. baherami/lupo-app. Online. Github. < https://github.com/baherami/lupo-
app>. Accessed 11 May 2021.

Claesen, Marc & De Moor, Bart. 2015. Hyperparameter Search in Machine Learning.
The XI Metaheuristics International Conference, MIC:2015, pp. 141-145.fast.ai. About.
Online. fast.ai. <https://www.fast.ai/about/>. Accessed 11 May 2021.

Floraincognita. Flora Capture App. Online. < https://floraincognita.com/apps/flora-
capture-app/>. Accessed 11 May 2021.

Goodfellow, Ian; Bengio, Yoshua & Courville, Aaron. 2016. Deep Learning. Electronic
book. MIT Press. <https://www.deeplearningbook.org/>. Accessed 11 May 2021.

Google. Welcome To Colaboratory. Online. Google. <
https://colab.research.google.com/notebooks/intro.ipynb?utm_source=scs-index>.
Accessed 11 May 2021.

Howard, Jeremy & Gugger, Sylvain. 2020. Deep Learning for Coders with Fastai and
PyTorch. Electronic book. O’Reilly Media, Inc.. <https://course.fast.ai/> Accessed 13
May 2021.

Johnson, Justin. Learning PyTorch with Examples. Online. PyTorch. <
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html> Accessed 13 May
2021.

Kaiming, He; Xiangyu, Zhang; Shaoqing, Ren & Jian, Sun. 2015. Deep Residual
Learning for Image Recognition. Proceeding IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770-778.

LeCun, Y.; Boser, B.; Denker, J. S.; Henderson D.; Howard R. E.; Hubbard W.
& Jackel L. D.. 1989. Backpropagation Applied to Handwritten Zip Code Recog-
nition. Neural Computation, vol. 1, no. 4, pp. 541-551.

LeCun, Yann; Cortes, Corinna & Burges J.C. Christopher. 1998. THE MNIST
DATABASE of handwritten digits. Online. <http://yann.lecun.com/exdb/mnist/>.
Accessed 13 May 2021.

41

Lesort, T., 2020. Continual Learning: Tackling Catastrophic Forgetting in Deep
Neural Networks with Replay Processes. Online. Institut Polytechnique de
Paris. < https://arxiv.org/abs/2007.00487> Accessed 13 May 2021.

McCulloch, W. S. & Pitts Walter. 1943. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, no 5, pp 115-133.

Marvin Minsky & Seymour Papert, 1969. Perceptrons: an introduction to compu-
tational geometry. Cambridge, Massachausettes: MIT Press.

Microsoft. Welcome to AirSim. Online. Microsoft. <https://microsoft.github.io/Air-
Sim/>. Accessed 13 May 2021.

Microsoft. Bing Image Search API. Online. Microsoft. < https://www.mi-
crosoft.com/en-us/bing/apis/bing-image-search-api>. Accessed 13 May 2021.

QuantStack. 2019. And Voilà!. Online. Jupyter. < https://blog.jupyter.org/and-
voil%C3%A0-f6a2c08a4a93>. Accessed 13 May 2021.

Rosenblatt, Frank. 1957. The Perceptron, a perceiving and recognizing automa-
ton. Bufallo, N.Y.: Cornell Aeronautical Laboratory, Inc..

Ross, Kate. 2011. Soy Substitute Edges Its Way Into European Meals. Online.
<https://www.nytimes.com/2011/11/17/business/energy-environment/soy-substi-
tute-edges-its-way-into-european-meals.html?pagewanted=all&_r=0>. The New
York Times. Accessed 13 May 2021.

Rumelhart, David E.; McClelland, James L. & PDP Research Group. 1986. Par-
allel Distributed Processing, Volume 1. Cambridge, Massachausettes: MIT
Press.

Russel Stuart J. & Norvig Peter. 2010. Artificial Intelligence: A Modern Ap-
proach. Englewood, New Jersey: Prentice Hall.

Rzanny, Michael; Mäder Patrick; Deggelmann, Alice; Chen, Minqian & Wäld-
chen Jana. 2019. Flowers, leaves or both? How to obtain suitable images for
automated plant identification. Plant Methods 15, 77.

Samuel, A. L.. 1959. Some studies on machine learning, using the game of
checkers. IBM Journal of Research and Development, vol. 3 no. 3, pp. 210-229.
Samuel A.L.. 1962.

42

Samuel, A. L.. 1962. Artificial Intelligence: A Frontier of Automation. The AN-
NALS of the American Academy of Political and Social Science. vol. 340, issue
1, pp:10-20.

SHARMA, Saghar. 2017. Epoch vs Batch Size vs Iterations. Online. Towards
Data Science. <https://towardsdatascience.com/epoch-vs-iterations-vs-batch-
size-4dfb9c7ce9c9>. Accessed 13 May 2021.

Smith, L. N.. 2015. No More Pesky Learning Rate Guessing Games. Online.
Arxiv org. <https://arxiv.org/abs/1506.01186v2>. Accessed 13 May 2021.

Tobin, Josh. 2019. Troubleshooting Deep Neural Networks. Online.
<http://josh-tobin.com/troubleshooting-deep-neural-networks.html>. Accessed
13 May 2021.

Yle. 2015. Top five invasive species that pose a threat to Finnish nature. Online.
Yle.
<https://yle.fi/uutiset/osasto/news/top_five_invasive_spe-
cies_that_pose_a_threat_to_finnish_nature/8146734>. Accessed 13 May 2021.

Zeiler, M. D. & Fergus, Rob. 2013. Visualizing and Understanding Convolutional
Networks. Computer Vision ECCV 2014, pp 818-833.

Appendix 1

 1 (4)

Appendix 1- DataLoaders and model summary for the first experimenet

DataLoaders:

Setting-up type transforms pipelines

Collecting items from /content/gdrive/MyDrive/thesis/invasive_plants

Found 485 items

2 datasets of sizes 388,97

Setting up Pipeline: PILBase.create

Setting up Pipeline: parent_label -> Categorize -- {'vocab': None, 'sort':

True, 'add_na': False}

Building one sample

 Pipeline: PILBase.create

 starting from

 /content/gdrive/MyDrive/thesis/invasive_plants/Lupine/00000039.JPG

 applying PILBase.create gives

 PILImage mode=RGB size=1200x1600

 Pipeline: parent_label -> Categorize -- {'vocab': None, 'sort': True,

'add_na': False}

 starting from

 /content/gdrive/MyDrive/thesis/invasive_plants/Lupine/00000039.JPG

 applying parent_label gives

 Lupine

 applying Categorize -- {'vocab': None, 'sort': True, 'add_na': False}

gives

 TensorCategory(2)

Final sample: (PILImage mode=RGB size=1200x1600, TensorCategory(2))

Collecting items from /content/gdrive/MyDrive/thesis/invasive_plants

Found 485 items

2 datasets of sizes 388,97

Setting up Pipeline: PILBase.create

Setting up Pipeline: parent_label -> Categorize -- {'vocab': None, 'sort':

True, 'add_na': False}

Setting up after_item: Pipeline: Resize -- {'size': (224, 224), 'method':

'crop', 'pad_mode': 'reflection', 'resamples': (2, 0), 'p': 1.0} -> ToTensor

Setting up before_batch: Pipeline:

Setting up after_batch: Pipeline: IntToFloatTensor -- {'div': 255.0,

'div_mask': 1}

Building one batch

Applying item_tfms to the first sample:

 Pipeline: Resize -- {'size': (224, 224), 'method': 'crop', 'pad_mode': 're-

flection', 'resamples': (2, 0), 'p': 1.0} -> ToTensor

 starting from

 (PILImage mode=RGB size=1200x1600, TensorCategory(2))

 applying Resize -- {'size': (224, 224), 'method': 'crop', 'pad_mode': 're-

flection', 'resamples': (2, 0), 'p': 1.0} gives

 (PILImage mode=RGB size=224x224, TensorCategory(2))

 applying ToTensor gives

 (TensorImage of size 3x224x224, TensorCategory(2))

Adding the next 3 samples

Appendix 1

 2 (4)

No before_batch transform to apply

Collating items in a batch

Applying batch_tfms to the batch built

 Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1}

 starting from

 (TensorImage of size 4x3x224x224, TensorCategory([2, 0, 0, 2], de-

vice='cuda:0'))

 applying IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} gives

 (TensorImage of size 4x3x224x224, TensorCategory([2, 0, 0, 2], de-

vice='cuda:0'))

Model:

Sequential(

 (0): Sequential(

 (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),

bias=False)

 (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_run-

ning_stats=True)

 (2): ReLU(inplace=True)

 (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,

ceil_mode=False)

 (4): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (1): BasicBlock(

 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (5): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

Appendix 1

 3 (4)

 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (downsample): Sequential(

 (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)

 (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (1): BasicBlock(

 (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (6): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (downsample): Sequential(

 (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)

 (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (1): BasicBlock(

 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (7): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (downsample): Sequential(

 (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)

Appendix 1

 4 (4)

 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (1): BasicBlock(

 (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

)

 (1): Sequential(

 (0): AdaptiveConcatPool2d(

 (ap): AdaptiveAvgPool2d(output_size=1)

 (mp): AdaptiveMaxPool2d(output_size=1)

)

 (1): Flatten(full=False)

 (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_run-

ning_stats=True)

 (3): Dropout(p=0.25, inplace=False)

 (4): Linear(in_features=1024, out_features=512, bias=False)

 (5): ReLU(inplace=True)

 (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_run-

ning_stats=True)

 (7): Dropout(p=0.5, inplace=False)

 (8): Linear(in_features=512, out_features=3, bias=False)

)

)

Appendix 2

 1 (2)

Appendix 2 - DataLoaders and model summary for the second experiment

Setting-up type transforms pipelines

Collecting items from /content/gdrive/MyDrive/thesis/invasive_plants

Found 485 items

2 datasets of sizes 388,97

Setting up Pipeline: PILBase.create

Setting up Pipeline: parent_label -> Categorize -- {'vocab': None, 'sort':

True, 'add_na': False}

Building one sample

 Pipeline: PILBase.create

 starting from

 /content/gdrive/MyDrive/thesis/invasive_plants/Lupine/00000039.JPG

 applying PILBase.create gives

 PILImage mode=RGB size=1200x1600

 Pipeline: parent_label -> Categorize -- {'vocab': None, 'sort': True,

'add_na': False}

 starting from

 /content/gdrive/MyDrive/thesis/invasive_plants/Lupine/00000039.JPG

 applying parent_label gives

 Lupine

 applying Categorize -- {'vocab': None, 'sort': True, 'add_na': False}

gives

 TensorCategory(2)

Final sample: (PILImage mode=RGB size=1200x1600, TensorCategory(2))

Collecting items from /content/gdrive/MyDrive/thesis/invasive_plants

Found 485 items

2 datasets of sizes 388,97

Setting up Pipeline: PILBase.create

Setting up Pipeline: parent_label -> Categorize -- {'vocab': None, 'sort':

True, 'add_na': False}

Setting up after_item: Pipeline: Resize -- {'size': (460, 460), 'method':

'pad', 'pad_mode': 'zeros', 'resamples': (2, 0), 'p': 1.0} -> ToTensor

Setting up before_batch: Pipeline:

Setting up after_batch: Pipeline: IntToFloatTensor -- {'div': 255.0,

'div_mask': 1} -> Flip -- {'size': None, 'mode': 'bilinear', 'pad_mode': 're-

flection', 'mode_mask': 'nearest', 'align_corners': True, 'p': 0.5} -> Random-

ResizedCropGPU -- {'size': (224, 224), 'min_scale': 0.2, 'ratio': (1, 1),

'mode': 'bilinear', 'valid_scale': 1.0, 'p': 1.0} -> Brightness --

{'max_lighting': 0.2, 'p': 1.0, 'draw': None, 'batch': False}

Building one batch

Applying item_tfms to the first sample:

 Pipeline: Resize -- {'size': (460, 460), 'method': 'pad', 'pad_mode': 'ze-

ros', 'resamples': (2, 0), 'p': 1.0} -> ToTensor

 starting from

 (PILImage mode=RGB size=1200x1600, TensorCategory(2))

 applying Resize -- {'size': (460, 460), 'method': 'pad', 'pad_mode': 'ze-

ros', 'resamples': (2, 0), 'p': 1.0} gives

 (PILImage mode=RGB size=460x460, TensorCategory(2))

 applying ToTensor gives

 (TensorImage of size 3x460x460, TensorCategory(2))

Appendix 2

 2 (2)

Adding the next 3 samples

No before_batch transform to apply

Collating items in a batch

Applying batch_tfms to the batch built

 Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} -> Flip --

{'size': None, 'mode': 'bilinear', 'pad_mode': 'reflection', 'mode_mask':

'nearest', 'align_corners': True, 'p': 0.5} -> RandomResizedCropGPU --

{'size': (224, 224), 'min_scale': 0.2, 'ratio': (1, 1), 'mode': 'bilinear',

'valid_scale': 1.0, 'p': 1.0} -> Brightness -- {'max_lighting': 0.2, 'p': 1.0,

'draw': None, 'batch': False}

 starting from

 (TensorImage of size 4x3x460x460, TensorCategory([2, 0, 0, 2], de-

vice='cuda:0'))

 applying IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} gives

 (TensorImage of size 4x3x460x460, TensorCategory([2, 0, 0, 2], de-

vice='cuda:0'))

 applying Flip -- {'size': None, 'mode': 'bilinear', 'pad_mode': 'reflec-

tion', 'mode_mask': 'nearest', 'align_corners': True, 'p': 0.5} gives

 (TensorImage of size 4x3x460x460, TensorCategory([2, 0, 0, 2], de-

vice='cuda:0'))

 applying RandomResizedCropGPU -- {'size': (224, 224), 'min_scale': 0.2,

'ratio': (1, 1), 'mode': 'bilinear', 'valid_scale': 1.0, 'p': 1.0} gives

 (TensorImage of size 4x3x224x224, TensorCategory([2, 0, 0, 2], de-

vice='cuda:0'))

 applying Brightness -- {'max_lighting': 0.2, 'p': 1.0, 'draw': None,

'batch': False} gives

 (TensorImage of size 4x3x224x224, TensorCategory([2, 0, 0, 2], de-

vice='cuda:0'))

Model:

Sequential(

 (0): Sequential(

 (0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),

bias=False)

 (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_run-

ning_stats=True)

 (2): ReLU(inplace=True)

 (3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,

ceil_mode=False)

 (4): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (1): BasicBlock(

 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

Appendix 2

 3 (2)

 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (2): BasicBlock(

 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (5): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (downsample): Sequential(

 (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)

 (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (1): BasicBlock(

 (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (2): BasicBlock(

 (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (3): BasicBlock(

 (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

Appendix 2

 4 (2)

 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (6): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (downsample): Sequential(

 (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)

 (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (1): BasicBlock(

 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (2): BasicBlock(

 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (3): BasicBlock(

 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (4): BasicBlock(

 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

Appendix 2

 5 (2)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (5): BasicBlock(

 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (7): Sequential(

 (0): BasicBlock(

 (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (downsample): Sequential(

 (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)

 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

 (1): BasicBlock(

 (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

 (2): BasicBlock(

 (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

 (relu): ReLU(inplace=True)

 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), pad-

ding=(1, 1), bias=False)

 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

)

 (1): Sequential(

 (0): AdaptiveConcatPool2d(

 (ap): AdaptiveAvgPool2d(output_size=1)

 (mp): AdaptiveMaxPool2d(output_size=1)

Appendix 2

 6 (2)

)

 (1): Flatten(full=False)

 (2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_run-

ning_stats=True)

 (3): Dropout(p=0.25, inplace=False)

 (4): Linear(in_features=1024, out_features=512, bias=False)

 (5): ReLU(inplace=True)

 (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_run-

ning_stats=True)

 (7): Dropout(p=0.5, inplace=False)

 (8): Linear(in_features=512, out_features=5, bias=False)

)

)

Appendix 3

 1 (1)

Appendix 3 - Application

from flask import Flask, render_template, request, redirect, url_for, abort

from fastai.vision.all import *

app = Flask(__name__)

app.logger.addHandler(logging.StreamHandler(sys.stdout))

app.logger.setLevel(logging.ERROR)

global learn_inf

@app.route('/')

def index():

 return render_template('index.html')

@app.route('/', methods=['POST'])

def upload_files():

 uploaded_file = request.files['file']

 results = []

 img = PILImage.create(uploaded_file)

 global learn_inf

 labels, prediction, probability = learn_inf.predict(img)

 for idx,label in enumerate(learn_inf.dls.vocab):

 results.append([label, prediction[idx],f"{probability[idx]:.2f}"])

 return render_template('index.html', results=results)

def parent_label_multi(o):

 return [Path(o).parent.name]

if __name__ == '__main__':

 path = Path()

 global learn_inf

 learn_inf = load_learner(path/'invasive_plants_II/fmodel.pkl', cpu=True)

 port = int(os.environ.get('PORT', 5000))

 app.run(host = '0.0.0.0', port = port)

