

Ninja Luotonen

Stability and Stress Testing

Metropolia University of Applied Sciences

Information Technology

Software Engineering

Bachelor’s Thesis

9.5.2021

 Abstract

Author
Title

Number of Pages
Date

Ninja Luotonen
Stability and Stress Testing

27 pages
9 May 2021

Degree Bachelor of Engineering

Degree Programme Information technology

Professional Major Software Engineering

Instructors

Matti Oosi, Principal Lecturer

The goal of the study was to design and implement load and stress tests that will provide
meaningful information for the commissioner and help with recognizing performance issues
before they create problems in customer deployments. In addition, a stability testing
environment was implemented, which will be used for a long running installation to monitor
resource usage and stability, and to develop monitoring solutions.

The background and value of the product and key technologies used are explained. The
tested product is an event-driven network automation solution for operators. It is based on
Apache Kafka, which is an open-source stream processing platform developed by Apache
Software foundation.

Apache JMeter, an open-source load testing tool, also developed by the same foundation,
was used for testing. The tests need to simulate a realistic scenario, sending many events
to be processed by the application and verify whether it is working as intended even under
heavy load.

As the product is deployed on Kubernetes, the tests need to be run automatically in the
Kubernetes cloud as a part of the CI/CD pipeline and publish the results.

Keywords Software testing, Stress testing

Contents

List of Abbreviations

1 Introduction 1

2 Environment 2

2.1 Traditional Network Monitoring 2

2.2 Virtual NOC Solution 3

2.3 Alarm Enrichment 7

2.4 Kubernetes 8

2.4.1 Containers 9

2.4.2 Kubernetes 10

3 Software Testing 12

3.1 Static and Dynamic Testing 12

3.1.1 Static Testing 13

3.1.2 Dynamic Testing 14

3.1.3 Performance Testing 15

4 Virtual NOC Testing Requirements 15

4.1 Stress Testing 16

4.2 Test Definitions and Metrics 16

5 Implementation 17

5.1 Performance Testing Tools 18

5.2 Creating Kubernetes Test Environment 19

5.3 Stability Testing 22

5.4 Integration to CI/CD Pipeline 23

6 Summary and Conclusions 26

References 27

List of Abbreviations

KaaS Kubernetes as a Service. Internal service at Elisa, providing Kubernetes

clusters and administration tools.

UDP User Datagram Protocol. A low latency protocol that does not acknowledge

that packets are sent or have been received. This can result to lost packets

as a trade-off for lower latency.

SNMP trap Simple Network Management Protocol. Traps are asynchronous alert

messages that are sent by network devices over UDP.

CI/CD Continuous Integration, Continuous Development.

DNS Domain Name System. The system from websites to use names instead of

IP-addresses.

API Application Programming Interface. Interface which is used by users to

make requests.

VM Virtual Machine. Virtualized computer.

NOC Networks Operations Centre.

 1

1 Introduction

In today’s world wireless communication is used more than ever. Customers demand a

fast and stable mobile network connection for their devices. Finns use more mobile data

per subscription than any other nation. [1]

As more of internet usage shifts to mobile devices, telecoms have to improve their

infrastructure to support more simultaneous users with further demanding network

usage. The rollout of new high frequency connections require base stations to be more

densely packed and have optimized locations. More base stations mean a higher number

of network errors and alarms that need to be resolved swiftly to minimize the impact on

customer experience. Elisa has started the automation of correcting these faults many

years ago, and now Elisa Automate is creating and offering automated solutions to other

teleoperators.

The goal of the Elisa Automation Virtual NOC solution is to automate the alarm handling

process through pre-defined network actions and incident management processes in

order to reduce telecommunication operational costs significantly. The software has to

be stable in all situations, which means for instance that it has to be able to handle a

significant number of alarm spikes which can happen for example during a storm.

This thesis is about testing the stability and performance of Virtual NOC. The software is

deployed in Kubernetes which is also used a lot in the continuous development pipeline,

thus, background information about Kubernetes is presented. Investigation of the testing

need is explained and the requirements for testing are specified.

Furthermore, the implementation plan and tools used for the stress tests are presented.

The implementation of the stability test environment and continuous development

pipeline is presented with the results and conclusions, together with the future plans and

improvement ideas.

 2

2 Environment

This chapter provides an overview of the traditional Network Operating Centre, which the

Virtual NOC solution is aiming to replace. Next Virtual NOC and its core components are

presented. Lastly containers and Kubernetes are explained, which are in a key role in

Virtual NOC development and operation.

2.1 Traditional Network Monitoring

Many professionals are using mobile networks for their work, instead of being confined

to an office. Simultaneously, file transfers, video streaming for entertainment and video

calls are using up bandwidth. Customers are relying on having a more stable and faster

connection on their mobile devices than ever before, and as transmission frequencies

become higher to offer greater transfer speeds, the signal is easily obstructed by

buildings and objects. This requires larger number of base stations that devices connect

to, which in turn makes the overall network infrastructure larger, and there are more

errors to resolve.

Traditionally the error management has been done by engineers in big rooms with

multiple screens for each engineer monitoring the network status (See Figure 1). This is

called first-line Network Operation Centre (NOC). The network requires 24/7 monitoring,

and the NOC is often outsourced. When a base station sends an alarm that something

is wrong, an engineer takes it under inspection and depending on what specific alarm it

is, e.g., node power failure, they can do certain actions, for example reset the base

station. If the usual actions do not fix the issue, they can create a ticket to second-line

operations with more detailed information, and the second-line engineers might for

example call field services to go on site for troubleshooting and reparation.

 3

Figure 1. Network Operation Centre. [2]

As the work is done by humans, the corrections always have some unnecessary delay

due to for example learning the job, breaks, human error etc. Many of the alarms and

the actions that fix them are routine work, which means they could easily be automated.

Other alarms require finer troubleshooting, and an unexperienced NOC engineer could

take a long time to figure it out or ask a senior for advice. All of these result in

unnecessary delays and impacts to customer experience.

2.2 Virtual NOC Solution

Virtual NOC can completely automate the first-line NOC. This leads to faster fault

resolution times as well as reduced costs. Virtual NOC executes corrective network

actions, creates second line tickets to Network experts and Field Maintenance and

provides information to Cyber Service Operations Centre related to security. See figure

2.

 4

Figure 2. System Context.

Virtual NOC or Virtual Network Operations Centre collects data from the network.

Automated algorithms are applied on the data and corrective actions are taken to fix

problems in the network and/or problem tickets are created in the client's ticket system,

e.g. Jira, ServiceNow or similar. See Figure 3.

Information about the network status can also be sent to Service Operations Centre

systems. Other customer specific integrations are also possible.

 5

Figure 3. System Overview.

Virtual NOC is built from multiple components that are operated separately and integrate

with each other. The components run in containers and are deployed on a Kubernetes

cluster.

Virtual NOC Core

The core contains the event streaming and transformation pipeline, the rule engine and

action managers. Network events are processed in the rule engine and necessary

actions are initiated.

Event Connectors

The event connectors are for receiving network events. Currently SNMP traps are

supported with the open sourced kafka-connect-snmp. This is where the tests will send

in events to the Virtual NOC Core.

 6

Data Connectors

Data connectors handle incoming non-event-type data, e.g., network inventory or

configuration data.

Other Connectors

Customer-specific integration needs to other systems can be implemented with either

kafka-connect or bespoke integration components.

Network Actions

Necessary corrective actions to the network are sent via vendor-specific adapters.

Notifications

Alarm notifications are sent to customer-specific trouble ticket systems via application-

specific adapters. Current implementations are for Jira and EasyVista.

Dashboard

Virtual NOC Dashboard is for visualization and monitoring the autonomous algorithms.

There are also switches for disabling network actions, ticketing actions and algorithms

altogether.

There are quite many components, but the most critical ones are event connectors and

Virtual NOC Core. The Core has a couple separate components, such as the rule-

engine, which is where the correcting decisions are made, and alarm enrichment module,

which processes the events to be easily used in the rule-engine. The next chapter

explains more about the enrichment process.

 7

2.3 Alarm Enrichment

For Virtual NOC to be able to make decisions it needs to interpret data from alarms and

events coming in from the network. The information in alarms is very unstructured.

Different vendors use different structures, and for example specific alarm types, software

version, the operator's site/cell naming convention - the location of specific information

can be very different.

For example:

for Alarm type 1 the site name can be found in the first part of alarmMOName field:

SITENAME_SITEID-Cabinet No.=0, Subrack No.=73, Slot No.=0,0-73-0

for Alarm type 2 site name can be found as part of a Technology name

in alarmExtendInfo field:

RNC ID=123, Cell ID=12345, Cell Name=SITENAMEW2, NodeB ID=12345,

NodeB Name=SITENAMEW, Local Cell ID=123, Alarm Cause=NodeB sends CELL

SETUP FAILURE (Unspecified other cause).

There are plenty of information that are in a somewhat structured format (e.g. alarmID),

however, a number of key information are scattered in unstructured fields. There is a

need to extract such key information to allow for easy processing. For this specific

vendor, for example alarmAdditionalInfo and alarmExtendInfo are unstructured fields

with various information.

The goal of the restructured fields is to have the same fields across different operators

and different vendors, in order to allow for easy code generalisation.

For ease of further processing, the content of the events are processed when the events

arrive in Virtual NOC, and each event is enriched with a number of key information points.

This enrichment provides a structured dataset to allow for easy data analysis. As such

the enrichment information is attached to each event, so enrichment and original event

 8

can be easily extracted together for analysis purpose. An example on how enrichment

information can be different between vendors can be seen in Table 1.

Table 1. Information needed from the alarms.

As explained earlier, alarms from different vendors have different fields. In Table 1 a few

fields from Huawei and Ericsson are compared. For example, Huawei has Cabinet,

Subtrack, Slot and Port fields, while in Ericsson those do not exist. Ericsson has instead

Affected Equipment, which has the equivalent information as the Huawei fields

mentioned.

2.4 Kubernetes

Kubernetes is a popular open-source container-orchestration system for automating

computer application deployment, scaling and management. Containers are a popular

way of running micro-services. Virtual NOC team has used Kubernetes for development

and deployment, and it has served the needs of the product and team well.

 9

2.4.1 Containers

Early on, software applications were deployed directly on machines, and because there

were no resource allocation possibilities, this led to often to problems, for example one

application would use up most of the memory available and other applications would

underperform. Having a separate computer for each application would ensure each

application has enough resources available, but it was an expensive solution and would

result in low overall resource utilization.

Next was the virtualized deployment era. Each physical machine could be split up as

many virtual ones, which allowed resources to be allocated and utilized better, as well

as improved scalability, as applications can be added or updated easily. Improved

resource utilization led to reduced hardware costs. This also provided security, as

applications in separate VMs were isolated and could not be freely accessed by another

application.

After virtualization, containers were started to be developed. Containers are similar to

VMs, but they share the operating system between the applications and have more

lenient isolation properties. Thus, they are regarded lightweight. A container has its own

share of CPU, memory, file system, process space, etc. See figure 5 for some high-level

architecture comparisons.

Figure 5. Evolution of deployments. [3]

 10

Benefits of containers are for example:

• Container images are portable, efficient, easy to create and deploy compared to

VM images.

• Environmental consistency, containers run the same on laptops as it does in the

cloud, applications behave the same way across development, testing and

production.

• Fits in well with continuous development, integration, and deployment.

Accommodates for reliable and frequent container image builds and

deployments.

• Predictable application performance due to resource isolation. High resource

utilization. [3]

2.4.2 Kubernetes

Kubernetes is a popular open-source system that automates container management. It

is a tool for application deployment, management and scaling.

Kubernetes was originally developed by Google, and in 2015 Kubernetes v1.0 was

released. In 2015, Google and the Linux foundation partnered to form Cloud Native

Computing Foundation, to help advance container technology and align the technology

industry around the evolutionary development of containers.

When deploying Kubernetes, one gets a cluster. A cluster consists of nodes, which are

a set of worker computers. Every cluster needs at least one node. The nodes then host

pods, which are the components of the application workload. Each application will be run

in a pod. The cluster also has a control plane, which makes decisions about the cluster.

It detects issues and responds to cluster events. For example, scheduling, starting up

new pods and scaling. [3] See figure 6 on how the cluster components are tied together.

 11

Figure 6. Components of a Kubernetes Cluster. [4]

Kubernetes offers for example the following.

• Service discovery and load balancing With Kubernetes one can expose a

container using a DNS or their own IP address. If traffic to a container is high,

Kubernetes can balance the network load to keep the application deployment

stable.

• Automatic bin packing The user provides Kubernetes with a cluster of nodes,

tell how much CPU and RAM each container needs, and Kubernetes fits the

containers onto the nodes using the available resources efficiently.

• Self-repairing Kubernetes restarts containers that fail, replaces non-functional

containers, does not forward clients to them before they are ready to serve. One

can define custom health checks; Kubernetes will restart the containers which fail

to respond to them.

• Secret and configuration management Kubernetes lets one store and manage

sensitive information, for example passwords, OAuth tokens, and SSH keys.

Deployment and updates of secrets and application configurations are done

securely without rebuilding ones container images.

 12

In addition, Kubernetes provides storage orchestration, automated rollouts and rollbacks

and more. Kubernetes is not a traditional Platform as a Service.

Kubernetes aims to support an exceptionally diverse variety of workloads, if an

application can run in a container, it should run well in Kubernetes. Kubernetes does not

deploy source code, nor does it build ones application. There is no need to create the

continuous integration, delivery and deployment workflows. Kubernetes does not appoint

logging, monitoring or alerting solutions; however, it does provide mechanisms to collect

and export metrics. [3]

3 Software Testing

Software testing is a process to verify and validate that the software meets the

requirements specified. There are many kinds of testing but here only the most common

one is introduced. Commonly used are 3 or 4 levels of functional testing: unit testing,

integration testing, system testing and acceptance testing, the latter of which is not

always included. In addition, there is non-functional testing, which is for verifying the

performance, security, compatibility, and more, of the software. [5]

3.1 Static and Dynamic Testing

Static testing happens before executing the code, while dynamic testing happens during

execution. There are several branches to different types of testing (Figure 7)

 13

Figure 7. Testing branches on a high level. [5]

Under static testing, there is for example peer review, automatic formatting and style

checks. Under dynamic testing, there is functional and non-functional testing. Functional

means that the aim is to see if the software works according to specifications, for example

a calculator needs to be able to take input, have the necessary buttons and calculate the

mathematics correctly based on functions. Non-functional testing does not look at if the

calculator counts correctly, but instead at for example how long it takes for the calculation

to happen.

3.1.1 Static Testing

Manual and automated review of the code and the documentation is part of static testing

and is done to find any defects early in the development process while the time

consumed fixing them is the least. It is a common development practice to have a peer

review process, which means the author and another developer checks the code to verify

quality and technical correctness of all new code, before merging it to the codebase. In

a study it was found that peer review has a "favourable return on investment for software

 14

inspections; savings exceeds costs by 4 to 1". In other words, on average, fixing the

problem only later is four times more costly. [6]

3.1.2 Dynamic Testing

There are many types of testing that can be performed when the software is executed,

under functional testing there is for example, Unit testing, Integration testing, System

testing and Acceptance testing. Under non-functional testing there is Performance

testing, Security Testing, Compatibility testing and Recovery testing. [8] See figure 8

below.

Figure 8. Dynamic testing types.

Unit testing is the lowest level of testing for code. It is for verifying that individual units,

such as classes and functions work correctly. Unit tests are written by developers. It is

considered a good practise to write unit tests for any new code and modify them when

changing the code. This helps developers to make sure that their code does what it is

supposed to and helps with narrowing down which part of the code is faulty. When

 15

refactoring code, meaning re-writing code without changing functionality, they work as a

good regression test suite. [8]

Integration testing is about testing modules of code together. Often different components

in a program are programmed by different developers, and they might have a different

understanding of how the system should behave together. There can be

miscommunications and wrong assumptions made how the modules are going to work

together. Software and hardware interfaces could be erroneous, and error handling might

not be adequate. Integration testing tests two or more components together. [9]

3.1.3 Performance Testing

Performance testing is a software testing process used to test and verify the speed,

response time, stability, reliability and resource usage under a set workload. The main

goal is to identify and remove performance bottlenecks in the application. Different kind

of software have different sets of performance requirements, for example a web store

that is publicly available could have tens of thousands of users simultaneously, while a

desktop application with the software running locally on each user’s computer will only

have one user at a time who expects good response times. [10]

4 Virtual NOC Testing Requirements

Virtual NOC is in charge of automating the fault management of customer operators’

mobile network, which send in a varying number of events and alarms that the software

will evaluate and do actions based of. The actions can be for example, creating a ticket

to Field Maintenance service, or resetting a base station. A crucial piece of this process

is the SNMP-connector that forwards the traps into event enrichment. The enrichment

restructures and adds data to the events. If the connector crashes, the rest of the

software cannot get the data needed to provide value to the customers.

In addition, as the software uses Apache Kafka for almost all internal communication, it

will be the priority of load and performance testing. Stability testing is also on the table,

as Virtual NOC is an autonomous system, it should not require human oversight and thus

 16

be stable enough to function autonomously between releases. Each component needs

to be able to recover from errors, restart and reconnect to other components.

Components to be tested next, are the web UI with an API, and rule-engine. The HTTP

REST API of the rule-engine exposes the information needed for visualization on the

web interface.

4.1 Stress Testing

The stress testing environment should use production configurations. The aim is to see

how the system behaves in case of a large number of network events, which could

happen for example due to a storm. The tests include a constantly rising number of

events, and sudden spikes in events. For consistent results, the test suite should create

the environment before the tests and remove it afterwards. It is also relevant to consider

network usage, as the amount of data received can become substantial in larger

networks.

4.2 Test Definitions and Metrics

To measure performance, metrics are needed. Metrics should be meaningful in a real

world application; improved results should mean a better user experience or higher

customer value by for example increasing stability and uptime.

Metric 1. Percentage of events processed successfully

Metric 1 is measured by controlling the quantity of events sent into the system, and then

counting the number of processed events from the database. It is expected that the

percentage will go down if the system load is too high, and finding out what are the

current limits of the system is one of the main objectives of the performance testing. This

metric can be used in combination with other metrics, to investigate if this percentage

stays the same when other variables in the system changes, for example the amount of

processes active.

 17

Metric 2. System resource usage

The deployed system uses CPU, memory, and disk space. It is important to know how

the resource usage scales between lower and higher traffic networks, and how the

number and complexity of algorithms affect the usage.

Test 1. Stress testing the enrichment pipeline

Starting with a typical load seen in customer networks, and then incrementing it higher

while observing metrics 1 and 2, the number of events successfully processed is

measured, and peak resource usage is documented.

Test 2. Stress testing spike scenarios

Stress testing spike scenarios mean starting with a typical load to get the system running

and use resources in a normal fashion, then sending 2 to 3 times more events

simultaneously. This could happen in real life for example during a storm which causes

power outages and other issues. The exact numbers will be tweaked through

experimentation, to have tests for both overload and manageable scenarios.

5 Implementation

This chapter introduces the performance testing tools, and the Kubernetes testing

environment, and the implementation of integration to the continuous integration and

development (CI/CD) pipeline.

 18

5.1 Performance Testing Tools

As Virtual NOC is programmed in Kotlin, a Java-based programming language, and

open-source tools are preferred. It is also preferred that the tests would not require

programming skills, so that testers without programming experience can also create and

modify the tests. Visual reports that can be easily understood by less-technical personnel

is also a bonus, they can of course be created as well but at least basic reports out of

the box is nice to have.

Apache JMeter was chosen for the implementation of the tests. It has plenty of plugins

to use for different usage, and if needed new plugins can be created as well. As it is a

popular tool, there are also a lot of material and discussions online to aid the usage and

does have the other features mentioned above. It has an easy to use graphical interface

as well. (See figure 9)

Figure 9. Apache JMeter Graphical User Interface

 19

To make sure that the events used to load the system reflect real-world events, events

from customer environments with scrambled information are used for sites, names, and

other sensitive information, to ensure it cannot be used to identify the customer or

locations of base stations.

5.2 Creating Kubernetes Test Environment

Elisa has an internal service called KaaS (Kubernetes as a Service), which is used to

create the needed environments in Elisa’s servers. It provides a cluster with sensible

defaults and minimal need for administrative configurations. The container images for

the software are also stored in the cloud. Drone CI will be used for automated

deployments, as explained more in detail in Chapter 5.4. In Figure 10 one can see the

different components and their relations.

Figure 10. Stability testing environment architecture simplified.

For creating the environment, the following command line tools were used.

• Kubectl, which is a tool for running commands against Kubernetes clusters.

• Helm, which is a package manager for Kubernetes.

 20

• Make is a general use build automation tool.

• Lens as a graphical tool for monitoring and troubleshooting the cluster and
namespace. Lens is a free open-source tool, and it provides a multitude of handy
features.

As the cluster is already provided by Elisa KaaS, it is possible to start by creating a

namespace for the environment.

kubectl create namespace $(NAMESPACE)

Next the resource quotas are defined.

kubectl create -f ./infra/dev-resource-quota.yaml -n $(NAMESPACE)

See code snippet below for resource specifications used.

apiVersion: v1

kind: ResourceQuota

metadata:

 name: dev-resource-quota

spec:

 hard:

 cpu: 16

 memory: 24Gi

 requests.storage: 500Gi

Code snippet 1. /infra/dev-resource-quota.yaml

After this helm is used for installing Virtual NOC. There are many flags to configure which

parts of the system should be on or off, for example the UI needs to be set on and an

address can be specified. There are default values defined for most of them. The

command “helm install” is used within “make install”. Thus, the command to install Virtual

NOC with the values appropriate for this environment is the following.

make install VNOC_DEV=true ELASTIC_POD_SEC_CREATE=false

INGRESS_ENABLED=true INGRESS_PREFIX=stability-test LB_ENABLED=true

NAMESPACE=stability-testing TESTERD_ENABLED=true USE_TEST_VALUES=1

NOCA_MOCK_HUAWEI_ENABLED=true VNOC_TESTER_ENABLED=true

 21

See below in code snippet 2 what ”make install” actually does.

install:

 @$(VIEW_SECRETS) | helm install -n $(NAMESPACE) vnoc ./vnoc/ \

 --dependency-update \

 -f $(VALUES) \

 -f $(ENV_VALUES) \

 --set vnocDev=$(VNOC_DEV) \

 --set vnocTester.enabled=$(VNOC_TESTER_ENABLED) \

 --set

elasticsearch.podSecurityPolicy.create=$(ELASTIC_POD_SEC_CREATE) \

 --set ingress.enabled=$(INGRESS_ENABLED) \

 --set ingress.prefix=$(INGRESS_PREFIX) \

 --set ingress.domain=$(INGRESS_DOMAIN) \

 --set ingress.type=$(INGRESS_TYPE) \

 --set ingress.protocol=$(INGRESS_PROTOCOL) \

 --set lbEnabled=$(LB_ENABLED) \

 --set testerdIsEnabled=$(TESTERD_ENABLED) \

 --set verifierIsEnabled=$(VERIFIER_ENABLED) \

 --set nocaMockHuaweiEnabled=$(NOCA_MOCK_HUAWEI_ENABLED) \

 --set http.authorization=$(HTTP_AUTHORIZATION) \

 --set kafka.kafkaVolumeSize=$(KAFKA_VOLUME_CLAIM) \

 -f -

Code snippet 2. “make install” from Makefile.

This will initiate the installation process, and to see the progression Lens can be used

(Figure 11). After this the services come up and the system starts running, orange colour

signifies that the pod is not ready yet and green means ready.

 22

Figure 11. Screenshot from Lens, from where the state of the deployment and its pods

can be monitored and edited.

5.3 Stability Testing

For stability testing, a Kubernetes environment with a long running vNOC installation

which receives constant data streams, preferably real data from production, will be used.

The requirements are in addition to the constant data streams, to run in KaaS with Chaos

Monkey enabled. [11] The environment can be used to test system recovery from

exceptions like service restarts and develop more resilient installations. It can be used

to test and develop monitoring solutions like metrics, alerts and dashboards. It needs to

have extensive metrics with at least 30 days of retention.

Chaos Monkey is a tool that was created and developed by Netflix to test the resilience

of Netflix’s IT infrastructure. It works by intentionally disabling computers in their

 23

production network to test how remaining systems respond to the outage. [11] In the

present use case, it restarts a random Kubernetes node each day, to verify the services

can restart and continue execution normally.

Using Apache Kafka’s MirrorMaker, it is possible to get real data from production for the

stability testing environment. Mirror Maker copies the data between two Apache Kafka

clusters [12], in this case production environment and stability testing environment.

5.4 Integration to CI/CD Pipeline

To reduce manual repeated effort and streamline the process, automation of the update

process of the environments is needed. This also ensures the testing environments are

always up to date and latest versions of the software gets tested quickly. For this Drone

CI is used. [13] Using Drone CI, it is also possible to create a nightly or weekly job for

the tests to run, in case running them for example after every merge to master is found

to be unnecessarily often.

To configure Drone CI pipelines, a file in project root directory, named .drone.yml is used.

Below (Snippet 3) there is the beginning of the file. There are some general

configurations such as kind, which in this case is pipeline. Next is type, which could be

for example docker, Kubernetes or exec. Here, Kubernetes is used, which means each

step is run in a pod within a Kubernetes container. An exec pipeline would run directly

on the host machine without any isolation. The platform section is used to configure the

target operating system and ensures it uses the appropriate runner. [13]

kind: pipeline

type: kubernetes

name: default

platform:

 os: linux

 arch: amd64

Code snippet 3. Beginning of the Drone configuration file .drone.yml.

 24

Below the former, the pipeline steps are defined. They can include many kinds of tasks,

e.g. linting, code coverage, vulnerability checks, publishing etc. In the step shown below

adding some packages as our base image does not have everything needed, is done

first, and then adding the helm repositories to be able to update dependencies, decrypt

the secrets file and create the manifest that is used for deployment.

steps:

 - name: manifest

 pull: always

 image: ahtaaja.saunalahti.fi/sdc/base/public/helm:3.3

 commands:

 - apk add ansible

 - apk add make

 - apk add curl

 - curl -o ~/ca.crt

https://valkama.saunalahti.fi/api/v2.0/systeminfo/getcert

 - helm repo add bitnami https://charts.bitnami.com/bitnami

 - helm repo add elastic https://helm.elastic.co

 - helm repo add --ca-file ~/ca.crt --username=$$username --

password=$$password valkama

https://valkama.saunalahti.fi/chartrepo/vnoc

 - helm dependency update ./vnoc

 - touch pass

 - echo $$vault > "pass"

 - make local-render-passfile NAMESPACE=$$namespace

VNOC_DEV=true INGRESS_ENABLED=true INGRESS_PREFIX=vnoc-dev

LB_ENABLED=false VNOC_TESTER_ENABLED=true ENV=stabi >

manifest_stabi.yaml

 environment:

 username:

 from_secret: valkama_username

 password:

 from_secret: valkama_password

 vault:

 from_secret: vault_pass

 namespace:

 from_secret: stabi_namespace

 when:

 ref:

 - refs/heads/master

 - refs/tags/*

Code snippet 4. Creating a manifest for deployment on Kubernetes in Drone CI.

In the next step, see snippet 5, it does the deployment itself. It uses the manifest created

in the previous step and secrets for values and authentication to the destination cluster.

 - name: deploy-stabi

 pull: always

 25

 image: ahtaaja.saunalahti.fi/drone/kubernetes-

drone/public/kubernetes-drone

 settings:

 token:

 from_secret: kube_stabi_token_kaasv3

 ca:

 from_secret: kube_stabi_cert_kaasv3

 server:

 from_secret: kube_api_stabi_server_kaasv3

 namespace:

 from_secret: stabi_namespace

 template: manifest_stabi.yaml

 when:

 ref:

 - "refs/tags/stabienv-*"

Code snippet 5. Deployment using the manifest created in snippet 4 step.

The when: part defines when the step needs to be triggered. Multiple kinds of conditions

can be defined, but they all need to be true to the step to be executed. Here, the

reference condition was chosen. It is similar to the branch condition, but also works with

tags, which is what is needed. This environment is only re-deployed upon new tag

creation.

For some extra convenience, one last step was added, which is notify failure. In case an

error happens in the pipeline, the development team gets a message to the chat service

used, and the error can be investigated and fixed, or for example restart the build if it

was just an anomaly.

 - name: notify-failure

 image: plugins/slack

 settings:

 webhook:

 from_secret: mattermost_webhook

 template: >

 [[${DRONE_REPO_NAME} :

${DRONE_BRANCH}](${DRONE_REPO_LINK}/tree/${DRONE_BRANCH})] vnoc-

kubernetes pipeline failed: [drone

#${DRONE_BUILD_NUMBER}]({{build.link}}),

[commit](${DRONE_COMMIT_LINK})

 when:

 status:

 - failure

 ref:

 - refs/heads/master

Code snippet 6. The final step from the .drone.yml file.

 26

With these three steps Drone will re-deploy the new version of the software to the testing

environment after each merge to the master branch, and notify the developers if the

pipeline fails, ensuring the testing environment is kept updated and running.

6 Summary and Conclusions

In this thesis the background of Virtual NOC is explained, as to traditional Network

Operation Centres and what they do, and what makes Virtual NOC valuable.

Technologies used in development e.g. Kubernetes and traditional testing practises are

also explained.

The goal of the study was to create performance tests for Virtual NOC and a stability

testing environment. The stability testing environment was to be deployed in Kubernetes

and be used for stability testing as well as be used to test and develop monitoring

solutions like metrics, alerting and dashboards.

The stability testing environment was created successfully according to the acceptance

criteria defined in the planning phase. The continuous deployment and integration

pipeline was also implemented into Drone CI. This environment can be easily maintained

and will be used for further development of the solutions mentioned earlier.

The performance tests were defined, and the implementation was planned, but due to

resourcing constrains the implementation was not done by the time of writing the thesis.

However, the definitions are valid, and the implementation will be worked on in the

coming months.

Other improvement ideas would be more extensive tests, testing of different

components, different kinds of loads. For example, comparison between Huawei,

Ericsson, and Nokia alarm enrichments and how algorithms of different complexity

impact the performance.

 27

References

1 OECD mobile broadband statistics update
https://www.oecd.org/digital/broadband-statistics-update.htm (Accessed
10.4.2021)

2 WHAT IT INFRASTRUCTURE REMOTE MONITORING (NOC) IS
https://www.opservices.com/what-it-infrastructure-remote-monitoring-noc-is/
(Accessed 11.4.2021)

3 What is Kubernetes? https://kubernetes.io/docs/concepts/overview/what-is-

kubernetes/ (Accessed: 26.3.2021)

4 Kubernetes Components

https://kubernetes.io/docs/concepts/overview/components/ (Accessed: 4.4.2021)

5 Static Testing vs Dynamic Testing: What's the Difference?
https://www.guru99.com/static-dynamic-testing.html (Accessed: 23.3.2021)

6 National Software Quality Experiment Resources and Results
http://www.reviewtechnik.de/NationalSoftwareQualityExperiment.pdf (Accessed:
23.3.2021)

7 What is Software Testing? Definition, Basics & Types
https://www.guru99.com/software-testing-introduction-importance.html
(Accessed: 4.4.2021)

8 Unit Testing Tutorial: What is, Types, Tools & Test EXAMPLE
https://www.guru99.com/unit-testing-guide.html (Accessed: 4.4.2021)

9 Integration Testing: What is, Types, Top Down & Bottom Up Example
https://www.guru99.com/integration-testing.html (Accessed: 4.4.2021)

10 Performance Testing Tutorial: What is, Types, Metrics & Example
https://www.guru99.com/performance-testing.html (Accessed: 24.3.2021)

11 Netflix Chaos Monkey Upgraded https://netflixtechblog.com/netflix-chaos-
monkey-upgraded-1d679429be5d (Accessed: 30.3.2021)

12 Apache Kafka’s MirrorMaker https://docs.confluent.io/4.0.0/multi-
dc/mirrormaker.html (Accessed 20.4.2021)

13 Drone documentation - Pipelines overview
https://docs.drone.io/pipeline/overview/ (Accessed 25.4)

https://www.oecd.org/digital/broadband-statistics-update.htm
https://www.opservices.com/what-it-infrastructure-remote-monitoring-noc-is/
https://kubernetes.io/docs/concepts/overview/components/
http://www.reviewtechnik.de/NationalSoftwareQualityExperiment.pdf
https://www.guru99.com/software-testing-introduction-importance.html
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/integration-testing.html
https://www.guru99.com/performance-testing.html
https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://docs.confluent.io/4.0.0/multi-dc/mirrormaker.html
https://docs.confluent.io/4.0.0/multi-dc/mirrormaker.html
https://docs.drone.io/pipeline/overview/

	1 Introduction
	2 Environment
	2.1 Traditional Network Monitoring
	2.2 Virtual NOC Solution
	2.3 Alarm Enrichment
	1.1
	2.4 Kubernetes
	2.4.1 Containers
	2.4.2 Kubernetes

	3 Software Testing
	3.1 Static and Dynamic Testing
	3.1.1 Static Testing
	3.1.2 Dynamic Testing
	3.1.3 Performance Testing

	4 Virtual NOC Testing Requirements
	4.1 Stress Testing
	4.2 Test Definitions and Metrics

	5 Implementation
	5.1 Performance Testing Tools
	5.2 Creating Kubernetes Test Environment
	5.3 Stability Testing
	5.4 Integration to CI/CD Pipeline

	6 Summary and Conclusions
	References

