

Teemu Leino

Collecting Usage Data with Google
Analytics for Firebase

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

14 May 2021

 Abstract

Author
Title

Number of Pages
Date

Teemu Leino
Collecting usage data with Google Analytics for Firebase

26 pages
14 May 2021

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of Department (ICT)

The aim of this thesis was to define best practices related to collection of usage data and
explore the capabilities of Google Analytics solution on Firebase mobile platform. The ob-
jective of the related final year project was to provide means for a client company to gain a
deeper insight into their mobile application’s user base.

In this paper, prerequisites and processes needed for deploying Google Analytics onto a
mobile solution already utilizing Firebase platform were investigated. To fulfill the needs of
the client company, four real-world use cases utilizing these services were designed and
implemented.

The results showed that when implementing a Google’s analytics solution in the EU, it is
vital to learn and follow data privacy laws and Google’s terms. The use cases of the client
company were implemented, but their use in production has not yet been started. Therefore,
all the usage data collected during this project and analyzed in this paper was generated by
the employees of the client company.

In conclusion, Firebase platform provides powerful tools for collecting and inspecting appli-
cation usage data. Once the implemented solutions are in production use, the client com-
pany can utilize the collected data to better understand the end users. However, there are
many things to keep in mind in order to respect the privacy and rights of these data subjects.

Keywords Google Analytics, Firebase, analytics, hybrid mobile applica-
tion, usage data collection, data privacy

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Teemu Leino
Collecting usage data with Google Analytics for Firebase

26 sivua
14.05.2021

Tutkinto insinööri (AMK)

Tutkinto-ohjelma tietotekniikan koulutusohjelma

Ammatillinen pääaine ohjelmistotekniikka

Ohjaajat

osaamisaluepäällikkö Janne Salonen

Insinöörityön tarkoituksena oli selvittää Google Analytics -analytiikkaratkaisun käytettävyys
Firebase-mobiilialustalla ja määritellä tähän liittyviä parhaita käytäntöjä käyttödatan kerääjän
näkökulmasta. Insinöörityö tehtiin yhteistyössä yrityksen kanssa, ja työn tavoitteena oli
tarjota yritykselle kyvykkyys ymmärtää tämän kehittämän mobiilituoteratkaisun käyt-
täjäkuntaa paremmin.

Tarkoitukset ja tavoitteet saavuttaakseen insinöörityössä selvitettiin, miten Google Analytics
for Firebase otetaan käyttöön tuoteratkaisussa, joka jo ennestään hyödyntää Firebaseä.
Tämän lisäksi työssä suunniteltiin ja kehitettiin neljä käyttötapausta käyttödatan
keräämiselle, kun otetaan huomioon yhteistyöyrityksen tavoitteet.

Tulokset osoittivat, kuinka tärkeää tietosuojalakien ja Googlen ehtojen ymmärtäminen ja hu-
omioiminen on, kun hyödynnetään Googlen analytiikkaratkaisuja EU:n sisällä. Insinööri-
työssä suunnitellut ratkaisut käyttötapauksille toteutettiin, mutta ratkaisujen käyttöönottoa
odotetaan vielä. Tästä johtuen kaikki työssä kerätty ja hyödynnetty käyttödata on yhteistyöy-
rityksen ohjelmistokehittäjien työssään generoimaa dataa.

Johtopäätöksenä voidaan todeta, että Firebase-alusta tarjoaa tehokkaita työkaluja käyt-
tödatan keräämiselle ja tutkimiselle. Kun työ on otettu tuotantokäyttöön, voidaan sen avulla
kerättävää käyttödataa hyödyntää käyttäjien syvempää ymmärtämistä varten. Tästä hu-
olimatta on monia seikkoja, joita datan kerääjän tulee ottaa huomioon, kun dataa kerätään
eettisesti ja lakia noudattaen — varsinkin Googlen analytiikkaratkaisuja hyödynnettäessä.

Avainsanat Google Analytics, Firebase, analytiikka, hybridimobiilisovellus,
käyttödatan keräys, tietosuoja

Contents

Glossary

1 Introduction 1

2 Usage Data, Google Analytics and Firebase 2

2.1 Usage Data 2

2.2 Google Analytics and Firebase 2

2.2.1 Background 2

2.2.2 History 3

2.3 Firebase Platform 4

2.3.1 Firebase Console 5

2.3.2 Google Analytics 6

2.3.3 Integrations 7

3 Collecting Usage Data 10

3.1 Prerequisites 10

3.2 Deployment Actions 11

3.3 Data Collection Best Practices 12

3.3.1 Avoiding Collecting Personal Data 13

3.3.2 Separating Production and Test Data 14

3.4 Client Company’s Use Cases 15

3.4.1 Errors and Warnings Encountered 15

3.4.2 Feature Interactions in Numbers 16

3.4.3 Feature Usage in Details 18

3.4.4 Battery Drain 19

4 Conclusion 23

References 24

Glossary

CGI The client company with whom the final year project was

done.

CoffeeScript A programming language that compiles into JavaScript. Used

extensively in the client company’s application.

Cordova A development framework that allows HTML, CSS and Ja-

vaScript to be used to build native mobile applications.

cordova-plugin-firebase A Cordova open-source library for Firebase SDK and Google

Analytics for Firebase.

EEA European Economic Area. It consists of EU member coun-

tries, Iceland, Liechtenstein and Norway.

GDPR General Data Protection Regulation. An EU law that consid-

ers collecting and processing of personal data.

SaaS Software as a Service. A business model where the client typ-

ically pays for a customizable online service instead of a li-

cense to use the software.

SDK Software Development Kit. A set of tools for software devel-

opment on a specific platform.

serverless A term used to describe computing services that scale on an

as-used basis for more flexibility.

1

1 Introduction

Over the past few years, it has become hard to browse the Internet or use mobile appli-

cations without encountering banners and dialogs asking for our consent to use cookies

and other tracking technologies. The reason is simple: our consent allows the service

provider to collect and store information about us, usage data, as we interact with the

service. The thesis explores what kind of usage data these services may collect and

analyzes what are some of the ways this data can be utilized in product development.

The thesis is part of a final year project, whose goal was to implement and deploy usage

data collection on top of an existing hybrid mobile application.

The project was done in collaboration with a client company called CGI Suomi Oy, which

is a part of a multinational IT services and consulting company, CGI Inc., with around

3,700 employees in Finland [1]. An in-production hybrid mobile application built using

Apache’s Cordova mobile application development framework served as the base for the

project. The application is a part of a workforce management SaaS solution and, at the

time of writing, has between 15,000 to 20,000 monthly Android users in production. Ma-

jority of the application’s users work on either facility care or home care and use the

application in their day-to-day work. CGI hoped that Google’s Google Analytics for Fire-

base solution would help them gain a deeper insight into their user base and learn more

about how the users interact with their mobile application. Google’s solution was chosen

by CGI because the application was already using Firebase platform for its push tech-

nology — among other features.

Four use cases with the aim of learning more about the user base were identified to-

gether with the client company. Potential solutions for these use cases were designed

and implemented independently of the client company as a part of the final year project.

The thesis evaluates the capabilities of Firebase platform’s analytics features for fulfilling

the use cases.

2

2 Usage Data, Google Analytics and Firebase

2.1 Usage Data

Usage data is information that is generated by a service’s, for example, a website’s or a

mobile application’s, end users as they interact with the service. The service’s provider

then stores the data for later use. Some applications for this data are further explored in

Section 3.4. This collected data can include personal information, such as an IP address

of a user, or information that is more general in nature, for example:

• How long a user spent using the service during a session.

• Through what medium, as in a web browser or a mobile device, a user
accessed the service.

• Which interactive elements, as in buttons or links, a user clicked or tapped
in the service.

In case a service is collecting personal data, its users should be able to find more infor-

mation about what personal data is being collected and for what reasons from the privacy

notice or data usage policy of that service. The EU’s General Data Protection Regulation

law — or GDPR for short — requires this from organizations that collect personal data

from citizens and residents in the European Economic Area, such as in Finland [2]. For

services that use Google Analytics for Firebase, Google’s policies have similar require-

ments for its users and require them to disclose how end users’ data is being collected

and processed [3].

2.2 Google Analytics and Firebase

2.2.1 Background

Google Analytics is Google’s free web analytics tool that helps application or site owners

get a deeper understanding of their end users and customers. This is done by, for ex-

ample, viewing dashboards and generated reports that tell how people are engaging with

the application or site. The reports are automatically generated from usage data that can

be collected from the end users as they interact with the application or site. This deeper

3

understanding provided by Google Analytics can be useful when figuring out means for

improving one’s service or sales. [4]

Firebase, on the other hand, is Google’s mobile platform that is targeted for developers,

marketers and product managers. Firebase offers various features and integrations that

can be used to help improve application performance and gain insight into the applica-

tion’s end users. At its core, Firebase has Google Analytics that integrates across Fire-

base’s features. These features, such as Google Analytics for Firebase, can be used

individually, but there is a strong incentive to use them together as they are all on the

same platform and have the possibility to share data together. [5]

While this thesis mainly concentrates on Google Analytics and Firebase, Google is not

the only provider of such analytics and mobile services on the market. However, similar

solutions generally share the same goal: providing means for gaining an insight into end

users’ behaviors.

2.2.2 History

Google launched Google Analytics in November 2005. Google claims it was the first web

analytics product of its class that was available for free. [6]

For years, Google has not revealed how many sites are using Google Analytics, but

according to BuiltWith web technology tracking service, Google Analytics is in use by

almost 29 million websites [7]. Google Analytics is also available in close to 40 languages

— including Finnish [8].

A company called Firebase Inc. launched Firebase on April 12, 2012 in beta [9]. Just two

and a half years later, on October 21, 2014, Google acquired Firebase [10] as illustrated

by Figure 1.

4

Figure 1. Timeline of the history of Google Analytics and Firebase [11; 12].

According to Google as of September 2019, there are over 2 million applications actively

using Firebase every month [13]. Among these are the applications of The New York

Times, Alibaba.com and Trivago [14].

2.3 Firebase Platform

Firebase comes with a software development kit, Firebase SDK, that is available with no

cost on Android, iOS and the web. While Firebase can be used without charge using the

entry-level Spark Plan, more features and integrations become available when paying

for a subscription plan: Blaze Plan. Both plans include a certain amount of free usage,

such as 5 GB of cloud storage, with the more feature-rich plan functioning as a scalable

pay-as-you-go plan. Among these features of Blaze Plan are

• machine learning

• authentication

• file storage

• databases

• crash reporting

Google
Inc. is

founded

Aug 1998

Nov 2005

Google
Analytics is
launched

Firebase
Inc. is

founded

Sep 2011

Apr 2012

Firebase is
launched
in beta

Firebase is
acquired

by Google

Oct 2014

5

• application performance monitoring

• testing services

• push notifications

• and, of course, analytics. [14; 15]

Firebase SDK’s documentation can be found at firebase.google.com. It contains high-

level descriptive instructions along with full technical API documentation that help getting

started with a new Firebase project. The documentation also contains code snippets and

sample projects for iOS, Android, JavaScript, C++, Unity, Java and Node.js [16]. When

working on the final year project, this documentation helped provide answers to many

questions that were raised during the development.

2.3.1 Firebase Console

Firebase console is an interactive single-page application located at console.fire-

base.google.com and is used to access the features of Firebase. To gain access to the

Firebase console, the user must first agree to Firebase’s terms and create a Firebase

project while signed in with a Google Account. Creating a Google Account is further ex-

plored in Section 3.1. Creating a Firebase project with Google Analytics is free when

using the entry-level Spark Plan and can be done in three steps:

• First, the project is given a name.

• Second, the decision to enable Google Analytics is made.

• Third, a Google Analytics account is given a name, the country of the or-
ganization is selected, data-sharing settings are toggled and Google Ana-
lytics terms are accepted.

Once a project has been created, the user is prompted to add an application to the pro-

ject. Firebase console should look akin to Figure 2.

6

Figure 2. Firebase console after creating a new Firebase project.

The Firebase project can now act as a container for added applications. Within these

containers, the applications share data between the various Firebase features [17].

These features are explored more in the next sections.

2.3.2 Google Analytics

With Google Analytics for Firebase, the collection of usage data is done through events.

Events have types and contain parameters that carry the actual usage data. Some event

types and parameters are inherently a part of the Google’s solution, but Google Analytics

for Firebase allows developers to create custom event types and parameters. From an

end user’s point of view, there is never a need to submit events or parameters manually.

The data collection is done automatically in the background at certain intervals.

Inherent event types are in place without implicitly having to implement them and are

almost exclusively related to the application’s updates, removal and unhandled excep-

tions or crashes. Inherent parameters include information such as when the event took

place and what was the application’s version. These pieces of information are always a

7

part of all events. By default, Google Analytics for Firebase automatically collects and

stores information about

• number of users and sessions

• session duration

• operating systems

• device models

• geography

• first launches

• application opens

• application updates

• in-application purchases. [18]

Custom event types and parameters provide means for more controlled and specific us-

age data collection. During the development of this final year project, it was found out

that designing and implementing different kinds of event types and parameters requires

a lot of thought, and this ended up being the bulk of the work. This topic is explored

further in Section 3.4.

Google Analytics mainly utilizes cookies and similar tracking technologies to track users’

interactions on websites and applications that use Google Analytics [19; 20; 21]. For

Google Analytics for Firebase and mobile applications, the users’ devices are identified

using advertising IDs on both Android and iOS or alternatively Android Secure ID on

Android [18].

Google Analytics allows the customer to choose how long the data is retained before it

is automatically deleted. These retention options go from 14 to 50 months while there is

also an option for the data not to automatically expire [22]. For Google Analytics for Fire-

base, Google retains the collected Analytics data for a maximum of 14 months [23].

2.3.3 Integrations

Firebase claims to support multiple integration solutions that can be used to make the

most of Firebase. These integrations are not all a part of the free Spark Plan; some

8

require the user to upgrade to the pay-as-you-go Blaze Plan. While most of the integra-

tions are a part of Google’s product family, there are also a few third-party options. Fire-

base claims to support the following integrations:

• Google Ads

• AdMob

• Google Marketing Platform

• Google Play Store

• Data Studio

• BigQuery

• Slack

• Jira

• PagerDuty. [15; 24]

Perhaps unsurprisingly, a notable part of the integrations — i.e., Google Ads, AdMob

and Google Marketing Platform — is related to digital advertising. After all, advertising is

the main source of revenue for Google [25]. Events generated by Firebase can be auto-

matically distributed to these advertising solutions in order to:

• See how ad campaigns affect application installs and in-application pur-
chases.

• Display ads tailored to the application.

The events can also be distributed to Google Play Store and tools, such as Data Studio

and BigQuery, to give insight on the data. An integration to the instant messaging plat-

form Slack allows Firebase to generate notifications of application crashes in Slack chan-

nels, while Jira integration provides means for, for example, allowing the investigation of

these crashes to be managed. Firebase also supports integrating with PagerDuty to page

on-call responders when certain events are logged.

Out of the nine previously listed Firebase integrations, BigQuery was the only one

deemed essential for the final year project. From BigQuery user’s point of view, BigQuery

is fundamentally a serverless database that allows querying the data collected with

Google Analytics for Firebase using SQL database management language. BigQuery

can be accessed from Google Cloud Platform at console.cloud.google.com/bigquery and

behaves as a single-page application similarly to the Firebase console.

9

With BigQuery, this data can be viewed and exported in ways that would normally not be

possible. For example, Firebase console provides means to see how many times a cer-

tain event type, such as an event about changing the application’s language, was logged

during a given date, but not much more than that. BigQuery, on the other hand, allows

viewing detailed information about each individual instance of the event type and can

answer questions such as:

• What was the exact time the event was logged?

• What kind of a device logged the event?

• What was the city where the event was logged?

• What were the custom parameters attached to the event?

BigQuery can be queried using SQL clauses such as SELECT, FROM, WHERE and

LIMIT. Figure 3 demonstrates a single result for a query of “SELECT event_timestamp,

device.mobile_brand_name, device.mobile_marketing_name, geo.city, event_params

FROM `test-firebase-project.analytics_180174203.events_20210430` WHERE

event_name = ‘change_language’ LIMIT 1000”. Through the BigQuery’s user interface,

the query results can also be saved to another BigQuery table or by exporting them into

JSON, CSV or Google Sheets. BigQuery usage in practice is further explored in Section

3.4.4.

Figure 3. Querying for details of an event type about changing the application’s language using
BigQuery.

For the final year project, BigQuery was essential in order to be able to get the most of

the collected usage data. For example, the client company was interested in being able

to see which error and warning messages end users encounter the most to know where

10

the focus should be when trying to improve user experience. Two ways were identified

to provide a solution to this use case:

• Create an event type for each different message that the user might en-
counter.

• Create a single event type and use a custom parameter, the unique key of
the message, to differentiate the messages.

The first way was deemed unfeasible. There were potentially over 700 different mes-

sages, and Google Analytics for Firebase allows reporting only up to 500 [26] different

types of events per application. The second way would not fulfill the use case when only

using Firebase console to view event information because Firebase console does not

provide means to view a list of all instances of an event type separated by a custom

parameter. More use cases are explored in Section 3.4.

3 Collecting Usage Data

3.1 Prerequisites

Before usage data collection can be started using Google Analytics for Firebase, certain

prerequisites must be fulfilled first. First, a Google Account is needed to gain access to

Firebase console. Registered users, such as all users of Google’s Gmail, can login with

their existing Google Account’s credentials to access Firebase console. Creating a

Google Account is free, and during the registration process, the user is asked to submit

the following details:

• first and last name

• an existing email address or a new Gmail email address

• a password

• optionally a mobile phone number or a recovery email address

• birthday

• sex.

11

Second, Google’s Terms of Service regarding Google Analytics for Firebase require its

customers to include an appropriate privacy policy inside applications that use the ser-

vice. The privacy policy ought to be easily accessible by the end users and must contain

information how the end users are being identified — for example, by cookies or pseu-

donymous user identifiers — along with how the data is being collected and processed.

The way suggested by Google to comply with these terms is to provide a noticeable link

to Google’s site "How Google uses data when you use our partners' sites or apps", which

is located at www.google.com/policies/privacy/partners/. [3]

Third, Google’s Use Policy for Google Analytics for Firebase also has a few requirements

of its own. Among other information, it requires its customers to inform the end users

about which of the Google Analytics for Firebase features have been implemented and

how the end users can opt-out of these features. It also demands complying with

Google’s European Union User Consent Policy that concerns end users residing in the

EEA. In short, this policy requires obtaining the end users’ consent to the use of cookies

or other similar means of local storage along with the use of collection, sharing and use

of personal data for personalization of ads. [27; 28]

3.2 Deployment Actions

The main goal of the final year project was to implement and deploy Google Analytics

for Firebase solution on top of an in-production mobile application. Technically the de-

ployment required making minor modifications to the application’s source code. From a

legal point of view, this required reading and comprehending data privacy laws and

Google’s terms, which turned out to be difficult and time-consuming for a person without

a law degree.

The application was already utilizing a Firebase-related Cordova plugin, an open-source

library managed by the open-source community, called cordova-plugin-firebase. The ap-

plication was using the plugin for Firebase Cloud Messaging and its push technology.

This meant that the already existing Firebase project and the Firebase SDK required little

configuration for the application to start utilizing Google Analytics for Firebase. For new

users getting started with Firebase, Firebase console provides systematic instructions

how to add Firebase to an Android application.

http://www.google.com/policies/privacy/partners/

12

Unfortunately, the Cordova plugin had not been updated since October 2018 and re-

quired modifications [29]. The plugin’s source code had to be altered so that the Google

Analytics for Firebase data collection would be disabled by default and would not collect

advertising IDs or Android Secure IDs. This was achieved by changing the plugin’s con-

figuration file, plugin.xml, as illustrated by Listing 1. These IDs could be used to track

and identify end users’ for, for example, advertising purposes [30]. This was deemed

unnecessary for the application, as it does not contain advertisements.

<config-file target="AndroidManifest.xml" parent="/manifest/application">

 <meta-data android:name="firebase_analytics_collection_enabled"

 android:value="false" />

 <meta-data android:name="google_analytics_adid_collection_enabled"

 android:value="false" />

 <meta-data android:name="google_analytics_ssaid_collection_enabled"

 android:value="false" />

</config-file>

Listing 1. Disabling the Analytics-related features in the cordova-plugin-firebase’s plugin.xml
file.

To comply with Google’s Terms of Service and Use Policy, one of the required actions

was to initialize Google Analytics for Firebase only after the end user had given his or

her consent for usage data collection. During the development of this final year project,

the obtaining of user consent for usage data collection was decided to be handled after

the user had logged in into the system. This way no usage data would be collected out

of any interactions of non-authorized end users who likely would not be familiar with the

application’s privacy policy. As mentioned in Section 3.1, Google’s Terms of Service re-

quire providing a readily accessible link to the application’s privacy policy for the end

users. Once this project is in production use, end users will be able to find a link to the

application’s privacy policy from the login view.

3.3 Data Collection Best Practices

When collecting usage data with Google Analytics for Firebase, extra care ought to be

taken to respect the privacy of the end users, follow Google’s policies and make sure the

data stays relevant. Failure to follow the data privacy regulations and laws, such as

GDPR, can lead to fines in the millions of euros for organizations [31]. Not following the

policies and terms defined by Google can prompt Google to revoke one’s right to use the

13

service [3]. By keeping the collected usage data relevant, trust in the data’s integrity

remains uncompromised.

3.3.1 Avoiding Collecting Personal Data

To be GDPR-compliant, one should be mindful about collecting personal data in case it

is at any time stored in servers that reside outside the EEA. Unfortunately, the data col-

lected using Google Analytics for Firebase can be stored in the United States [32]. A

legal contract regarding data protection when transferring personal data outside the EEA,

i.e., a Standard Contractual Clause, can be made to tackle this problem [20; 33], but that

is out of the scope of this thesis.

Like GDPR, Google prohibits the users of Google Analytics for Firebase from collecting

information that Google deems to be usable for identifying the data’s subject. Google

calls this information personally identifiable information — or PII for short. Since there is

an overlap between GDPR’s personal data and Google’s PII, here is a generalized non-

exhaustive list that considers both for an idea what kind of information one should not

log with events and parameters:

• direct and indirect personal identifiers, such as individuals’ names, home
addresses, email addresses, phone numbers, social security numbers,
heights, hair colors, geographic coordinates, usernames, database user
IDs and license plate numbers

• online identifiers, such as IP addresses, MAC addresses, cookie identifiers,
IMEI numbers and RFID tags

• direct user input, such as form data or URLs with query parameters that
consist of user input

• information related to an individual, such as medical history and criminal
records. [34; 35; 36]

One should also be mindful about accidentally collecting outlier subject information. For

example, creating a custom parameter for user role information can violate user privacy;

the system might contain only a single individual for any specific role — for example, an

administrator —, which can then be identified due to being an outlier in the collection of

data.

14

3.3.2 Separating Production and Test Data

Test data generated during development is best kept separate from production data. This

makes it easier to debug problems in the data collection while also ensuring integrity of

the production data. Data integrity is important in order to be able to keep making correct,

informed decisions with the help of the data. When investigating means to achieve this

integrity, it was found out that Firebase supports multiple projects and having separate

projects for development and production environments [37]. This seemingly was an ef-

fective and simple way to have separate containers for different data sources.

A second Firebase project was created as described in Section 2.3.1. After that, the

application’s Firebase SDK needed to be reconfigured to allow the collected data to flow

into the correct container: test data into development project and production data into

production project. Firebase SDK on Android required this decision to be made during

build time; it could not be changed on the fly during runtime [37]. Therefore, there was a

need to alter the application’s build process.

Fortunately, the application’s build process had already been divided into two types: de-

bug for development and release for production. A further distinction between these two

build types were made by appending the Android application ID with “.debug” in case of

a debug build. This effectively made these two build types into separate applications

allowing them to be installed at the same time on an Android device. This decision was

made after realizing it made the development process easier for the client company’s

developers; developers no longer had to uninstall the application when switching be-

tween the two build types. It also allowed the Firebase SDK to be configured so that the

package name would define which Firebase project would be used.

The build.gradle file in src/android/ folder of the Cordova plugin was updated with con-

figuration that made the Android application ID reflect the build type. Listing 2 illustrates

how this was achieved.

15

android {

 buildTypes {

 debug {

 applicationIdSuffix ".debug"

 }

 }

}

Listing 2. Appending debug build type’s application ID with “.debug” in cordova-plugin-firebase’s
src/android/build.gradle file.

3.4 Client Company’s Use Cases

The final year project was done in collaboration with a client company, CGI. CGI had

hopes that an analytics solution would help them better understand how their software

was being used and thus make better product development decisions. In total, four main

use cases were fulfilled with over 30 different custom event types and over a hundred

custom parameters — all implemented by one software developer.

When designing custom event types for the use cases, consistency in the structure of

the events was a priority. The design goal was to make it easy to determine what infor-

mation would each parameter represent and in which format just by looking at its name

and knowing the design principles. The goal would be considered fulfilled when one

would not have to look at the documentation when, for example, writing queries in

BigQuery. In practice, this meant that all:

• ID-related custom parameters would be stored as strings representing al-
phanumeric values and underscores.

• Boolean values would be stored as lowercase strings: “true” or “false”.

• Numeric values would be stored as doubles representing double-precision
floating-point numbers.

• Enumerated types would be stored as uppercase strings.

• Custom event types and parameters would have their names in lowercase
and follow the naming conventions for events [26] defined by Google.

3.4.1 Errors and Warnings Encountered

The purpose of the first use case was to provide insight into what are the areas where

the end users struggle the most. Knowing which error and warning messages were the

16

most prevalent was believed to be valuable for guiding the focus in product development

— especially when trying to improve the user experience. Cutting down the number of

times end users encounter errors was thought to make users take them more seriously.

This use case was already partly covered in Section 2.3.3.

Table 1 illustrates the structure of the show_prompt custom event type that would be

logged whenever any message would be displayed to the end user. Parameter

prompt_type has two possible values that differentiate between an error and an informa-

tive message, which is also used for warnings in the application. Parameter lan-

guage_keys contains information about which predefined message or a combination of

messages were displayed.

Table 1. Event structure of the show_prompt custom event type.

Event parameters Expected values Data type

prompt_type ERROR, INFO string

language_keys varies string

Implementing this use case was comparatively simple. There was one utility function,

showPrompt, in the code that would always end up being called whenever a message

was to be displayed to the user. Adding just one line of code at the end of showPrompt

function was enough to log a show_prompt event every time when needed.

3.4.2 Feature Interactions in Numbers

The purpose of the second use case was to provide a better understanding about which

features are the most used and whether there are features that are ignored by the end

users. This information could then be used, for example, to:

• Determine whether a new feature was being adopted at a desirable rate or
was there a need to somehow improve it.

• Decide whether a feature could be removed due to being underutilized.

• Guide the product development in prioritization of improving the features.

17

Table 2 illustrates the structure of the show_view custom event type that would be logged

whenever an end user navigated to a view in the application. Parameter view_name

provides a human-readable identifier for the entered view, whereas view_id tells the

unique identifier.

Table 2. Event structure of the show_view custom event type.

Event parameters Expected values Data type

view_id varies string

view_name varies string

Even though the application had close to 50 different views, the call to log a show_view

event could be handled within just one place. This was because all the views in the

application inherited the same base class and called the same onShow method when

changing a view. The views also all had an ID and a name stored in variables, so there

was no need to pass the same information as arguments manually when calling the log

event function.

Table 3 illustrates how the tap_item custom event type is structured. This event would

be logged whenever an end user tapped a certain button or similarly interactive user

interface element. Parameter item_id is for the unique identifier of the tapped element,

and parameter item_info is sometimes used to provide more information about the situ-

ation. For example, when tapping a button to delete received messages in the applica-

tion, the number of selected messages would be logged in the item_info parameter.

Table 3. Event structure of the tap_item custom event type.

Event parameters Expected values Data type

item_id varies string

item_info varies varies

18

In total, the function responsible for logging a tap_item event ended up being called from

22 different places in the code base. This was because the trigger to call the function

had to be manually attached to each individual interactive element. However, not every

interactive element in the application was deemed to have enough value to be a part of

the usage data collection; there was no use to have the buttons used to navigate to a

view also log a tap_item event.

3.4.3 Feature Usage in Details

The third use case had the purpose of shedding more light on how the end users interact

with the features. CGI wished that an analytics solution would make it possible to find

out, for example, how much typing is done within the mobile application. This, in turn,

could help with estimating the value of new features, such as a speech-to-text voice

recognition.

There are tens of forms an end user can fill-in inside the client company’s mobile appli-

cation. Some of them send information to the backend, whereas others, such as filter

forms, change only the information stored locally on the device. Similarly, there are fea-

tures that, when used, do not leave any trace for anyone outside the mobile device to

see. Therefore, there was no way to know how and how often end users were using

these features without an analytics solution. To fulfill the requirements of this third use

case, over 20 custom event types were created as a part of this final year project. Among

the usage data logged with these events was:

• When sending a message: how long the message was, how many recipi-
ents it had, was it being forwarded or was it a reply to another message.

• When filtering for contacts, recipients of messages or the contents of re-
ceived and sent messages: how long the filter text was and what the unique
ID of the filter UI element was.

• When changing the language of the application: what the selected lan-
guage was and what the previous one was.

• When submitting an error report: how long the description was and how
long the attached log file was.

• When using Bluetooth to scan for nearby wireless devices: how many de-
vices were found.

19

CoffeeScript code for one of the event logging methods, logChangeLanguage, is pre-

sented in Listing 3. The method is very typical when compared to the other event logging

methods written as a part of the final year project. It requires two string arguments that

are used as custom event parameters but only if the analytics solution has been initial-

ized by the application and toggled on in the backend system’s configurations. In the

end, the method calls the cordova-plugin-firebase’s logEvent method, which is respon-

sible for sending the event information into Firebase platform.

Required: source (string)

Required: target (string)

logChangeLanguage: (sourceLang, targetLang) ->

 return if not @isEnabled()

 if not _.isString(sourceLang) or _.isEmpty(sourceLang) or

 not _.isString(targetLang) or _.isEmpty(targetLang)

 logger.warn "Analytics: Logging Change Language failed: Invalid arguments"

 return

 logger.debug "Analytics: Logging Change Language"

 eventParameters =

 source_language: sourceLang

 target_language: targetLang

 @logEvent("change_language", eventParameters)

Listing 3. A CoffeeScript method that logs a change_language event.

3.4.4 Battery Drain

There had been queries made by the end users about the mobile application’s drain on

the device battery. Some had claimed that the effect had increased after updating the

application. CGI hoped that an analytics solution would provide means to keep track of

battery usage between different versions of the application. This was believed to help

proving the problem truly was there and when investigating causes for the problem. This

fourth use case about battery usage was designed to be fulfilled with one new generic-

sounding custom event: logout.

The logout custom event type would be logged whenever an end user logged out of the

application. The name of the event type was decided to not be specific to battery usage

in case there would be a need to log even more data when logging out in the future. In

addition, changing the structure or name of an event type after it had been logged would

make it harder to utilize the previously logged usage data. For the scope of this project,

it was decided that just logging the information about changes in the battery levels would

be enough.

20

There are five custom parameters in the logout custom event type — as illustrated by

Table 4. The parameters were designed in such a way that they would provide answers

to the questions:

• How much battery was drained during a session?

• How long was the session?

• How long was the application being used actively during the session?

• Was the battery charged during the session?

Table 4. Event structure of the logout custom event type.

Event parameters Expected values Data type

battery_session_current_level 0 - 100.0 double

battery_session_start_level 0 - 100.0 double

battery_session_length_in_seconds >= 0 double

battery_session_length_active_usage >= 0 double

battery_session_charged true, false string

With the usage data provided by the logout custom event type, it is possible to find out

how many percentages, on average across all the devices, battery is being drained in an

hour while the end user is logged in. To prove this, two queries were written and run in

BigQuery for test usage data collected during the April of 2021. The queries do not con-

sider the application’s version, but this is only because all the test data were collected

using the same application version. As mentioned in Section 2.3.2, version information

is logged automatically with Google Analytics and, therefore, could be used as a part of

this use case.

First, a query was written for creating a new BigQuery table out of the results. This table

would contain the data collected with the logout events in a neat format for easier que-

rying. The results are illustrated by Figure 4.

21

Figure 4. BigQuery query and its results for the logout event type and its parameters.

Based on the results, there were 57 instances of logout events logged in April. After

saving these results into a new table called battery usage, a second query was written.

This query would:

• Count the total number of data points (i.e., Sessions).

• Sum the total hours of the sessions (i.e., Total_usage).

• Sum the total percentage of the battery drain (i.e., Total_drain).

• Calculate the average battery drain based on the totals (i.e., Aver-
age_drain).

• Ignore sessions during which the battery was charged.

• Ignore sessions that were ten minutes or longer in length.

After writing the second query, it was run for the new table in BigQuery. The results are

demonstrated in Figure 5.

22

Figure 5. BigQuery query and its results for a table containing battery usage data.

The results indicate that the average battery drain — based on test data generated in

April — was close to 4 percentages per hour while logged in. While the results are not

statistically very precise or even useful for the client company as-is, they prove that the

logout events, Google Analytics for Firebase and BigQuery all together allow calculating

the average battery drain while the application is running and the end user is logged in.

In conclusion, these methods ought to provide the client company means to keep track

of the battery drain on a monthly basis. However, some possibly affecting factors that

vary month-by-month, such as the ambient temperature, can have an impact on the re-

sults and should be kept in mind when interpreting the data.

23

4 Conclusion

It has been demonstrated that Google’s Firebase platform provides two powerful tools,

Google Analytics and BigQuery, for collecting and exploring usage data. From the out-

come of the investigation, it is possible to conclude that deploying usage data collection

requires a deeper understanding of the data privacy laws, such as GDPR. However, the

results indicate that implementing an analytics solution on top of an in-production mobile

application using Google’s Firebase SDK, is possible and does not require a large team

to do so.

The implemented analytics solution has great potential for other use cases than those

that were fulfilled as a part of this project. For example, once the implementation is in

production use, CGI could sell parts of collected usage data to the clients to provide the

clients a deeper insight into their own workforce.

Clearly, further research will be needed to answer questions about the costs of using the

Google’s analytics solutions in production with tens of thousands of end users. It is rea-

sonable to believe that future work will involve designing and implementing more custom

event types and more complex queries that explore the collected data. The data could

also be imported into visualization tools, such as Google Data Studio, which was not

covered in this paper. All this ought to help CGI gain potentially an even better under-

standing of their application’s end users.

24

References

1 CGI yrityksenä. CGI Suomi Oy. Online. <www.cgi.com/fi/fi/cgi-yrityksena>. Ac-
cessed 9 May 2021.

2 Writing a GDPR-compliant privacy notice (template included). Proton Technolo-
gies AG. Online. <www.gdpr.eu/privacy-notice>. Accessed 9 May 2021.

3 Google Analytics for Firebase Terms of Service. Google LLC. Online. <fire-
base.google.com/terms/analytics>. Accessed 9 May 2021.

4 Benefits of Analytics for Data-Driven Marketing. Google LLC. Online. <marketing-
platform.google.com/about/analytics/benefits>. Accessed 9 May 2021.

5 Google Analytics. Google LLC. Online. <firebase.google.com/docs/analytics>.
Accessed 9 May 2021.

6 Instant Access Now Available for Google Analytics. Google LLC. Online. <goog-
lepress.blogspot.com/2006/08/instant-access-now-available-for-google_15.html>.
Accessed 9 May 2021.

7 Google Analytics Usage Statistics. BuiltWith Pty Ltd. Online. <trends.built-
with.com/analytics/Google-Analytics>. Accessed 9 May 2021.

8 Available languages – Analytics Help. Google LLC. Online. <sup-
port.google.com/analytics/answer/1008006?hl=en>. Accessed 9 May 2021.

9 The Firebase Blog: Developers, meet Firebase!. Google LLC. Online. <fire-
base.googleblog.com/2012/04/developers-meet-firebase.html>. Accessed 9 May
2021.

10 The Firebase Blog: Firebase is Joining Google!. Google LLC. Online. <fire-
base.googleblog.com/2014/10/firebase-is-joining-google.html>. Accessed 9 May
2021.

11 Firebase - Crunchbase Company Profile & Funding. Crunchbase Inc. Online.
<crunchbase.com/organization/firebase>. Accessed 9 May 2021.

12 From the garage to the Googleplex. Google LLC. Online. <about.google/our-
story>. Accessed 9 May 2021.

13 The Firebase Blog: September 2019. Google LLC. Online. <firebase.google-
blog.com/2019/09>. Accessed 9 May 2021.

14 Firebase. Google LLC. Online. <firebase.google.com>. Accessed 9 May 2021.

15 Firebase Pricing. Google LLC. Online. <firebase.google.com/pricing>. Accessed
9 May 2021.

25

16 Firebase Documentation: Samples. Google LLC. Online. <fire-
base.google.com/docs/samples>. Accessed 9 May 2021.

17 Firebase console. Google LLC. Online. <console.fire-
base.google.com/?hl=fi&pli=1>. Accessed 9 May 2021.

18 Data collection – Firebase Help. Google LLC. Online. <support.google.com/fire-
base/answer/6318039?hl=en>. Accessed 9 May 2021.

19 How Google uses information from sites or apps that use our services – Privacy
& Terms. Google LLC. Online. <policies.google.com/technologies/partner-
sites?hl=en>. Accessed 9 May 2021.

20 Safeguarding your data - Analytics Help. Google LLC. Online. <sup-
port.google.com/analytics/answer/6004245?hl=en>. Accessed 9 May 2021.

21 Privacy Policy – Privacy & Terms. Google LLC. Online. <policies.google.com/pri-
vacy?hl=en>. Accessed 9 May 2021.

22 Data retention - Analytics Help. Google LLC. Online. <support.google.com/analyt-
ics/answer/7667196?hl=en>. Accessed 9 May 2021.

23 Privacy controls in Google Analytics - Firebase Help. Google LLC. Online. <sup-
port.google.com/firebase/answer/9019185?hl=en>. Accessed 9 May 2021.

24 Firebase integrations. Google LLC. Online. <firebase.google.com/integrations>.
Accessed 9 May 2021.

25 How Google Makes Money (GOOG). About Inc. Online. <www.in-
vestopedia.com/articles/investing/020515/business-google.asp>. Accessed 9
May 2021.

26 Analytics Events. Google LLC. Online. <firebase.google.com/docs/refer-
ence/cpp/group/event-names>. Accessed 9 May 2021.

27 Google Analytics for Firebase Use Policy. Google LLC. Online. <fire-
base.google.com/policies/analytics>. Accessed 9 May 2021.

28 EU user consent policy. Google LLC. Online. <www.google.com/about/com-
pany/user-consent-policy>. Accessed 9 May 2021.

29 Releases. GitHub Inc. Online. <www.github.com/arnesson/cordova-plugin-fire-
base/releases>. Accessed 9 May 2021.

30 Configure Analytics Data Collection and Usage. Google LLC. Online. <fire-
base.google.com/docs/analytics/configure-data-collection?platform=android>. Ac-
cessed 9 May 2021.

31 What are the GDPR Fines?. Proton Technologies AG. Online.
<www.gdpr.eu/fines>. Accessed 9 May 2021.

26

32 Privacy and Security in Firebase. Google LLC. Online. <firebase.google.com/sup-
port/privacy#global_services>. Accessed 9 May 2021.

33 Frequently Asked Questions on the judgment of the Court of Justice of the Euro-
pean Union in Case C-311/18 - Data Protection Commissioner v Facebook Ire-
land Ltd and Maximillian Schrems. European Data Protection Board. Online.
<edpb.europa.eu/sites/edpb/files/files/file1/20200724_edpb_fa-
qoncjeuc31118.pdf>. Accessed 9 May 2021.

34 Best practices to avoid sending Personally Identifiable Information (PII) - Analyt-
ics Help. Google LLC. Online. <support.google.com/analytics/an-
swer/6366371?hl=en>. Accessed 9 May 2021.

35 Mikä on henkilötieto?. Tietosuojavaltuutetun toimisto. Online. <www.tieto-
suoja.fi/mika-on-henkilotieto>. Accessed 9 May 2021.

36 What is considered personal data under the EU GDPR?. Proton Technologies
AG. Online. <www.gdpr.eu/eu-gdpr-personal-data>. Accessed 9 May 2021.

37 Configure multiple projects. Google LLC. Online. <firebase.google.com/docs/pro-
jects/multiprojects>. Accessed 9 May 2021.

Appendix 2

 1 (1)

	1 Introduction
	2 Usage Data, Google Analytics and Firebase
	2.1 Usage Data
	2.2 Google Analytics and Firebase
	2.2.1 Background
	2.2.2 History

	2.3 Firebase Platform
	2.3.1 Firebase Console
	2.3.2 Google Analytics
	2.3.3 Integrations

	3 Collecting Usage Data
	3.1 Prerequisites
	3.2 Deployment Actions
	3.3 Data Collection Best Practices
	3.3.1 Avoiding Collecting Personal Data
	3.3.2 Separating Production and Test Data

	3.4 Client Company’s Use Cases
	3.4.1 Errors and Warnings Encountered
	3.4.2 Feature Interactions in Numbers
	3.4.3 Feature Usage in Details
	3.4.4 Battery Drain

	4 Conclusion
	References

