

DevOps in mobile game development

An action research on applying DevOps practices

in a mobile game development project

Tarmo Jussila

Master’s Thesis

May 2021

Engineering and Technology

Technological Competence Management

 Description

Jussila, Tarmo

DevOps in mobile game development. An action research on applying DevOps practices in a mobile game
development project

Jyväskylä: JAMK University of Applied Sciences, May 2021, 73 pages.

Engineering and Technology. Master’s Degree Programme in Technological Competence Management.
Master’s Thesis.

Permission for web publication: Yes

Language of publication: English

Abstract

DevOps is a prevailing trend in the software industry that aims to unify development and operations activi-
ties and teams, while providing a quality-oriented approach to managing changes introduced to a software,
often leveraging automation in the process.

The objectives of the research focused on practices and tools that enabled applying DevOps for the benefit
of mobile game development, and more specifically a single mobile game development project that was
being prepared for release during the research period. Furthermore, it was important to study the cultural
impacts that DevOps had on the mobile game development team that was involved in the project.

The research was implemented using an action research strategy where the researcher was actively in-
volved in the DevOps transformation process and was working as a part of the development team in the
mobile game development project. Both the project and the development team were being researched,
using group interviews and participant observation methods for gathering the research material.

As key results, continuous delivery and continuous monitoring practices were implemented into the mobile
game development project using various tools that formed a so-called DevOps toolchain. Several automa-
tion pipelines were engineered to reduce the time and effort that the development team needed to spend
on repetitive yet crucial tasks.

In conclusion, DevOps practices proved to be highly applicable in supporting mobile game development and
the introduction of DevOps culture provided a quality-oriented environment where open communication
was both welcomed and encouraged.

Keywords/tags (subjects)

DevOps, mobile game development, action research

Miscellaneous (confidential information)

No confidential information

 Kuvailulehti

Jussila, Tarmo

DevOps mobiilipelikehityksessä. Toimintatutkimus DevOps-käytänteiden soveltamisesta mobiilipelikehi-
tysprojektissa

Jyväskylä: Jyväskylän ammattikorkeakoulu, Toukokuu 2021, 73 sivua.

Tekniikan ala. Teknologiaosaamisen johtamisen tutkinto-ohjelma (YAMK). Opinnäytetyö (YAMK).

Verkkojulkaisulupa myönnetty: Kyllä

Julkaisun kieli: Englanti

Tiivistelmä

DevOps on ohjelmistokehitysalalla vallitseva trendi, jossa pyritään yhdistämään kehitykseen ja ylläpitoon
liittyvien tiimien vastuita ja toimintoja, samalla pyrkien ohjelmiston laatulähtöiseen muutostenhallintaan,
usein automaatiota hyödyntäen.

Tutkimuksen tavoitteet keskittyivät käytänteisiin ja työkaluihin, joilla DevOps-toimintamallin jalkautus
mobiilipelikehityksen tarpeisiin mahdollistuisi. Tutkimus kohdistui yksittäiseen käynnissä olevaan
mobiilipelikehitysprojektiin, jota valmisteltiin tutkimusjakson aikana julkaisuvalmiuteen. Lisäksi oli tärkeää
tutkia DevOps-käytänteiden vaikutuksia projektissa toimivan mobiilipelikehitystiimin toimintakulttuuriin.

Tutkimuksessa käytettiin tutkimusotteena toimintatutkimusta, jossa tutkija oli aktiivisesti osallisena
DevOps-muutosprosessin jalkauttamisessa ja toimi myös osana kehitystiimiä mobiilipelikehitysprojektissa.
Tutkimuksen kohteina olivat sekä mobiilipelikehitysprojekti ja sitä kehittävä kehitystiimi, joista kerättiin
tutkimusaineistoa ryhmähaastatteluiden ja osallistuvan havainnoinnin keinoin.

Keskeisinä tuloksina mobiilipelikehitysprojektissa otettiin käyttöön jatkuvan toimituksen ja jatkuvan
monitoroinnin käytänteet, jotka mahdollistettiin moninaisilla työkaluilla, joista muodostui yhdessä niin
kutsuttu DevOps-työkaluketju. Useita automaatioputkistoja toteutettiin toistuvien toimenpiteiden
automatisoimiseksi, jotta kehitystiimin aikaa ja vaivannäköä pystyttiin säästämään.

Johtopäätöksinä DevOps-käytänteiden voitiin nähdä olevan varsin käyttökelpoisia mobiilipelikehityksen
tukena ja DevOps-kulttuurilla oli laatulähtöinen vaikutus kehitysprojektin toimintaympäristöön, jossa
avointa viestintää pidettiin mieluisana ja siihen myös kannustettiin.

Avainsanat (asiasanat)

DevOps, mobiilipelikehitys, toimintatutkimus

Muut tiedot (salassa pidettävät liitteet)

Ei salassapidettäviä liitteitä

1

Contents

Terminology ... 5

1 Introduction .. 6

1.1 The DevOps phenomenon... 6

1.2 The employer of the research ... 6

1.3 Motivation for the research .. 7

1.4 The scope of the research ... 7

2 Theory .. 8

2.1 The definition of DevOps .. 8

2.1.1 Agile and DevOps ... 8

2.1.2 DevOps culture .. 9

2.1.3 DevOps automation ... 9

2.1.4 DevOps as a role .. 10

2.2 DevOps lifecycle and toolchain ... 10

2.2.1 DevOps lifecycle ... 10

2.2.2 DevOps toolchain ... 11

2.3 Continuous practices ... 12

2.3.1 Continuous integration .. 12

2.3.2 Continuous delivery ... 13

2.3.3 Continuous deployment .. 13

2.3.4 Other continuous practices ... 13

2.4 Applying DevOps ... 14

2.4.1 DevOps adaptation .. 14

2.4.2 Need for automation ... 14

2.4.3 Measuring the performance of DevOps .. 15

2.4.4 DevOps in small organizations ... 15

2.5 Mobile game development ... 16

2.5.1 Android and iOS ... 16

2.5.2 Google Play and App Store .. 16

2.5.3 Mobile game launch strategy .. 17

2.5.4 Live operations... 18

2.5.5 QA testing .. 18

2.5.6 Unity game engine ... 19

3 Research objectives... 20

3.1 Purpose.. 20

2

3.2 Objectives .. 21

3.3 Research questions ... 21

4 Implementation .. 22

4.1 Action research strategy ... 22

4.2 Subjects of research .. 23

4.2.1 Mobile game development project ... 23

4.2.2 The development team ... 24

4.3 Methods .. 24

4.3.1 Group interviews ... 24

4.3.2 Participant observation ... 25

4.4 Materials ... 26

4.4.1 Interview data .. 26

4.4.2 Observation data ... 26

4.5 Material analysis ... 26

4.5.1 Interview material analysis .. 26

4.5.2 Observation material analysis ... 27

4.6 Resourcing and scheduling .. 27

5 Results .. 28

5.1 Practices .. 28

5.1.1 Continuous integration .. 28

5.1.2 Continuous delivery ... 30

5.1.3 Continuous deployment .. 31

5.1.4 Automatic versioning ... 32

5.1.5 Automatic testing .. 33

5.1.6 Continuous monitoring .. 34

5.1.7 Continuous improvement .. 34

5.1.8 Summary of the practices .. 35

5.2 Tools .. 36

5.2.1 The planned DevOps toolchain .. 36

5.2.2 Selected tools to support the practices ... 39

5.2.3 Overview of the CI/CD pipelines for the game client .. 43

5.2.4 Continuous integration pipeline for nightly builds .. 45

5.2.5 Continuous integration pipeline for pull requests .. 46

5.2.6 Continuous delivery pipeline for iOS ... 47

5.2.7 Continuous deployment pipeline for remote settings .. 48

5.2.8 Continuous monitoring pipeline for backend .. 49

3

5.3 Culture ... 50

5.3.1 Quality orientation... 50

5.3.2 Open communication .. 51

5.3.3 Eagerness to improve .. 51

5.3.4 Craving for automation .. 52

5.3.5 Favorability towards new tools ... 52

5.4 Summary of the results ... 53

6 Discussion ... 54

6.1 Reliability ... 54

6.1.1 Reliability of the theoretical basis ... 54

6.1.2 Reliability of methods and materials ... 54

6.1.3 Research ethics .. 55

6.2 Analysis of the research results in respect of the theoretical framework 56

6.2.1 Practices ... 56

6.2.2 Tools ... 56

6.2.3 Culture ... 57

6.3 Conclusion ... 58

6.3.1 Extensibility .. 58

6.3.2 DevOps is applicable in mobile game development ... 58

6.3.3 There is no one way to execute DevOps ... 58

6.3.4 DevOps is a journey not a destination ... 58

6.3.5 Appropriate automation .. 59

6.3.6 Understanding the benefits of Live Ops .. 59

6.3.7 QA testing is still the backbone of game testing ... 59

6.4 Suggestions for further research... 60

References .. 61

Appendices ... 66

Appendix 1. Initial assessment interview with the development group 66

Appendix 2. Initial assessment interview with the steering group.. 67

Appendix 3. Conclusive interview with the development group... 68

Appendix 4. Conclusive interview with the steering group ... 69

Appendix 5. Observation log sheet template .. 70

Appendix 6. Keywords and search expressions ... 71

Appendix 7. Data management plan ... 72

4

Figures

Figure 1: Illustration of a DevOps lifecycle ... 11

Figure 2: CI/CD practices in relation to each other... 12

Figure 3: Simplified mobile game development project client-side and server-side structure . 23

Figure 4: Interview groups aligned with the development team ... 25

Figure 5: The planned DevOps toolchain .. 38

Figure 6: Continuous integration pipeline for nightly builds .. 45

Figure 7: Continuous integration pipeline for pull requests ... 46

Figure 8: Continuous delivery pipeline for iOS ... 47

Figure 9: Continuous deployment pipeline for remote settings .. 48

Figure 10: Continuous monitoring pipeline for backend .. 49

Tables

Table 1: DevOps practices and their prioritized target areas ... 35

Table 2: The planned DevOps toolchain with new tools separated ... 37

Table 3: DevOps practices, their prioritized target areas and the selected tools 39

Table 4: Unity Cloud Build targets for Android and iOS.. 44

file:///C:/Users/Tarmo/Google%20Drive/Tarmo/YAMK/Opinnäytetyö/Thesis_Jussila_Tarmo.docx%23_Toc72778141

5

Terminology

Android – A popular mobile operating system maintained by Google

Bitbucket – A version control service provider and a hosting platform

Docker – An operating system level virtualization product

Free-to-play – A game that is free to download and play but contains paid content

Git – A version control system for tracking changes in software development

Gitflow – Gitflow strategy is a systematic workflow to using Git version control

iOS – Apple’s mobile operating system

Microsoft Azure – A public cloud platform that can be used to host applications

Pipeline – A set of chained processes that are executed in succession

Pull request – A review request in version control before changes are merged to a main branch

Serverless – On-demand service that can be used to execute actions without a separate server

TestFlight – Apple’s test distribution service for iOS apps

Toolchain – A set of tools that are used together to perform complex software development tasks

6

1 Introduction

1.1 The DevOps phenomenon

DevOps is a phenomenon and a trend related to software development lifecycle. DevOps has

grown in popularity since the early 2010s. DevOps usually refers to the development and opera-

tions practices that aim to streamline the process of software development lifecycle and the auto-

mation of recurring activities related to source code change management and the assurance of

quality of the changes made in source code before the changes are released into production.

DevOps is often considered as a continuation to the Agile methodologies and the aim of DevOps is

to extend on Agile methodologies rather than to replace them. Since the term DevOps lacks an ex-

act commonly acknowledged definition, the term is also used as an umbrella term with a broader

definition that is referred to as the DevOps culture. DevOps culture is seen as the way the organi-

zation functions as a unified extended team rather than set of siloed teams working apart. This ap-

proach is said to advance the communication and collaboration between individuals working in

the organization and overall resulting in better outcomes for the organization practicing it.

1.2 The employer of the research

The employer of research, Zaibatsu Interactive Oy, is a game and software industry company

based in Jyväskylä, Finland. The company was founded in 2014 and its main field of activity is soft-

ware design and software development. The net revenue of the company was over 1 million euros

in the financial period ending in December 2020. In May 2021, the company employed 22 employ-

ees in total. The company had not previously used DevOps practices systematically or advocated

for DevOps culture before the research, although many of the practices and principles commonly

associated with DevOps were already familiar from the context other software development pro-

cesses. The potential usefulness of DevOps had been recognized by the employer by the observa-

ble interest that the partners and clients of the company had towards DevOps. The employer had

also recognized that DevOps is a prevailing trend in the software industry and that it might serve

as a competitive advantage when utilized by the company itself. (Ultima, 2021.)

7

1.3 Motivation for the research

Supporting the company’s ongoing strategic objectives was one of the key motivators that initi-

ated the research. While the company was aiming to maintain its growth and stability with finan-

cially steadier software development, which was usually subcontracting in nature, it also had stra-

tegic goals set around scaling its game development activities in the near future. In contrast to

software development, game development was more like product development with a substan-

tially higher financial risk for the developing company, as only the published end-product would be

capable of generating income, and only if the product were to be successful. In the initial research

setting the company already had an ongoing mobile game project in production which was

deemed as a prominent subject for research. The presumption of implementing DevOps practices

and adapting DevOps culture was that it would provide a comprehensive and cost-effective way to

manage a unified team that is both developing and supporting the game project without eventu-

ally breaking into separate specialized teams which would make communication between the

teams harder and the management of the project more complex. Also, implementing DevOps was

viewed as a preparatory measure that should be instituted before the upcoming product launch in

order to be ready for scaling the activities around the game, and ensuring the rapid and quality-

oriented capability of delivering game updates after a successful launch. Furthermore, the moni-

toring activities that occur after a release were also deemed important, and it was crucial to be

able to automate monitoring and reporting of manifesting issues to the developing team so that

issues could be resolved with as little delay as possible.

1.4 The scope of the research

The scope of the research was to study DevOps practices, tools, and cultural impacts of DevOps in

a single mobile game development project that was being prepared for release during the re-

search period. The project was chosen for the research because it of its strategic value for the

company, and because it offered a tangible area of improvement for the research which was

largely unknown for the company beforehand. The idea was to apply DevOps, generally consid-

ered a software industry practice used largely by enterprise-level companies, to support mobile

game development. The matter of using DevOps specifically for mobile games has been previously

discussed by Hargreaves (2016) in his encompassing Game Developers Conference presentation,

but other than that and a few dispersed sidenotes the subject has largely evaded the attention of

any scientific research.

8

2 Theory

2.1 The definition of DevOps

DevOps is commonly described as a set of software development practices that aim to streamline

the processes between development and operations teams as well as accelerate the software re-

lease cycle while maintaining high quality (Mala, 2019, 16; Ebert, Gallardo, Hernantes & Serrano,

2016, 94). However, defining DevOps is not fully straightforward due to the lack of standardization

on what exactly constitutes DevOps and what doesn’t. In a broad definition DevOps can be seen as

a culture or a philosophy that the whole organization is using for elevated collaboration and effi-

ciency (Forsgren, Humble & Kim, 2018), but it can also be seen largely from a technical point of

view in the form of practices and tools that help achieve the desired level of automation to enable

development and operations to work jointly with lesser emphasis on wider cultural impact (Hüt-

termann, 2021, chapter 1). Furthermore, sometimes the term is narrowed into a singular role of

one or multiple individuals carrying out various tasks throughout the entire software project lifecy-

cle (Filipova & Vilão, 2018, chapter 2). Often the definition of the term varies depending on con-

text and may contain elements from all of the previously mentioned aspects.

2.1.1 Agile and DevOps

DevOps shares many of the features of the Agile methodology. It is argued that DevOps should be

seen as something that builds upon the Agile principles, and not as a replacement for Agile (Watts

& Kidd, 2017). According to a comparative analysis of Agile and DevOps, Agile has more emphasis

on bridging the gap between the developers and the customer whereas DevOps is seen as leaning

towards bridging the gap between developers and operations (Brown, 2020). However, a certain

consensus seems to exist that DevOps in fact should be conceptualized as an extension to the Ag-

ile principles, rather than the two being something separate (Mäkelä, 2019; Watts & Kidd, 2017),

which makes DevOps complementary to Agile. In practice this may be lower the effort required to

transform to using DevOps practices if the organization has already been familiarized with the Ag-

ile principles beforehand.

9

2.1.2 DevOps culture

Patrick Debois who coined the term DevOps in 2009 has stated that DevOps is in fact a human

problem, which also brings forth the cultural significance of DevOps and the implication that

DevOps within an organization is always unique to the people practicing it (Davis & Daniels, 2016,

57). Forsgren, Humble and Kim (2018) emphasize the meaning of DevOps as a comprehensive con-

struct that covers the whole organization. They describe DevOps as transformative in nature and

see it as a way to increase the performance of the entire organization. DevOps culture is charac-

terized as having favorability towards constant change and adaptation in order for the organiza-

tion and the individuals in it to improve. Built-in trust and psychological safety inside the organiza-

tion is in key position in driving innovation, improving the feeling of shared responsibility and

supporting advantageous experimental development (Forsgren et al., 2018, 29-40).

Forsgren and colleagues (2018) stress that the organization management has an important role in

embracing DevOps culture and that management should enable and drive the adoption of DevOps

culture through their own activities and behavior. Therefore company management is encouraged

to build trust between teams, advocate for open communication and reward work that enables

collaboration and leads to sharing of information and collective learning (Forsgren et al., 2018,

115-127).

2.1.3 DevOps automation

Automation that reduces repetitive manual work is considered as a crucial part of DevOps

(Forsgren et al., 2018, 41-42; Ebert et al., 2016, 95). Continuous integration, continuous delivery

and continuous deployment are software development practices that aim to validate that changes

introduced to a software are functional before those changes are combined to the software and

eventually released (Ebert et al., 2016, 95-96). Although the previously mentioned continuous au-

tomation practices do not originate with DevOps, they are commonly considered as essential

DevOps practices. High degree of automation aims to reduce manual labor, decrease the number

of issues and bugs and as a result increase the overall quality of the software. This kind of automa-

tion also enables faster release cycles for the software since time-consuming processes related to

managing the quality and releasing the software are largely automated (Ebert et al., 2016, 95).

10

2.1.4 DevOps as a role

The term DevOps is also being used to describe a role of an individual. For example, the title

DevOps engineer might be used as a titular job description of an employee working both on devel-

opment and operations (Filipova & Vilão, 2018, chapter 2). However, this kind of titular role, either

used for an individual or for a department, has met some critic since it comes across as if the

DevOps practices and applying the culture are off-loaded to the hands of the few who carry the

titular role, instead of a wider team, which is seen as conflicting with the idea that DevOps aims to

unify the team with shared procedures (Hüttermann, 2021, chapter 1). Nevertheless, when the

DevOps roles and responsibilities are expanded to cover the entire team, as in the DevOps team,

the label is more fitting and more closely in line with the cultural aspects of DevOps.

2.2 DevOps lifecycle and toolchain

2.2.1 DevOps lifecycle

The DevOps lifecycle consists of phases that represent DevOps procedures as a repeating process.

There are typically 6 to 8 separate phases defined in the lifecycle, sometimes even more. Service

providers offering DevOps tools tend to provide their own specification of the DevOps lifecycle

and its phases with an emphasis on the selection of services they supply, which contributes to the

debatable accurate definition of a one DevOps lifecycle (“Atlassian DevOps”, n.d.; “GitHub

DevOps”, n.d.; “GitLab DevOps”, n.d.). Consequently, the DevOps lifecycle should be seen as a

demonstrative depiction of the most common practices in the development and delivery process

of a software, not as a strictly defined standard. An illustration of a loop representing the DevOps

lifecycle depicted by GitHub is seen in figure 1 (“GitHub DevOps”, n.d.).

11

Figure 1: Illustration of a DevOps lifecycle

Since the phasing seen in figure 1 is widely popularized, as seen in various research reports and

technical articles (Gokarna, 2020, chapter 3.4; Phulare, 2020; Storbakken, 2020), it is considered as

the “traditional” DevOps lifecycle in the context of this research from here on out. The traditional

DevOps lifecycle consists of phases such as planning, coding, building, testing, releasing, deploying,

operating, and monitoring. Commonly the planning, coding, building, and testing are seen as de-

velopment phases and releasing, deploying, operating, and monitoring are seen as operations

phases (Storbakken, 2020). Although, in an integrated DevOps team the roles are expected to be

less static since the lines between different phases and responsibilities might be blurry in practice.

2.2.2 DevOps toolchain

The DevOps toolchain is a set of tools that aid the development and operations team in ensuring

the smooth execution of DevOps procedures and achieving the required level of automation to al-

leviate the repeating processes (Krohn, n.d.; Hiremath, 2021). The toolchain is often presented in a

similar manner to the DevOps lifecycle, but supplemented with the tools that are supporting each

phase of the lifecycle (Little, 2019; Phulare, 2020). Designing a DevOps toolchain of a software pro-

ject is a wholesome undertaking and requires careful planning and understanding of the entirety

of the software project as well as the business needs that fuel the project. Selected tools should

be compatible with each other so that the smooth flow of work and the integrity of toolchain is

secured (Krohn, n.d.). The demand for a concentrated set of DevOps tools is apparent in the emer-

gent supply of DevOps tools by services providers (“Atlassian DevOps”, n.d.; “GitHub DevOps”,

12

n.d.; “GitLab DevOps”, n.d.). However, the process of selecting the tools for a toolchain in a given

project should be based on the distinctive requirements of the project and all-in-one solutions

might not be able to provide all the necessary tools for individual project needs.

2.3 Continuous practices

Continuous integration, continuous delivery, and continuous deployment, or in condensed form

CI/CD, are software development practices that aim to automate various areas of testing, building,

and releasing of software. While the practices are seen as key components of modern software

development, they are also essential in practicing DevOps (Hall, n.d.), along with some other con-

tinuous practices. The CI/CD practices are closely related to each other but they each represent a

different level of automation, as illustrated in figure 2 (Pittet, n.d.).

Figure 2: CI/CD practices in relation to each other

2.3.1 Continuous integration

Continuous integration is a software development practice in which changes are combined into

the software as frequently as possible, so that the changes can be tested, and issues can be uncov-

ered as soon as possible. Continuous integration usually consists of build automation and execu-

tion of automated tests. The end result of an integration attempt is either a successful integration,

if the tests are passed, or an unsuccessful integration if the tests are not passed. Integration is

13

then followed by a report which states the results of automated tests. In case the integration fails

the developer is notified to take action in order to fix the issues before attempting the integration

again. (Pittet, n.d.)

2.3.2 Continuous delivery

Continuous delivery is an extension of continuous integration. In continuous delivery the ac-

ceptance testing is usually automated and following a successful acceptance test the software is

released to a testing environment that closely resembles the production environment. However,

deploying the software to the production environment is still a manual process that requires ac-

tion from the developer. In continuous delivery it is typical to have automated smoke tests exe-

cuted when the software is released to production, so that the most critical functionalities of the

software are fully tested before going to production. (Pittet, n.d.)

Forsgren and colleagues (2018, 41-58) enforce five key principles that enable successful continu-

ous delivery, which consist of building quality in, working in small patches, automating repetitive

work, improving relentlessly and taking shared responsibility. In order to properly support continu-

ous delivery they also stress the need for comprehensive configuration management and continu-

ous testing that is ideally automated.

2.3.3 Continuous deployment

Continuous deployment is an extension for continuous delivery, in which the deployment to pro-

duction is also fully automated without manual intervention required from the developer. Contin-

uous deployment is seen as the most complete form of software automation, but it also sets the

most requirements for comprehensive automated testing and requires extensive code coverage in

order to ensure that all functionalities are working perfectly. (Pittet, n.d.)

2.3.4 Other continuous practices

Sometimes in the context of DevOps other continuous practices are introduced as well, such as

continuous development or improvement, continuous feedback and continuous monitoring (Hall,

n.d.). These are all essential practices that match with the phases of the DevOps lifecycle.

14

2.4 Applying DevOps

Adapting DevOps is a large undertaking for an organization of any size and initiating the DevOps

transformation requires support from organizational management in order to succeed. Applying

DevOps requires proficient technical knowledge of the tools and practices it entails, but also cul-

tural willingness for change that spans the whole organization.

2.4.1 DevOps adaptation

Adapting DevOps should be seen as a continuous journey and the transformation to fully leverag-

ing DevOps should be approached incrementally rather than as a large-scale change over a short

period of time (Hall, n.d.). Forsgren and colleagues (2018, 115-127) highlight the importance of

leadership in inspiring and enabling the DevOps transformation by removing obstacles that ob-

struct adapting DevOps and by creating a safe space for continuous learning and improvement in

the organization. In order to initiate the DevOps adoption both the organizational management

and the teams inside the organization require an understanding of the added value that DevOps is

going to bring to the organization and the teams working inside it (Rajkumar, Pole, Adige & Ma-

hanta, 2016). Otherwise the efforts to adapt new practices might turn out to be difficult to justify

and the efforts are likely to fail. This might be especially challenging in large organizations that

have already accustomed to working with separated departments for development and opera-

tions (Rajkumar et al., 2016). However, as Hargreaves (2016) has pointed out, the adaptation of

DevOps should be viewed more as a different and more compact alignment of already existing de-

partments rather than as something completely new and different that requires all-encompassing

changes everywhere.

2.4.2 Need for automation

DevOps is often seen as highly favourabile towards to the use of automation, to the extent that it

has been stated that the goal of DevOps is to “automate everything” (“DevOps Automation”,

2019). However, automation itself is not the end-goal of DevOps since the investment to automa-

tion should always stem from an actual need and it should be adapted to its purpose. Plainly, auto-

mation should save more time and effort that is invested into implementing it, and this should be

estimated and measured by identifying the processes and work stages that are arduous and time

consuming (“DevOps Automation”, 2019).

15

2.4.3 Measuring the performance of DevOps

Measuring the performance of DevOps is crucial to the businesses that pursuit DevOps, but also as

important to the teams that are practicing it on a daily basis, because measurement enables

clearer understanding of the areas that require mending, and identifying the issues allows over-

coming them through improvement. Forsgren and colleagues (2018, 11-29) have defined four key

metrics that enable measuring the performance of DevOps which are: deployment frequency, lead

time for changes, mean time to recovery and change failure rate. The same four key metrics are

also highlighted in the State of DevOps reports (Forsgren, Smith, Humble & Frazelle, 2019; Brown,

Stahnke & Kersten, 2020). However, remarks have been made that organizations should not rely

on predefined metrics for too long, because every metric is somewhat skewed to the point that

people tend to find ways to make metrics appear better than they truly are, even subconsciously

(Paul, 2015). Okes (2013, 3-4) has also stated that organizations that use metrics to measure their

performance should define their own success metrics, instead of relying on predefined metrics.

2.4.4 DevOps in small organizations

Since the manifestation of DevOps the discussion surrounding it has been primarily focused on

large enterprise organizations. Yet, the solutions that DevOps provides could benefit any organiza-

tion regardless of their size when adapted accordingly. Hargreaves (2016) has also remarked the

steep enterprise orientation of DevOps related documentation and tooling. Swartout (2012, 23)

argues that small software businesses, out of necessity due to their small size, are usually already

practicing behaviors that are closely in line with the sentiment of DevOps, since these organiza-

tions don’t have a strict division of teams and usually a small team of people is responsible for an

entire software project. However, Swartout (2012, 24) continues to state that while small software

businesses appear to practice behaviors similar to DevOps, they might be cutting corners and the

approach is not as systematic when it comes to change management and version control, and gen-

erally there is a heavy reliance on manual activities instead of using automation. Schaub (2019)

has argued that DevOps can be suited for an organization of any size, and that the transformation

to using DevOps is probably easier for organizations that are still small and have low governance.

Additionally, Schaub (2019) has pointed out that DevOps is becoming a necessity for small organi-

zations as well, in order for them to remain competitive against larger competitors.

16

2.5 Mobile game development

Mobile game development is a rapidly evolving field of game development that is highly competi-

tive and constantly growing. The most prominent mobile platforms are Android and iOS, while the

largest publishing platforms are Google Play and App Store, on respective platforms (Lewis, 2020).

The mobile games industry measured by revenue was estimated to account for 52% of the global

games market, with revenues of over 90 billion US dollars, according to a 2021 forecast. This

makes mobile gaming the biggest segment in the global games industry, and it has been estimated

that the growth of mobile gaming will only continue to grow in the future (Wijman, 2021). Mobile

games are increasingly becoming products that have a lifetime of years during which they need to

be supported and updated constantly to keep the games relevant for players in order to remain

competitive (Leung, 2017).

2.5.1 Android and iOS

Google’s Android operating system and Apple’s iOS operating system are the two largest mobile

platforms, which covered around 99% of the global mobile device market in 2020 (“IDC

Smartphone Market Share”, 2021; “StatCounter Mobile OS Market Share Worldwide”, 2020).

When measured by units sold, the share between Android and iOS was approximately 85% and

15% in 2020, respectively (Goasduff, 2021; “IDC Smartphone Market Share”, 2021). However,

when measured by browsing activity, a larger share has been estimated for iOS, up to 28%, while

the share for Android was averaging at 72% (“StatCounter Mobile OS Market Share Worldwide”,

2020). While iOS has narrowly been the dominant platform in the United States (“StatCounter Mo-

bile OS Market Share In USA”, 2020) and has had a relatively high usage share in the western mar-

kets as well, Android was distinctly the dominant platform in India with almost 96% of the active

devices being Android (“StatCounter Mobile OS Market Share In India”, 2020), which is likely to be

explained by a higher availability of Android devices with a lower pricing.

2.5.2 Google Play and App Store

Google Play for Android and App Store for iOS were the biggest publishing platforms for distrib-

uting mobile apps and games in 2021 and have remained so for many years. Both Google Play and

App Store are widely available globally, however, a notable exception is China, where Google Play

is not available due to regulations, leaving the market saturated with multiple different app store

17

operators. On iOS, App Store remains the only available legitimate distribution option globally.

(Dogtiev, 2021.)

Google Play and App Store share similarities in their developer tools and procedures, but not with-

out some differences. Both Google Play and App Store require the developer or organization to

register to use their services and distribute apps using their platforms, bound by their terms. Both

platforms have commission fees that are tied to the sales of an app on their platform, which was

30% in 2020, and 15% for businesses that make less than 1 million in sales on the platforms start-

ing in 2021 (Leswing, 2020; Singh, 2021). Google Play and App Store require the developer to use

platform-specific signing identity for the app artifacts that are distributed on their platforms in or-

der to ensure their origin and safety for distribution. On iOS the distribution of builds is more com-

plex than on Android, since even development build artifacts require signing, and distribution to

non-registered devices requires uploading build artifacts to Apple’s TestFlight service (Katz, 2018,

31-38). On Android development builds may be signed with a non-restricted debug key and up-

loading to Google Play is not required, which makes testing during development more straightfor-

ward (“Build and run your app”, 2021). However, for platform-specific functionalities signing is

needed on Android as well, although uploading to Google Play is not required for testing, but only

for distribution. Additionally, both Google Play and App Store have review policies in place which

require new apps and updates to existing apps to be reviewed according to platform-specific

guidelines, which adds a mandatory delay to shipping app updates to end-users (“App Store App

Review”, n.d.; “Understand Play policies”, 2020).

2.5.3 Mobile game launch strategy

Evaluating development phase mobile games with the use of analytical data has become an indus-

try standard, and certain key metrics are expected to be achieved in order for a mobile game to

become successful. Game industry experts (Telfer, 2016; Lancaric, 2018) have stated that a mobile

game should be tested on actual players, usually with limited availability, as soon as possible in or-

der to use the gathered data for optimizing the game to become more performant, and in order to

determine whether the production is worthwhile to be continued at all. A soft launch is a test

launch targeted at a limited audience in order to test the performance of a game before a pro-

spected global launch. Soft launching a game is a common strategy at present that helps the de-

velopers of a game understand their audience better and lower the risk of failure before going

18

global. Soft launch might be a period of several months during which the game is tested in differ-

ent countries and on different platforms with frequents updates to the game in order to produce

new analytical insight. In case a soft launched game does not meet the metrics required, a very

common scenario is to discontinue the game production, rather than committing to a global

launch because of the financial risk. (Telfer, 2016; Lancaric, 2018.)

2.5.4 Live operations

Live operations, or Live Ops, refers to game content updates that aim to improve player experi-

ence and game metrics through frequent updates and adjustments that are based on player data

and analytics (Jowsey, 2018; “Mobile Live Operations Best Practices”, n.d.). While live operations

may refer to the act of creating content updates and adjustments at large, the term is also used to

refer to certain type of updates that are served to the player without game client updates, effec-

tively meaning that the player does not necessarily have to download an update to the game

through the app distribution platform each time adjustments have been made to the game

(Leung, 2017). Instead, the live operations team may use certain kind of tools that are built into

the game client, that enable operating certain aspects of the game remotely (Raeburn, 2017). This

kind of remotely controllable live operations enables adjusting the game almost instantaneously,

instead through app updates which reach the players much slower. The approach of using remote

tools also enables the development team to keep improving the game continuously without hav-

ing to force continuous game client updates on the players. Since app stores require a review for

each app update, delivering updates only through app store client updates would be time-con-

suming, and not only for the development team, but for the players as well.

2.5.5 QA testing

Quality assurance, or QA, is an ongoing testing process during a production of a game, as new

functionalities and features are tested by a QA team through means of manual play testing (Chan-

dler, 2014, chapter 2.7). A QA team tests a game against a test plan which contains test cases for

the functionalities and features of a game that require testing (Chandler, 2014, chapter 1.5). De-

fects and issues uncovered by the QA team are reported to the development team, and once the

development team has alleviated the issues, they are reported fixed by the development team,

19

and hence returned back to the QA team so that the absence of issues may the confirmed by test-

ing (Chandler, 2014, chapter 1.5, chapter 2.7). Games in general are considered hard to test since

they have complex logical structures that are hard to cover thoroughly by tests (Schultz & Bryant,

2017; Kaasila, 2015). Consequently, manual QA testing is seen as a cost-effective way to test such

complicated systems, and often the method used is in fact black box testing, where the tester has

no access to the source code while testing (Schultz & Bryant, 2017, chapter 6).

2.5.6 Unity game engine

Unity is a cross-platform game engine created by Unity Technologies. In addition to game develop-

ment the Unity game engine has been used in other industries as well, such as film, engineering,

construction and automotive industries (“Unity solutions”, n.d.). Unity is one of the most popular

game engines used in mobile game development, with estimates stating that up to 71% of the top

1000 mobile games in 2020 were made using the Unity game engine (“Unity company presenta-

tion”, n.d.). While Unity is primarily known for its game engine, there are also many other tools

and features Unity offers to support developers, which are either served as separate products, or

as part of the Unity licensing. Namely, Unity offers Cloud Build service through its Unity Teams Ad-

vanced licensing, which enables cloud-based continuous integration with hosting and distribution

of builds through the service (“Unity Cloud Build”, n.d.). Similarly, tools for cloud-based diagnostics

and analytics are also offered (“Unity Cloud Diagnostics”, n.d.).

20

3 Research objectives

3.1 Purpose

The purpose of the research was to gain insight on the usability of DevOps specifically in mobile

game development and in the use of the employer of the research, as DevOps was not very well

known for the employer company beforehand. The intent was to learn which DevOps practices are

best suited to support the needs of mobile game development, but also to provide information on

the feasibility of the selected tools through practical means and experimentation, in order to un-

derstand what exactly is possible and what kind of investments would be required. The idea was

to advance the use of DevOps during the research as extensively as reasonably possible and form a

basis for further use of DevOps in the project. The employer of the research had expressed a de-

sire to eventually expand the learnings of the research, if applicable, also into the use of other

game development projects in the company, which also brought forth the need to study the cul-

tural impact of DevOps to be able to evaluate the influence of DevOps on a development team,

and in the long term in order to understand the wider impacts on the whole organization as well.

The employer company had previously used an on-premises continuous integration solution for

creating build artifacts for mobile game projects. The existing solution was configured on a local

machine that physically resided at the office of the company. The system was based on Jenkins,

which is a commonly used continuous integration server that can be tailored to suit many kind of

automation requirements (Riti, 2018, chapter 5). However, it had proven to be difficult to keep the

system and the plugins related to it up to date, to the point that the system had to be maintained

regularly in order to be usable at all. The physical nature of the build server setup was seen as an

issue going forward, since also the hardware would have to be replaced at some point before it

was going to become obsolete. This had imbued the desire to find a cloud-based solution for con-

tinuous integration and continuous delivery that would have low maintenance requirements and

would be automatically up to date to suit the specific needs for building and distributing mobile

game projects. Additionally, it was important to understand that iOS build distribution would be

the constraint that would set the base requirements of the desired solution since iOS building and

distribution requires that the build server runs macOS operating system.

21

3.2 Objectives

The main objectives of the research were focused on the practices and tools that would enable ap-

plying DevOps for the benefit of mobile game development, and more specifically for the benefit

of a single mobile game development project that was in production, and being prepared for re-

lease, during the research period. Furthermore, it was important to study the cultural impact that

applying DevOps had on the mobile game development team that was involved in creating the

said project. At premise it was important to be able to prioritize the practices and tools that would

be implemented during the research period, since it was crucial to be able to identify the bottle-

necks of the current workflow and to focus on improving around those impediments in order to

produce beneficial results for the research, and thereby lay ground for future developments.

3.3 Research questions

To further clarify the objectives of the research, a set of three (3) research questions were formed,

to be approached in the following order:

1) Which DevOps practices are needed to most benefit the mobile game development project?

2) Which DevOps tools are needed for applying the practices in the mobile game development project?

3) How does applying DevOps impact the culture of the mobile game development team?

22

4 Implementation

The research was implemented using an action research strategy where the researcher was ac-

tively involved in the mobile game development project and within the development team which

were being researched. The research was conducted using interviews and observation as the main

research methods for gathering the research material that was then further analyzed.

4.1 Action research strategy

The research was implemented in the form of an action research, where the researcher was ac-

tively involved in the mobile game development project and in close contact with the develop-

ment team, that were being researched. The reason for selecting action research as the research

strategy was to enable initiating the DevOps transformation, and to gain practical insight on the

use of DevOps in a project that was formerly not enforcing the use of DevOps practices or culture.

The nature of action research is in fact driving transformation, and the aim is to both pursue

change and to study that change when it actualizes (Kananen, 2014, 11-12). In an action research

the subjects of the research are aware of the research taking place, as the researcher has an active

and visible role in the research due to the transformational nature of the action research (Ojasalo,

Moilanen & Ritalahti, 2009, 61).

There are several alternative phasings presented for action research. Rothwell (1999) has de-

scribed action research in eight phases, which are mainly consistent with the more condensed six

phases that Kananen (2009, 2014) has since presented. Similarly, Ojasalo, Moilanen and Ritalahti

(2009, 60) have described action research process in four phases that repeat in a cycle. All of the

previously mentioned phasings are quite similar and share the common structure that begins with

defining the issue and planning a solution to alleviate it, which is then executed and evaluated be-

fore beginning a new cycle with the newly acquired learnings. Hence, action research has a cyclic

pattern and finding successful results is based on repetitive experimentation and thorough reflec-

tion of the learnings of each cycle is important. The four-phase pattern that Ojasalo and colleagues

(2009, 60) described was used in this research since it was simple and to the point. The repeating

phases that were followed were planning, acting, observing and reflecting.

23

4.2 Subjects of research

4.2.1 Mobile game development project

The mobile game development project that was researched was an ongoing project that was being

prepared for release during the research period. The game project was a so-called free-to-play ac-

tion game with an online multiplayer, with the target release platforms being Android and iOS,

and the target publishing platforms being Google Play and App Store.

The project had already been active for almost a year before the research started, so many of the

technology decisions regarding the project had already been determined before the research be-

gan. The game project as a whole comprised of a game client and a backend. The game client was

developed with the Unity game engine. The backend consisted of separate components such as

TCP game servers, HTTP servers, and a SQL database. The TCP and the HTTP servers were devel-

oped with ASP.NET Core. The backend was containerized in Docker containers which were hosted

in Microsoft Azure. The simplified structure of the project as a whole is visualized in figure 3.

Figure 3: Simplified mobile game development project client-side and server-side structure

The project source code was stored in Bitbucket Git repositories, in three separate repositories:

game client, HTTP server and TCP server resided in different repositories. Gitflow strategy was

used in the project, but it was not fully enforced at the beginning of the research period.

24

4.2.2 The development team

The development team consisted of 11 people on average during the research period, with a few

people moving between different projects during the research period, but mainly the develop-

ment team structure was quite stable during the research period. The team composition had a

project manager, 3 artists or designers, 6 programmers and a QA tester. Some of the previously

mentioned roles had some overlap with different roles as the structure of the team was not as

strictly defined in reality. For example, the managerial role was sometimes shifted between the

project manager and the lead designer, and the QA tester was in actuality also doing programming

and most of the programmers were at least partially participating in QA activities.

4.3 Methods

The methods used in the research were interviews and observation, that were executed in the

form of group interviews and participant observation. The idea of the interviews was to deepen

the understanding of the subject and to study the effects that had occurred during the research

period, while observation aimed to support the validity of the research with information collected

in a natural setting on a regular basis. Therefore, the chosen research methods complemented

each other.

4.3.1 Group interviews

Group interviews were held in two occasions with two separate interview groups, which were the

development group, and the so-called steering group. The development group consisted of indi-

viduals representing the core development team, who were in practice responsible for developing

and operating the game project on a day-to-day-basis. The steering group consisted of individuals

that represented the business perspective or had a managerial role in the project. Abovesaid

grouping was established only for the means of the research and did not reflect the internal struc-

ture of the team in regard of everyday activities, since in practice there was only a single develop-

ment team, or plainly a team, that encompassed all the individuals working on the project regard-

less of their position in the team. However, for research purposes it was insightful to interview the

steering group and the development group in isolation to understand the business perspective

and the development perspective and their viewpoints on DevOps separately. A total of 10 people

from the development group and the steering group participated in the interviews. A referential

25

Venn diagram representing the alignment of the two interview groups with respect to the actual

mobile game development team is visualized in figure 4.

Figure 4: Interview groups aligned with the development team

Both interview groups, the development group, and the steering group, were interviewed twice:

at the beginning and at the end of research period. The first interview was an initial assessment

interview aiming to establish a baseline where to get started and to set the initial targets for the

research, to be further defined during the action research period. The conclusive interview at the

end of the research period aimed to reflect the transformation that had occurred throughout the

research period and acted as a retrospective to the whole research.

4.3.2 Participant observation

Participant observation is a method of research where the researcher observes the research sub-

jects in close proximity. The subjects were aware of the research taking place and knew they were

being observed. In participant observation the researcher may take part in activities that are being

researched, as was the case in this research as the transformation to using new practices and tools

was desirable. The observation was executed systematically and regularly as part of daily team ac-

tivities. The observation technique used was a form of systematic observation where the observa-

tion method was structured and analytical. (Ojasalo et al., 2009.)

26

4.4 Materials

The material that was collected for the research consisted of interview data and observation data.

The material was gathered during a three-month research period taking place between February

and early May 2021.

4.4.1 Interview data

The interview data was collected from a total of four interview sessions that were recorded, and

transcribed into text in a proposition level accuracy, meaning that the key message of each inter-

view statement was further analyzed and processed to form the results of the research. Interview

data is discretionary data aiming to collect in-depth outlook on the research. (Kananen, 2014, 87.)

4.4.2 Observation data

The observation data was reported to an observation log sheet on a regular basis. Since the obser-

vation technique was structured, the log sheet structure was also predefined in order to analyze

and process the data in a systematic manner (Kananen, 2014, 83-85). The observation data was

collected during a three-month period at least twice a week.

4.5 Material analysis

All in all the research was highly qualitive due to the actionable nature of the research. This means

that the layout of the research was quite open-ended. Therefore, actions to ensure the validity of

the material analysis were taken into account from the beginning.

4.5.1 Interview material analysis

To support the validity of the interviews, different thematic viewpoints, notably the development

and operations viewpoints, were presented in the interviews. Also, the grouping into the develop-

ment group and the steering group was established so that different viewpoints could be evalu-

ated without peer pressure possibly limiting the authenticity of the answers of either group. The

interview material that was collected was transcribed into text at a proposition level accuracy,

meaning that the key message was abstracted, and then it was further processed, anonymized,

and analyzed in text format.

27

4.5.2 Observation material analysis

Observation data was collected in text format into a log sheet by the researcher. At the end of the

research the log sheet excerpts were synthesized to form groupings with thematic correlations

with similar data. This data was then brought together with the interview data in order to analyze

the similarities and differences of the produced material as a whole.

4.6 Resourcing and scheduling

The research period was approximately a three-month-long period lasting from February 2021 to

early May 2021. The scheduling was set to this time period because it was essential for the mobile

game development project that the DevOps transformation could be initiated before the upcom-

ing release of the game. The researcher was involved in the mobile game development project

throughout the research period both in the roles of a developer and a technical lead, which of-

fered a broad perspective into the day-to-day activities inside the development project. The re-

searcher role was not unattached from the normal daily role during the research, which meant

that the observation was conducted simultaneously among other daily activities. The interviews

were scheduled to the beginning and to the end of the research period and the development team

was involved in the interviews. Due to the transformational nature of the action research, the

whole development team was actually involved in the research at least partially. In practice this

meant that the practices and tools that were prioritized to be implemented were also tasked to

the development team along with other development tasks. Hence, the development team and

their participation in the research was essential to produce the outcomes. However, in regards of

prioritization a higher prioritization was put to game-related feature tasks in case resources were

scarce and prioritizations had to be made. While there wasn’t a predefined resource or time

budget set to the research, it was mutually agreed that the research should not obstruct the game

development timeline which in turn had been agreed upon earlier.

28

5 Results

The results of the research are divided into three themes that match with the three research ques-

tions: practices, tools and culture. The results are based on the findings of the group interviews

and the observational data that was gathered throughout the research, and on the concrete out-

comes that were produced throughout the research especially in relation to the tooling.

5.1 Practices

The first research question was: Which DevOps practices are needed to most benefit the mobile

game development project? To answer this question, the initial assessment interviews with both

the development group and the steering group were in key position, since they laid out the foun-

dation for the upcoming prioritization that was used for evaluating the most important practices

that would most benefit the development team and the mobile game development project. The

continuous observation and the iterative action research cycles then further supported the initial

considerations and prioritizations. As to what was considered as being a “DevOps practice” in this

context was any practice that was seen to advance the DevOps initiatives. This chapter introduces

the practices that were deemed most beneficial to the mobile game development project, with

the remark that the prioritization was also driven by both the scheduling and resourcing of the

project, which meant that some of the otherwise beneficial practices had to be excluded from the

scope of the research due to these limitations. The excluded practices that were deemed notewor-

thy are considered and discussed in the research conclusion.

5.1.1 Continuous integration

Supporting continuous integration was seen as critical to form the basis for any proper automa-

tion. At the start of the research period nightly builds were already in use in the mobile game de-

velopment project using the Unity Cloud Build service, and while that was filling the daily mini-

mum requirement for external QA testing, it was not enough to support the internal development

processes and internal QA testing properly. The biggest concern about nightly integration pace

was that the possible issues would be uncovered basically almost a day late, and not at the time of

the integration or before it. If problematic code was passed to the development or production

trunk of the project, it meant that the main branch was broken for everyone in the development

29

team, which was something that the team wanted to avoid because it was a waste of time and re-

sources. While a more frequent integration was already possible with the Unity Cloud Build ser-

vice, it was not desirable to use it because the building was quite slow if the queue started to form

during the busy hours of the working day, and it didn’t remove the issue that problematic code

could still be integrated into the main branch altogether, and the issues would only be uncovered

when they would already be in the main branch.

To overcome the issue that problematic code or broken features would get merged into the main

branch, it was ideated that each of the newly opened pull request branches should be built in iso-

lation and the resulting build should be linked to the pull request once ready. This was to make

sure that in addition to the pull request code review the build would also get tested on a real de-

vice, and that the code would in fact compile successfully. It was agreed among the team that for

each pull request to be approved a successful build had to be produced, and that the build had to

be tested on a device in order for the pull requests to get approved. Beforehand, test builds for

individual branches would have been made manually, which would have been time-consuming

and hence was often avoided, which would result in features not getting properly tested before

integration. The pull request build pipeline seemed like a resourceful idea because it in a way

overcame the issue that Unity Cloud Build wasn’t that fast when compared to manual building.

Since pull requests weren’t reviewed immediately after they were opened it left some leeway for

the build to finish for each pull request. The usual rate of reviewing pull requests was either each

morning when the developers were starting their workday before starting new tasks, or after pre-

vious tasks had been completed during the workday, which resulted in at least a few hours before

new pull requests started to be reviewed, which was usually enough for builds to be completed

even if there was a queue of multiple build requests on the build machine. In case the pull request

pipeline wasn’t able to produce a successful build or changes were later added to a pull request, it

was deemed important that the build pipeline would also activate when the pull request was up-

dated with a commit.

While the project was developed for two target platforms, Android and iOS, for automatic building

purposes it was seen that automatically triggering the Android build for each pull request was

enough at the base level. However, the ability to also order the iOS build manually was seen as im-

portant for features that were platform dependent. The difference between the build times for

30

Android and iOS was quite drastic, since the Android build would normally take from 30 to 45

minutes to be built, iOS builds took around 1 hour to 1,5 hours to complete. The Unity Cloud Build

queue ja cooldown times were additionally added to these times, so the reasoning behind not al-

ways producing the iOS build was quite understandable, although in a perfect world it would have

also been a candidate for full automation.

5.1.2 Continuous delivery

While the pull request pipeline that was covered in the previous section could already be seen as

somewhat fulfilling the continuous delivery practice, since it was capable of delivering and distrib-

uting build artifacts, its main purpose was to aid the continuous integration process, i.e. support

the quality-driven introduction of changes to the main branch in the version control system. Con-

tinuous delivery was considered to fulfill its definition of the delivery only in the context of deliver-

ing the build artifacts to an environment that resembles the production environment. In the con-

text of the game client it meant either Google Play or App Store since those were the target

publishing platforms for the game. The existing Unity Cloud Build pipeline was already able to de-

liver build artifact links to Slack, which was used for instant messaging by the development team.

It was clear from the start that the iOS building and distribution would be the constraint that

would determine the requirements for the tooling in regards of the game client. As already hinted

in the previous section, the iOS building was much more time-consuming than Android building.

On top of that the iOS builds could only be created on a machine running macOS operating sys-

tem, which alone set some hard minimum requirements for the CI/CD server. The goal was to be

able to distribute the game client builds to the Google Play internal testing track on Android, and

to TestFlight on iOS. The first priority was to automate the iOS delivery pipeline and the Android

delivery pipeline was only considered secondary, since the process was much more straightfor-

ward for Android even when conducted manually. However, automating both automation pipe-

lines was seen as desirable at least at some point in the future.

As continuous delivery is an extension to the continuous integration, it was seen that the continu-

ous delivery pipeline should be able to create build artifacts for publishing platform distribution

from the development and production branches of the game client repository on developer re-

31

quest. Since all the content of these main branches was to be secured by the previously men-

tioned continuous integration quality-assurance procedures that would cover all the pull requests

it was surmised that this would already be enough to cover the quality of the main branches, and

no further testing phases should be required for the continuous delivery pipelines.

5.1.3 Continuous deployment

Continuous deployment was initially seen as almost unreachable in the context of the research, as

it was known to require a very high level of code coverage in order to be viable and trustworthy

enough to be approached at all. In the context of the game client and backend continuous deploy-

ment had to be ruled out. However, in the context of the remote settings configuration that both

the game client and backend were using as a global configuration source, it was deemed simple

enough to become a reality. Basically, the remote settings configuration was a single JSON file that

contained global settings that the game client fetched each it was launched, and similarly it was

used by the backend upon certain requests. The remote settings file was in actuality located in the

backend, and initially it was updated by the developers using an exposed JSON visual editor

through the browser. However, this approach was deemed very error-prone since there was no

proper validation or version control for the remote settings at this point. Once the settings were

updated through the editor and saved, there was no way to return the previous version, which

was a very problematic factor in the usage of the tool.

To overcome these issues, it was planned that the remote settings configuration should be placed

in separate Git repository, where it would be versioned and handled similarly to the source code in

other project repositories, i.e. enforcing the use of Gitflow strategy which would mean that the

changes should be introduced through the use of pull requests that were then peer reviewed and

validated before merging the changes to either development or production branches. The way

that this was envisioned was that the JSON contents should be tested and validated automatically

using some sort of JSON validation utility or a predefined schema, or the combination of both, be-

fore the contents would be considered deployable. Then, once the developer would open a pull

request the JSON contents would be automatically validated, and after a successful validation and

an approval from a peer review the pull request could be merged either to the development

branch, where it would be automatically uploaded to replace test environment remote settings

32

during integration, or to the production branch, where it would be automatically uploaded to re-

place the live environment remote settings during integration.

5.1.4 Automatic versioning

Automatic versioning was realized to be essential basically regarding any of the previously men-

tioned continuous practices. Considering the game client, both Google Play and App Store have

hard requirements for always providing unique incremental build numbers to the platform in or-

der for build uploading to be successful. In Google Play the version code of each uploaded Android

build has to be higher than the version code of the previous builds. In a similar manner in the App

Store the bundle version has to be incremented to be higher for each uploaded build. While this

seemed quite trivial at premise, it turned out that the incrementation could not be easily be auto-

mated using version control since the incremented number should be passed around between the

version control and the build server in order to work, so it was quickly realized that the version in-

crementation should be handled by the build server itself and the build server should be able to

determine which was the last uploaded build number in order to increment it correctly. Finally, it

was outlined that the build pipeline number would be the most sensible reference point for incre-

menting the build number, as the pipeline number was always incremented and using it directly

didn’t require any separate solution for storing the information about latest build numbers.

Semantic versioning was introduced to the project during the research period; however, it was de-

cided that the version numbering that was visible to the player would not be automated, but in-

stead it would be increased manually depending on the contents of each game client update.

Since the user-facing version number didn’t have any hard requirements from either publishing

platform, and the releases and updates were planned well beforehand, this was sufficient. The

reason the semantic versioning was brought up was that it was a standardized way to version soft-

ware using the major, minor and patch numbering logic. Previously only the major and minor

numbers were used in the project, which was not seen as satisfactory especially since the tooling

of the project was about to support the possibility of frequent patch updates. The semantic ver-

sion number was also used to tag each release point of the game client in the version control to

keep track of the release points.

33

Similarly the remote settings configuration had to be versioned in order to keep track of the latest

settings configuration on the backend side. The versioning of the remote settings was quite simple

to automate along with the pipeline, since the integer version was incremented each time a new

version of the remote settings file was uploaded to the backend through the upload endpoint.

5.1.5 Automatic testing

While automatic testing is largely used in modern software development and the use of automatic

testing has become a standard in the software industry, it has proven to be difficult to cover

games with automatic testing, since there are a lot of moving parts - which are also changing at a

rapid pace during development - and there are hardly any standardized test suites available for

games when comparing the tooling that is available for web development technologies, for exam-

ple. This leads to game developers having to develop their own test tools or having to lean on

manual QA testing. While Unity offers some kind of testing tools through its package manager sys-

tem, it was determined that the investment to properly benefit from automatic testing would re-

quire either bringing in a specialized developer that focuses on creating and maintaining tests in

the project, or a lot of time from the current development team to cover the game project with

tests. Since the game had not really been planned with testability in mind from the beginning,

bringing in automated testing at this point was seemingly challenging. However, some ideas were

brought forth about automatic play testing scenarios, that could act as smoke tests that would

cover the most critical gameplay behaviour, for example the tutorial phase of the game, or simple

menu scenarios. Execution of automated tests would have been apparently possible in the Unity

Cloud Build process, as in the form of editor mode testing, but the real benefits would have been

gained if the tests could have been executed on real device, which would have been even more

complex to implement. In any case, the automatic testing of the game client could not be priori-

tized highly enough to be worthwhile during the research period. On the other hand the frequent

building that was actualized through the planned build pipelines was already a test in itself regard-

ing the ability to compile the source code.

Regarding the remote settings configuration the automatic testing was seen as undisputedly es-

sential. In the case of the remote settings the testing requirement was more straightforward, and

as mentioned in the previous sections, validations tests were planned to cover the remote settings

configuration correctness with JSON validation and schema validation.

34

5.1.6 Continuous monitoring

Continuous monitoring of the game client performance after each update, and the continuous

monitoring of the backend were seen as very important in ensuring the stability of the product

without someone having to constantly monitor dashboards rigorously. The continuous monitoring

that was set out to be implemented in the project was rooted in the idea that anomalies should be

detected automatically, and those anomalies should be reported to the developers, preferably to

Slack where they would reach the required people with no delays. That said, the monitoring logic

was expected to have some sort of smart automation and the ability to detect out of place activity

so that only the important deviations would get reported to developers. More precisely, any activ-

ity that is affecting a notable number of players should be reported to the developers, but issues

that are under certain thresholds should not interrupt the developers from carrying out their regu-

lar activities. This was also experienced by the developers in practice when the first monitoring so-

lutions were implemented without proper thresholds. Incessant false alarms lead to developers

either ignoring or muting the alarm notifications altogether, which made the monitor alarms prac-

tically useless. However, after corrections and careful setup of proper thresholds this could be

turned around and only the proper issue alerts were going to be delivered to developers.

5.1.7 Continuous improvement

Continuous improvement, while seemingly a no-brainer in any kind of project, was realized to be

quite essential in order for the team to improve and for the product to improve as well. It was re-

alized that if there weren’t any improvements, it probably meant that things were probably get-

ting worse over time, since the complexity of the project was increasing each time changes were

contributed to it. This was evident from the bug and issue compilation list, which was constantly

growing, and at times growing much faster than the team was able to make it shorter. Many con-

tinuous improvement attempts were actively made to improve the overall state of the project, like

defining and enforcing a standardized convention for the source code, a requirement that had

been overlooked before. Additionally, some refactoring guidelines were agreed upon within the

team to also make sure that legacy code would eventually get improved over time and that there

was plan for systematic refactoring of the source code. However, more than a technical practice

the continuous improvement should be seen as a mindset that each of the developers in the pro-

ject should maintain in order to make sure there is room for improvements.

35

5.1.8 Summary of the practices

To summarize the most important practices and their prioritized target areas, the previously cov-

ered practices were combined into table 1. As it became evident during the answering of the first

research question, some of the practices were seen as more important to be applied to certain ar-

eas of the mobile game development project rather than covering all areas. Area in this context

meant either the game client, the backend or the remote settings. Since this was the case, also the

prioritized target areas were highlighted in the table in order to better support the answering of

the second research question about the tools that would support the applying of these practices.

Table 1: DevOps practices and their prioritized target areas

Practice Prioritized target area

Continuous integration Game client

Continuous delivery Game client

Continuous deployment Remote settings

Automatic versioning Game client
Remote settings

Automatic testing Remote settings

Continuous monitoring Game client
Backend

Continuous improvement Game client
Backend

36

5.2 Tools

The second research question was: Which DevOps tools are needed for applying the practices in

the mobile game development project? To answer this question, the first research question about

the most beneficial DevOps practices had to be already covered initially so that this research ques-

tion could be approached in full. The nature of this research question was quite actionable, so an-

swering it required both time and effort and active experimentation with the different tools that

were assessed to be used in the mobile game development project. This chapter covers the tool-

ing solutions that were implemented into the project during the research period, and also touches

on the tool candidates that were considered to fulfill some of the prospected needs but were

dropped out for one reason or another.

5.2.1 The planned DevOps toolchain

As the answers for the first research question indicated, many DevOps-related practices were

deemed as important for the mobile game development project, some more than others, and

some of the practices were deemed most important only in certain areas of project, for example in

relation to game client or in relation the backend, but not necessarily as important for both. In or-

der to clarify the scope of the tooling and the requirements that they posed on the whole project,

it was important to be able to clarify the new and existing tools that were used at each phase of

the DevOps lifecycle. To do this, composing a DevOps toolchain that made up the entirety of the

project was seen as appropriate.

The planned DevOps toolchain was based on the requirements that were uncovered after answer-

ing the first research question and the toolchain is composed in table 2. In the table the new tools

are also highlighted separately to clarify which new tools were introduced to the project in order

to provide the answers to the second research question. However, it should be noted that also the

existing tools were used more prudently along with the new tools, which means that also using

the existing tools more extensively, by studying and utilizing their special features, contributed to

the answering of the second research question. This was especially the case with Bitbucket and

Unity Cloud Build which were originally underutilized in comparison to the features that they of-

fered underneath.

37

Table 2: The planned DevOps toolchain with new tools separated

Lifecycle phase All tools New tools

Plan Trello
Slack
Google Drive

Code Bitbucket
Unity
ASP.NET Core
Visual Studio
Visual Studio Code

Build Bitbucket Pipelines
Unity Cloud Build
Webhook Relay

Bitbucket Pipelines
Webhook Relay

Test Internal QA*
External QA*
NUnit

NUnit

Release Bitbucket
Unity Cloud Build
Gitflow*

Deploy Azure
Docker
Fastlane
App Store
Google Play

Fastlane

Operate Azure
Remote settings
Firebase Remote Config

Firebase Remote Config

Monitor Unity Analytics
Unity Cloud Diagnostics
Firebase Analytics
Azure Monitor
UptimeRobot

Unity Cloud Diagnostics
Azure Monitor
UptimeRobot

*Not a tool but still pivotal in supporting the other tools

38

The planned DevOps toolchain that was covered in table 2 was further clarified by creating a visu-

alization of the toolchain and all of the tools that were used in different phases of the DevOps

lifecycle, as seen in figure 5. The DevOps toolchain visualization was based on the traditional

DevOps lifecycle as in the format that is often depicted when visualizing the lifecycle and its

phases in relation to each other as a continuous loop.

Figure 5: The planned DevOps toolchain

39

5.2.2 Selected tools to support the practices

To consolidate the findings about the most important practices and their prioritized target areas,

which were introduced as the answers on the first research question, it was necessary to supple-

ment them with the selected tools that were considered as the enablers of these practices in their

prioritized target areas. The selected tools appended to the table of practices and their target ar-

eas is seen in table 3. Ergo, the selected tools in the table represent the new and in part existing

tools that were listed in table 2, which are in this context associated with the practices and target

areas that were seen desirable to be pursued in the research.

Table 3: DevOps practices, their prioritized target areas and the selected tools

Practice Prioritized target area Selected tools

Continuous integration Game client Bitbucket Pipelines
Unity Cloud Build
Webhook Relay

Continuous delivery Game client Bitbucket Pipelines
Unity Cloud Build
Fastlane

Continuous deployment Remote settings Bitbucket Pipelines

Automatic versioning Game client
Remote settings

Unity Cloud Build
Bitbucket Pipelines

Automatic testing Remote settings
(Game client*)

Bitbucket Pipelines
(NUnit*)

Continuous monitoring Game client
Backend

Unity Cloud Diagnostics
Azure Monitor
UptimeRobot
Firebase Remote Config

Continuous improvement Game client
Backend

Developers**

*Was not considered as a priority, but was still covered by the research

**Not a tool, since continuous improvement is more a cultural trait

40

Bitbucket Pipelines

Bitbucket Pipelines is a serverless CI/CD tool offered as part of the Bitbucket Cloud product (“Bit-

bucket Pipelines”, n.d.). Bitbucket Pipelines seemed like the obvious choice for automating some

of the tasks that required automation, since the project was already hosted in Bitbucket Git repos-

itories to begin with. The Bitbucket Pipelines was seen as easy to setup, since it was a serverless

product in nature, meaning that the developer didn’t have to worry about configuring a server in

order to make use of the pipelines, but instead the pipeline instances were spun up automatically

once they were needed. It was also seen to be desirable that the tooling choices would be closely

aligned with the already existing tools so that their upkeep would be simple. Bitbucket Pipelines

was mapped out as the candidate for fulfilling the continuous integration, continuous delivery and

continuous deployment needs that were expressed, and was able fulfill these needs elegantly.

Webhook Relay

Webhook Relay is a webhook-related service that specializes in webhook forwarding and bidirec-

tional tunneling (“Webhook Relay Introduction”, n.d.). Webhook Relay was examined since Bit-

bucket Pipelines had monthly build time limitations attached to it, which would be easily exceeded

if the pipeline instances were used for long-running tasks such as webhook polling between Bit-

bucket and Unity Cloud Build service, as was learned through experimentation. Webhook Relay

pricing was relatively cheap, and the product featured very handy serverless functions that made

the setup easy to manage overall. On the downside this was a “one more tool” in the toolchain,

that could have been possibly avoided if the Bitbucket Pipelines weren’t as limited with their

monthly build time quotas and their hefty pricing.

NUnit

NUnit is a unit-testing framework for .NET languages. In the context of the Unity game engine a

custom version of the NUnit library is shipped as part of the Unity Test Framework package distri-

bution. The Unity Test Framework can be used for creating and running edit mode and play mode

tests (“Unity Test Framework”, n.d.). While the game client testing wasn’t found as the most criti-

cal practice to be covered in the research, it was still a topic that had raised a lot of discussion in

the group interviews, and for that reason the tooling related to that was brought up and covered,

in case it would be a candidate for future improvements.

41

Fastlane

Fastlane is an app automation tool that helps to automate the releasing and deploying of iOS and

Android apps and other tasks closely related to releasing and deploying of applications (“Fastlane

Docs”, n.d.). Fastlane was already a familiar tool to some of the individuals in the development

team as it had been previously used in the on-premises Jenkins server solution that the company

had used before. Fastlane was also used by the Unity Cloud Build service under the hood, and it

was possible to add custom Fastlane configurations to extend the cloud build configurations, for

example to enable delivering builds to the App Store or TestFlight, and even to Google Play. How-

ever, a solution such as this was not readily available online for the picking, so some studying and

experimentation was required in order to figure out the automation requirements for successful

TestFlight distribution. Ultimately, a working solution was found and iOS builds could be automati-

cally delivered to TestFlight directly from the Unity Cloud Build service.

Firebase Remote Config

Firebase Remote Config is a cloud service that enables the developer to adjust predefined values

in the application without updating the application separately (“Firebase Remote Config”, n.d.).

Essentially this makes Firebase a sort of live operations tool and enables a segmented setup of val-

ues to certain regions, for example. The tool can also be used for A/B testing certain features be-

fore they are rolled out to the whole player base. These features make Firebase Remote Config a

good candidate for supporting the continuous monitoring initiative since the monitored findings

from the segmented behaviour can be used to modify the game for the better. Firebase Remote

Config could also be seen to support the continuous improvement practice, since the point of the

segmentation and testing is to find out optimal configurations that would essentially improve the

game overall.

42

Unity Cloud Diagnostics

Unity Cloud Diagnostics is a suite of cloud-based tools that enable developers to receive diagnos-

tics data and feedback directly from their games (“Unity Cloud Diagnostics”, n.d.). Unity Cloud Di-

agnostics was seen as lucrative solution for tracking game performance since the tool was an inte-

gral part of the Unity engine and it was easy to activate, and relatively easy to configure to send

notitifications to a mail address or to Slack in case errors or exceptions were received on the game

clients of players. However, due to configuration limitations the Unity Cloud Diagnostics couldn’t

be set up with custom thresholds, which meant the notifications were spitting out false positives

from time to time, that were only affecting a small minority of players. This left something to be

desired, perhaps a more specialized tool that would allow more tailoring.

Azure Monitor

Azure Monitor is solution for collecting and analyzing data of applications and services and meas-

uring their performance. The Azure Monitor data can be used to setup alerts that can notify when

issues or anomalies have been found in the monitoring data (“Azure Monitor alerts”, 2021). Azure

Monitor was a natural choice to be used for monitoring and setting up the backend-related alerts

since the backend resided in Azure. It was also relatively straightforward to setup the anomaly-

based alerts and alert thresholds to certain services that needed to be monitored closely. Azure

Monitor alerts were eventually configured to send automatic Slack alerts and SMS alerts to certain

on-call-devices in order to keep the development team notified of the manifesting issues.

UptimeRobot

UptimeRobot is a web page uptime monitoring service that can be used for monitoring the availa-

bility of given web pages, or keywords on a web page with ease (“UptimeRobot FAQ”, n.d.). Up-

timeRobot was used as a temporary solution for monitoring the uptime of certain critical server

addresses, and later it was used as a backup solution in addition to the more advanced Azure

Monitor and alerts configured through Azure. To the benefit of the UptimeRobot it can be said

that the service was extremely easy to setup and it served its purpose perfectly as a development-

time monitor service when it was configured to monitor certain keywords in a publicly exposed

server list in order to track their uptime.

43

5.2.3 Overview of the CI/CD pipelines for the game client

Several build targets for the game client were configured in the Unity Cloud Build service to enable

a straightforward way to create build artifacts for both supported platforms, Android and iOS, and

for each environment needed with distinct settings. Debug and staging builds were built from the

development branch of the repository which contained the latest development state of the pro-

ject, whereas release builds were built from the master branch of the repository which contained

the production state of the project.

Debug builds were set up using debug signing with development mode enabled and they were

preprocessed at build-time to allow the selection of the server type once the build was executed

on device. Also, debug builds were configured so that the finished build artifacts were delivered to

Slack in the form of a shareable link. Staging builds, in this context, meant builds that otherwise

matched with builds using debug build settings, but were signed with release signing so that they

could be delivered to Google Play internal testing on Android and to TestFlight on iOS. On Android,

the AAB format (Android App Bundle) was required for Google Play, but the APK format (Android

Application Package) was used for debug builds since builds using the format were easier to install

on test devices directly. On iOS the Ad Hoc signing was used for debug builds to allow installation

on registered devices that had been included in the provisioning profile. However, for staging and

release builds the release signing was required and distribution for release signed builds was possi-

ble only through TestFlight and App Store.

Similarly to staging builds, release builds were using release signing but had development mode

disabled, compression enabled and were preconfigured at build-time to use the production server.

Additionally, release builds had automatic version code incrementation on each build, with An-

droid builds using the Unity Cloud build pipeline number directly, and iOS builds using a date-

based format for increasing the bundle version.

Android and iOS debug build targets were scheduled so that nightly builds would be delivered and

linked to Slack each night so that the external quality assurance team could start testing the latest

builds first thing in the morning. Other build targets required manual triggering by the developer

to be built. The configured Unity Cloud build targets are seen in table 4.

44

Table 4: Unity Cloud Build targets for Android and iOS

Build target Branch Artifact Server Distribution target Method

Android Debug develop APK Test Link/Slack Automatic

Android Staging develop AAB Test Google Play Internal Manual

Android Release master AAB Production Google Play Production Manual

iOS Debug develop IPA Test Link/Slack (Ad Hoc) Automatic

iOS Staging develop IPA Test TestFlight Automatic

iOS Release master IPA Production App Store Manual

Regarding table 4, the distribution target column meant the intended distribution target of the

build artifact. Slack link distribution was trivial to setup using Unity Cloud Build service default

functionalities, but distribution to publishing platforms, such as the App Store and the Google Play,

required custom Fastlane configurations. For iOS, this kind of custom Fastlane configuration was

setup and the distribution to TestFlight was automated, hence a continuous delivery pipeline for

iOS had been created. For Google Play a similar continuous delivery automation was planned, but

as it was not deemed as a priority in the research, it was not rushed. However, it still remains as a

desirable target for automation at a later date, perhaps some time after the research has ended.

45

5.2.4 Continuous integration pipeline for nightly builds

The continuous integration pipeline that was used to produce the nightly builds in seen in figure 6.

A similarly structured pipeline was ran each night to produce both Android and iOS development

builds, which were then linked to Slack so that they could be picked up by the QA team in the

morning. The pipeline setup was quite trivial as it could be fully setup in the Unity Cloud Build

dashboard, as Unity Cloud Build supported Bitbucket as a version control source and Slack as a dis-

tribution target for link sharing out of the box.

Although this pipeline was used on a nightly level during the research period, there was the ability

to use it more frequently, if needed. However, due the fact that the pull request pipeline was al-

ready put in place and it was building each pull request before integrating them to the develop-

ment branch, it was chosen that this pipeline was only used for nightly builds to save bandwidth

for the pull request builds during the working hours. Since no one in the development team was

working at night, it was a great occasion to use the build server to do laborious automation tasks.

Figure 6: Continuous integration pipeline for nightly builds

46

5.2.5 Continuous integration pipeline for pull requests

In addition to the build targets seen in table 4, there were automatically created debug build tar-

gets created for each pull request through Bitbucket Pipelines. In theory all of these automatically

created targets could have been used through the Unity Cloud Build user interface as well, alt-

hough in practice these build targets were controlled through Bitbucket Pipelines and were dis-

posed of after closing each pull request, hence they were only temporary targets used for testing

changes introduced in pull requests. The pull request pipeline targets were created using the An-

droid and iOS debug builds targets as the template configurations with minor changes, such as the

branch being matched with the pull request. The flow of the pull request pipeline is shown in fig-

ure 7.

Figure 7: Continuous integration pipeline for pull requests

47

5.2.6 Continuous delivery pipeline for iOS

To support the continuous delivery practice requirement, the continuous delivery pipeline for iOS

was created. The continuous delivery pipeline for iOS is visualized in figure 8. The essential auto-

mation tool in this context was Fastlane, which enables the distribution of the build artifacts di-

rectly from the Unity Cloud Build service to TestFlight, and the manual release of the TestFlight

build to the App Store, if needed. In order to support custom Fastlane configurations, one had to

be created and hosted in the game client repository and the path pointing to the Fastlane configu-

ration had to setup in the Unity Cloud Build target configuration. The iOS builds could be ordered

directly from the Unity Cloud Build dashboard and eventually after the order the build artifact was

created and delivered to TestFlight.

Figure 8: Continuous delivery pipeline for iOS

48

5.2.7 Continuous deployment pipeline for remote settings

The continuous deployment pipeline for remote settings can be seen in figure 9. As the require-

ment for automating the deployment of the remote settings configuration was quite simple, espe-

cially when considering how hard this requirement would be to fulfill on the game client or the

backend side, it was decided that it should be approached. In actuality the remote settings config-

uration was hosted in the backend, and the configuration file was updated through a POST end-

point each time the pipeline was ran. Before the POST request was made, the contents of the con-

figuration file were validated with both schema validation and generic JSON validation to avoid

issues if the developer had mistakenly committed code with broken syntax.

Figure 9: Continuous deployment pipeline for remote settings

49

5.2.8 Continuous monitoring pipeline for backend

In order to support the continuous monitoring practice on the backend side the Azure Monitor

was setup with anomaly detection that was set to automatically trigger Azure alerts, that were

then sent both to Slack and to the on-call-devices that some of the developers were possessing.

Additionally the on-call-device was configured to start an alarm each time a SMS message with

certain keyword content was received. An app called Priority Alerts was used to setup the key-

word-based SMS alarms that would alert anyone who was in possession of the on-call-device (“Pri-

ority Alerts”, n.d.). The continuous monitoring pipeline for the backend is visualized in figure 10.

Figure 10: Continuous monitoring pipeline for backend

50

5.3 Culture

The third research question was: How does applying DevOps impact the culture of the mobile

game development team? To answer the final research question, it was vital that the DevOps

transformation had already been experienced and observed in practice and that the previous re-

search questions had been answered, as they were related to bringing forth the actual applying of

DevOps. Answering this question had a heavy reliance both on the observations that covered the

whole research period and on the conclusive interviews that finally covered the impact of DevOps

within the development team in depth.

5.3.1 Quality orientation

The quality orientation of the development team was identified as an important trait that had di-

rectly stemmed from the DevOps mindset that was slowly devolving into the minds of the devel-

opment team, as the practices, tools and the DevOps culture was constantly highlighting quality as

an important aspiration. The increasing quality orientation was evident from the spontaneous ide-

ations for improving the quality of the project, that were witnessed throughout the research pe-

riod. The quality approach seemed to touch on many areas of the project, since quality wasn’t just

considered through the experienced quality that the player would feel when playing the game, but

also covering the quality of the internal development processes and the quality of the source

code, for example. The quality orientation seemed to be fed by the fact that since after imple-

menting the DevOps practices into the project, many of the processes were much more standard-

ized and systematic than before. This also seemed to affect other previously loose internal pro-

cesses to become more systematic, which could be witnessed as a sort of a snow-ball effect since

it began affecting all the aspects of project. It could be also seen that since the proper automation

processes were enabling the quality-oriented processes, such as test build automation, the quality

orientation was easier to achieve and grasp. Since the introduction of the automatic pull request

pipeline, the team also started to pay more attention to code reviews that were acting as quality

gates along with the builds that were produced for each pull request. And since the code reviews

were becoming more thorough it also led to the team having a higher sense of ownership over

each line of code they submitted to the version control. At the same time, since code reviews are a

collaborative effort, it seemed to also increase the shared feeling of ownership over the project’s

source code.

51

5.3.2 Open communication

The amount of open communication inside the development team seemed to increase throughout

the research period. Not only was the communication more open, but it was also becoming more

articulate as well. Certain expectations and an unofficial standardization were becoming to form

around the communication style that the team was organically enforcing together. Common

guidelines were agreed upon in Slack about which channels would be used for certain sort of com-

munication and even new channels were opened in order to improve the direct communication

between different parties that were involved in the project. Also, a factor affecting the communi-

cation was the introduction of monitoring notifications and alerts that were integrated with Slack.

Since notifications were directly sent to certain channels, it also provided a natural way to discuss

the contents of those notifications directly in Slack. Beforehand, since the issues weren’t reported

to Slack, it was not as likely that each anomaly would be conversed on, since they were hidden in

some dashboards that were rarely inspected.

5.3.3 Eagerness to improve

The eagerness to improve both oneself and the project was inflating during the research period.

Since the activities around the project were under heavy inspection and improvement, it naturally

cast some anticipation on the team to dive into self-improvement as well. Since it was realized

that improvements could occur even during a short period of time, which was the research period,

it was also becoming evident that it would mean that also other improvements that might have

been seen out of reach before might actually be easier to achieve than expected. This probably

poured some hope into the self-improvement attempts that might have been suppressed before.

It was also delightful to observe that the DevOps practices, tools and culture were met with such

openness and no-one was downright questioning the plans to improve the project and the devel-

opment team activities with the DevOps practices. On the contrary, the team was highly inter-

ested about DevOps and was excited to participate in improving the project together. This eager-

ness to improve did not seem to fade towards the end of research, as the past improvements

were only acting as a fuel to further improvements. The continuous improvement also arose as a

prioritized practice from the answers to the first research question, which amplifies the signifi-

cance of the eagerness to improve continuously.

52

5.3.4 Craving for automation

Since the benefits gained from automation were easily seen and experienced by everyone in the

development team, it also fueled to desire automate things even further. However, the craving for

automation was already present in the initial assessment interviews so it did not develop only af-

ter the successful implementation of automation practices, but was already existing underneath,

but perhaps somewhat repressed. Many of the development team individuals were hands on par-

ticipating in the implementation of some of the automation tools, which might have ignited the

craving for automating even more. The automation measures implemented into the mobile game

development were largely viewed positively and automation was in general seen in a positive

light. However, some indications could be picked up that automation could also be somewhat

dreaded since it could in theory reduce the irreplaceableness of certain individuals in the team.

These remarks were mostly downplayed by humor but there might have been a serious underlying

concern about automation negatively affecting the otherwise secured position inside the develop-

ment team. Most of the team was in agreement that automation was not in itself of any value, but

that the automation should always aim to solve or alleviate a real-world issue in order to be of

value, which was sensible and proved that the team was very conscious on the matter.

5.3.5 Favorability towards new tools

The research period was a relatively short period time with constant introduction of new tools,

which might have ushered one to think that at some point the team would start rejecting new

tools altogether, but ultimately this was not the case. Although initially there was some reluctance

towards learning to use new tools, the positive consequences of adopting new tools started to

push through because it was realized that the new tools weren’t just adopted because changing

them around was amusing, but because of the added value that they brought in. Once the team

was becoming accustomed to adapting new tools, it started to become easier, and is likely to re-

main so going forward. Hence, it could be perceived that the favorability towards new tools had

increased through experimentation and observably good results.

53

5.4 Summary of the results

This chapter aims to summarize the key results of the research and to answer each of the research

questions in a concise format.

1) Which DevOps practices are needed to most benefit the mobile game development project?

Improving upon continuous integration and continuous delivery practices were seen to most ben-

efit the game client development, while continuous deployment was seen to best support the re-

mote settings configuration. Automatic versioning was considered to be important for both the

game client and the remote settings, although automatic testing could only be prioritized for the

simplified needs of the remote settings. Continuous monitoring and continuous improvement

were seen as important practices and highly beneficial for the mobile game development project.

2) Which DevOps tools are needed for applying the practices in the mobile game development

project?

Bitbucket Pipelines and Webhook Relay turned out as essential tools for bridging the gap between

Bitbucket and Unity Cloud Build in terms of CI/CD practices. Fastlane was critical in enabling the

continuous delivery of iOS builds to TestFlight. Azure Monitor that was configured with suitable

anomaly alerts was able to fulfill the need for continuous backend monitoring. Unity Cloud Diag-

nostics turned out to be a satisfactory tool for monitoring the game client performance.

3) How does applying DevOps impact the culture of the mobile game development team?

Applying DevOps practices seemed to impact the mobile game development team mostly in very a

positive way. In the end the team was more open-minded towards learning new things and taking

on new tools. The eagerness to improve the working environment and oneself was clearly ele-

vated. The quality-oriented mindset that the DevOps culture advocated for had clearly impacted

the team positively. Also the increased amount of open communication was being encouraged in-

side the team. Additionally, the enthusiasm towards automation practices had grown.

54

6 Discussion

6.1 Reliability

The reliability of the conducted research is analyzed from the perspective of the theoretical basis

and the methods and materials used for the research implementation. Additionally, the research

ethics, which the research was conducted in respect to, is introduced.

6.1.1 Reliability of the theoretical basis

DevOps and the concepts associated with it have many definitions and even scholars are not in

agreement with an exact definition of DevOps and the terminology surrounding it, which leaves

room for opinionated viewpoints around the subject that often contradict with each other. It has

proved challenging to find peer reviewed research data that would cover some of the more de-

tailed practical aspects of DevOps, and in absence of hard-boiled research data a lot of reliance on

the research has been put to expert opinions and practical guides. However, since this kind of

practical DevOps-related material is widely available online it is still possible to gather a somewhat

cohesive idea what the typical aspects of DevOps look like in practice for many organizations prac-

ticing it globally. Yet, the theoretical basis could have benefitted from a systematic review of a

wider scope of data around individual themes. Since the research was an action research in na-

ture, a very practically oriented research, the pragmatic approach may be seen as justifiable since

the scope of the research was to focus on practicalities of DevOps and mobile game development

in a real-world setting instead of focusing on moot points about the theoretical discrepancies sur-

rounding the subject.

6.1.2 Reliability of methods and materials

The research was conducted using the action research strategy, where the aim was to gain insight

on the research subject while actively attempting to inflict change on it. Since the researcher is

closely associated with the research subjects in this type of research and devoted to the instill-

ment of the change personally, it may reduce some of the observational objectiveness from the

research. However, for this exact reason interviews were used to support the factual validity of

the research, not relying on the observational data alone. The repetitive nature of action research

allowed iterative development, which meant that the changes introduced to the project were able

55

to be studied and improved over the course of the research, which improves the verifiability of the

data. The structured observation technique used was able to produce a good variety samples

throughout the research period, but since the research was conducted during a time when the

case company office was closed, and the development team was working remotely, the observa-

tion was limited to online meetings with the team and the use of instant messaging on the project

team communication channel. This fact might have reduced the ability to gather especially cultural

observational insight that might have been recovered more easily from a more natural setting if

the team was working in the same physical office space. Since the research methods and materials

were highly qualitive in nature, the results cannot be automatically applied to other projects espe-

cially in other organizations, but in the context of this research they would seem to form a credible

foundation even to support further organizational developmental needs.

6.1.3 Research ethics

The research was conducted in accordance with the responsible conduct of research, and in re-

spect to the ethical principles enforced by JAMK University of Applied Sciences (“Ethical principles

and data protection”, n.d.). To ensure the appropriate data management throughout the research,

a data management plan was formed so that the inescapable consistency of the data management

could be ensured. The contents of the data management plan were presented to the individuals

that were being researched, and the extent of the research was openly disclosed with all the re-

search participants. No personal data was collected in the perimeter of this research.

56

6.2 Analysis of the research results in respect of the theoretical framework

In this chapter the fundamental research results are discussed and analyzed in respect of the theo-

retical framework. Each theme of the research: practices, tools and culture are analyzed sepa-

rately.

6.2.1 Practices

The DevOps practices that were deemed as worth pursuing in the context of the first research

question and in answering of the first research question, were: continuous integration, continuous

delivery, continuous deployment, continuous monitoring and continuous improvement, all of

which have been seen as key components of DevOps according to Hall (n.d.). Additionally, auto-

matic versioning and automatic testing were found to be important practices in the results. How-

ever, whether these should have been seen as part of the previously mentioned continuous prac-

tices or as separate practices is debatable. According to Pittet (n.d.) the automated testing is

usually built into the CI/CD practices. Similarly, Forsgren and colleagues (2018, 41-58) suggest that

continuous testing should be seen as something that enables the continuous delivery. Neverthe-

less, since these practices were explicitly raised as separate practices in the research results, it

must mean that they were prominent to the development team, so addressing them separately

was justifiable to support the aspirations and necessities of the development team. And as was ev-

ident from the second research question related to tooling, the automatic versioning and auto-

matic testing were in fact closely aligned with the continuous practices when it came to forming

practical solutions such as the automation pipelines.

6.2.2 Tools

The tooling was conceptualized in the results using DevOps toolchain as the comprehensive aid for

breaking down the monumental matter that is DevOps. As Krohn (n.d.) had stated, the compila-

tion of a unified toolchain is important so that the integrity of the toolchain would be secured, and

so that the chosen tools would work well together. This idea was kept in mind when the tooling

choices were introduced to the project. It is also apparent from the research results that tools

which were closely aligned together were favored in the tool selection process. For example Bit-

bucket Pipelines was used for supporting continuous integration, because Bitbucket was already

57

being used in the project, and Unity Cloud Diagnostics was chosen for game client monitoring be-

cause it was well-matched with the Unity game engine. Similarly on the backend side Azure Moni-

tor was used for monitoring because the backend was hosted in Azure. Other tooling choices could

have been also made, but the aspiration was to keep things as simple as possible, and the flow of

work as smooth as possible.

6.2.3 Culture

The cultural impacts of DevOps in the research results seemed to be in line with the findings of the

theoretical framework as Forsgren and colleagues (2018, 29-40) have pointed out that if properly

adapted, DevOps feeds built-in trust and psychological safety that leads to many of the fine things

which were also witnessed in the research results. Generally, the DevOps mindset seemed to lead

to not one, but many positive causations in the development team.

For the cultural foundation in the research setting, it should be mentioned that in the action re-

search setting the researcher was in fact actively responsible for bringing forth change and trans-

formation which was characteristic both to DevOps adoption and to the action research strategy

(Forsgren et al., 2018, 29-40; Kananen, 2014, 11-12). Hence, it could be argued that the chosen re-

search strategy matched well with the subject at hand.

58

6.3 Conclusion

6.3.1 Extensibility

The research results are expected to be applicable in the use of other development projects inside

the employer organization. Many of the tooling choices in the research were made specifically for

the requirements of this mobile game development project in mind, so some adaptation will prob-

ably be needed when attempting to extend the results of this research into other projects. How-

ever, the foundation that has been laid and the experiences that have been gained are alone very

useful in supporting similar undertakings in other projects.

6.3.2 DevOps is applicable in mobile game development

The research results have showed that DevOps can also be highly useful in the use of mobile game

development, and inside relatively small teams. There might be slightly different problems present

in mobile game development than in software development, but mostly game projects are closely

under similar constraints that any software project is.

6.3.3 There is no one way to execute DevOps

DevOps has proved to be very adaptable in nature. There is no standardized way to execute

DevOps, which means that it can be tailored to the organizational and project-based needs in or-

der to be used most efficiently. The DevOps model that was applied in this project could be taken

as far as to form a new concept: “GameDevOps”, where the aim is to focus on around the impedi-

ments that mobile game development environment is causing to the developmental processes,

such as challenging testability and publishing platform related constraints.

6.3.4 DevOps is a journey not a destination

While the statement might sound like a cliché it could be argued that DevOps should be consid-

ered a journey, not a destination. The reason for this is that DevOps is a not band-aid that can be

thrown at a project and then be forgotten. DevOps is not something that is ever ready or com-

pleted. DevOps is culture and culture needs nourishment to thrive. Adapting DevOps requires that

the DevOps transformation is properly initiated, and that enough information about it is shared

inside the organization for DevOps to become a realistic choice for adoption.

59

6.3.5 Appropriate automation

One of the most meaningful takeaways has been the importance of understanding that automa-

tion is not in itself the purpose of DevOps. The purpose of automation is to serve the team and ad-

vance the goals of the team in the best way possible with the ability to automate work that is less

meaningful and enable the team to spend their precious time on work that is truly meaningful and

work that most benefits from collaboration.

Automating everything is not the goal of DevOps, and this should be understood both by the team

and by the enthusiasts that are driving the DevOps transformation. The goal is to identify the ap-

propriate targets for automation and plan for automating these before anything else.

6.3.6 Understanding the benefits of Live Ops

Many of the problems presented with fat clients, such as game clients, and long platform review

times may be possible to solve with Live Ops tools and services. The presumption here is that Live

Ops means the ability to provide updates to the game without separate client updates so that in-

stead of client updates we are talking about live updates. The use of Live Ops in mobile game de-

velopment could be seen as well-matched with the DevOps objectives.

6.3.7 QA testing is still the backbone of game testing

QA testing is still the most important way to test that a game is functional and that all the new fea-

tures and existing features are working as expected. Automating all the tedious tasks around

building, signing and releasing should be definitely automated so that the QA processes may be

supported in the best way possible. Enabling the QA team to do their job in the best possible way

is also a responsibility of the development team since all parties benefit from empowered quality

assurance.

60

6.4 Suggestions for further research

DevOps is still evolving and new aspects for DevOps are emerging all the time. Service providers

are making DevOps-related tools available in their services which might open new opportunities

for automating the use of their tools and services. DevOps as a Service platforms that offer all the

necessities in one big toolchain are worthwhile to study further, but it is also recommendable to

carefully look at the competition of the forerunners since many of the providers out there have

just recently started offering their corresponding DevOps services for their customers. Locking into

a one vendor offering just about everything in one package arguably sounds tempting, but before

blindly following the ongoing trends one should carefully examine what are the benefits and draw-

backs of given services and make an educated evaluation only after analyzing the current offerings

and pricing models that are out there.

For further research inside the employer organization, it could be seen that further standardizing

the use of DevOps tools and building versatile automation tools that can be used across many pro-

jects might be the next logical step. While the DevOps tooling solutions that were turned up dur-

ing the research period turned out to be quite flexible, there are still many more tools out there

that might suit the needs of different projects in a better way and offer even more flexibility de-

pending on project-based requirements.

61

References

App Store App Review. (n.d.). App Review guidelines at Apple Developer web page.
https://developer.apple.com/app-store/review

Atlassian Bitbucket. (n.d.). Introduction to Bitbucket features at Atlassian web page.
https://www.atlassian.com/software/bitbucket

Atlassian DevOps. (n.d.). Introduction to DevOps at Atlassian web page.
https://www.atlassian.com/devops

Azure Monitor alerts. (2021). Overview of alerts in Microsoft Azure. Microsoft Docs.
https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-overview

Bitbucket Pipelines. (n.d.). Introduction to Bitbucket Pipelines at Bitbucket web page.
https://bitbucket.org/product/features/pipelines

Brown, A., Stahnke, M., & Kersten, N. (2020). 2020 State of DevOps Report. Puppet & CircleCI.
https://puppet.com/resources/report/2020-state-of-devops-report

Brown, T. (2020). DevOps vs Agile: What’s the difference? Article on opensource.com web page.
https://opensource.com/article/20/2/devops-vs-agile

Build and run your app. (2021). Android Studio build instructions at Google Developers web page.
https://developer.android.com/studio/run

Chandler, H. M. (2014). The game production handbook (3rd ed.). Jones & Bartlett Learning.

Davis, J., & Daniels, R. (2016). Effective DevOps: Building a Culture of Collaboration, Affinity, and
Tooling at Scale. O'Reilly Media.

DevOps Automation. (2019). Article at Tiempo Development web page.
https://www.tiempodev.com/blog/devops-automation

Dogtiev, A. (2021). App Stores List. Article at Business of Apps web page.
https://www.businessofapps.com/guide/app-stores-list

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. IEEE Software 33, 3, 94–100.
https://doi.org/10.1109/MS.2016.68

Ethical principles and data protection. (n.d.). Thesis ethical principles and data protection. JAMK
University of Applied Sciences.
https://oppimateriaalit.jamk.fi/opinnaytetyo/en/thesis/ethical-principles-and-data-protection

Fastlane Docs. (n.d.). Fastlane app automation tool documentation.
https://docs.fastlane.tools

https://developer.apple.com/app-store/review
https://www.atlassian.com/software/bitbucket
https://www.atlassian.com/devops
https://docs.microsoft.com/en-us/azure/azure-monitor/alerts/alerts-overview
https://bitbucket.org/product/features/pipelines
https://puppet.com/resources/report/2020-state-of-devops-report
https://opensource.com/article/20/2/devops-vs-agile
https://developer.android.com/studio/run
https://www.tiempodev.com/blog/devops-automation
https://www.businessofapps.com/guide/app-stores-list
https://doi.org/10.1109/MS.2016.68
https://oppimateriaalit.jamk.fi/opinnaytetyo/en/thesis/ethical-principles-and-data-protection
https://docs.fastlane.tools/

62

Filipova, O., & Vilão, R. (2018). Software Development From A to Z: A Deep Dive into all the Roles
Involved in the Creation of Software. Apress.

Firebase Remote Config. (n.d.). Firebase documentation at Google Developers web page.
https://firebase.google.com/docs/remote-config

Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate: The Science of Lean Software and DevOps:
Building and Scaling High Performing Technology Organizations. IT Revolution Press.

Forsgren, N., Smith, D., Humble, J., & Frazelle, J. (2019). 2019 Accelerate State of DevOps Report.
DORA & Google Cloud. https://cloud.google.com/devops/state-of-devops

GitHub DevOps. (n.d.). Introduction to DevOps tools at GitHub web page.
https://github.com/learn/devops

GitLab DevOps. (n.d.). Introduction to DevOps solutions at GitLab web page.
https://about.gitlab.com/stages-devops-lifecycle

Goasduff, L. (2021). Gartner Says Worldwide Smartphone Sales Declined 5% in Fourth Quarter of
2020. https://www.gartner.com/en/newsroom/press-releases/2021-02-22-4q20-smartphone-
market-share-release

Gokarna, M. (2020). DevOps phases across Software Development Lifecycle. TechRxiv.
https://doi.org/10.36227/techrxiv.13207796.v2

Hall, T. (n.d.). DevOps Best Practices. Article at the Atlassian web page.
https://www.atlassian.com/devops/what-is-devops/devops-best-practices

Hargreaves, T. (2016). DevOps for Mobile: It's Not Just for Enterprise Anymore. Recording of a
conference speech at GDC Vault web page.
https://www.gdcvault.com/play/1023436/DevOps-for-Mobile-It-s

Hiremath, O. (2021). DevOps Toolchain, Clearly Explained: The What, Why, and How.
https://www.plutora.com/blog/devops-toolchain

Hüttermann, M. (2012). DevOps for Developers. Berkeley, CA: Apress.

IDC Smartphone Market Share. (2021). Smartphone Market Share. IDC.
https://www.idc.com/promo/smartphone-market-share

Jowsey, B. (2018). What is live ops and why should you care? https://www.pocketgamer.biz/com-
ment-and-opinion/69071/what-is-live-ops-and-why-should-you-care

Kaasila, J. (2015). GTAC 2015: Mobile Game Test Automation Using Real Devices. Google
TechTalks. https://www.youtube.com/watch?v=WFBfRk-GLRo

https://firebase.google.com/docs/remote-config
https://cloud.google.com/devops/state-of-devops
https://github.com/learn/devops
https://about.gitlab.com/stages-devops-lifecycle
https://www.gartner.com/en/newsroom/press-releases/2021-02-22-4q20-smartphone-market-share-release
https://www.gartner.com/en/newsroom/press-releases/2021-02-22-4q20-smartphone-market-share-release
https://doi.org/10.36227/techrxiv.13207796.v2
https://www.atlassian.com/devops/what-is-devops/devops-best-practices
https://www.gdcvault.com/play/1023436/DevOps-for-Mobile-It-s
https://www.plutora.com/blog/devops-toolchain
https://www.idc.com/promo/smartphone-market-share
https://www.pocketgamer.biz/comment-and-opinion/69071/what-is-live-ops-and-why-should-you-care
https://www.pocketgamer.biz/comment-and-opinion/69071/what-is-live-ops-and-why-should-you-care
https://www.youtube.com/watch?v=WFBfRk-GLRo

63

Katz, D. (2018). Continuous delivery for mobile with fastlane: Automating mobile application de-
velopment and deployment for iOS and Android. Packt.

Kananen, J. (2009). Toimintatutkimus yritysten kehittämisessä. JAMK University of Applied
Sciences.

Kananen, J. (2014). Toimintatutkimus kehittämistutkimuksen muotona. Miten kirjoitan toiminta-
tutkimuksen opinnäytetyönä. JAMK University of Applied Sciences.

Krohn, R. (n.d.). Considerations for your DevOps toolchain. Article on the Atlassian web page.
https://www.atlassian.com/devops/devops-tools/choose-devops-tools

Lancaric, M. (2018). A guide to soft-launching your mobile game.
https://www.pocketgamer.biz/comment-and-opinion/67713/soft-launch-guide

Leswing, K. (2018). Apple will cut App Store commissions by half to 15% for small app makers.
CNBC. https://www.cnbc.com/2020/11/18/apple-will-cut-app-store-fees-by-half-to-15percent-for-
small-developers.html

Leung, T. (2017). Quick Guide to Live-Ops in Free-to-Play Games.
https://medium.com/@supertommy/quick-guide-to-live-ops-in-free-to-play-games-2e3080ad4c47

Lewis, R. (2020). Mobile gaming trends 2021. Blog entry on ironSource web page.
https://www.ironsrc.com/blog/mobile-gaming-trends

Little, C. (2019). DevOps toolchain figure at Gartner’s blog page.
https://blogs.gartner.com/christopher-little/2019/01/09/jan-2019-devops-agenda

Mala, D. (2019). Integrating the Internet of Things Into Software Engineering Practices. IGI Global.
http://doi.org/10.4018/978-1-5225-7790-4

Mobile Live Operations Best Practices. (n.d.). The Free to Play Game Design Bible: Mobile Live Op-
erations Best Practices. https://mobilefreetoplay.com/bible/mobile-live-operations-best-practices

Mäkelä, K. (2019). Agile vs. DevOps: the grand debate. Blog entry on Eficode web page.
https://www.eficode.com/blog/agile-vs-devops

Ojasalo, K., Moilanen, T., & Ritalahti, J. (2009). Kehittämistyön menetelmät. Uudenlaista osaamista
liiketoimintaan.

Okes, D. (2013). Performance metrics: The levers for process management. ASQ Quality Press.

Paul, F. (2015). 10 Deep DevOps Thoughts From Chef’s Jez Humble.
https://newrelic.com/blog/best-practices/devops-jez-humble

Phulare, A. (2020). DevOps Life cycle: Everything You Need To Know About DevOps Life cycle
Phases. Edureka. https://www.edureka.co/blog/devops-lifecycle

https://www.atlassian.com/devops/devops-tools/choose-devops-tools
https://www.pocketgamer.biz/comment-and-opinion/67713/soft-launch-guide
https://www.cnbc.com/2020/11/18/apple-will-cut-app-store-fees-by-half-to-15percent-for-small-developers.html
https://www.cnbc.com/2020/11/18/apple-will-cut-app-store-fees-by-half-to-15percent-for-small-developers.html
https://medium.com/@supertommy/quick-guide-to-live-ops-in-free-to-play-games-2e3080ad4c47
https://www.ironsrc.com/blog/mobile-gaming-trends
https://blogs.gartner.com/christopher-little/2019/01/09/jan-2019-devops-agenda
http://doi.org/10.4018/978-1-5225-7790-4
https://mobilefreetoplay.com/bible/mobile-live-operations-best-practices
https://www.eficode.com/blog/agile-vs-devops
https://newrelic.com/blog/best-practices/devops-jez-humble
https://www.edureka.co/blog/devops-lifecycle

64

Pittet, S. (n.d.). Continuous integration vs. continuous delivery vs. continuous deployment. Article
on Atlassian web page. https://www.atlassian.com/continuous-delivery/principles/continuous-
integration-vs-delivery-vs-deployment

Priority Alerts. (n.d.). Priority Alerts app at F-Droid web page.
https://www.f-droid.org/en/packages/com.saiga.find.messagefinder

Raeburn, J. (2017). Lean Live Ops: Free Your Devs! Recording of a conference speech at GDC Vault
web page. https://www.gdcvault.com/play/1024185/Lean-Live-Ops-Free-Your

Rajkumar, M., Pole, A. K., Adige, V. S., & Mahanta, P. (2016). DevOps culture and its impact on
cloud delivery and software development.
https://doi.org/10.1109/ICACCA.2016.7578902

Riti, P. (2018). Pro DevOps with Google Cloud Platform: With Docker, Jenkins, and Kubernetes.
Apress.

Rothwell, W. (1999). The Action Learning Guidebook: A real-time strategy for problem solving,
training design, and employee development. Jossey-Bass/Pfeiffer.

Schaub, W. (2019). DevOps transformation: Key differences in small, midsize, and large organiza-
tions. https://opensource.com/article/19/1/devops-small-medium-large-organizations

Schultz, C. P., & Bryant, R. D. (2017). Game Testing: All in One, Third Edition. Mercury Learning.

Singh, M. (2021). Google Play drops commissions to 15% from 30%, following Apple’s move last
year. TechCrunch. https://techcrunch.com/2021/03/16/google-play-drops-commissions-to-15-
from-30-following-apples-move-last-year

StatCounter Mobile OS Market Share In India. (2020). Mobile Operating System Market Share In-
dia. StatCounter. https://gs.statcounter.com/os-market-share/mobile/india/2020

StatCounter Mobile OS Market Share In USA. (2020). Mobile Operating System Market Share
United States of America. StatCounter.
https://gs.statcounter.com/os-market-share/mobile/united-states-of-america/2020

StatCounter Mobile OS Market Share Worldwide. (2020). Mobile Operating System Market Share
Worldwide. StatCounter. https://gs.statcounter.com/os-market-share/mobile/worldwide/2020

Storbakken, M. (2020). DevOps: Where Are We and How Did We Get Here?
https://blogs.vmware.com/management/2020/05/devops-where-are-we-and-how-did-we-get-
here.html

Swartout, P. (2012). Continuous delivery and DevOps: A quickstart guide. Packt Publishing.

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.f-droid.org/en/packages/com.saiga.find.messagefinder
https://www.gdcvault.com/play/1024185/Lean-Live-Ops-Free-Your
https://doi.org/10.1109/ICACCA.2016.7578902
https://opensource.com/article/19/1/devops-small-medium-large-organizations
https://techcrunch.com/2021/03/16/google-play-drops-commissions-to-15-from-30-following-apples-move-last-year
https://techcrunch.com/2021/03/16/google-play-drops-commissions-to-15-from-30-following-apples-move-last-year
https://gs.statcounter.com/os-market-share/mobile/india/2020
https://gs.statcounter.com/os-market-share/mobile/united-states-of-america/2020
https://gs.statcounter.com/os-market-share/mobile/worldwide/2020
https://blogs.vmware.com/management/2020/05/devops-where-are-we-and-how-did-we-get-here.html
https://blogs.vmware.com/management/2020/05/devops-where-are-we-and-how-did-we-get-here.html

65

Telfer, A. (2016). What to Expect When You're Expecting a Soft Launch. Recording of a conference
speech at GDC Vault web page.
https://www.gdcvault.com/play/1023238/What-to-Expect-When-You

Understand Play policies. (2020). Understand and apply the Google Play policies to create a
trusted app. Google Developers.
https://developer.android.com/distribute/best-practices/develop/understand-play-policies

Unity Test Framework. (n.d.). Overview of the Unity Test Framework at Unity web page.
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html

Ultima, J. (2021). Interview with the Zaibatsu Interactive Oy’s CEO. Interviewed on 21 May 2021.

Unity Cloud Build. (n.d.). Introduction to Cloud Build service at Unity web page. Unity.
https://unity3d.com/unity/features/cloud-build

Unity Cloud Diagnostics. (n.d.). Introduction to Unity Cloud Diagnostics at Unity web page.
https://unity3d.com/unity/features/cloud-diagnostics

Unity company presentation. (n.d.). Introduction to the Unity company at their web page.
https://unity.com/our-company

Unity solutions. (n.d.). Overview of the use cases of the Unity engine.
https://unity.com/solutions

UptimeRobot FAQ. (n.d.). Frequently asked questions section at UptimeRobot web page.
https://uptimerobot.com/faq

Watts, S., & Kidd, C. (2017). DevOps vs Agile: A Complete Introduction. BMC Blogs.
https://www.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related

Webhook Relay Introduction. (n.d.). Introduction to Webhook Relay on its web page.
https://webhookrelay.com/intro

Wijman, T. (2021). Global Games Market to Generate $175.8 Billion in 2021; Despite a Slight De-
cline, the Market Is on Track to Surpass $200 Billion in 2023. https://newzoo.com/insights/arti-
cles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-
is-on-track-to-surpass-200-billion-in-2023

https://www.gdcvault.com/play/1023238/What-to-Expect-When-You
https://developer.android.com/distribute/best-practices/develop/understand-play-policies
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html
https://unity3d.com/unity/features/cloud-build
https://unity3d.com/unity/features/cloud-diagnostics
https://unity.com/our-company
https://unity.com/solutions
https://uptimerobot.com/faq
https://www.bmc.com/blogs/devops-vs-agile-whats-the-difference-and-how-are-they-related
https://webhookrelay.com/intro
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023
https://newzoo.com/insights/articles/global-games-market-to-generate-175-8-billion-in-2021-despite-a-slight-decline-the-market-is-on-track-to-surpass-200-billion-in-2023

66

Appendices

Appendix 1. Initial assessment interview with the development group

Theme 1: Development viewpoint

- What recommendable practices have you used in previous projects?

- What recommendable tools have you used in previous projects?

- What expectations do you have for the potential cultural change in the project?

- Which practices are needed for implementing DevOps in the mobile game development project?

- Which tools are needed for implementing DevOps in the mobile game development project?

Theme 2: Operations viewpoint

- What recommendable practices have you used in previous projects?

- What recommendable tools have you used in previous projects?

- What expectations do you have for the potential cultural change in the project?

- Which practices are needed for implementing DevOps in the mobile game development project?

- Which tools are needed for implementing DevOps in the mobile game development project?

67

Appendix 2. Initial assessment interview with the steering group

Theme 1: Present state and target state

- Have you ever used DevOps practices in previous projects?

- What expectations do you have for the potential cultural change in the project?

- What kind of strengths would you expect to perceive in the DevOps transformation?

- What kind of weaknesses would you expect to perceive in the DevOps transformation?

- What kind of opportunities would you expect to perceive in the DevOps transformation?

- What kind of threats would you expect to perceive in the DevOps transformation?

Theme 2: Implementing DevOps culture

- How would you expect the DevOps culture to impact the development team activities?

- How would you expect the DevOps culture to impact the end-user i.e. the player?

- How would you expect the DevOps culture to impact project management?

- In what ways would you attempt to support the DevOps transformation and adaptation?

68

Appendix 3. Conclusive interview with the development group

Theme: DevOps lifecycle and toolchain

- What kind of changes have you perceived during the research period in general?

- What kind of cultural changes have you perceived during the research period?

- What kind of changes have you perceived in the planning phase?

- What kind of changes have you perceived in the coding (developing) phase?

- What kind of changes have you perceived in the building phase?

- What kind of changes have you perceived in the testing phase?

- What kind of changes have you perceived in the releasing phase?

- What kind of changes have you perceived in the deploying phase?

- What kind of changes have you perceived in the operating phase?

- What kind of changes have you perceived in the monitoring phase?

- What kind of further improvements would you hope for?

69

Appendix 4. Conclusive interview with the steering group

Theme 1: DevOps lifecycle and toolchain

- What kind of changes have you perceived during the research period in general?

- What kind of changes have you perceived in the planning phase?

- What kind of changes have you perceived in the coding (developing) phase?

- What kind of changes have you perceived in the building phase?

- What kind of changes have you perceived in the testing phase?

- What kind of changes have you perceived in the releasing phase?

- What kind of changes have you perceived in the deploying phase?

- What kind of changes have you perceived in the operating phase?

- What kind of changes have you perceived in the monitoring phase?

- What kind of further improvements would you hope for?

Theme 2: Impact of DevOps culture

- Have you perceived that DevOps culture has had an impact on development team activities?

- Have you perceived that DevOps culture has had an impact on the end-user i.e. the player?

- Have you perceived that DevOps culture has had an impact on project management?

- In what ways have you attempted to support the DevOps transformation and adaptation?

- What kind of further improvements would you hope for?

70

Appendix 5. Observation log sheet template

Observation log sheet

Name of the research DevOps in mobile game development

Name of the researcher Tarmo Jussila

Consecutive number of observation

Date and time of observation

Subject(s) of observation

Description of observation

71

Appendix 6. Keywords and search expressions

Keywords

- DevOps
- DevOps culture
- DevOps toolchain
- Mobile game development
- Continuous integration
- Continuous delivery
- Continuous deployment
- Unity
- Azure
- Bitbucket

Search expressions

➔ DevOps
➔ “DevOps culture”
➔ “DevOps toolchain”
➔ DevOps AND culture
➔ DevOps AND toolchain
➔ DevOps AND “continuous integration”
➔ DevOps AND “continuous delivery”
➔ DevOps AND “continuous deployment”
➔ DevOps AND CI/CD
➔ DevOps AND “game development”
➔ DevOps AND “mobile development”
➔ DevOps AND Unity
➔ DevOps AND Azure
➔ DevOps AND Bitbucket
➔ “continuous integration” AND “game development”
➔ “continuous delivery” AND “game development”
➔ “continuous deployment” AND “game development”
➔ “continuous integration” AND “mobile development”
➔ “continuous delivery” AND “mobile development”
➔ “continuous deployment” AND “mobile development”

72

Appendix 7. Data management plan

1. General description of data

What kinds of data is your research based on? What data will be collected, produced, or reused? What

file formats will the data be in?

The research is based on data collected from interviews and through observation. Interview data is recorded and

then transcribed into text format. Observation data is collected in text format in a log sheet. Used text file format is

.docx. Used recording file format is .mkv.

How will the consistency and quality of data be controlled?

The consistency and quality of data will be controlled by maintaining and backing up the original data files until

they have been converted or processed into another format. For recordings, the original data files are maintained

until the data has been fully transcribed into text.

2. Ethical and Legal Compliance

What ethical and legal issues are related to your data management, for example, the Data Protection

Act and other legislation related to the processing of the data)?

No personal data is collected in the research. All the recorded interview data is anonymized when it is transcribed

into text format from the recording format. All the interviewees have been notified of the research and the data

management plan has been presented to them.

How do you manage the rights to the material you use, produce and share? Is the material confiden-

tial, are there any copyrights, licenses, or other restrictions?

The commissioner of the research holds the rights to the research material and the material that is produced during

the research. A thesis report covering the material will be made publicly available online.

3. Documentation and metadata

How will you document your data in order to make it findable, accessible, interoperable, and re-usable

for you and others?

The data collected in the research will be presented in a thesis report by the researcher. The report will be made

publicly available online after the research has ended.

73

4. Storage and backup during the thesis project

Where will your data be stored, and how will it be backed up?

The research data will be stored both locally by the researcher, and in a cloud-based storage solution provided by

the commissioner of the research. The locally stored data will be backed up in the cloud storage during the re-

search but will be disposed of after the research has ended.

Who will be responsible for controlling access to your data, and how will secured access be controlled?

The principal researcher is responsible for controlling the access to the data and will be the only one with access to

the data during the research. The secured access to the data will be ensured by using exclusive access rights to the

data files.

5. Opening, publishing, and archiving the data after the thesis project

What part of the data can be made openly available or published? Where and when will the data, or

its metadata, be made available?

The data collected in the research will be presented in a thesis report by the researcher, and the published report

will contain the only form of the data which will be made public.

Where will data with long-term value be archived, and for how long?

All the original data files will be systematically destroyed after the research has ended, including the backups. All

the processed data files, outside the published thesis report, will be disposed of after the research has ended.

6. Data management responsibilities and resources

Who will be responsible for specific tasks of data management during the life cycle of the research pro-

ject?

The principal researcher is solely responsible for data management during the life cycle of the research. The data

will be temporarily stored, for backup purposes, in a cloud-based storage provided by the commissioner, but the

principal researcher is the only one with access to the data.

