

Ernestas Juškevičius

Smart home lighting system using IoT
technologies

Bachelor’s thesis

Information technology

Double degree

2021

Author (authors) Degree title

Time

Ernestas Juškevičius Bachelor of
Engineering

April 2021

Thesis title

Smart home lighting system using IoT
technologies

49 pages
2 page of appendices

Commissioned by

Supervisor

Timo Hynninen

Abstract
The aim of this thesis was to use various web development, Internet of Things (IoT) and
software development technologies to create a smart home lighting system prototype.
System’s prototype development using more affordable hardware and software appliances
to control home 12 Volt lighting devices without abundance of features, while maintaining
the aspect of continuous common communication between devices of IoT systems.

The thesis is structured into three main content parts: Part 2, background research for
hardware and software components, programming languages as well as Web system and
IoT system security issues, other technologies used in development of such management
systems. Part 3, system’s hardware and software subsystem specification. Part 4, system’s
and its components design model, results and inspection of implemented prototype.

The development of the project showed that IoT systems use a vast variety of different
technologies, including many variables when generating use cases for wanted results. The
created smart home lighting system prototype was a successful, cheaper and simpler
alternative to the current smart home management system consumer market, however, it
lacks the plug-and-play nature of such expensive and less accessible systems like Apple
Homekit or Fibaro.

Keywords

Internet of Things, web system, single-board computing

CONTENTS

1 INTRODUCTION .. 5

2 RESEARCH ... 7

2.1 Task analysis ... 7

2.2 Internet of Things technology ... 7

2.3 Apache2 and Nginx Web servers ... 8

2.4 Single-board computers and microcontrollers .. 9

2.5 Programming technologies used to develop smart home management

system .. 11

2.6.1 Web server back-end programming languages 11

2.6.2 Web server front-end programming languages 12

2.6.3 Programming languages for single-board computer and microcontroller

tasks and data transfer ... 13

2.7 Security of web based IoT systems .. 14

3 SPECIFICATION .. 15

3.1 Projected object ... 15

3.2 Projected object functions .. 15

3.3 Requirements for subsystems of the designed object 15

3.3.1 Requirements for hardware subsystem.. 15

3.3.2 Requirements for the software subsystem and user interface 16

4 PROJECT DESIGN .. 17

4.1 Smart home lighting systems prototype specification, structure and its

components .. 17

4.2 Raspberry Pi 3 B+ configuration and software installation 19

4.3 Database data model ... 20

4.4 Lighting unit and Arduino microcontroller design .. 23

4.5 Data communication between mariaDB database server and Arduino mega

2560 R3.. 28

4.6 Graphic user interface (GUI) model ... 31

4.6.1 System’s logical model... 31

4.6.2 User interface structure .. 36

4.7 Software architecture design .. 39

4.8 PROJECT RESULTS ... 43

5 CONCLUSIONS ... 47

REFERENCES .. 48

Table of figures

Figure 1 Web Server software usage statistics (W3techs, 2021) 8

Figure 2 Usage statistic of server-side programming languages for websites

(W3techs 2021) ... 12

Figure 3 Web application attack type statistics (Ptsecurity 2017) 14

Figure 4 System‘s principle scheme .. 18

Figure 5 Raspberry Pi‘s Raspbian OS Terminal .. 20

Figure 6 System’s DFD-0 diagram of data flows ... 21

Figure 7 Database table „Logins“ structure ... 22

Figure 8 Database table „JudesioData“ structure .. 22

Figure 9 Database Table „ledBrightness“ structure ... 23

Figure 10 Lighting unit and Arduino microcontroller connection scheme............. 23

Figure 11 IRFZ44N MOSFET electrodes .. 24

Figure 12 HC-SR501 PIR motion sensor ... 25

Figure 13 Pin declaration ... 26

Figure 14 ASCII value assignment to variables ... 27

Figure 15 microcontroller‘s logical operation code .. 28

Figure 16 Software subsystem dataflow scheme .. 29

Figure 17 Python code „connect.py“ .. 29

Figure 18 Python code „ardtorp.py“ ... 30

Figure 19 System‘s Use Case Diagram .. 31

Figure 20 Login to the system activity diagram ... 33

Figure 21 Lighting unit parameter selection use case diagram 34

Figure 22 Lighting unit information review activity diagram 35

Figure 23 Logout from the system activity diagram ... 36

Figure 24 Login web page structure .. 36

Figure 25 Main page structure ... 37

Figure 26 Information review web page structure .. 39

Figure 27 System‘s software module diagram ... 40

Figure 28 Deployment diagram ... 42

Figure 29 Implemented Login page ... 43

Figure 30 Implemented Main page .. 44

Figure 31 Implemented Information review page .. 44

Figure 32 Executed „connect.py“ Python script ... 45

Figure 33 Executed „connect.py“ script with database record data print 45

5

1 INTRODUCTION

The contents of the chapter resolve around the relevance of the topic,

research problem, work’s aim and objective as well as workflow.

Relevance of the topic. Internet of Things enables various objects

and devices that are used in daily life, automating them to transmit

data and information over the network without requiring human

supervision, thus facilitating the daily tasks of a modern-day man while

reducing the resource use and providing him with valuable information

while saving valuable time. IoT can be met almost anywhere, whether

walking down the street through a smart pedestrian crossing, looking

for a place to park a car while looking at a smartphone with an app that

provides information on the status of a smart parking lot vacancies;

these are some of the fields that help our daily lives. One of those

fields is home automation. Smart home appliance systems allow the

user to relax from their worries by connecting devices and objects to a

network, controlling and managing them.

Research problem. Smart home management systems on the market

are often presented as multi-functional, so their prices are high,

management requires specific skills and access to the graphical user

interface often requires platform specific applications. IoT and web

development technologies could be used to create a system which

would be accessible via a web browser from any device with internet

connection to the private network to control and change parameters of

the selected specific home appliances at the fraction of the cost.

Objective. Design and create a home lighting system prototype using

Internet of Things and web development technologies, which would

allow the user using a web browser through a private network to

change selected parameters and track information concerning lighting

accessory operation and ability to track rough estimate of calories

burned while using the stairs.

Thesis workflow.

Research the current home automation system market, find out their

advantages and disadvantages. Analyze web development and

Internet of Things project programming languages as well as most

occurring Web application security breaches. Select appropriate

software and hardware technologies for the prototype. Setup a Web

server and database for storing and sharing information between

devices on the local network and management system components.

Design and build a controlled lighting unit for a smart home lighting

system. Prepare the single-board computer and microcontroller used

in the control system prototype for seamless interaction and common

communication. Implement a graphical user interface. Inspect the

system’s prototype.

2 RESEARCH

Research chapter focuses on the task analysis, IoT technology implementation

and definition for home appliance systems, various web development technology

element analysis, hardware and software comparison and research used in both

large and small scale IoT projects as well as commonly occurring web system

security breach analysis.

2.1 Task analysis

This thesis describes the development of a home lighting management system

prototype using IoT technologies. The system requires the use of a variety of

software and hardware technologies and resources to make it easy to use. The

control system will be available to the user using a web browser on a computer or

smartphone. The system prototype would allow the user to control unique,

system-designed devices that can be controlled digitally and see their activity

status in a graphical environment.

The prototype will use a variety of programming and scripting languages like:

HTML5 hypertext markup language, CSS cascading template language, PHP

hypertext dynamic interpretable programming language, Python3 interactive,

open source programming language and various libraries for it, Arduino IDE

microcontroller programming environment.

The system will be hosted on a physical single-board-computer, which will have a

configurable web server. The connected user will be able to control the agreed

and prepared lighting devices in the house. The system will be accessible online

through a private network, however in order to protect the system from external

malware, it is necessary to protect the database from SQL injections, eliminate

unwanted connections and ensure data encryption. The microcontrollers of the

managed and under development devices will be connected to single-board

computer with a USB cable for data transfer.

2.2 Internet of Things technology

Internet of Things (IoT) is an information technology structure that encompasses

a network of interconnected objects that enables the transmission of information

over the network without the need for human-computer interaction. A person with

a heart monitoring implant or cattle with an injected ID chip are a great example

of IoT in our lives (Alexander S. Gillis 2019).

In the consumer market for home automation, IoT technologies are reflected in

smart home systems like Fibaro or Apple HomeKit, including devices such as:

 Thermostats

 Luminaires

 Security cameras

 Smart wall plugs

 Humidifiers

These devices in the home appliance management system can be controlled by

other compatible devices on the network, such as Apple smartphones with the

iOS operating system. However, the above-mentioned home systems are

expensive due to the abundance of integrated functions, which are difficult to

adapt for simpler home management.

2.3 Apache2 and Nginx Web servers

The implementation of a smart home system will require the use of a web server,

which will be configured for the user's graphical interface where back and front

end programming will be performed. When comparing Apache and Nginx

servers, the following requirements are taken into account:

 Source code nature

 Easily accessible usage documentation

 User community scale

 Security

Figure 1 Web Server software usage statistics (W3techs, 2021)

33.9%

33.7%

18.3%

8.5%

7.0%

1.2%

1.2%

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0.1%

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0%

Apache

Nginx

Clouflare Server

LiteSpeed

Microsoft-IIS

Node.js

Google Servers

Tengine

Cowboy

Tomcat

Apache Traffic Server

ArvanNginx

Kestrel

IdeaWebServer

Caddy

W
eb

 S
er

ve
rs

Usage statistics of web servers

Apache is an open source, HTTP web server for web development. According to

Figure 1, Apache is used on 34% of all known websites. A web server that allows

administrators to implement and publish websites, applications, or systems with a

variety of content. It has official use and safety documentation and an extensive

user-prepared documentation. Like many other software systems, the Apache

web server has many security vulnerabilities that can be avoided by considering

operating system preparation and proper software configuration (Krishnamurthy

et al. 2008).

Nginx is an open source, HTTP web server, and a proxy server designed to

compete with Apache, using an asynchronous, connection management

algorithm. According to Figure 1, the server is used by 33.7% of all known sites. It

handles static content more efficiently than Apache. Has official documentation.

2.4 Single-board computers and microcontrollers

Single-board computers

Single-board computers (SBCs) have integrated all or most of a computer's

components. Light weight, compact size, often even more reliable than

computers with composite boards and components. Because of these features,

they are great for building IoT projects and systems (A. Gomez et al, 2015).

A smart home system can be designed and set up on its own, physical server,

computer, or virtual private server (VPS). Since the system will be implemented

in a local area network, a suitable single-board computer must be selected. When

analyzing these devices, the following characteristics are taken into account

(Table 1):

 Device price

 Computer size

 Processor computing power

 User community size

 Random Access Memory quantity

 Integration of a Wi-Fi module.

Table 1 Single-board computer characteristics

SBC

Characteristics

Price,
eur.

Size,
cm.

Processor
Community
size

RAM
Wi-Fi
module

Raspberry Pi 4 B €63.00 8.6 x 5.7 1.5 GHz High 2 GB Yes

Raspberry Pi 3 b+ €49.90 8.5 x 5.6 1.4 GHz High 2 GB Yes

Orange Pi One €25.50 6.8 x 4.2 1.2 GHz Average 512 MB No

ODROID XU4 €89.00 8.3 x 5.8 1.4 GHz Low 2 GB No

Single-board microcontrollers

Single-board microcontrollers (SBMs) are controllers integrated in a single board

that have all the components necessary for a control task: a microprocessor,

digital input and output connectors and RAM. With their help, it is possible to

design and control various devices such as motion sensors, magnetic field and

sound sensors used in Internet of Things technology (Güven, Yılmaz et al 2017).

When developing devices controlled by the smart home system, and ensuring

that new devices can be added to the system if necessary, these microcontrollers

are necessary. Therefore, it is important to choose appropriately, when analyzing

the devices and the following characteristics are taken into account (Table 2):

 Device price

 User community size

 The number of analog input ports

 The number of digital I/O ports

 Flash memory size

 Serial interface availability.

Table 2 Microcontroller characteristics

SBM

Characteristics

Price
Community
size

Number
of analog
input
ports

Number of
digital I/O
ports

Flash
memory

Serial
interface

Arduino Mega 2560
R3

€35.00 High 16 54 256 KB USB

Arduino Uno Rev3 €20.00 High 6 14 32 KB USB

Bluno Mega 1280 €52.40 Low 16 54 128 KB UART

Adafruit Feather
32u4 Bluefruit

€44.70 Average 10 20 32 KB USB

Each device has its pros and cons and is great for projects and systems of a

relatively large scale, however, some devices offer an abundance of hardware

components and computing power, increasing their cost.

2.5 Programming technologies used to develop smart home management

systems

There are several programming languages and technologies that are used to

develop smart home management and other IoT systems, to perform front-end

and back-end programming, single-board computer work, microcontroller

operations and tasks.

2.6.1 Web server back-end programming languages

Back-end programming consists of the functionality of a website, depending on

the code of the program, the information is provided or transmitted on the website

and stored in a database. When choosing a back-end programming language,

following characteristics are taken into account:

 User community size

 Web server software support

 Maintained and supported versions

 Open source nature

 Security

Based on statistics from 2021 on the use of server-side programming languages

(Figure 2), the top three are analyzed.

Figure 2 Usage statistic of server-side programming languages for websites (W3techs 2021)

Table 3 Top 3 server-side programming language characteristics

Programming
language

Characteristics

Open
source
nature

Security
Maintained
and supported
versions

Web Server
support

User
community
size, %

Php Yes High 7.3-8.0
Nginx and
Apache

79.2

ASP.NET Yes High < 5.x Nginx 8.8

Ruby Yes High 2.6-3.0
Nginx and
Apache

4.6

Php is by far the most used back-end Web Server programming language, and

according to Table 3, is an open source nature while maintaining a variety of

security features.

2.6.2 Web server front-end programming languages

External programming consists of elements that the user sees, including the

design of the site and the content, interactive elements, or applications contained

therein. Using these languages, a graphical user interface will be implemented

that will provide managed elements to control devices in the system and allow

user to see presented information about the device usage.

HTML: hypertext markup language for displaying content on a web site.

79.2%
8.8%

4.6%
3.5%

1.8%
1.5%
1.4%
1.3%

0.3%
0.1%
0.1%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%

PHP
ASP.NET

Ruby
Java

Scala
static files

Python
JavaScript

ColdFusion
Perl

Erlang

Percentagge of websites using various server-side programming
languages

L
a
n
g
u
a
g
e

Usage statistics of server-side programming
languages for websites

CSS: A cascading style template language for displaying content on a web site.

2.6.3 Programming languages for single-board computer and

microcontroller tasks and data transfer

It is necessary to choose the appropriate programming language in order to script

computer and microcontroller tasks, transfer data between them. The following

requirements are taken into account:

 Easily understandable syntax

 Open source nature

 User community size and available documentation

 Supported version

Python – open source syntax with similarities to written English language.

Supports countless libraries created by official and users, performing various

tasks. Used in various, small and large-scale projects or applications, perfect for

IoT technology projects using Raspberry Pi devices (Dow, 2018). Latest released

version is 3.9.2

Perl – open source, often used in important banking systems, network

communication systems and devices. Syntax has similarities with many

languages like: Awk, sed, C, but it is for this reason that the syntax is considered

more complex. Perl has Python language features, but is seen as declining in

competition with a newer edition with a larger user community of programming

and scripting languages. Latest released version is 5.24.0

Arduino IDE – open source programming environment for writing work scenarios

for Arduino single-board microcontrollers. Uses C and C programming language

features and syntax. Supports many libraries for various tasks. Available for

Windows, macOS, and Linux operating systems. Latest released version is

1.8.13

2.7 Security of web based IoT systems

Systems accessible via the Internet have countless loopholes that can be

exploited by various attackers. An unprotected smart home system can cause

extreme problems for the user as IoT devices and systems usually contain

sensitive and/or private information. Considering an attack would happen at a

Smart home system, the unauthorized attacker intervening in the system could

use the information for its own needs and manage the devices in the system at

their own accord. This can be assumed to endanger the health or life of the

authorized system user. It is therefore necessary to protect the system against

unwanted connections and other attacks that harm the system or its database.

Based on Figure 3Figure 1 statistics, some of the most common attacks directed at

web systems are XSS (cross-site scripting), SQL injection, and Path Traversal.

Figure 3 Web application attack type statistics (Ptsecurity 2017)

XSS or Cross-site scripting exploits web system by exploiting user interactions by

returning malicious JavaScript to the users, executing the script inside its

browser. In order to prevent at least some of the attacks, user input and actions

should be filtered according to the actions that are necessary for the system to

complete its tasks.

When it comes to SQL injection attacks, they usually target Web pages and web

systems that use structured query language software to use databases and

transfer information to a web page. The attack exploits the user input field on the

page to send the SQL query (Ramoška, 2012). In this way, the attacker tries to

32%

22%11%

10%

8%

4%
4%

1%1%1%
6%

Most common Web App attacks

Cross-Site Scripting

SQL Injection

Path Traversal

Local File Inclusion

Remote Code Execution
and OS Commanding

Information leakage

HTTP Verb Tampering

Cross-Site Request
Forgery

bypass the structure of the system and cause damage or access data for which it

is not authorized. This type of attack is usually aimed at misappropriating

information in database tables or selfish editing. SQL injections can be prevented

by filtering all user input data in the website, not using database with

administrator privileges as it might give the attacker full access to the database

server, encrypt sensitive data, use prepared SQL query statements.

3 SPECIFICATION

Chapter specifies hardware and software requirements for the development of

the system as well as project’s features.

3.1 Projected object

The purpose of the designed prototype is the control of a 12 V lighting unit using

a web browser. Log in availability to the management system using a web

browser. After logging into the system website, the user of the prototype – an

authorized person whose house is equipped with the select lighting unit will be

able to control its brightness and light up delay parameters, see its operational

statistic information about it. The lighting unit connected to the microcontroller

and designed will automatically illuminate the steps of the stairs of the house

using motion sensors. Information between the microcontroller and the server will

be transmitted via a USB serial port.

3.2 Projected object functions

Requirements for the functions of the developed system prototype:

1. Controlling brightness and light up delay time of LED strips through a

graphical user interface implemented on a web server.

2. Rendering of information from a database server on a Web server site.

3. Accumulation of the lighting device's operation information into the

database and its rendering on the website of the Web server.

4. Lighting systems prototype user authorization using logins.

5. Storage of information in a database.

3.3 Requirements for subsystems of the designed object

3.3.1 Requirements for hardware subsystem

Requirements for the technical characteristics of single-board computer:

 CPU: 1.4ghz 64bit

 Micro SD memory card: 16GB (at least)

 RAM: 1GB (at least)

 Ethernet port or Wi-Fi module

To take system’s continuous and persistent operation and smooth user’s

experience into account, the SBC’s hardware requirements are appropriately

selected.

Requirements for the technical characteristics of microcontroller:

 High digital I/O port number

 USB serial connector support

 128 KB flash memory (minimum)

 5 V operating voltage

The amount of I/O ports ensures that the system could be scaled up if needed,

more devices or sensors could be connected. Larger and more complex

operational scripts could be implemented, thus, a bigger flash memory capacity is

taken into account.

3.3.2 Requirements for the software subsystem and user interface

 Raspbian buster operating system with graphical user interface

 Chromium, open source, low-resource web browser

 Apache Web Server

 MySQL type database server

 Text editor, for programming tasks

For smoother developing and maintenance experience, the software subsystem

requirements are appointed, ensuring low resource usage and more efficient

workflow.

4 PROJECT DESIGN

This chapter focuses on home lighting management system’s software and

hardware subsystem component design.

4.1 Smart home lighting system’s prototype structure and its components

Based on the carried out background research and the specification, the following

key components are chosen for the development of the smart home lighting

system’s prototype:

 Raspberry Pi 3b 2GB single-board computer with 16GB memory

micro SD card.

Technical characteristics are suitable for use in small systems, the

resources available in this SBC are sufficient to support the project web

server and perform information transmission tasks, knowing that the

system will be used by a single user.

 Arduino Mega 2560 R3 single-board microcontroller.

The selected microcontroller has 54 digital I/O connections, so the

designed system will be able to install new managed devices if necessary,

and the relatively large Flash 256KB memory of this microcontroller will

ensure that the programmable script code will not run out of space. Due to

the USB connection used in this microcontroller, it will not require a

separate power supply, as power will be provided via USB. Arduino

devices provide a great opportunity to develop various IoT technology

projects at a low cost (Monk, 2016).

 Apache2 Web Server.

Apache web server was selected due to extremely detailed, official usage

documentation (Httpd.apache, 2021), and large user community. Although

not as efficient as Nginx, the Apache web server uses a generally small

amount of resources and is highly configurable.

 MariaDB database server.

This database is based on the MySQL database. It is supported and

updated to strengthen it against security breaches. The MariaDB database

is supported by Raspbian Buster operating systems, which uses a small

amount of system resources, making it perfect for use on small systems

while maintaining stability.

All Web server front-end and back-end processes are written using HTML, CSS

and PHP programming languages. All Raspberry Pi single-board computer and

Arduino microcontroller data communication is scripted using Python and its

libraries. All tasks are written with “GNU NANO” text editor used in Raspbian

Buster and other UNIX type operating systems. This text editor is not modern by

today’s standards, but is readily available for use in the Raspberry Pi command

line while depleting minimal amount of resources, therefore there are no

interferences during programming.

Arduino microcontroller tasks are scripted using Arduino IDE, which merges

functions from both “C” and “C++” programming languages.

Figure 4 System‘s principle scheme

According to Figure 4, in the designed smart home lighting system, each

component will transmit information to each other using various technologies for

common communication. The user will need a smart device that could browse the

web to access the system. Raspberry Pi will act as a host to both Web and

Database servers. It will both collect and send digital data over the USB serial

cable to the Arduino microcontroller.

Principle scheme components:

1. User: authorized system user who controls available parameters for the

lighting unit.

2. Network: local area network where system prototype is implemented.

3. Raspberry Pi single-board computer: device on which software is

installed and programmed: web server, database, software for

communication between the single-board computer itself and the

microcontroller in the system. A USB port is used for physical

communication between the controller and computer.

4. Web Server: software to support the system and graphical user interface.

5. Database server: software to store information about the system,

manageable lighting device parameters, user login data.

6. Arduino microcontroller: SBM used to read inputs and turn them into

output signals.

7. Lighting units: Various devices for lighting, in this case, 12 V LED strips.

4.2 Raspberry Pi 3 B+ configuration and software installation

For the implementation of the project, the single-board computer requires the

installation of the Raspbian buster operating system, which is based on Linux

Debian. Therefore, the list of commands running on the terminal corresponds to

other distributions of Debian operating systems. Using the mentioned terminal

further software installation and configuration work is performed (Figure 5).

Figure 5 Raspberry Pi‘s Raspbian OS Terminal

Advanced Package Tool (APT) is used inside the terminal in order to download

and install needed software packages. The followed command is typed in the

command line: sudo apt-get install selected package name.

The following software packages will be installed on the Raspberry:

 Arduino IDE – official Arduino microcontroller programming environment.

 Apache2 – Web Server.

 MariaDB – Database server.

 Php – Php programming language compiler.

 Python-mysql.connect – python programming language library for MySQL

database connection initialization.

 phpMyAdmin – database graphical user interface.

Once the select packages are installed, a data model can be projected for our

mariaDB database server using the phpMyAdmin graphical user interface on a

web browser.

4.3 Database data model

In order to implement common communication between systems components, it

is necessary to ensure that the database server is designated to:

1. Store user login data that will allow them to log in to the system using a

web browser.

2. Store information for changing the settings of a controlled lighting unit.

This data is updated when the user sends the query using the graphical

interface.

3. Store data intended to provide the user with information on the frequency

of use of the controlled lighting unit in the graphical interface.

When using a database, efforts are made to avoid duplication of data (data

redundancy). However, all tables in the database and their entities are not

dependent on each other. The purpose of the tables is to implement a platform

where various data could be transmitted between the system components and

rendered on a graphical user interface for the user.

Figure 6 System’s DFD-0 diagram of data flows

Database normalization tables and their structure

Database tables are created accordingly to the data flow diagram (Figure 6).

Table “Logins”

The "Logins" table used in the database is designed to store data for a user's

login to the system. This will ensure the use of the authorized person system.

Fields that make up the table (Figure 7):

1. “userID“ – Primary key

2. “Username“– unique key, users name

3. “Password“ – pre-generated password for the user to use while logging

into the system

Figure 7 Database table „Logins“ structure

Table “JudesioData”

The purpose of the table is to store information about the operation of the

controlled lighting unit. Fields that make up the table (Figure 8):

1. “judesioID“ – primary key

2. “Aptikas“ – operation description field

3. “Laikas“ – automatic timestamp of the record.

Figure 8 Database table „JudesioData“ structure

Table “ledBrightness”

The purpose of the table is to store information for the settings of the controlled

lighting device that the user will be able to change when logged into the system.

Fields that make up the table (Figure 9):

1. “BrightID“– primary key

2. “Brange“– light intensity parameter of the controlled lighting unit

3. “Drange“– parameter of the controlled lighting unit light up time delay.

Figure 9 Database Table „ledBrightness“ structure

All database tables are created using the graphical user interface software

package phpMyAdmin.

4.4 Lighting unit and Arduino microcontroller design

For the implementation of this work, it was chosen to design and create a 12 step

stair lighting device, which, after integrating PIR motion sensors, would

sequentially light up the 12-volt LED strips in the stair steps, at the exact moment

when the movement directed to the stairs is detected. Two LED parameters could

be changed by the user, the LED brightness and sequential light up delay time.

The total count of stair steps is used to generate a rough estimate of calories

burned while using the stairs.

Figure 10 Lighting unit and Arduino microcontroller connection scheme

The diagram of the design stair lighting device shows the connection of all

components used (Figure 10). The components included:

1. Twelve IRFZ44N N type MOSFETS

2. Twelve 12 Volt LED Strips

3. Arduino Mega 2560 R3 microcontroller

4. 12 Volt power supply

5. PIR motion sensor

A 12V power supply must be used to feed the 12 volt appliances. However, the

working voltage of the Arduino mega 2560 R3 microcontroller is only 5 volts,

therefore, in order to control 12 volt devices, semiconductor devices – transistors

or relays – need to be inserted into the electrical circuit (Seedstudio, 2020). For

this work, the use of type N conductive channel metal, oxide and semiconductor

field transistors (MOSFET) IRFZ44N has been selected, which has three control

electrodes – G “Gate”, D “Drain” and S “Source” (Figure 11).

Figure 11 IRFZ44N MOSFET electrodes

LED strips and IRFZ44N MOSFETS

The poles of the negative electric current source of all LED strips are separately

connected to the MOSFET IRFZ44N Drain electrodes. The positive electric

current poles of the LED strips are commonly connected to the 12-volt power

supply positive pole. The MOSFET source electros are commonly connected to

the negative pole of the power supply, and the remaining gate electrodes of the

MOSFETS are connected in series with the Arduino mega 2560 R3

microcontroller PWM (Pulse-width modulation) ports labeled 2–13, which,

depending on the transmitted signal complete the circuit between LED strips and

the 12V power supply. IRFZ44N MOSFET will act as a switch, controlled by

Arduino microcontroller, whose GND (ground) port is also connected to the 12V

power supply negative pole in order to complete a common electric circuit.

HC-SR501 PIR motion sensor and Arduino Mega 2560 R3

The purpose of the motion sensor is to ensure that led strips light up

automatically, when user comes close to the stairs. After detecting movement,

the sensor will transmit a HIGH signal to the Arduino microcontroller, which will

initiate a sequential LED light-up of the stairs. The HC-SR501 motion sensor has

a working electric voltage of 4.5V to 12V, so it can be fed using the 5V output port

of the Arduino. The PIR motion sensor used has three pins GND - Ground,

HIGH/LOW Dout - digital signal transmission pin and Vcc - positive electrical

current connector (). When using the OUT pin, depending on whether the sensor

has detected movement, a HIGH or LOW signal will be transmitted to the

controller.

Table 4 PIR motion sensor and Arduino connection table

HC-SR501 PIR pins Arduino mega 2560 R3 ports

Out(Output) Digital 50 (Input)

GND GND (Output)

Vcc 5V (Output)

Table 4 represents the motion sensor and Arduino microcontroller pin

connections correspondingly.

Figure 12 HC-SR501 PIR motion sensor

The sensor detection sensitivity and latency are adjusted physically using the

potentiometers.

Arduino microcontroller code

To program the logical work and parameter management scenario of the stair

lighting device, Arduino IDE software is used in the Raspberry Pi SBC.

Arduino board is connected to the Raspberry Pi 3 B+ using a USB serial cable,

which provides the needed 5 V power as well as ability to send and receive data

from the computer.

Variable and pin declaration

Based on the connection diagram, the program initially defines the connections of

all IRFZ44N MOSFET gate electrodes used, PIR motion sensor’s Dout to

microcontroller ports, and other variables that are assigned as output in the void

setup() function. Serial line bandwidth equal to 9600 bits per second (Figure 13).

Figure 13 Pin declaration

Serial line read and variable assignment using ASCII encoding and

decoding

Arduino uses ASCII character encoding for electronic communication over the

serial line, meaning that various encoded data could be either sent or received in

order to control various signal outputs for the connected electronic appliances, in

this case - 12 V LED strips and PIR motion sensor. Using function “void loop()”

ensures that the information is transmitted or read in a real-time cycle. Depending

on the information received, ASCII values are assigned to corresponding

variables inside the code (Table 5).

Table 5 ASCII value to variable assignment table

ASCII values Equivalent variable

118 brightness = 20;

108 brightness = 80;

109 brightness = 120;

107 brightness = 255;

104 X = 500;

111 X = 1000;

112 X = 1500;

116 X = 2000;

Figure 14 ASCII value assignment to variables

Switch statement is used to help assign each ASCII value read from the serial

line to the corresponding variables.

Lighting unit logical operation script

After variable assignment, using the same loop cycle, the logical operations are

scripted. The variable “brightness” is used with “analogWrite” function, which

sends the signal to the designated PWM pins, lighting up the corresponding LED

strips. The variable “X” determines the latency it takes for each LED strip to light

up.

Variable “val” using function “digitalRead()” receives information from PIR

sensor, where “HIGH” is equal to motion detected and “LOW” – movement is

absent. Using the “If” statement, depending whether the motion has been

detected, a sequential LED light up is initiated.

Figure 15 microcontroller‘s logical operation code

When the motion sensor senses the movement, a string “motion detected” is

printed out into the serial line, where later it could be read by the Raspberry Pi

and saved as an entry in the database server, from which it could be rendered for

the user of the system (Figure 15).

4.5 Data communication between mariaDB database server and Arduino

mega 2560 R3

For data transfer and storage between the database and the Arduino, it will be

necessary to write a Python script which would operate this task. The Python

script is hosted and executed on the Raspberry Pi. The data will be transferred

over a USB serial cable connected to the Arduino. Data flow scheme is provided

below (Figure 16).

Figure 16 Software subsystem dataflow scheme

Python function to send data to the microcontroller

Figure 17 Python code „connect.py“

Function to send data from the database to the Arduino microcontroller

The script is started by declaring a new function “brightness()” (Figure 17). Inside

the function the Serial line variable is declared, in this case “ttyACM0” port is

used, where the Arduino is physically connected using a USB cable.

A “while True” loop is initiated which ensures that the code runs continuously and

a connection to the mariaDB server is set, where SQL syntax queries will be sent

to the existing table “ledBrightness”.

Based on MySQL reference manual Dev.mysql (2021), SQL query is generated:

“SELECT Brange, Drange FROM `ledBrightness` WHERE `BrigthID` = 3“. Query

results are assigned to the “brecords” array. The first value being Brange is

assigned to the “brightnessVar” variable and the second value of the array

“Drange” is assigned to a new variable – “delayvVar”. The two new variables are

then checked using “if” statements and their matches are assigned to characters

whose ASCII encoding is in decimal form (Table 6).

Table 6 Database data to character variable assignment

Variable check
statement

Variable assigned
character

Assigned character
ASCII encoding

if delayVar == "500": h 104

if delayVar == "1000": o 111

if delayVar == "1500": p 112

if delayVar == "2000": t 116

if brightnessVar == "0": v 118

if brightnessVar == "1": l 108

if brightnessVar == "2": m 109

if brightnessVar == "3": k 107

When the corresponding letters are assigned, they are sent using the function

"ser.write(str())".

Python code to read data from the microcontroller

Figure 18 Python code „ardtorp.py“

Function to send data from the Arduino microcontroller to the database

To read data from the microcontroller, function “motionDetection()” is declared

(Figure 18). In the “While True:” loop a variable lines is created, which with the

help of function “ser.readline()” reads the previously declared serial line. Using a

simple “if” statement to check for a string, an operation can be initiated to send an

SQL query to the database. If the string is correct to the condition, an SQL query

“INSERT INTO JudesioData (Aptiktas) VALUES ('Judesys')” is performed. The

result of the query is a new entry in the database table “JudesioData”.

4.6 Graphic user interface (GUI) model

4.6.1 System’s logical model

Main user of the system – authorized person. The user who successfully

connects to the system using login details can change parameters of the lighting

unit connected to the Arduino microcontroller:

1. LED strip brightness

2. LED strip light up latency (time delay).

Logged in user can also review information about the operation of lighting unit

and finish his session by logging out of the system. System’s use case diagram

provided below (Figure 19).

Figure 19 System‘s Use Case Diagram

Login to the system:

The process is designed to authenticate the user. It contains your login and

password. After successful login, the user can continue to work in the system.

Lighting unit parameter selection:

After successfully connecting, the user can change the parameters for the

controlled lighting unit. There are two of these parameters.

 First parameter selection:

The first parameter is to change the brightness of the LED stripes of the

designed lighting unit.

 Second parameter selection:

The second parameter is intended to change the time of illumination of the

LED strips of the designed lighting unit.

Lighting unit information review:

After successfully connecting, the user can view the information of the designed

lighting device. Provided in textual form, the information includes:

 Number of how often the stairs were used in the past week.

 Number of calories roughly burned during the last week when using stairs.

 Number of times the lighting unit itself has activated during the past week.

Logout from the system:

Disconnect an authenticated user from the system to complete the session.

Activity - Login to the system:

In the provided Figure 20, it can be seen that the user after typing in the system’s

IP address into the web browser URL search bar is redirected to the login form

page. In this form, the user must provide accurate login details: login and

password. When the form is submitted, the system checks the data provided by

the user with the data in the system database. If the data provided by the user

does not match, the user receives a message that the submitted data was not

correct and the user is redirected to re-fill in the login form. If the data retrieved in

the form is correct, a login session is initiated that ensures that the system is

used by an authorized person and that the user is redirected to the system home

page.

Figure 20 Login to the system activity diagram

Activity - Lighting unit parameter selection:

The following Figure 21 for changing settings for the controlled lighting unit shows

that when a user logs on to the system home page, the system checks whether a

sign-in session has been started. If the answer is no, the user is redirected to the

filling in the system login form page, if the answer is yes, the user can continue

working in the system and change the settings of the managed device. Session

verification is designed to ensure that the system is used by an authorized user.

The authorized user continues to change the first or second setting of the lighting

unit, after providing the selected instructions, the system reads them and updates

them to the corresponding device parameter data in the database. The user

receives a message about the successfully changed settings.

Figure 21 Lighting unit parameter selection use case diagram

Activity - Lighting unit information review:

Figure 22 shows that just as in the previous activity diagram, a sign-in session

check is initiated. If the answer is yes, the system sends a query to the database

to retrieve last week's records of the lighting unit operation. As of the previous

week, the following information is generated, which is provided to the user on the

website in text form:

1. Number of times stairs were used in the last week – the system displays

the message using the number of entries for the operation of the lighting

unit stored in the database.

2. Number of calories roughly burned while using the stairs during the last

week – the system displays the message using the formula:

𝐵𝑢𝑟𝑛𝑒𝑑 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠 = (𝐿 × 𝐾) × 𝑆

Where, L – Number of stair steps;

 K – Approximate number of calories burned when climbing one

step of the stairs (0.17 cal);

 S – Number of activation records of the lighting unit in the last

week.

3. Number of lighting unit activation in the last week - the system displays the

message using the number of trigger records of the lighting device in the

database.

Figure 22 Lighting unit information review activity diagram

Activity - Logout from the system:

Figure 23 shows that when a user clicks "Logout", the system stops the login

session and directs the user to fill in the login form again. Stopping the session

strengthens the security of the system, against potential attackers.

Figure 23 Logout from the system activity diagram

All activity diagrams describe system’s GUI model behavioral process.

4.6.2 User interface structure

A web browser is required to log in to the system. The user who entered the

system address in the search box will be taken to the login form page of the

system graphical interface.

Main graphical interface web page

When a user enters the system IP address in the browser, the following will be

displayed until a successful login to the system is completed (Figure 24).

Figure 24 Login web page structure

Graphical interface’s login page form field specifications are mentioned below

(Table 7).

Table 7 Login web page field specification

Field Field type Field characteristics Field description

Username Text Input characters aren’t
hidden

Text input field where
username data is

typed in

Password Password Input characters are
hidden

Password type field
where user password

is typed in

Button_1 Button Type=”submit” Form send button

After a successful login to the system, the main page of the graphical user

interface is opened (Figure 25).

Figure 25 Main page structure

The main page uses a style template written in the CSS programming language

as all other pages of the system user's graphical interface site, so the graphical

styles of the pages on the interface site remain the same. The field specification

table on the main graphical interface page explains the purpose of the site

elements (Table 8).

Table 8 Main web page field specification

Field Field type Field characteristics Field description

Nav_bar Header
Three list items and
one button

Systems page
navigation bar

List_item1 Php script
Program code for real
time printing of date
and time

List_item2 href Clickable
Main graphic user
interface page link

List_item3 href Clickable
Information review
page link

Logout_button button Clickable
Session suspension
button

Label1 text Visible all the time

Text to describe
lighting unit
parameter range
slider

Range_slider1

Range slider

Four space values
LED brightness
parameter range
slider

Button_1 button
Button to change
settings into the
database

Label2 text

Text to describe
lighting unit
parameter range
slider

Range_slider2

Range slider

Four space values
LED light up latency
parameter range
slider

Button_2 button
Button to change
settings into the
database

Content_box Php script

On the main page of the system graphical interface, the user controls the lighting

unit parameters by selecting the settings of the range sliders and pressing the

confirmation button. The confirmation buttons initiate requests on the Web server

to pass the selected information to the database. Pressing the "Information" item

on the navigation bar redirects user to the informational page of the graphical

interface, which is intended to provide the user with information about the

statistics of the controlled lighting unit in the last week (Figure 26).

Figure 26 Information review web page structure

Graphical interface’s information review page field specifications are mentioned

below (Table 9Table 7).

Table 9 Information review web page field specification

Field Field type Field description

Label1 Text Text field to describe
information

Container Php script Field to generate
SQL query

information from the
database

The navigation bar used on the main graphical page remains in the information

review page.

4.7 Software architecture design

All the software in the project is hosted on the Raspberry Pi single-board

computer, where the Web server supports the lighting system‘s web pages that

the user can use to connect to the system itself, change the controlled lighting

unit parameters and view their operation information. All data is stored in the

designated MariaDB database. For system implementation back-end Web Server

programming language „PHP“ and interactive programming language „Python“

are used to create common communication between the database and the

Arduino microcontroller. Software module diagram that makes up the system is

provided below (Figure 27).

Figure 27 System‘s software module diagram

System software module functions:

1. Mysqlicon.php - This module is a code written in PHP programming

language, the purpose of which is to store information for the connection of

a web server to the MariaDB database variables. The module stores the

database address, database name, database user name, and password.

By storing database login data in a separate, protected document that is

not accessible to pottential attackers or users through a web browser,

protects the database and the data contained therein. The module is

mapped to all other modules that initiate database connections.

2. Login.php – The purpose of the module is to exclude any unauthorised

user from the control system. The login form in the module allows the user

to log into the system using the login and password which is encrypted in

the database using the PHP programming language bcrypt algorithm. After

the user enters the login details and presses the login button, the login to

the database begins, which checks whether the data filled in the user form

corresponds to those in the database and if the answer is yes, the user is

redirected to the main module of the system – index.php.

3. Index.php - The main module of the smart home lighting system, in which

the settings or parameters of the controlled lighting unit are changed. In

the case of this project, the parameters of the system-designed stair

lighting unit. After the user changes the selected parameters and presses

the "change settings" button, the change data is updated in the database,

where later this parameter data is transmitted to the Arduino

microcontroller using a physical USB serial connection to the Raspberry Pi

and a Python programming language written script – connect.py

4. Connect.py – Python programming language written module designed to

transmit user-changed parameter instructions to the microcontroller using

a serial USB connection. The script checks every 5 seconds that the

database has not changed the corresponding parameter settings, converts

the data from the database into simple characters that would be

understandable to the Arduino in ASCII encoding form and sends it via

Serial line. Module is hosted on the Raspberry Pi SBC.

5. Ardtorp.py – A Python script, hosted on the Raspberry Pi SBC used to

read data from the Serial line that is physically connected to the Arduino

microcontroller. The read data is correspondingly sent to MariaDB

database table. In this case, information about lighting unit operation is

communicated. Later this information is rendered graphically to the user

using module – info.php

6. Info.php – Module used to render information from the database server

about the coontrolled lighting unit. A running script connects to the

database server, using an SQL query collects the corresponding data from

the tables and renders it in a text form for user to review.

7. Arduino.ino - This module is the Arduino microcontroller‘s task script,

controlling the lighting unit activity and parameters. After receiving

information from the connect.py module via the serial line, decodes it and

assigns the given values to the corresponding variables that change the

parameters of the lighting unit. Reads digital data from the connected PIR

motion sensor and accordingly lights up the LED strips by sending signal

to the MOSFETS of the circuit, as well as send information to the Serial

line that the sensor has activated. This information is then uploaded to the

database using the ardtorp.py module.

All “.php“ module codes are written using the php programming language syntax

and technology documentation based on W3schools (2021). The “.py“ module

codes are wrtten using Python technology metodical documentation base on

Devguide.python (2021).

Figure 28 Deployment diagram

The deployment diagram shows the physical compatibility of the configuration

between the software and the hardware. All components interact with each other

to form a common communication of data flow (Figure 28).

4.8 PROJECT RESULTS

System’s prototype example of the project has been developed using IoT

technologies, single-board computers and microcontrollers, hardware and

software components and other tools that make up the system.

Based on the project design part, user interface model and software architecture

design a prototype of user’s graphical interface and an information subsystem for

common communication between system’s components were developed on the

Web Server. A prototype of the web management system is provided below.

Figure 29 Implemented Login page

Figure 29 shows that when a user enters a system private IP address in a web

browser on a local area network, the user is redirected to the initial page of the

home lighting system, where the login data form is filled in for authorization.

After successfully filling in the login form, the user is redirected to the main page

of the system (Figure 30). The parameters of the designed stair lighting unit are

changed using the provided graphic interface range sliders. The header section

of the page contains a navigation box that directs the user to the device's

information review page. In this navigation box, the user can also finish working

in the system by pressing the "Logout" button. After selecting the wanted

parameters, the button "Change setting", the selected value are then updated in

the database table correspondingly and sent to the Arduino microcontroller.

Figure 30 Implemented Main page

The provided illustration shows that when the user presses the "Information"

button in the navigation box of the home page, the user is redirected to the

information review page, information about the operation of the lighting unit

operating in the system is provided (Figure 31). The information provided reflects

the data for the last week. Therefore, if the device has not been used in the last

week, the rendered database information does not contain records and displays

the number "0" in their place.

Figure 31 Implemented Information review page

On the Raspberry Pi we can examine the data communication python script

(Figure 32). Using the terminal and typing in command: python

script_filename.py. The script is initiated, and the character prints show us that

the database data read is working and data is being transmitted over the serial

line to the Arduino microcontroller.

Figure 32 Executed „connect.py“ Python script

By adding an additional „print brecords“ line to print out the received data from

the database to the script we can see that the transmitted data is changing in real

time while the script is running more clearly (Figure 33).

Figure 33 Executed „connect.py“ script with database record data print

Design suggestions for future development

The system is designed to be accessible only from private network, however it is

possible to allow users be able to access it from public networks by implementing

network address translation (NAT) rules to the router of which the system would

be connected to. By allowing system to be accessed from public networks their

vulnerabillities are easier to exploit, and without a doubt increase the risk of

unwanted connections. Suggestions to increase security:

 Implement a secure and encrypted communication channel between

client’s browser and the server by using SSL/TLS certificate.

 Implement firewall rules of the router to block unwanted IP address

connections.

 Implement firewall rules of the router to block connections with unwanted

transport protocol (TCP) and User datagram protocol (UDP) port numbers.

Current smart home lighting system project’s design uses a USB serial cable to

both power the Arduino and transfer data to the Raspberry Pi, however an

Arduino board with a Wi-Fi module could be used for data transfer, this would

allow the Raspberry Pi to be placed anywhere in the house while still maintaining

common communication with the Arduino board or other system’s potential

components.

5 CONCLUSIONS

1. Inspected the current market for smart home control systems Fibaro

HomeCenter and Apple HomeKit, their identified advantages: systems are

complete, have many functions; and disadvantages: extremely high prices,

compatible only with specific devices.

2. Web development and IoT project programming languages and common

security breaches of web systems and applications have been researched

and inspected. Equipment chosen to achieve the work goal: Raspberry Pi

3b, Arduino Mega 2560 R3, Apache2 web server, mariaDB database, Php

internal programming language, HTML programming language, Python

programming language.

3. The selected Web server and database are setup and configured for

storing and sharing information between devices and home lighting unit

system components on the local network.

4. A 12 Volt LED strip stair lighting unit has been designed and developed to

be controlled by the arduino microcontroller with the help of a PIR motion

sensor and IRFZ44N N type MOSFETS. Written Python software scripts

for single-board computer and controller.

5. A graphical user interface was designed and implemented onto the

configured apache2 Web server, user is able to control two parameters of

the controlled lighting unit by connecting to the system via a web browser,

as well as review it‘s operational information.

6. System`s prototype task operation was inspected.

The home lighting system has been researched and designed, which

automates lighting devices in user‘s home, thus providing additional comforts

and the ability to monitor the operation of the lighting units in a web browser.

An experimental prototype using IoT technologies, single-board computers

and microcontrollers, computer network technologies, programming

technologies has been developed. A prototype system has been designed to

allow the installation of new controlled appliances if necessary.

REFERENCES

Mohan Krishnamurthy, Eric S. Seagren, Raven Alder, Aaron W. Bayles, Josh

Burke, Skip Carter, & Eli Faskha 2008. Chapter 11 - Apache Web Server

Hardening. In How to Cheat at Securing Linux (pp. 383-401). Elsevier.

Ramoška, A. 2012. Apsaugos nuo SQL injekcijų el.verslo svetainėse

metodikos sudarymas ir tyrimas: Magistro darbas. Kaunas: Kauno

technologijos universitetas. Prieiga per eLABa – nacionalinė Lietuvos

akademinė elektroninė biblioteka.

Dow, Colin 2018. Internet of things programming projects: Build modern IoT

solutions with the Raspberry Pi 3 and Python. Birmingham: Packt Publishing.

Monk, Simon 2016. Programming Arduino: Getting started with Sketches (2nd

ed.). New York, N.Y.: McGraw-Hill Education.

Devguide.python.org 2021. Python developer‘s guide. Available

at:https://devguide.python.org/ [Accessed 2021-02-05].

Httpd.apache.org 2021. Apache2 official Web Server documentation.

Available at: https://httpd.apache.org/docs/2.4/ [Accessed 2021-02-06].

Dev.mysql.com 2021. Official MySQL documentation. Available at:

https://dev.mysql.com/doc/ [Accessed 2021-02-07].

Dev.mysql.com 2021. Python and MySQL connection. Connecting to MySQL

Using Connector/Python. Available at: https://dev.mysql.com/doc/connector-

python/en/connector-python-example-connecting.html [Accessed 2021-02-

15].

W3schools.com 2021. Php and other programming language online learning

environment. PHP Tutorial w3schools.com. Available at:

https://www.w3schools.com/php/ [Accessed 2021-02-20].

 Seeedstudio.com 2020. Arduino High voltage device control. Available at:

https://www.seeedstudio.com/blog/2020/01/03/arduino-tutorial-control-high-

voltage-devices-with-relay-modules/ [Accessed 2021-03-01].

W3Techs.com 2021. W3Techs provides survey information about the usage

of technologies on the web. W3techs.com Usage statistics of web server.

https://devguide.python.org/
https://httpd.apache.org/docs/2.4/
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html
https://dev.mysql.com/doc/connector-python/en/connector-python-example-connecting.html
https://www.w3schools.com/php/
https://www.seeedstudio.com/blog/2020/01/03/arduino-tutorial-control-high-voltage-devices-with-relay-modules/
https://www.seeedstudio.com/blog/2020/01/03/arduino-tutorial-control-high-voltage-devices-with-relay-modules/

Available at:https://w3techs.com/technologies/overview/web_server

[Accessed 2020-03-28].

Blog.ptsecurity.com 2017. Most common Web system attacks. Positive

Technologies – learn and secure. Available at:

http://blog.ptsecurity.com/2017/09/web-application-attack-statistics-q2.html

[Accessed 2021-03-05]

Alexander S. Gillis 2019. Definition of Internet of Things (IoT). Available at:

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

[Accessed 2021-02-29].

Gómez, A., Cuiñas, D., Catalá, P., Xin, L., Li, W., Conway, S., & Lack, D.

(2015). Use of single board computers as smart sensors in the manufacturing

industry. Procedia engineering, 132, 153-159.

Güven, Yılmaz, et al. "Understanding the concept of microcontroller based

systems to choose the best hardware for applications." (2017).

https://w3techs.com/technologies/overview/web_server
http://blog.ptsecurity.com/2017/09/web-application-attack-statistics-q2.html
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

