

Matti Holopainen

Monitoring Container Environment
with Prometheus and Grafana

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

3.5.2021

 Abstract

Tekijä
Otsikko

Sivumäärä
Aika

Matti Holopainen
Monitoring Container Environment with Prometheus and
Grafana

50 sivua
3.5.2021

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Ohjelmistotuotanto

Ohjaajat

Nina Simola, Projektipäällikkö
Auvo Häkkinen, Yliopettaja

Insinöörityön tavoitteena oli oppia pystyttämään monitorointijärjestelmä konttiympäristön re-
surssien käytön seuraamista, monitorointia ja analysoimista varten. Tavoitteena oli helpot-
taa monitorointijärjestelmän käyttöönottoa. Työ tehtiin käytettävien ohjelmistojen dokumen-
taation ja käytännön tekemisellä opittujen asioiden pohjalta.

Insinöörityön alussa käytiin läpi työssä käytettyjä teknologioita. Tämän jälkeen käytiin läpi
monitorointi järjestelmän konfiguraatio ja käyttöönotto. Seuraavaksi tutustuttiin PromQL-ha-
kukieleen, jonka jälkeen näytettiin kuinka pystyttää valvontamonitori ja hälytykset sähköpos-
timuistutuksella. Työn lopussa käydään läpi kuinka monitorointijärjestelmässä saatua dataa
analysoidaan ja mietitään miten monitorointijärjestelmää voisi parantaa.

Keywords Monitorointi, Kontti, Prometheus, Grafana, Docker

 Abstract

Author
Title

Number of Pages
Date

Matti Holopainen
Monitoring Container Environment with Prometheus and
Grafana

50 pages
3.5.2021

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Software Development

Instructors

Nina Simola, Project Manager
Auvo Häkkinen, Principal Lecturer

The goal of the study was to set up a monitoring stack for a container environment to monitor
and analyze resource usage. The purpose was to make it easier to implement a monitoring
stack. The study was carried out by applying knowledge gained by practice and getting fa-
miliar with the documentation of the software used.

First, the study introduces the current situation and then goes through the technologies used.
Next, the study talks about setting up and configuring the monitoring stack is explained,
followed by an introduction to the use of PromQL query language. Next, the study goes
through how to set up a monitoring dashboard and how to get up alerts and email notifica-
tions. The last chapters shows how to analyze data from the monitoring stack and how to
make imporve the monitoring stack

Keywords Monitoring, Container, Prometheus, Grafana, Docker

Contents

List of Abbreviations

1 Introduction 1

2 Container Environment and Monitoring 2

2.1 Monitoring Metrics 2

2.2 Container Environment 3

3 Using Grafana and Prometheus for Monitoring 3

3.1 Prometheus and PromQL Query Language 4

3.2 Grafana: Open Observability Platform 5

3.3 Container Advisor: Getting Resources of Containers 6

3.4 Redis In-memory Store 6

4 Setting up Monitoring Stack 6

4.1 Architecture 6

4.2 Setting up 7

4.3 Setting up cAdvisor 8

4.3.1 Redis Container 8

4.3.2 cAdvisor Container 9

4.4 Setting up Node-exporter 10

4.5 Setting up Prometheus 11

4.5.1 Configuring Prometheus 11

4.5.2 Prometheus Container 12

4.6 Setting up Grafana 12

5 PromQL Query Language 13

5.1 Data Types 14

5.2 Getting Metrics 14

5.3 Instant Vector Selector 16

5.4 Range Vector Selector 19

5.5 Offset Modifier 21

5.6 Operators 22

5.7 Functions 23

6 Configuring Grafana Dashboards 24

6.1 Adding Data Source 25

6.2 Configuring Dashboard 28

6.2.1 Uptime Panel 29

6.2.2 CPU Usage Panel 30

6.2.3 Configuring Memory Usage Panel 31

6.2.4 Network Traffic Panel 33

6.3 Configuring Dashboard per Container Panels 34

6.3.1 Variable 35

6.3.2 Received Network Traffic per Container Panel 36

6.3.3 Sent Network Traffic, CPU Usage and Memory Usage per Container
Panels 37

6.4 Configuring Alerts 37

6.4.1 Notification Channel 38

6.4.2 Alert Rules 38

7 Analyzing Data 42

8 Improvements and Future Steps 45

9 Conclusion 45

References 47

List of Abbreviations

cAdvisor container Advisor. Application collecting container metrics.

CNCF Cloud Native Computing Foundation. A Linux Foundation project aiming to

advance open-source usage of cloud and container technology

Container A software unit where the application code and all its dependencies are

packaged.

Docker A Container platform that can build, store and run container images.

Grafana Open-source Observability platform capable of visualizing metric data from

multiple different sources.

Exporter A software that collects metrics that Prometheus and then export.

Node-exporter An exporter that collects OS and hardware metrics.

Prometheus Open-source system monitoring and alerting toolkit.

PromQL Prometheus Query Languages. The query language used for querying Pro-

metheus.

Redis An open-source in-memory structure store that can be used as a database

or cache.

RHEL Red Hat Enterprise Linux. Open-source operating system popular in enter-

prise use.

TSBD Time Series Database. A database where the data is stored values as a

stream of timestamped values.

1

1 Introduction

Containers are a very popular platform to run applications. Most of the applications run

inside a container in a container environment. Therefore, it is a good idea to improve the

ability to maintain a container environment.

When there is an issue in an application, one can use a stack trace and error logs to

troubleshoot the issue. Stack trace shows the issue on the code level. However, issues

in the application are not always on the code level, e.g. high memory use. Another issue

with stack trace and error logs is that they require an error to trigger. In other words,

something has to go wrong for them to appear. For example, if the database server runs

out of disk space, the database crashes, and there is an error log about it. Of course, the

database should always be up, and therefore there is a need to know when the disk

space is low. To solve these issues, monitoring solutions are used to monitor the appli-

cation and IT infrastructure.

Prometheus and Grafana are flexible tools for monitoring IT architecture, especially for

containers and cloud environments. Prometheus supports metrics from multiple different

exporters and offers powerful query language PromQL. With PromQL, one can efficiently

analyze metric data from multiple sources. However, this flexibility results in a high learn-

ing curve and can be overwhelming for a beginner. Within the present study a simple

monitoring stack for a Docker environment using Prometheus and Grafana was built.

The goal was to make the reader familiar with Prometheus and Grafana and ready to

make their monitoring stack.

First, the paper goes through the technologies used to get an idea of why they are used.

Then the setting up of the monitoring stack is explained. Next, the paper introduces

PromQL, the query language Prometheus uses. The metrics are used to creating a

Grafana Dashboard. By creating a dashboard, one can quickly analyze the environment

and see what is happening at one glance in real-time. The metric data is analyzed by

using the dashboard. Lastly, the paper discusses how to improve the stack.

2

2 Container Environment and Monitoring

This chapter introduces monitoring metrics on a general level together with the container

environments.

2.1 Monitoring Metrics

Metrics are units of standard measurement. For example, the memory usage of a host

or an application, the time a web page takes to load or rate of successful API calls divided

by failed API calls and many more. Monitoring metrics allows one to optimize the appli-

cations and IT infrastructure, and to identify and troubleshoot issues. For example, by

monitoring the web page load times, one can identify a need to optimize it, improving the

end-user experience. If a page takes an especially long time to load, it can consider an

issue on itself and just something that improves an end-user experience. Another exam-

ple is the memory use of an application. If an application uses a lot of memory on a

server, it can slow down the server and therefore all the other applications on the server.

In this case, it can be difficult to figure out which application causes the issue.

To collect monitor metrics, one has to put software on the server that collects the metrics.

The name of the software depends on the monitoring solution used. Some call them

exporter, others agent. There are different types of exporters or agents for different types

of sources, for example, one for host metrics and another one for databases metrics,

and yet another for Containers.

The metrics from the exporters or agents are then collected to a database for storage.

An interface is used to analyze the collected metrics and configure alerts.

The exporter used depends on what is been monitored. If the host is monitored, one

uses an exporter that collects metrics from the host. If the containers are monitored, one

uses an exporter that collects metrics from the containers.

3

2.2 Container Environment

A container is a software unit where the application code and all its dependencies are

packaged, making applications inside containers lightweight, quick, and easy to deploy.

A container is also an isolated instance, making them secure. [1] When the environment

is running containers, it is called a container environment. There are many container

platforms. The container platform used in this study is called Docker.

The container environment has multiple applications running. Here is the problem. There

is no way to track the CPU or memory usage or network traffic of the containers effi-

ciently. One can only check current resources for one container at a time, making com-

paring resources usage between containers hard and knowing what a typical resource

usage for a container is. Therefore, debug issues related to resource usage is difficult

and time-consuming. For example, something in the environment uses a lot of swap, and

there are too many containers to check manually. It is a needle in a haystack situation.

Increasing the amount of memory or swap is not a solution either since it would only

delay the appearance of the issue.

In order to solve the issue, within the study a metric monitoring stack for the environment

was built. The monitoring stack collects the CPU, memory, and swap usage as well net-

work traffic metrics from containers as well as from the server itself.

3 Using Grafana and Prometheus for Monitoring

In this study, a Grafana metrics stack was built. Grafana metrics stack uses Prometheus

as a database that collects the data from exporter and Grafana for visualization. Exporter

collects metric data that Prometheus can export from them. For exporters, Node-exporter

was used for kernel and hardware metrics and cAdvisor for container metrics and Pro-

metheus.

https://www.docker.com/resources/what-container

4

3.1 Prometheus and PromQL Query Language

Prometheus is the leading open-source monitoring system and a time-series database

capable of scraping metrics from multiple sources. A time-series database is a database

where the values are stored as a stream of timestamped values [2]. Prometheus was

originally developed by SoundCloud [2], a music and audio platform [3]. Currently, Pro-

metheus is a standalone project with active developers and a user community. Prome-

theus became part of CNCF or Cloud Native Computing Foundation in 2016 as the sec-

ond-hosted project hosted by the foundation [2].

Figure 1 shows the architecture of Prometheus.

 Prometheus architecture.[2]

Prometheus scrapes metrics directly from an exporter, e.g. Node-exporter, or from Push-

gateway. Using exporters and Pushgateway, Prometheus can get metrics from multiple

different sources. The Prometheus can be configured to pull metrics statically using the

exporters or Pushgateway address or dynamically using the discovery target. Prome-

theus uses times series or streams of timestamped values, which belong to the same

metric and key/value pair creating a multidimensional data model [2]. Storing values as

streams of timestamps makes Prometheus database a time series database or TSDB.

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://soundcloud.com/pages/contact
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/

5

Prometheus uses its query languages called Prometheus Query Language or PromQL.

PromQL allows users to query metrics from Prometheus in real-time and view the query

result in a graph or tabular format [4]. One can use Prometheus web UI, Grafana, or API

clients to execute PromQL queries in Prometheus. PromQL uses metric names and la-

bels in its query, making it very flexible but hard to learn.

The alerts can be set in Prometheus and use Alertmanager to send notifications to mul-

tiple different platforms, e.g. email and slack. In the monitoring stack, Grafana is used

for alerts instead of Alertmanager and Prometheus.

3.2 Grafana: Open Observability Platform

Grafana is an open-source platform for observing and monitoring metrics. With Grafana,

one can query and visualize metric data and set up alerts [5]. Grafana supports many

different data sources, e.g. Prometheus, Google Cloud Monitor, Elsaticsearch, InfluxDB

and MySQL

Grafana can create dynamic and reusable dashboards. Dashboards allow end-user to

see the situations of the environments at a glance. End-users can share and import

Dashboard using JSON or Grafanas' website [6], making Dashboards easy to share and

fast to set up if one already knows a dashboard that fits the needs.

Grafana can visually configure alerts using dashboards [5]. Grafana can send notifica-

tions from these alerts to a different system, e.g. Microsoft Teams, Google Hangout,

Discord and Email.

Grafana supports plugins developed by Grafana Labs and Grafana Community. Using

these plugins, Grafana can visualize the metric data using panels and support more data

sources. [7].

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://github.com/grafana/grafana
https://grafana.com/grafana/dashboards
https://github.com/grafana/grafana
https://grafana.com/grafana/plugins/

6

3.3 Container Advisor: Getting Resources of Containers

Container Advisor or cAdvisor is a running daemon that collects, processes, aggregates,

and exports metrics from running containers. With cAdvisor, one can understand the

performance and resource usage of the containers. [8]

cAdvisor supports Docker containers natively and should support other container types

like containerd and cri-o. [8]

cAdvisor is compatible with Prometheus, and this study used it as an exporter for con-

tainer metrics.

3.4 Redis In-memory Store

Redis is an open-source in-memory structure store that can be used as a database or

cache. Redis offers many data structures such as streams, strings, hashes, and sets [9].

An in-memory database is extremely fast since it does not need to read from the hard

drive making them a great choice when the application needs a cache.

Redis is used as a cache for cAdvisor data until Prometheus collects it.

4 Setting up Monitoring Stack

The monitoring stack was set up on a Docker container environment with RHEL 7.9

Maipo as its operating system. First, the paper discusses the monitoring stack architec-

ture and file structure. Next, it introduces the set up for the containers and configuration

files for Prometheus and Grafana

4.1 Architecture

Figure 2 shows the monitoring stack architecture.

https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://redis.io/

7

 Monitoring stack architecture.

The monitoring stack uses cAdvisor to collect metrics from containers and Redis to cache

them. For hardware and OS metrics, the stack uses Node-exporter. Prometheus pulls

the data from cAdvisor and Node-exporter and stores it. Grafana queries the data from

Prometheus using PromQL and visualizes it. The monitoring system uses Grafana for

alerts, and Grafana sends an email notification when there is an alert.

4.2 Setting up

The study began by creating a file structure. Figure 3 shows the structure.

8

 Project file structure.

The monitoring folder serves as the root folder for the monitoring stack. Inside the mon-

itoring folder, there are the following folders: config, data, and grafana-storage. The con-

fig folder contains configuration files for Prometheus and Grafana. The data folder holds

the data stored by Prometheus and grafana-storage, the data stored by Grafana.

The environment, the monitoring stack monitors and where the monitoring stack is set

up is a Docker environment that uses docker-compose to run the containers. Therefore,

the monitoring stack was set up using a similar setup as the rest of the environment In

other words, the monitoring stack is inside containers, and docker-compose is used to

run them.

The configuration of the containers started by creating a docker-compose.yml file. The

study used compose file version 2.2 because the rest of the docker-compose files in the

environment uses that version.

The following lines were added to the docker-compose.yml file:

version: “2.2”

services:

Keyword version defines the docker-compose file version used, and services keyword

defines the start of the services block.

4.3 Setting up cAdvisor

cAdvisor setup uses two containers. The first one is an in-memory database called Redis

and the second one is the cAdvisor itself.

4.3.1 Redis Container

Redis was configured as temporary storage and linked to cAdvisor. Redis configuration

looks as follows:

9

redis:

 image: redis

 ports:

 - "6397:6397"

The first line declares a service called redis. The image keyword tells Docker to use

redis image and ports keyword to open container port 6397 and direct traffic from that

port to Redis port 6397.

4.3.2 cAdvisor Container

Ath the cAdvisor github page [8] the default Docker configuration for the cAdvisor looks

as follows:

cadvisor:

 image: gcr.io/cadvisor/cadvisor:latest

 volumes:

 - /:/rootfs:ro

 - /var/run:/var/run:rw

 - /sys:/sys:ro

 - /var/lib/docker/:/var/lib/docker:ro

 ports:

 - “8080:8080”

However, the Docker configuration for cAdvisor is heavily depended on the operating

system and the Docker version used [10]. This means that the is differently depending

on the operating system and Docker version. For this study the configuration when run-

ning on RHEL 7.9 and Docker version 1.13.1 end up looking as follows:

cadvisor:

 image: gcr.io/cadvisor/cadvisor:latest

 privileged: true

 volumes:

 - /:/rootfs:ro

 - /var/run:/var/run:rw

 - /sys/fs/cgroup/blkio:/sys/fs/cgroup/blkio:ro

 - /sys/fs/cgroup/cpuset:/sys/fs/cgroup/cpuset:ro

 - /sys/fs/cgroup/devices:/sys/fs/cgroup/devices:ro

 - /sys/fs/cgroup/freezer:/sys/fs/cgroup/freezer:ro

 - /sys/fs/cgroup/hugetlb:/sys/fs/cgroup/hugetlb:ro

 - /sys/fs/cgroup/memory:/sys/fs/cgroup/memory:ro

 - /sys/fs/cgroup/net_cls,net_prio:/sys/fs/cgroup/net_cls,net_prio:ro

 - /sys/fs/cgroup/pids:/sys/fs/cgroup/pids:ro

 - /sys/fs/cgroup/systemd:/sys/fs/cgroup/systemd:ro

 - /sys/fs/cgroup/cpu,cpuacct:/sys/fs/cgroup/cpuacct,cpu:Z

 - /sys/fs/selinux:/sys/fs/selinux:ro

 - /sys/fs/ext4:/sys/fs/ext4:ro

 - /sys/fs/fuse:/sys/fs/fuse:ro

https://github.com/google/cadvisor
https://github.com/google/cadvisor/blob/master/docs/running.md

10

 - /sys/fs/pstore:/sys/fs/pstore:ro

 - /sys/fs/bpf:/sys/fs/bpf:ro

 - /sys/block:/sys/block:ro

 - /sys/bus:/sts/bus:ro

 - /sys/class:/sys/class:ro

 - /sys/dev:/sys/dev:ro

 - /sys/devices:/sys/devices:ro

 - /sys/firmware/acpi:/sys/firmware/acpi:ro

 - /sys/firmware/dmi:/sys/firmware/dmi:ro

 - /sys/firmware/memmap:/sys/firmware/memmap:ro

 - /sys/hypervisor:/sys/hypervisor:ro

 - /sys/kernel:/sys/kernel:ro

 - /sys/module:/sys/module:ro

 - /sys/power:/sys/power:ro

 - /var/lib/docker/:/var/lib/docker:ro

 - /dev/disk/:/dev/disk:ro

 ports:

 - “9091:8080”

 depends_on:

 - redis

The first thing to note is how long the volumes configuration became. Instead of adding

volume /sys:/sys:ro it was necessary to go inside the sys file structure and only mount

the volumes cAdvisor has access to. It was necessary since cAdvisor is dependent on

the operating system and Docker version. Another important note is the privilege: true

line. RHEL and CentOS locks down their containers more tightly than others, so this line

is necessary to access Docker daemon [10]. The ports configuration opened port 9091

on the container and directed the traffic to the cAdvisor default port 8080. The port 8080

on the container is not used since another application has taken port 8080 on the server.

The last lines link Redis to cAdvisor and make cAdvisor depend on it [11]. In other words,

if the Redis container does not go up, neither does the cAdvisor container.

4.4 Setting up Node-exporter

Setting up node-exporter was quite straightforward. It required to add the following lines

to the compose file under services:

node-exporter:

 image: prom/node-exporter:latest

 cap_add:

 - SYS_TIME

 ports:

 - "9100:9100"

https://github.com/google/cadvisor/blob/master/docs/running.md
https://docs.docker.com/compose/compose-file/compose-file-v2/#depends_on

11

The cap_add flag was added with the value SYS_TIME to get access to time adjustment

metrics since the container is running on Linux.

4.5 Setting up Prometheus

Setting up Prometheus required two things: configuring Prometheus itself and configur-

ing Prometheus container.

4.5.1 Configuring Prometheus

First, a file called prometheus.yml was created under the config folder. This file is the

configuration file for Prometheus.. The following lines were added to the file:

global:

 scrape_interval: 5s # By default, scrape targets every 15 seconds.

scrape_configs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - targets:

 - localhost:9090

 - job_name: 'cadvisor'

 scrape_interval: 5s

 static_configs:

 - targets:

 - cadvisor:8080

 - job_name: 'node-exporter'

 scrape_interval: 5s

 static_configs:

 - targets:

 - node-exporter:9100

The first two lines are part of the global configuration block. The scrape_interval inside

the global block was used to define the global scrape interval [12]. Scrape interval de-

fines how often Prometheus scrapes metrics from the targets. Below the global configu-

ration block, the scrape configs configuration block begins[12]. Inside scrape configs,

job_name is used to name the jobs. Jobs is a collection of instances with a same purpose.

The instance is the endpoint which Prometheus scrapes The scrape_interval was used

to overwrite the global scrape interval for the job. Inside static_configs block, the tar-

gets keyword is used to list the instances for the job [12]. For this study, the Prometheus

configuration had three jobs with one instance each. One job for Prometheus itself called

https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/first_steps/

12

prometheus with instance localhost:9090, another for called cadvisor with instance cad-

visor:8080 and the last one called node-exporter with instance node-exporter:9100.

Take note of the targets for cAdvisor and node-exporter. Instead of an actual address,

the names used were ones used to link them to Prometheus in the docker-compose.yml

file.

4.5.2 Prometheus Container

Setting up Prometheus inside a container was very simply. It was done by adding the

following lines to the compose file under services:

prometheus:

 image: prom/prometheus:latest

 command:

 - --config.file=/etc/prometheus/prometheus.yml

 volumes:

 - /monitoring/config/prometheus.yml:/etc/prometheus/prometheus.yml:ro

 - /monitoring/data:/prometheus/data:Z

 ports:

 - "9090:9090"

 depends_on:

 - cadvisor

 - node-exporter

The volumes mount the configuration file to the Prometheus container and Prometheus

database to the data folder. The Prometheus database was mounted to the data folder

in order not to lose the data if there were a need to recreate the Prometheus container.

The command config.file=/etc/prometheus/prometheus.yml tells Prometheus to use

the configuration file mounted to it as its configuration file.

4.6 Setting up Grafana

Setting up Grafana requires three things: change user and group of the grafana-storage

folder, configure container for Grafana, and configure Grafana itself.

When Grafana is running inside a container, it uses user id 472. For Grafana to access

the grafana-storage folder, therefore it was necessary to change the folder's ownership

by using the following command:

13

chown 742:742 grafana-storage. [14]

Grafana container configuration goes as follows:

grafana:

 image: grafana/grafana:latest

 restart: always

 volumes:

 - ./grafana-strorage:/var/lib/grafana:Z

 - ./config/grafana.ini:/usr/share/grafana/conf/defaults.ini:Z

 ports:

 - "3000:3000"

 links:

 - prometheus:prometheus

By default, there is no need to configure Grafana. It works out of the boxes as it is.

However, since email notifications are used for alerts, the default has to override.

A file called “grafana.ini” was created inside the config folder. The default Grafana con-

figuration from Grafana’s GitHub pages [15] was copy-pasted to this file and use it as a

template. The part edited looked as follows in the default file:

[smtp]

 enabled = false

 host = localhost:25

 user =

 # If the password contains # or ; wrap it with triple quotes. Ex

"""#password;"""

 password =

 cert_file =

 key_file =

 skip_verify = false

 from_address = admin@grafana.localhost

 from_name = Grafana

 ehlo_identity =

 startTLS_policy =

The enable was set to “true” and SMTP address as host value.

5 PromQL Query Language

PromQL or Prometheus Query Language is a query language that is used to query Pro-

metheus for the time series Prometheus has collected. To use Prometheus, one must

know how to write PromQL. First, the paper goes through the data types and how to get

https://community.grafana.com/t/new-docker-install-with-persistent-storage-permission-problem/10896
https://github.com/grafana/grafana/blob/master/conf/defaults.ini

14

metrics. Next, the paper introduces the instant vector selector followed by the range vec-

tor selector and offset modifier. Lastly, the paper discusses the operators and functions.

5.1 Data Types

Prometheus Query Language can evaluate three different type expressions: instant vec-

tors, range vectors, and scalar vectors. An instant vector is a set of time series containing

a single sample for each time series, all sharing the same timestamp. A range vector is

a set of time series containing a range of data points over each time series. Scalar is a

simple numeric floating-point value. [4]

5.2 Getting Metrics

The metric name is used to query Prometheus. The metric names depend on the scrape

target Prometheus uses to get the metrics e.g. data from node-exporter starts with the

prefix node_ and data from containers starts with the prefix container_. To find a metric

name, Prometheus graphical interface can be used. Prometheus graphical interface is

accessed by using a web browser. The default address for the Prometheus graphical

interfaces is localhost:9090. To find a metric, the drop-down menu below the query field

can be used to see all the metric names or by typing a keyword in the query field and

seeing the suggestion Prometheus gives.

For example, by typing “http” in the query field, one can find a metric that returns the total

HTTP request that Prometheus gets. (Figure 4)

https://prometheus.io/docs/prometheus/latest/querying/basics/

15

 Metrics Prometheus founds using “http” keyword.

The keyword brings up many different metrics with very self-exploratory names. The

query:

prometheus_http_requests_total

returns the total HTTP request that Prometheus gets. (Figure 5)

16

 prometheus_http_request_total query results

Prometheus has separated the results by using multiple key/value pairs known as labels.

The labels are given after the metric name inside the curly brackets.

5.3 Instant Vector Selector

In most cases, one does not want all these metrics but instead metrics with specific la-

bels. That is why one can use instant vector selectors.

Instant vector selector is where one puts a label in the query after the curly brackets'

metric name.

The following query:

prometheus_http_requests_total{handler="/api/v1/query"}

17

returns the number of HTTP requests for the “/api/v1/query” endpoint. (Figure 6)

 Results of prometheus_http_request_total query using handler label.

Instant vector selectors can also be used to exclude label values using the “!=” operator.

[4]

The following query:

prometheus_http_requests_total{code!=”400”,handler="/api/v1/query"}

excludes the results where the HTTP code is 400. The results can be seen in Figure 7.

https://prometheus.io/docs/prometheus/latest/querying/basics/

18

 Result of the PromQL query excluding HTTP requests with HTTP code 400.

In the two previous queries, Prometheus was looking for an exact match to either include

or exclude them in the result. Prometheus can also match patterns by using regular ex-

pressions and the “=~” operator to include and the “!~” operator to exclude label values.

[4]

The following query:

 prometheus_http_requests_total{ handler=~"/api/v1/.*"}

returns every metric from every endpoint that starts with /api/v1/ (Figure 8).

https://prometheus.io/docs/prometheus/latest/querying/basics/

19

 PromQL query results for HTTP requests from endpoints starting with “/api/v1/”.

Figure 8 shows that instead of getting a result from the handler label with /api/v1/ Pro-

metheus returns the results where the handler starts with /api/v1/.

5.4 Range Vector Selector

Every query shown so far has used a time range from data collection beginning to the

current time. However, this is not always wanted. To use a range vector selector, one

simply adds a numeric value with a time unit inside square brackets to the query.

The following query

prometheus_http_requests_total{code=”200”,handler=”/api/v1/query”}[10s]

shows the total number of HTTP requests with HTTP code 200 from endpoint

“/api/v1/query” from 10 seconds ago to the current moment. (Figure 9)

20

 Example of range vector query results.

The query returns two different values, with the difference being after the @ sign. The

first number is the number of HTTP requests and the second one is the timestamp in

epoch time. Prometheus has been configured to collect data every 5 seconds, so it re-

turns two different timestamps when the time range is set to looked 10 seconds in the

past.

Range vectors have the following time units [4]

• y – years

• w – weeks

• d – days

• h – hours

• m – minutes

• s – seconds

• ms – milliseconds.

It is important to note that Prometheus query language always assumes that a year is

365 days, a week 7 days, and a day 24 hours.

https://prometheus.io/docs/prometheus/latest/querying/basics/

21

These time units can combine instead of using bigger numeric values. For example, us-

ing [1h30m] instead of [90m}.

5.5 Offset Modifier

With the range vector selector, one can choose the desired the time range, but the end

time is always the current time, which is not always what is wanted. For this reason, the

offset modifier is used. The offset modifier allows one to change the time offset of the

query relative to the current time by adding the word offset to the query and add a time

value the same way one would add inside the square brackets when using a range vec-

tor.

The following query

prometheus_http_requests_total{handler=”/api/v1/query”} offset 1d

checks the number of HTTP requests from the endpoint “/api/v1/query” one day ago

(Figure 10).

22

 Offset modifier query result example.

Figure 10 shows that the value was 4. By contrast, in Figure 8 where the endpoint

“/api/v1/query” was in the results, the value was 15.

5.6 Operators

The operators PromQL uses do not differ from the primary programming languages con-

vention, + for addition, - for subtraction, == for equal, etc [16].

On top of regular operators, there are many built-in aggregation operations, for example,

sum() to calculate the sum of a dimension and avg() to calculate the average of the

dimension.

For example the following query

sum(prometheus_http_requests_total)

calculates the sum of all HTTP requests Prometheus has received (Figure 11).

https://prometheus.io/docs/prometheus/latest/querying/operators/

23

 Results for the sum() aggregation operator example query.

By looking at Figure 11, one can note that instead of metric names and labels, the Ele-

ment field has {} which is caused by the sum operator. The sum operator has calculated

the sum of all the metrics and labels and combined them in a single value.

5.7 Functions

The Prometheus query language offers many functions to help to analyze the metric

data, which are used in the same way one would use any function or method in program-

ming languages[17]

For example the rate() function wants a range vector as a parameter [17]. The following

query

rate(prometheus_http_requests_total{handler=”/api/v1/query”}[8h])

returns the per-second rate of an HTTP request for the endpoint “/api/v1/query” over the

last 8 hours (Figure 12).

https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/functions/

24

 Result of the rate function example query.

In Figure 12 one can see the rate at the value column.

6 Configuring Grafana Dashboards

So far, this paper has discussed how to set up monitoring and introduce PromQL. The

following chapter discusses how the metric data was visualized using Grafana dash-

board and how the alerts were set up.

Grafana is entered by going into the browser and enter the server address and the port

Grafana is running. For example, “localhost:3000”. First, Grafana wants the end-user to

log in in order to access Grafana front page. Figure 13 shows the Grafana front page.

25

 Grafana front page.

The menu bar on the left side of the screen is the primary way to navigate through

Grafana.

6.1 Adding Data Source

Before configuring any Dashboards, a Data Source has to be added. Data sources are

added through the “Add data source” page (Figure 14), which is accessed from the data

source settings.

26

 Grafana Add data source page.

The “Add data source” page shows several different data sources Grafana supports out

of the box and it is the page where one chooses which data source is configured. Figure

15 shows the Prometheus data sources configuration.

27

 Configured Grafana Prometheus data source

In this context, the address is http://prometheus:9090 since Docker was used to link

the Prometheus to Grafana. Next, there are authorization options where one can, for

example, use username and password with Basic auth and certification using With CA

Cert. Prometheus and Grafana run on the same server. Therefore, there was no need

for authorization. Custom HTTP Header options allow Grafana to send custom HTTP

headers with the requests, which is helpful if Grafana has to send its message through

28

a load balancer. Scrape interval tells Grafana how often Prometheus scrapes its tar-

gets. The Query timeout tells Grafana how long it should wait to respond from Prome-

theus before timeout.

6.2 Configuring Dashboard

When the data source was configured, the configuration of the dashboard could start.

On the menu bar, by hovering the moves over the plus image and clicking dashboard, a

new empty dashboard is created. By clicking the “Add new panel” button, the edit panel

view can be entered (Figure 16).

 Grafana panel editor.

On the right are the visualization options. On the left, the view of the panel which is being

configured, and below is the query editor.

29

6.2.1 Uptime Panel

The first panel configured shows the server uptime. To get the server uptime, the follow-

ing query was used:

time()- node_boot_time_seconds{instance="node-exporter:9100"}

The time() is a Prometheus function that returns the current epoch time. The

node_boot_time_seconds returns the last boot time as epoch time. Therefore by server

uptime is the result of subtracting the node_boot_time_seconds value from the time()

value. The instance label is set with the value of node-exporter:9100 to tell Prometheus

to get the data from the target node-exporter:9100.

Next, the panel was made visually easy to understand. The panel is made to look like

the one in figure 17

 Configure Uptime panel.

30

The panel title was changed to “Uptime,” the visualization option chosen was Stat, and

the Graph mode was set to “None.” Then in the Field tab the unit was set to seconds and

decimals to one. The Color scheme was also changed to a single color of green.

6.2.2 CPU Usage Panel

The following query was used to get the CPU usage:

100 - (avg (irate(node_cpu_seconds_total{mode="idle",instance="node-ex-

porter:9100"}[5m])) * 100)

The query node_cpu_seconds_total returns the number of seconds the CPU has used to

do different work types. The mode label was used with the value idle to get only the

second when the CPU is idle.[5m] range vectore selector turns from instant vector to

range vector, the variable type function irate() wants. The function irate calculates the

per-second value for the query it is given. The avg is an aggregation operator that cal-

culates the average over dimensions. In this case, it calculates the average rate for all

the CPU cores. The average rate is between zero and one, multiplied by 100 to turn it

into a percentage. The query calculates the percentage CPU is idle, so by subtracting

the query from 100, the CPU usage comes out as a percentage.

31

Making the panel visually easy to understand, the panel was made to look like one in

Figure 18.

 Configured CPU usage panel.

The panel was given the title “CPU Usage.” For the visualization option, the Gauge was

chosen. On the Field tab, the unit was set to Percent (0-100), and decimals was set to

one. The threshold values 90 and 70 were added and the threshold mode was set to a

percentage. Threshold 90 was set to red and 70 to yellow. Grafana uses thresholds to

change the color of the panel depending on the metric value.

6.2.3 Configuring Memory Usage Panel

The memory usage panel is visually similar to CPU Usage. Therefore the memory usage

panel configuration started by duplicating the CPU Usage panel.

To calculate the memory usage percentage, the following equation was used:

32

(
(𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦−𝑚𝑒𝑚𝑜𝑟𝑦 𝑖𝑛 𝑢𝑠𝑒)

𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦
∗ 100)

In PromQL the equation looks as follows:

(((node_memory_MemTotal_bytes{instance="node-exporter:9100"} -

node_memory_MemAvailable_bytes{instance="node-exporter:9100"}) /

node_memory_MemTotal_bytes{instance="node-exporter:9100"}) * 100)

By replacing the CPU usage query with the query above, the panel looked as in Figure

19.

 Configured Memory usage panel

By comparing Figure 19 and 18, one can note that difference with these panels are the

query used and the panel title.

33

6.2.4 Network Traffic Panel

The network traffic panel shows both the received and transmitted traffic. All the appli-

cations in the environment are inside the containers. Therefore, the network metrics from

cAdvisor were queried using the following query:

sum(rate(container_network_receive_bytes_total{id="/",instance="cadvi-

sor:8080"}[5m]))

The query returns the sum of the incoming network of containers. The query was given

a legend name “Received” in the legend field to distinguish this graph from the transmit-

ted graph, which was done next.

A new query was added to the panel. “Sent” was written in the legend field and the fol-

lowing query was given to the new field:

- sum(rate(container_network_transmit_bytes_total{id="/", instance="cadvi-

sor:8080"}[5m]))

By comparing the previous two queries, one can note the different metric names and the

minus sign at the beginning. The minus sign in front of the query is there on purpose.

This way, the incoming and outgoing traffic can be easily seen in the panel since incom-

ing has a positive value and outgoing has a negative value.

The unit was set to bytes/sec(IEC), and the panel looks as in Figure 20.

34

 Configured Network traffic panel.

One can note how easily the incoming and outcoming traffic can be seen on the panel

since the other one has positive value and other negatives.

6.3 Configuring Dashboard per Container Panels

For containers, the dashboard should visualize the network traffic, memory usage and

CPU usage per container. Visually these panels are similar, with the main difference

being the query. Therefore, creating one of the panels and duplicating it was the most

efficient way to configure them. There was also a need to filter the data on these panels

base on the containers. For this reason, a variable was created.

35

6.3.1 Variable

Variable is a value that can be changed quickly to filter what is seen on the panels.

Variables are created through the dashboard settings by selecting variables on the left

side menu and click the “Add variable” button. Figure 21 shows the configuration page.

 Variable configuration pages.

The ”Name” field is the variable name used in the queries. For this dashboard, it was set

to “container”. The label is the display name for the variable. It was set to “Containers.”

The data source was set to Prometheus, which enabled the Query field. For the query,:

label_values(container_label_com_docker_compose_service) was used. This query re-

turns every docker-compose service name cAdvisor knows. Refresh was set to “On Time

Range Change”. “Multi-value” and “Include all options” were enabled in order to be able

to select multiple containers at once and have one value the represents all the contain-

ers.

36

6.3.2 Received Network Traffic per Container Panel

A new panel with the name “Received Network Traffic per Container” was created. The

following query was used to get receive network traffic metrics:

rate(container_network_receive_bytes_total{name!="", container_la-

bel_com_docker_compose_service=~"$container", instance="cadvisor:8080"}[5m])

The container_label_com_docker_compose_service label was used in the query and it

was given the container variable value by using $ sign the same way one would in the

shell script.

{{name}} was added to the legend field. It sets the container names as graph names.

Finally, the panel unit was set to bytes/sec(IEC). The panel looks as in Figure 22.

 Configured Received Network Traffic per Container panel.

37

By looking at the Figure 22 it can be noted that the panel is similar to the “Network traffic”

panel. The differences are in the queries, where this panel does not show the incoming,

and instead of combining all the graphs in the one using the sum() operator the graphs

are kept separated. The container variable is also used here to choose which graphs are

seen.

6.3.3 Sent Network Traffic, CPU Usage and Memory Usage per Container Panels

For the “Sent Network Traffic per Container” the following query was used:

sum(rate(container_network_transmit_bytes_total{name!="", container_la-

bel_com_docker_compose_service=~"$container", instance="cadvisor:8080"}[5m]))

by (name)

By comparing the “Received Network Traffic per Container” panel query to the “Sent

Network Traffic per Container” query one can note that the only difference with queries

is the metric name.

“CPU Usage Per Container” panel units was set to “Percent(0-100)” and the following

query was used for the container CPU usage metric:

sum(rate(container_cpu_usage_seconds_total{name=~".+", container_la-

bel_com_docker_compose_service=~"$container", instance="cadvisor:8080"}[5m]))

by (name) * 100

For the ”Memory Usage per Container” panel, the following query:

container_memory_usage_bytes{name!="", container_label_com_docker_compose_ser-

vice=~"$container", instance="cadvisor:8080"}

was used. The query returns memory usage in bytes. Thefore the unit of was set to

bytes.

6.4 Configuring Alerts

Alerts are an essential part of any monitoring stack. Without alerts, one has to constantly

check if there is an issue. With alerts, the ones who maintain the environment will get a

38

notification if there is an issue. Configuring alerts requires two things: configuring the

notification channels and the alert rules.

6.4.1 Notification Channel

The notification channel tells Grafana where to send an alert notification. The configura-

tion starts by creating a new notification channel on the notification channel page.

Grafana supports several different platforms, for example Emails, Google hangouts, Mi-

crosoft Teams and Discord.

Figure 23 shows an example configuration.

 Notification channel configuration for emails.

The notification was wanted to go to an email inbox. Therefore the type was set to an

email and an email address was given Alert Rules

Once the notification channel was configured the alerts were configured.

39

In the dashboard, a panel called “Container down alert” was created. This panel was

used to configure an alert rule that alerts if any container goes down. The query

count(rate(container_last_seen{id=~"/system.slice/docker-.+",instance="cadvi-

sor:8080"}[5m]))

returns the number of containers currently running. On the alert tab, a new alert rule was

created. Figure 24 shows the default alert rule.

 Alert rule configuration view.

40

The “Name” field is the alert name. The alert was given the name “Container alert.” “Eval-

uate for” fields tell Grafana how often it should evaluate the alert condition. The default

one-minute was used for this alert. The “For” field tells Grafana how long the alert con-

dition should have been met to cause the alert. When Grafana evaluates the alert con-

dition to be true, the alert goes to a pending state, and if the pending state lasts the time

set in the “For” field, the alert goes to an alert state. This feature is handy because when

Grafana evaluates the alert condition to be true momentarily, it should not cause an alert

if the system can recover on its own. For example, when one is changing the of the

application configuration, the application has to restart, which causes the container to go

down for less than one minute. The inbox should not be filled with useless alerts. There-

fore, the “For” field is used to give the environment time to fix on its own. The default five

minutes was used for this alert.

The “Conditions” is where the alert rules are set. The first field is the aggregation function

field. The query evaluated for the alert rule may have many different series. Therefore,

they are combined into one single value to compare them to the threshold value. For this

alert rule, the median() function was used. After the aggregation function, there is the

“query”. It takes three parameters. The first one is the query used.

Grafana indexes the queries in the panel by using alphabets. The first one is A, and the

second one is B, and so on. There is only one query called A in this panel. The last two

define the time range.

The default is 5m, and now, Grafana evaluates the query value from five minutes ago to

the current time. The “5m” was changes to “1m”. After the query, there is the threshold

and the threshold value. By clicking the “IS ABOVE,” one can see all the threshold avail-

ably. “IS BELOW” was the one used want. The threshold value depends on how many

containers are running when everything is working correctly in the environment. For this

environment, it was 39. Next, the alert rule was tested by clicking the “Test rule” button,

which gave a successful result.

The “No data & Error Handling” section is used to tell what to do if there is no data or

there is an error. For this alert, Grafana is set to start alerting.

41

The last part of the alert configuration is the “Notification” section. Here one tells Grafana

which notification channel to send the notification and the message body of the notifica-

tion. For the notification channel, the email channel created before was used.

The alert configuration looks as shown in Figure 25.

 Configured alert rule.

42

Setting up the alert rules was easy. The hard part is to figure out what should cause an

alert and what should the threshold values be, which is very dependent on the environ-

ment and the application running on the environment. The more one works with the en-

vironment, the more one knows what should cause an alert.

7 Analyzing Data

The metric stack collects the metric data over time, and the end-user can analyze it.

Figure 26 shows the overview of the host panels.

 General overview of the host panels.

43

At the top, there is the time range control. In Figure 26, the time scale is set to show the

last 6 hours. The green heart next to Container down alert tells there is an alert config-

ured in that panel and the color green tells the alerts is not firing. If the color is yellow,

the alert is pending and red means it is alerting. The Containers is the variable used to

control which containers are shown in the per container panels. The variable is set to

“All” meaning the metrics from all the containers in the per container panels are shown

(Figure 27).

 General overview of the per container panels.

One should take note of the number of graphs there are in a single panel. In Figure 27,

the metric data from every single container running is shown, which is great when one

wants to see the big picture but not when one wants to focus on a single container. To

see metric data from a single container or just a few containers, the Container variable

44

is used. For example, by selecting prometheus, cadvisor, grafana, redis and node-ex-

porter from the drop-down menu, one can see the metric data from the monitoring stack

(Figure 28).

 Monitoring stack metrics.

By analyzing the monitoring stack metrics, it can be noted that cAdvisor and Node-

exporter constantly send data, and Prometheus receives constantly data. By knowing

the monitoring stack architecture, one knows Prometheus collects data from Node-ex-

porter and cAdvisor. The monitoring stack shows this in action through the dashboard.

When Grafana querying Prometheus can also be seen in action. When there is a spike

in Prometheus CPU usage, there is also a spike in the amount of data Prometheus

45

sends. At the same time, there is a spike in Grafanas’ Received and Sent network traffic

graphs. These spikes look very similar to each other, indicating a connection. Of course

since one knows monitoring stack architecture, one knows that Grafana queries Prome-

theus, and therefore what is seeing is a PromQL query is send from Grafana to Prome-

theus who executes it and returns the results.

This chapter showed how one could analyze the collected data. Showing how to analyze

the data can be used to monitor the IT infrastructure

8 Improvements and Future Steps

By analyzing the data, it was possible to identify an issue with the memory usage in

containers. While solving this issue, it was realized a need to monitor the swap usage of

the host and containers. The stack already collects the swap usage metric, so the only

thing needed was to configure the swap usage panel and swap usage per container

panel.

The need to add the swap panel highlights that the Monitoring stack is not complete and

the more one analyzes the data, the more one knows what panels are needed and if

there is a need to expand the metrics the stack collects.

For possible improvements, more exporters could be added to get more metrics. The

current stacks get the kernel, hardware, and container metrics. Nginx exporter could be

added for Nginx metrics and a JVM exporter for JVM metrics. The stack has an issue

where one can see what is happening in the server and containers but cannot see why

it is happening. In other words, one does not see the events. To solve this issue, the

stack could be given o a feature to collect and analyze logs. It could be by using Grafana

Loki, which is a multi-tenant log aggregation system inspired by Prometheus [18].

9 Conclusion

The thesis shows how to set up a monitoring stack. A simple dashboard was created,

which shows the host and container CPU and memory usage and network traffic. In the

https://grafana.com/oss/loki/

46

improvement section, the need to monitor the swap use was noted. Showing that the

dashboard is not complete, and new panels should be added when the need arises. It

also showed that the stack already collects more metrics than one was interested in. In

the improved section, went through ideas on expanding the stack by adding more ex-

porters and monitoring logs. The stack monitors the container environment on a general

level, but there are many improvements to make it more tailored for the environment and

application running on the environment.

The purpose of the stack was to help troubleshoot and identify issues in the applications

and IT infrastructure. The stack was used to fix an issue with container memory usage.

Therefore, it can be concluded that this aim was successfully met.

Monitoring applications and IT infrastructure help to optimize, identify issues, and trou-

bleshoot issues in them. Now, the basic monitor stack being ready the only thing left is

to start adding a new panel when needed and expand the stack by adding more export-

ers to make the optimization, issue identification, and troubleshooting easier.

47

References

1 What is a Container?. Online. Docker. <https://www.docker.com/resources/what-
container>. Accessed 21 April 2021

2 Overview Prometheus. Online. Prometheus. <https://prometheus.io/docs/intro-
duction/overview/>. Accessed 15 April 2021

3 About SoundCloud. Online. SoundCloud. <https://soundcloud.com/pages/con-
tact>. Accessed 15 April 2021

4 Querying Prometheus. Online. Prometheus. <https://prometheus.io/docs/prome-
theus/latest/querying/basics/>. Accessed 15 April 2021

5 GitHub Grafana. Online. GitHub. <https://github.com/grafana/grafana>. Accessed
15 April 2021

6 Dashboards. Online. Grafana Labs. <https://grafana.com/grafana/dashboards>.
Accessed 15 April 2021

7 Plugins. Online. Grafana Labs. <https://grafana.com/grafana/plugins/>. Accessed
15 April 2021

8 cAdvisor. Online. GitHub. <https://github.com/google/cadvisor>. Accessed 15
April 2021

9 Redis. Online. Redis. <https://redis.io/>. Accessed 15 April 2021

10 Running cAdvisor. Online. GitHub <https://github.com/google/cadvisor/blob/mas-
ter/docs/running.md>. Accessed 15 April 2021

11 depends_on. Online. Docker. <https://docs.docker.com/compose/compose-
file/compose-file-v2/#depends_on>. Accessed 15 April 2021

12 Configuration. Online. Prometheus. <https://prometheus.io/docs/introduc-
tion/first_steps/>. Accessed 20 April 2021

13 Job and Instances. Online. Prometheus. <https://prometheus.io/docs/con-
cepts/jobs_instances/>. Accessed 20 April 2021

14 New Docker Install with persistent storage, Permission problem. Online. Grafana
community member. <https://community.grafana.com/t/new-docker-install-with-
persistent-storage-permission-problem/10896>. Accessed 15 April 2021

15 grafana/defaultini. Online. GitHub. <https://github.com/grafana/grafana/blob/mas-
ter/conf/defaults.ini>. Accessed 15 April 2021

16 Operators. Online. Prometheus. <https://prometheus.io/docs/prometheus/lat-
est/querying/operators/>. Accessed 15 April 2021

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://soundcloud.com/pages/contact
https://soundcloud.com/pages/contact
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://github.com/grafana/grafana
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/plugins/
https://github.com/google/cadvisor
https://redis.io/
https://github.com/google/cadvisor/blob/master/docs/running.md
https://github.com/google/cadvisor/blob/master/docs/running.md
https://docs.docker.com/compose/compose-file/compose-file-v2/#depends_on
https://docs.docker.com/compose/compose-file/compose-file-v2/#depends_on
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/introduction/first_steps/
https://prometheus.io/docs/concepts/jobs_instances/
https://prometheus.io/docs/concepts/jobs_instances/
https://community.grafana.com/t/new-docker-install-with-persistent-storage-permission-problem/10896
https://community.grafana.com/t/new-docker-install-with-persistent-storage-permission-problem/10896
https://github.com/grafana/grafana/blob/master/conf/defaults.ini
https://github.com/grafana/grafana/blob/master/conf/defaults.ini
https://prometheus.io/docs/prometheus/latest/querying/operators/
https://prometheus.io/docs/prometheus/latest/querying/operators/

48

17 Functions. Online. Prometheus. <https://prometheus.io/docs/prometheus/lat-
est/querying/functions/>. Accessed 15 April 2021

18 Grafana Loki, Online. Grafana Labs. <https://grafana.com/oss/loki/>. Accessed
15 April 2021

https://prometheus.io/docs/prometheus/latest/querying/functions/
https://prometheus.io/docs/prometheus/latest/querying/functions/
https://grafana.com/oss/loki/

