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Artificial intelligence is a vastly growing and developing field and due to the high use of 
computed tomography imaging worldwide, we wanted to find out what kind of uses AI has 
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1 Introduction 

The use of computed tomography (CT) has quickly grown in recent decades because it 

allows for visualization of anatomical structures with high temporal and spatial resolution. 

However, with the substantial amount of CT scans being performed every year, the ion-

izing radiation implicit to CT has become a concern. Therefore, there has been growing 

interest in dose reduction in CT examinations. (Lee – Seeram 2020.)  

In computed tomography, artificial intelligence (AI) can enable further reductions in pa-

tient radiation dose through automation and optimization of data acquisition processes, 

including acquisition parameter settings and patient positioning. After data collection, 

optimization of image reconstruction parameters, image denoising methods and ad-

vanced reconstruction algorithms can enhance many aspects of image quality, espe-

cially by reducing image noise and allowing for the use of lower radiation doses for data 

acquisition. In addition, AI-based methods that can automatically segment organs or de-

tect and characterize pathology have been brought into clinical practice to bring automa-

tion, increased sensitivity, and new clinical applications to patient care, increasing the 

benefit to the patients. In conclusion, since the introduction of CT, many technical ad-

vances have enabled increased clinical benefit and decreased patient risk, not only by 

reducing radiation dose, but also by lessening the probability of errors in the performance 

and interpretation of medically justified CT examinations. (McCollough – Leng 2020.) 

The main theme of this thesis project is ‘AI based solutions in computed tomography’. 

We chose this theme because AI-technology is rapidly developing, and it will influence 

radiographers’ and radiologists’ work more and more in the future. Also, in addition to 

this thesis we were involved in an innovation project with a similar theme. That project 

was done in a multi-national and multi-professional group and it inspired us to choose 

this subject for our thesis and helped us to get familiarized with it. 

In this thesis, we plan to map out and review several different articles about artificial 

intelligence-based solutions in CT imaging, mainly those related to CNN. We want to find 

out what kind of solutions there are already in use and what their main benefits and 

disadvantages are. We will only select scientific articles that have been written in the 

past five years, are written in English and have been peer reviewed. 
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2 Abbreviations 

3D= Three-dimensional 

AI= Artificial intelligence      

ANN= Artificial neural network 

CT= Computed Tomography 

CNN= Convolutional neural network 

DCNN= Deep convolutional neural network 

DL= Deep learning 

GPU= Graphics processing unit 

HU= Hounsfield unit 

ICT= Information and communications technology 

ML= Machine learning 

IR= Iterative reconstruction 

FBP= Filtered Back Projection 

MBIR= Model Based Iterative Reconstruction 

ASIR= Adaptive statistical iterative reconstruction 

AEC= Automatic exposure control 

DLR= Deep learning reconstruction 

SNR= Signal-to-noise ratio  

ROI= Region of interest 

PSNR= Peak signal to noise ratio  

MSE= Mean squared error 

RMSE= root mean-square-error 

SSIM= structural similarity 

MAP-NN= Modularized adaptive processing neural network 

3 Computed tomography 

Computed tomography, CT for short, is an imaging system that uses a narrow beam of 

x-rays to produce signals which are then processed by the machine’s computer to pro-

duce cross-sectional images (“slices”) of the human body. These images contain much 

more information than regular x-ray images and they can also be digitally put together 

by the machine’s computer to form a 3D image. (National Institute of Biomedical imaging 

and Bioengineering, 2019.) 
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In CT, x-rays are emitted from multiple angles and the detectors in the scanner measure 

the difference between x-rays that are passed through the body and x-rays that are ab-

sorbed. This is called attenuation and its amount is determined by the density of the 

imaged tissue. Different tissues are assigned a Hounsfield Unit (HU) or a CT number. 

Tissues with strong absorption (high attenuation coefficients) have a high Hounsfield 

value and are white in the image, while tissues with weak absorption (low attenuation 

coefficients) have a low HU value and are black in the image. Air has a HU of a -1000, 

fat has one of -70, water has a value of 0, blood has one of 70 and bone has the highest 

value of 1000. (Barnes – Quach 2018.) 

Computed tomography is an ideal imaging modality in emergency cases because of its 

ability to get detailed information in a very short amount of time. But CT is also a valid 

option when wanting to identify different diseases or injuries in a non-emergency case. 

It can be used to image any part of the body, but it has become an especially good tool 

in detecting possible lesions or tumors in the abdomen, abnormalities in the heart, clots 

or bleeds or tumors in the brain, excess fluid or pneumonia in the lungs and specifically 

complex bone fractures or eroded joints. (National Institute of Biomedical imaging and 

Bioengineering 2019.) 

3.1 Radiation doses in computed tomography 

When radiation passes through the body, the x-rays that are not absorbed are used to 

create the image and the radiation amount that is absorbed, counts to the patient’s over-

all radiation dose. (Radiologyinfo.org 2020.) 

Due to its isotropic spatial resolution at 0.3–0.4 mm and fast scanning speeds, CT has 

established itself as a primary diagnostic imaging module in the last two decades. It al-

lows doctors and radiologists to diagnose diseases and injuries more quickly, precisely 

and more safely. Still, a potential risk of radiation-induced malignancy exists, as it does 

in all radiation induced imaging. So, naturally every single CT examination must be ap-

propriately justified by clinicians and radiologists for each individual patient. Also, for 

each examination, all technical aspects must be optimized, so that the required level of 

image quality can be acquired while keeping the dose as low as possible. (Yu – Liu – 

Leng – Kofler – Ramirez-Giraldo – Qu – Christner – Fletcher – McCollough 2009.) 
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Radiation doses in computed tomography can be calculated in many ways, for example 

scanner radiation output which is represented by CT dose index (CTDIvol), organ dose 

(specific radiation risk on an organ) and effective dose which is usually expressed by the 

units of mSv and represents the whole body dose. (Yu et al., 2009.) 

The approximate effective dose of a normal chest CT is 7 mSv, which compares to about 

2 years of natural background radiation, whereas the effective dose of a normal chest x-

ray is only 0.1 mSv. The approximate effective dose of a head CT is 2 mSv and it’s 

comparable to about 8 months of natural background radiation. The dose for an abdo-

men and pelvis CT is 10 mSv, which compares to 3 years of natural background radia-

tion. But repeating that same examination with and without contrast agent, shoots the 

effective dose up to 20 mSv. (Radiologyinfo.org 2020.) 

Though the ALARA principle should always be considered, radiation dose should only 

be reduced if the diagnostic image quality isn’t sacrificed. Therefore, to understand how 

to reduce the radiation dose in computed tomography, it is important and necessary to 

be familiar with the relationship between image quality and radiation dose. (Yu et al., 

2009.) 

The following are the general principles of ALARA: justification, optimization and limita-

tion. Justification means that the exam needs to be medically indicated. Optimization 

means that the exam must be done using doses as low as reasonably achievable 

(ALARA), while consistent with the diagnostic task. The third one, limitation, means that 

while dose levels to people who are exposed to radiation through work (for example 

radiologists and technologists) are limited to levels which are recommended by organi-

zations, those same limits are not typical for medically necessary procedures or exams. 

(McCollough – Primak – Braun – Kofler – Yu – Christner 2009.) 

3.2 Dose reduction strategies in CT 

Thanks to the increasing number of CT exams, radiation exposure to society has signif-

icantly increased since its introduction. There are ways of reducing that dose, however, 

and the most important way to reduce CT-radiation exposure is to use dose-reduction 

techniques including tube current modulation, organ-specific care, beam-shaping filters, 

and most importantly optimization of CT parameters. Fundamental parameters of every 
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CT protocol include tube current (mA), tube voltage (kV), pitch, voxel size, slice thick-

ness, reconstruction filters, and the number of rotations. It’s very important to realize that 

a different combination of parameters enables different image qualities while delivering 

the same radiation dose to the patient. (Willemink – Noel 2018.) 

Unlike traditional radiographic imaging, a CT image never really looks “over exposed” 

so, it’s neither too dark nor too light. The nature of computed tomography data makes 

certain that the image always appears properly exposed. Hence, CT users are not tech-

nically obliged to decrease the tube-current-time product (mAs) for smaller patients, 

which might result in a larger radiation dose for these patients. It is, however, an im-

portant responsibility of every CT operator to take patient size into account when select-

ing the parameters that affect radiation dose, the most basic of which is the mAs. 

(McCollough et al., 2009.) 

Tube potential and tube current exposure time can both be altered in computed tomog-

raphy to give the appropriate exposure to each individual patient. However, users most 

commonly standardize the tube potential (kV) and gantry rotation time (s) for a given 

clinical application. The fastest rotation time is mostly used to minimize artifact and mo-

tion blurring. Also, the lowest kV consistent with the patient size should be selected to 

maximize image contrast. (McCollough et al., 2009.) 

3.2.1 Iterative Reconstruction (IR) 

Advances in computing power have allowed for the development of software-based 

methods for iterative image reconstruction (IR) in computed tomography. The most com-

mon technical principle of IR algorithms is reconstructed image data by application of 

filters based on statistical data models or mathematical models of the CT imaging pro-

cess and/or the iterative improvement of measured projection. Compared to filtered back 

projection (FBP) these IR algorithms enable the reduction of image noise and the im-

provement of overall image quality. Since noise and overall image quality are directly 

linked to the radiation exposure, a reduction or suppression of noise via the application 

of IR algorithms consequently allows for a reduction in patient dose. (Stiller 2018.) 

The primary idea of IR is the calculation of image data truly corresponding to acquired 

projection data. When applying the mathematical definition of an iterative algorithm to 

CT image reconstruction, an ideal IR process is made up of a cycle of forward and back 
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projection steps with repeated transition from projection, which is the raw data, to image 

space and vice versa, iteratively improving reconstructed image data in the process. The 

forward projection step produces synthetic projection data that is compared to measured 

projection data. The back-projection step cultivates a correction determined from the dif-

ference of simulated and measured projections to image space where it is applied as an 

update to the current image data estimate. An ideal IR method therefore consists of the 

following steps; (1) Based on an initial image estimate, synthesized projections are sim-

ulated by forward projection (transition from image to projection space). (2) By compari-

son of synthesized projections to measured projections a correction term is calculated 

from their difference. (3) The current image estimate is updated by back projection of the 

correction term (transition from projection to image space). (Stiller 2018.) 

3.2.2 Filtered back projection (FBP) 

Filtered back projection (FBP) has been the standard of reference for reconstructing CT 

image data for the past four decades. Due to the relatively low complexity of the under-

lying linear transformation from projection space (raw data) to the image space, aka the 

back projection, the method is fast and strong and only requires limited computing power 

for CT image reconstruction. Before back projection, calculated projections are first con-

voluted with a so-called kernel or kernel, controlling the characteristics of reconstructed 

image data. The filter is necessary to make up for the blurring, which results from nonu-

niform data sampling essential to the CT acquisition process and restores or enhances 

the edges of the structures of the imaged object. Filter choice has a direct influence on 

spatial resolution and image noise, with higher filtration enabling a better definition of 

edges and a clearer delineation of structural detail but enabling an indirect increase in 

image noise. In clinical practice, several kernels with different characteristics are availa-

ble. ‘Soft’ kernels, which reduce image noise but impair image sharpness optimized for 

visualization of low-contrast detail, and ‘sharp’ kernels, which enhance the depiction of 

fine details in structures of high contrast but are subject to high levels of image noise 

impairing detectability and delineation of low-contrast structures. After the sorting of fil-

tered projections into sinograms, these are then back projected to image space along 

parallel rays by equally distributing measured total attenuation to the pixels of the image 

matrix (voxels of the image volume). CT image data thus reconstructed are the sum total 

of all back projected filtered attenuation profiles. (Stiller 2018.) 



7 

 

4 Artificial intelligence 

The term Artificial intelligence (AI) is used on machines and software that mimic human-

like cognitive abilities like learning and problem-solving skills. Most often when we think 

of AI, we are referring to computer sciences which is trying to program systems that can 

perform tasks that usually need humans to operate. With advances to computers’ com-

putational power, development of more advanced AI’s has been possible. This has led 

to an increased use of AI in healthcare. In the last ten years the amount of research 

about AI uses in healthcare has risen from 100 papers in a year to almost 1000. 50% of 

medical AI research is for CT and MRI. AI research is making huge impact in radiology 

by being the source of major innovations. (Pesapane – Codari – Sardanelli 2018.) 

In 1956, a group of computer scientists suggested that computers could be programmed 

to think and to reason. Also, that learning, or any other kind of intelligence could, in theory 

anyways, be so precisely described that a machine could simulate it. They described this 

principle as artificial intelligence. So, simply put, AI is a field focused on automating in-

tellectual tasks usually performed by humans, and machine learning (ML) and deep 

learning (DL) are specific methods of getting to this goal. (Choi – Coyner – Kapalthy-

Cramer – Chiang – Campbell 2020.) 

However, AI also includes techniques that don’t really involve any form of learning. For 

example, the subfield known as symbolic AI focuses on hardcoding rules for every pos-

sible scenario in a field of interest. These rules, written by humans, come from a priori 

knowledge of the subject and task to be completed. For example, if one were to program 

an algorithm to modulate the room temperature of an office, they likely already know 

what temperatures people are comfortable working in. So, they would program the room 

to cool if temperatures rise above a specific temperature and heat if they drop below a 

specific temperature. This kind of symbolic AI is good at solving clearly defined logical 

problems, but it often fails to perform tasks that require a higher-level of pattern recogni-

tion. These more complicated tasks are where machine learning and deep learning meth-

ods perform much better in. (Choi et al., 2020.) 
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4.1 Machine learning (ML) 

Machine learning (ML) is a subfield of AI. Machine learning is enabling systems to learn 

from data without it been specifically programmed for it.  Computational models and al-

gorithms create a network of nodes, an artificial neural network (ANN), which works like 

the neural networks of the human brain. These networks consist of numerous intercon-

nected nodes. Each node has a differently weighted value for data that goes through 

them and it’s this data that activates or deactivates them. Nodes are categorized in three 

layers, which are input, output and hidden layer. The Input layer receives data, the output 

layer is nodes processed data and the hidden layer refines calculations and reads pat-

terns from data. Machine learning uses input-and output layers and the data inputted is 

labeled and its variables are predefined. An example for ML use is clinical stress-testing 

and imaging variables to predict major adverse cardiac events (MACE). (Pesapane – 

Codari – Sardanelli 2018.)  

In training phase these nodes are taught how to react and to what data. There are three 

types of learning techniques: supervised-, semi supervised- and unsupervised learning. 

With supervised learning techniques all data used is labeled, which means that all the 

needed detail is known. For example, in a bone x-ray there is s label that tells if the bone 

is fractured or not. Semi supervised learning uses labeled and unlabeled data. In this 

technique labeled data acts as a guide and unlabeled data refines/enhances the result. 

Unsupervised learning uses only unlabeled data. Algorithms are given large quantities 

of data to process. Then the algorithms start to find patterns from data and divide them 

to groups, for example images of brains with metastases and those without.  Advantages 

of unsupervised learning is that algorithms learn to recognize finds that humans can't 

see yet. (Quantib, The ultimate guide to AI in radiology, nd.) 

4.1.1 Supervised Learning 

Supervised learning uses patterns in a training dataset to map specific features to a 

specific target so that an algorithm can make predictions on future datasets. This ap-

proach is supervised because the model concludes an algorithm from feature-target 

pairs and is informed, by the target, whether it has predicted correctly or not. The basic 

steps of supervised machine learning are; (1) acquiring a dataset and splitting it into 

separate training, validation, and test datasets; (2) using the training and validation da-

tasets to inform a model of the relationship between all the features and the target; and 
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(3) evaluating the model via the test dataset. In each of these situations, the performance 

of the algorithm on the training data is compared with the performance on the validation 

dataset. The most usual supervised learning tasks are classification and regression. 

Classification involves predicting to which category an example belongs and regression, 

on the other hand, involves predicting numeric data, such as test scores, laboratory val-

ues, or prices of an item. (Choi et al., 2009.) 

4.1.2 Unsupervised Learning 

Unlike supervised learning, unsupervised learning aims to notice certain patterns in a 

dataset and categorize individual instances in the dataset to said categories. The reason 

why the algorithms are unsupervised is because the patterns that might or might not exist 

in a dataset are not informed by a target but are instead left to be determined by the 

algorithm itself. Some of the most common unsupervised learning tasks are association, 

clustering and anomaly detection. (Choi et al., 2009.) 

4.1.3 Semi-supervised Learning 

Semi-supervised learning can be thought of as a sort of medium between supervised 

and unsupervised learning and it’s particularly useful for datasets that contain both la-

beled and unlabeled data. This situation typically arises when labeling images either be-

comes cost-prohibitive or time-intensive. Semi-supervised learning is often used for 

medical images, in cases like, when a physician labels a small subset of images and 

then uses them to train a specific model. This model is then used to classify the rest of 

the unlabeled images in the dataset. (Choi et al., 2009) 

4.1.4 Reinforcement Learning 

Reinforcement learning is the technique of training an algorithm for a specific task where 

no one answer is correct, but an overall outcome is wanted. So, it’s the closest attempt 

at modeling the human learning experience as possible because it also learns from trial 

and error rather than just data alone. Although reinforcement learning is a powerful tech-

nique, its applications in medicine are currently limited and thus it has yet to make a 

substantial impact in clinical medicine. It has however, its place in the field of computer 

science and machine learning. (Choi et al., 2009.) 
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4.2 Deep machine learning (DL) 

Deep learning is a subgroup of machine learning with the main difference being that DL 

uses deep neural networks that have hidden layers between input and output layers to 

refine calculations and predictions. Deep neural networks can use an image as an input 

directly when simple neural networks need pre-processing to derive the image features 

which will be the input for the data. (Quantib. The ultimate guide to AI in radiology, nd.) 

The deep learning approach was developed to improve on the performance of conven-

tional artificial neural networks (ANNs) when using deep architectures. A deep ANN is 

different from the single hidden layer by having many hidden layers, which distinguishes 

the depth of the network. Amidst these different deep ANNs, convolutional neural net-

works (CNNs) have become more popular for example in computer vision applications. 

In convolutional neural networks, convolution operations are used to obtain feature maps 

in which the intensities of each pixel/voxel are calculated as the sum of each pixel/voxel 

of the original image and its neighbors, weighted by convolution matrices, which are also 

called kernels. Different kernels are applied for different specific tasks, such as edge 

detection, blurring or sharpening. CNNs are biologically inspired networks imitating the 

behavior of the human brain, which contains a complex structure of cells sensitive to 

small regions of the visual field. The architecture of deep CNNs allows for the formation 

of complex features, such as shapes, from simpler features, such as image intensities, 

to decode image raw data without the need to detect specific features. (Pesapane – 

Codari – Sardanelli 2018.) 

Success in deep learning applications has been possible mainly due to the recent ad-

vancements in the development of hardware technologies, like graphics processing 

units. The high number of nodes required to detect complex patterns and relationships 

within data may result in billions of parameters that need to be optimized during the 

training phase. For this reason, DL networks require a huge amount of training data, 

which in turn increase the computing power needed to analyze them. These are the 

reasons why DL algorithms are showing increased performance and are, theoretically, 

not susceptible to the same performance plateau as the more simpler machine learning 

networks. (Pesapane – Codari – Sardanelli 2018.) 
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DL algorithms’ data-driven approach allows for more abstract feature definitions, making 

it more universal and informative. Deep learning can thus automatically measure pheno-

typic characteristics of human tissues, promising great improvements in diagnosis and 

clinical care in radiography. DL has the added benefit of reducing the need for manual 

preprocessing steps. For example, to extract predefined features, accurate segmenta-

tion of diseased tissues by professionals is often needed. Because deep learning is data 

driven though, with enough example data, it can automatically identify diseased tissues 

and hence avoid the demand for expert-defined segmentations. Given its ability to learn 

complex data representations, DL is also often strong against undesired variation, such 

as the inter-reader variability, and can therefore be applied to a large variety of parame-

ters and clinical conditions. In a lot of ways, deep learning can mirror what radiologists 

do; identify image parameters but also weigh up the importance of these parameters 

based on other factors. (Hosny – Parmar – Quackenbush – Schwartz – Aerts 2018.) 

5 Convolutional neural network (CNN) 

Convolutional neural networks are a type of a deep learning model for processing data 

that has a grid pattern, like images. It is inspired by the organization of animal visual 

cortex and designed to automatically and adaptively learn spatial hierarchies of features, 

from low-level to high-level patterns. (Yamashita – Nishio – Do – Togashi 2018.) 

CNN is a mathematical construct that is typically composed of three types of different 

layers: convolution, pooling, and fully connected layers. The first two, convolution and 

pooling layers, perform feature extraction. The third, a fully connected layer, maps the 

extracted features into a final output, such as classification. A convolution layer plays a 

key role in CNN, which is comprised of a stack of mathematical operations, such as 

convolution, which is a specialized type of linear operation. (Yamashita – Nishio – Do – 

Togashi 2018.) 

In digital images, pixel values are deposited in a two-dimensional (2D) grid. Then a small 

grid of parameters called a kernel is applied at each image position. This makes CNNs 

highly efficient for image processing, since a feature may take place anywhere in the 

image. When one layer sends its output into the next layer, extracted features can hier-

archically and progressively become more intricate. The process of optimizing parame-

ters such as kernels is called training, which is carried out to minimize the difference 
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between outputs and ground truth labels through an optimization algorithm called back-

propagation and gradient descent. (Yamashita – Nishio – Do – Togashi 2018.) 

6 Uses of AI in CT 

The idea of applying artificial intelligence to medical imaging is interesting for many rea-

sons. First, it is becoming clear that image datasets harbour a great deal more useful 

data than a human can normally process. Secondly, simple tasks, like subsequent meas-

urements and drawing contours, can be performed by computers more consistently, with-

out interference and a lot faster than humanly capable. Although the development of 

useful machine learning (ML) models will take time, it is suggested that the implementa-

tion of AI will enable physicians to start working more efficiently. (Siegersma – Leiner – 

Chew – Appelman – Hofstra – Verjans 2019.) 

When it comes to medical imaging, AI impacts all steps of the imaging chain. The first 

step is giving decision support for the selection of the suitable diagnostic imaging modal-

ity. Presently, healthcare is continuously pushing towards evidence-based decision-mak-

ing and the use of guidelines. AI-based decision-support tools can help in the selection 

of the most appropriate imaging exam for individual patients. Additionally, vendors are 

currently selling commercial products that implement ML during the examination of a 

patient. AI is implemented in image reconstruction as well, for example when using low-

dose computed tomography to obtain an optimal anatomical reconstruction, image inter-

pretation and diagnosis. (Siegersma et al., 2019.) 

6.1 Patient positioning 

A physical object, referred to as a ‘bow-tie filter’, is used to lessen the number of x-ray 

photons hitting the edges of the patient, because the patient’s thickness is smaller there 

and so, fewer photons are needed. Patients are thickest at the isocentre, so naturally, 

the filter has the lowest amount of attenuation there. Especially for patient dose optimi-

sation, the bow-tie filter is a paramount tool. However, if the patient is not centred around 

the isocentre correctly, there is discrepancy between the assumption used in developing 

the bow-tie filter and the actual patient set-up. This can cause the radiation dose to be 

misapplied in some body locations, and image noise is increased relative to when the 

patient is positioned at the isocentre. (McCollough – Leng 2020.) 
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For a while now, all CT systems have incorporated a feature, referred to as automatic 

exposure control (AEC), which is used to decrease the tube current for a patient’s thinner 

body regions and to increase the tube current for the thicker body regions. For the system 

to estimate the right attenuation of a specific body region, it depends on the information 

provided by the CT localiser image. If the patient is positioned too high or too low with 

respect to the isocentre, the system perceives the patient as being either too thin or too 

thick, respectively. This is because the spatial calibration of a CT system is performed at 

the isocentre. (McCollough – Leng 2020.) 

More recently, a certain CT manufacturer has also integrated a 3D infra-red camera into 

their CT system. The camera is located on the ceiling of the imaging room, above the 

patient table and it produces a three-dimensional image of the patient’s surface with 

depth information. Then, using an AI algorithm, it detects specific landmarks on the pa-

tient’s surface and based on the portion of the body to be scanned and the current height 

of the table, the system automatically moves the table vertically to position the patient 

such that the majority of the scanned anatomy is located at the correct isocentre, reduc-

ing errors in patient positioning significantly. (McCollough – Leng 2020.) 

6.2 Scan positioning 

Once a specific patient is centred correctly on the scanner table, the CT operator must 

dictate the specific anatomy over which data is to be acquired during the scan. This 

process also uses the localiser image. Normally, the operator must move a line manually 

to the start and end positions of the desired scan. Variations between operators can 

result in either too little or too much of the anatomy being covered. Operators have the 

habit to be somewhat careful sometimes, therefore, they often extend the scan range 

further than necessary. Therefore, some AI algorithms have been trained to accurately 

identify specific human anatomy from medical images. Based on the examination indi-

cation and hence, the instructions selected by the operator, the system can automatically 

choose the scan range that is optimally centred around the required anatomical cover-

age. (McCollough – Leng 2020.) 
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6.3 Protocol selection 

The selection of the scan protocol is a process that starts with the referring physician, 

who asks for a specific scan to diagnose a specific condition or illness. Then the radiol-

ogist helps determine what type of medical images are most suitable to diagnose that 

specific condition. Finally, the operator, who knows all the specific variations of protocols 

programmed into the scanner for any given condition, chooses the right protocol for the 

specific modality (for example CT). Currently, AI algorithms are under development that 

could lead any of these stages via a decision matrix to select the optimal protocol. How-

ever, now, a system that also takes needed medication, contrast material, or gating 

schemes into account, is not available. (McCollough – Leng 2020.) 

6.4 Parameter selection 

In order to optimise a CT examination, many parameters need to be properly and cor-

rectly selected. For data collection, these parameters are related to how the radiation is 

applied to the patient, how the patient table and x-ray tube move, and whether other 

special techniques are used during the examination. Currently, some automatic expo-

sure control (AEC) systems use simple machine learning techniques to select the optimal 

tube current and tube potential. One of the more complex decisions involves setting up 

the contrast agent injection and scan acquisition time, such that the iodine enhancement 

is most significant over the specific anatomy of interest during data acquisition. To 

achieve this, data was obtained, at many times, from many different patients as the con-

trast was injected and travelled through the patient’s body. Then based on this data, an 

algorithm can correctly predict the ultimate height and width of the resulting contrast en-

hancement curve in the patient’s aorta. In following patients beyond the training data, 

the system can predict the entire contrast enhancement curve using only a few data 

points on the rising edge of the curve, based upon which the optimal timing of the scan 

can be set as the contrast is flowing through the patient. Clinical studies have demon-

strated better consistency of contrast enhancement over the scan range in parallel to a 

reduction in the required dose of iodinated contrast agent. The reduction in iodine can 

be achieved by decreasing the rate of injection, which in turn decreases the risk of dam-

age to the vein. (McCollough – Leng 2020.) 
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6.5 Image denoising 

A thrilling implementation of artificial intelligence in CT is the use of a convolutional neural 

network-based deep learning approach to reduce image noise. This CT image denoising 

technique is trained to recognize noise and not anatomical structures, which is after-

wards subtracted from the original images to improve image quality and reduce radiation 

dose. The algorithm was trained with millions of small patches from clinical patient data 

through the abdomen. For those patient cases, reduced dose images were simulated 

using a validated noise insertion technique. Therefore, the training set contained simu-

lated low-dose images and images acquired at the clinical dose level. From this data, 

the algorithm was then taught to find image noise. The reduction in noise is substantial, 

without any loss of spatial resolution. However, AI networks are trained using specific 

datasets, which represent specific image characteristics. That’s why data acquired on 

different CT scanner models or with different acquisition or reconstruction parameters 

typically do not work well with networks that have been trained under different conditions. 

This lack of generalisability is one of the most fundamental barriers to widespread de-

ployment of deep-learning-based image denoising. (McCollough – Leng 2020.) 

7 AI based solutions in CT 

7.1 Model Based Iterative Reconstruction (MBIR) 

More recently, a more complex iterative reconstruction technique has become clinically 

available. The model-based iterative reconstruction (MBIR) is an algorithm that recon-

structs features of the projection data more accurately based on the noise system and 

the geometry of the machine. Recent studies on MBIR have also shown that it allows for 

further dose reduction over ASIR (adaptive statistical iterative reconstruction), while still 

preserving image quality. Therefore, use of MBIR appears very promising for reduction 

of radiation dose, particularly in children. Especially in children who potentially receive 

multiple CT examinations and are at a greater risk of cancer development due to rela-

tively high cumulative doses. (Kim – Yoo – Jeon – Kim 2016.) 

Most of the MBIR images with ultra-low dose were on par with the images with standard 

dose in subjective image quality. The image noise level of MBIR lessened more than 

50%, unlike that of ASIR. Adaptive statistical iterative reconstruction is a first-generation 
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iterative reconstruction technique that is broadly used in clinical practice. It provides di-

agnostically acceptable images with low-dose CT by reducing image noise and over-

coming the limitations of filtered back projection, which is not well suited for low-dose 

CT. Model based iterative reconstruction, on the other hand, which is a fully iterative 

reconstruction based not only on the noise statistics of photons and electrons but also 

on the geometry of the machine itself. It is capable of reconstructing the features of the 

projection data, requiring higher computational demand and longer processing time. 

While ASIR images can usually be reconstructed in under one minute, the creation of 

MBIR images takes a lot longer (30–60 min), making it difficult for routine clinical use, 

especially emergency cases. (Kim – Yoo – Jeon – Kim 2016.) 

7.2 Advanced Intelligent Clear-IQ Engine (AiCE)  

Advanced intelligent Clear-IQ Engine (AiCE) is a fast, low noise algorithm and a fully 

integrated DLR (deep learning reconstruction) that not only conserves extraordinary spa-

tial resolution but also simultaneously improves low contrast and noise characteristics. 

(Boedeker 2019.) 

AiCE DLR (Advanced intelligent Clear-IQ Engine Deep learning reconstruction) is a fast 

reconstruction algorithm including both image domain components and raw data to re-

duce artifacts and improve the signal-to-noise ratio (SNR) in images. The AiCE DLR 

features a highly trained, multilayer neural network to lessen the immensity of noise in 

high resolution images while preserving Precision’s detail. The combination of Precision 

with AiCE DLR allows for Ultra-High-Resolution scanning at standard clinical CT doses 

for the first time ever. During development, the AiCE DLR algorithm is taught to produce 

high SNR images through an intense training process. AiCE learns to differentiate signal 

from noise by training on specific, high quality patient data sets. These are acquired with 

high tube current and reconstructed with all the advantages of state-of-the-art MBIR, 

including sophisticated system and noise models as well as many iterations not possible 

clinically. Because AiCE is trained on images of such high quality, it learns to preserve 

edge and maintain image detail, which is especially important for Ultra-High-Resolution 

scanning. (Boedeker 2019.)  

One key to a successful Deep Convolutional Neural Network (DCNN) lies in its network 

structure design, which affects both reconstruction speed and image quality. To achieve 

the best computational efficiency and enhance output image quality, network structure 
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factors such as number of neurons in each layer, number of network layers, convolution 

kernel sizes, etc., were fully optimized in the AiCE algorithm. Effective acceleration strat-

egies and memory management technologies were carefully designed and integrated in 

the system to fully make use of hardware capabilities and maximize reconstruction 

speed. (Boedeker 2019.) 

7.3 Super-resolution convolutional neural network (SRCNN) 

SRCNN is a deep-learning-based super-resolution method, which allows for the enhanc-

ing of image resolution in chest CT images. It can learn an end-to-end mapping between 

the low-resolution image and the high-resolution image, and it could improve image qual-

ity in high-resolution CT images. (Umehara – Ota – Ishida 2017.) 

Deep convolutional neural network (DCNN) has revolutionized the application of many 

computer vison problems, including image enhancement, like deblurring and denoising. 

In super-resolution, the super-resolution convolutional neural network (SRCNN) scheme, 

which is a deep learning-based super-resolution method, has recently been proposed. 

The SRCNN scheme is capable of learning an end-to-end mapping between the low-

resolution image and the high-resolution image. Recent studies have also shown that 

the use of the SRCNN scheme for non-medical imaging achieved superior performance 

over previous super-resolution methods in terms of both image quality and processing 

speed. In medical imaging, it has been shown that the application of the SRCNN scheme 

to for example, chest radiographs, could significantly improve image quality of high-res-

olution images in comparison with the use of the conventional linear interpolation meth-

ods. (Umehara – Ota – Ishida 2017.) 

8 Objective and purpose  

The purpose of this thesis is to map out what kind of AI-based solutions there are in CT 

and what their main benefits as well as disadvantages are. We will do this by researching 

for articles on the subject and reviewing as well as analyzing them.  

The objective is to inform and educate radiographers and healthcare professionals 

around the world who will benefit from understanding the basics of AI technology and 

how AI-based solutions, especially those related to convolutional neural networks, can 

be used in computed tomography imaging, for example to reduce noise and remove 
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artifacts. This thesis is being done for ourselves, our fellow radiography students, our 

teachers, ICT- healthcare and technologies students, students from the University of 

Singapore and all radiographers and healthcare professionals who wish to read it. 

Our research questions are: 

(1) In what ways can artificial intelligence be used in computed tomography? 

(2) What kind of AI based solutions are already in use in CT and what are the main 

benefits and the main disadvantages? 

9 Methods 

9.1 A literary review 

A literary review examines published articles in a specific area of subject within a certain 

time period. It can be a summary or a synthesis or it can include both. A summary is a 

recap of the important information whereas a synthesis is a reshuffling of the information. 

A literary review can also assess the sources and tell the reader on the most relevant 

information. It could give a new interpretation based on old material or it could incorpo-

rate new interpretations with old interpretations. The focus in a literary review, nonethe-

less, is to summarize and analyze the arguments and ideas in the selected articles, with-

out adding new ideas. (The writing center 2020.) 

9.2 Information retrieval 

To search for the articles for our thesis, we used several databases for medical science 

publications (Cochrane, Metcat, PubMed and ScienceDirect). We chose articles that had 

been peer reviewed and were maximum of 5 years old. This is because there are lots of 

new research done every year in the field of AI and progress in GPU’s and computing 

power make development of more complex AI-solutions possible. In the planning phase, 

we found 8 articles that answer to our research questions. With those articles we could 

start to work on our thesis and refine our search terms to find more articles for research. 

Two of the articles found had to be ultimately cut because they didn’t fit our redefined 

research questions. All in all, the information retrieval was a long and difficult process 

but, in the end, we found articles mostly fitting to our theme. 
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We made an information retrieval table that describes our process of searching articles 

for our research. It shows what databases were used, criteria’s for choosing and rejecting 

articles, how many were found and how many were rejected and selected. 

 

 

These articles helped us refine our search questions further and we added convolutional 

neural network to our search terms. We also found articles from references. At this phase 

we had 12 articles. We dropped 2 because they along with AI it was researching some 

experimental Hybrid CT methods. We also dropped 4 articles because they were CT 

manufacturer’s own articles.  
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10 Articles for the review 

Articles Country of origin 

and year of publi-

cation 

Writers Main findings Benefits and dis-

advantages 

A Deep Convolu-

tional Neural Net-

work using Di-

rectional Wave-

lets for Low-dose 

X-ray CT Recon-

struction 

Republic of Ko-

rea, 2017 

Eunhee, Kang – 

Junhong, Min – 

Jong, Chul Ye 

CNN based 

method was su-

perior in de-

noising low-dose 

CT’s than MBIR. 

Their method 

was effective on 

reducing noise 

from low-dose 

CT images and 

were able to re-

tain some of the 

structures. 

Disadvantage of 

their method was 

it was only usa-

ble for one dose 

level. For other 

doses new train-

ing phase was 

needed. De-

noised images 

had some blur-

ring. 

Deep-neural-net-

work based sino-

gram synthesis 

for sparse-view 

CT image recon-

struc-tion 

Republic of Ko-

rea, 2018 

Hoyeon, Lee – 

Jongha, Lee – 

Hyeongseok, 

Kim – 

Byungchul, Cho - 

Seungryong, 

Cho 

CNN based 

method can 

make images 

from sparsely 

sampled sino-

gram that are 

comparable to 

full sampled si-

nograms. 

Benefit from this 

method was that 

Full CNN was 

only used in 

training phase 

which frees com-

puting power 

when recon-

structing im-

ages. Lower 

noise from Low-

dose CT images 
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Generative Ad-

versarial Net-

works for Noise 

Reduction in 

Low-Dose CT 

The Netherlands, 

2017 

Wolterink, 

Jelmer M. – 

Leiner, Tim – 

Viergever, Max A. 

– Išgum, Ivana 

Their application 

was able to re-

duce noise and 

make determin-

ing CAC score 

more accurate. 

Their application 

needed in-

creased compu-

ting power in the 

training phase. 

Disadvantages 

were for exam-

ple, limited sam-

ple size and arte-

facts caused by 

patients breath-

ing and moving. 

Low-dose CT via 

convolutional 

neural network 

China, 2017 Hu, Chen – Yi, 

Zhang – Weihua, 

Zhang - Peixi, 

Liao -  Ke, Li – Ji-

liu, Zhou – Ge, 

Wang 

They were able to 

reduce noise on 

low dose CT us-

ing CNN with 

only 3 layers. 

Using 3-layer 

CNN they were 

able to reduce 

needed compu-

ting power. Sta-

tistically noised 

reduction of their 

method was not 

significantly 

higher than other 

state of art de-

noising methods.  

Competitive per-

formance of a 

modularized 

USA, 2019 Hongming Shan 

– Atul, Padole – 

Fatemeh, 

Homayounieh – 

MAP-NN based 

method images 

had better noise 

suppression and 

This method was 

more efficient 

and produces 

more accurate 
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deep neural net-

work compared 

to commercial al-

gorithms for low-

dose CT image 

reconstruction 

Uwe, Kruger - 

Ruhani Doda 

Khera – Chaya-

nin, Nitiwa-

rangkul - Man-

nudeep K. Kalra - 

Ge, Wang 

structural fidelity 

when compared 

to IR methods by 

3 CT manufactur-

ers. 

images when 

compared to al-

ready exciting 

methods.   

Stacked competi-

tive networks for 

noise reduction 

in low-dose CT 

China, 2017 Wenchao, Du – 

Chen, Hu – Wu, 

Zhihong – Sun, 

Huaiqiang – Liao, 

Peixi 

Stacked compet-

itive network 

(SCN) based de-

noising method 

performed best 

when comparing 

to other 5 other 

methods. 

SCN was most 

effective in de-

noising and pre-

serving struc-

tures. 

All of the com-

pared denoising 

methods caused 

some blurring on 

images and loss 

of structures. 

 

11 Analysis 

In this chapter we do a brief analysis on the articles we chose for our study. We also 

categorize them based on which AI application they were researching. 

11.1 Convolutional neural networks (CNN) 

Eunhee Kang, Junhong Min and Jong Chul Ye studied if deep neural networks with di-

rectional wavelet approach can be used in removing noise from low-dose CT images 

and if CNNs can be used in getting training data from large and different types of data. 

For this they developed their own algorithm and used MATLAB program to simulate im-

age reconstruction. 

To test their algorithm’s learning and training capabilities, they used data from 10 differ-

ent patients (3642 slices, 1mm slice thickness). Also, to test de-noising capabilities, they 

added data from quarter dose images of 20 different patients (2101 slices). From each 
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patient they got routine CT and low-dose CT images with a quarter dose. Regular CT 

images were used to compare noise from low-dose CT images. From this comparison 

they created weights for their training nodes. At this point they realized that their com-

puters were not powerful enough to compute full datasets, so they increased slice thick-

ness to 3mm and used only 200 randomly selected slices. When comparing 1mm and 

3mm slice thickness images, they noticed that 3mm thick denoised images had pre-

served their fine details better than 1mm slices. This was most clear with boundaries 

between organs and details inside organs were clearer. But in exchange, 1mm thick 

slices showed lesions better, had fewer streaking artefacts, were more blurred and some 

of the high frequency textures disappeared. (Eunhee – Junhong – Jong 2017.) 

When comparing denoised and original images they noticed that CNN was able to re-

move different types of noise, also edges of different organs and structures were clearer 

even when images were taken with a quarter dose. For example, in denoised images 

lung details were easier to see and the vessels in the liver were seen more clearly. (Eun-

hee – Junhong – Jong 2017.) 

Hu Chen, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou and Ge Wang wanted 

to find out if it’s possible to reduce noise from images. Their proposed CNN network had 

only three layers, which is why it was able to produce good results on a fraction of the 

needed computational power when compared to more complex CNN networks. When 

processing their data, they focused on radiation dose, training data and testing data. 

They used 7,015 routine CT images from 165 different patients. These images were 

acquired from the national cancer imaging archive (NCIA). From these images 200 were 

chosen as the training data and 100 different for testing their method. Data was applied 

for training in patches. (Hu – Yi – Zhang – Peixi –  Li – Jiliu – Ge 2017.) 

To compare their method, they used three other reconstruction methods, ASD-POCS, 

K-SVD, BM3D. They simulated their data with MATLAB. Findings were analyzed by com-

paring PSNR, RMSE, SSIM values of images and by inspecting them visually. For visual 

inspection, chest and abdomen images were chosen. ASD-POCS caused blocky arte-

facts. KSVD and BM3D were unable to remove streaking artefacts near bones. Their 

CNN method was able to remove most of these. When doing quantitative comparison of 

these methods, CNN performed best on all the cases, expect SSIM on abdomen images. 

They speculated that this might be because the abdomen has lots of soft tissue and 
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BM3D is specialized on that area. All the image denoising and reconstruction methods 

improve image quality. CNN method had best results and were the closest to the original 

images. These images were then shown to three radiologists who scored said images. 

Result were comparable to their own findings. (Hu et.,al 2017.) 

After this they repeated the training phase again with different data and weights. This 

showed that the more varied the training data is, the better it is at denoising, especially 

in high noise images. After this experiment they increased the amount of data used in 

the training phase (twelve times the data). This caused some structures to become 

clearer than before and it also caused the CNN to become better at reconstructing im-

ages that have varying noise levels. (Hu et.,al 2017.) 

All of these previous tests were generated on numerical simulation (MATLAB).  

Jelmer M. Wolterink, Tim Leiner, Max A. Viergever and Ivana Išgum also studied if U-

Net based CNN can be used to reduce noise from low-dose CT and especially how it 

denoises calcium deposits in coronary arteries. 

Training of the CNN application that they created for this study was two phased. In the 

1st phase (generator CNN), it analyses low-dose CT images and denoises them and after 

that it attempts to align both images by their first voxel to minimize differences and com-

pares them. In the 2nd phase (discriminator CNN), it analyzes similarities from the images 

and gives feedback to the 1st phase, which then improves its ability to align images and 

correct artefacts/missing data. (Wolterink – Leiner – Viergever – Išgum 2017.) 

To test their CNN method, they did normal and low-dose CT (1/5 of the dose) scans to 

anthropomorphic thorax phantoms. In these they placed two artificial coronary arteries 

that had hydroxyapatite inside to simulate calcification. The phantom was scanned five 

times and between scans the phantom was rotated to change the distribution of the hy-

droxyapatite. They also had CT (routine and 1/5th dose) scans from 28 volunteering pa-

tients. To compare results, they used the mean and standard deviation of Houndsfield 

unit (HU) in region of interest (ROI), peak signal to noise ratio (PSNR) and mean squared 

error (MSE). On patient’s images they compared agatston score and calcium artery cal-

cification (CAC). They used filtered back projection to reconstruct their images. (Wolter-

ink – Leiner – Viergever – Išgum 2017.) 
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Their experiment showed that using discriminator CNN (2nd phase of their training net-

work), they were able to create low-dose CT images that were like routine CT images. 

The feedback that the 2nd phase gives, prevents image reconstruction from smoothing 

the image so low-density calcifications can be discovered more accurately. When pro-

cessing cardiac patient’s data, CNN had troubles on aligning routine and low-dose CT 

images, which causes some changes on images and noise. They assumed that this was 

caused by patient movement and breathing. They noticed that the AI-application was 

able to learn to reduce noise caused by this phenomenon. (Wolterink – Leiner – 

Viergever – Išgum 2017.) 

Hoyeon Lee, Jongha Lee, Hyeongseok Kim, Byungchul Cho and Seungryong Cho also 

studied CNNs but instead of using it to denoise images, they researched if it was possible 

to restore missing data in sinograms. They created their own CNN for this project, and it 

was based on a residual U-net model. In their study it was determined that when training 

CNN, adding higher weights to measured- and correlating pixels was more important 

than giving them to missing pixels. After denoising they were able to take CAC value 

from six patients’ images that were impossible before. Generally, denoised images had 

lower CAC score than routine images. 

Data they used in their research was from seven different patient's lung CT-scans. Num-

ber of slices was 634. Using this data, they re-sampled the original sinogram to make a 

sparsely view-sampled sinogram. This new sinogram had only a quarter of the original’s 

views. This new sinogram was also upscaled to the original’s size. Training data was 

applied in patches to lower the required computing power and increase amount of data 

given for training at the same time. (Hoyeon – Jongha – Hyeongseok – Byungchul – 

Seungryong 2018.) 

To test their CNN’s performance, they compared it to the original base sinogram, sino-

grams made with two analytic interpolation methods (linear interpolation method and di-

rectional interpolation method) and another CNN network. In this study, they got data 

from eight patient’s lung-CT datasets. Number of used slices was 662. None of these 

patients were part of the training phase. All sinograms were created with identical values. 

Sinograms created with CNN’s (CNN 20 and U-NET) resembled original sinogram more 

than other methods. To compare results, they computed root mean-square-error 

(NRMSE), peak signal-to-noise-ratio (PSNR) and structural similarity (SSIM). When 
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comparing these CNN’s based applications performed better than other methods. Differ-

ences in CNN 20 and U-NET were small, but U-NET was better at restoring missing data. 

They assumed that this was because in their training, it was determined that when re-

storing missing data, it’s weight and values don’t change. (Hoyen et.,al 2018.)  

Images were reconstructed using Filtered back projection (FBP) algorithm. From each 

patient’s dataset, seven different images were created using different sinograms. These 

were: original, sparsely sampled sinogram, linear interpolation, directional interpolation, 

CNN with 20 convolution layers and U-net. They also tested iterative image reconstruc-

tion algorithm that was able to create image from sparsely sampled sinogram (POCS-

TV). When visually comparing reconstructed images. Images created from sparsely sam-

pled sinogram had lots of streaking artefacts. Images crated from POCS-TV had cartoon 

artefacts and didn’t show small structures. Two analytic interpolation methods had some 

streaking artefacts. Both CNN based images showed little streaking artefacts. When 

comparing NRMSE, PSNR, SSIM and visual quality, the U-net based CNN performed 

best in all tests. (Hoyen et.,al 2018.) 

11.2 Modularized adaptive processing neural network (MAP-NN), Stacked neural net-

works (SCN)   

Hongming Shan, Atul Padole, Fatemeh Homayounieh, Uwe Kruger, Ruhani Doda Khera, 

Chayanin Nitiwarangkul, Mannudeep K. Kalra and Ge Wang studied if deep neural net-

works perform better than modern iterative construction methods and establish founda-

tion for CT reconstruction algorithms that can be developed further with data and deep 

learning. For this study they chose modularized adaptive processing neural network 

(MAP-NN) based denoising method on low-dose CT. This approach decomposes net-

works into smaller identical network modules. Each of these networks creates small im-

provements on denoised images. Advantages of the MAP-NN over CNN based methods 

is the fact that CNN can only make denoised images from low-dose CT images but MAP-

NN can also be used to reduce noise from routine CT images. In practical use of MAP-

NN, radiologists can use software to see and browse denoised images produced by 

these network modules and choose the image that they find most useful. 

 

For this study they got scans from 60 different patients and three different manufacturers 

(Siemens, Philips and GE). Order of manufacturers was randomized and renamed (A, 

B, C) to hide the identity of the manufacturer. Sinogram data for low-dose CT scans was 
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constructed using IR-, FBP and MAP-NN methods, six images in total. From each patient 

two images that had noise and artefacts were chosen. Then these images were evalu-

ated by three radiologists and they ranked them in the order of which they preferred. 

When comparing results, with manufacturers A and B, all radiologists scored MAP-NN 

over IR methods on abdominal images. On chest scans MAP-NN and IR methods were 

comparable. Also, IR abdomen images by manufacturer A and B were deemed unac-

ceptable or limited while MAP-NN images were accepted. With manufacturer C’s abdo-

men and chest images, MAP-NN was statistically comparable to IR methods. On body 

scans, all radiologists expect one scored MAP-NN better. The one radiologist scored IR 

and MAP-NN comparable. (Shan – Padole – Homayounieh – Kruger –  Doda Khera –

Nitiwarangkul – Kalra – Wang 2019.) 

For the quantitative study, images were scored based on noise suppression and struc-

tural fidelity. MAP-NN scored significantly better than IR methods in both categories.  

As a conclusion, MAP-NN performs better or comparable in noise suppression and struc-

tural fidelity when compared to three manufacturer’s IR methods. (Shan et.,al 2019.) 

 

Wenchao Du, Chen Hu, Wu Zhihong, Sun Huaiqiang and Liao Peixi studied Stacked 

neural networks (SCN). SCN consists of several successive competitive blocks (CB). 

These enable the network to make multiscale processing.  

They compared SCN to five other denoising and image reconstruction methods (TV-

POCS, K-SVD, BM3D, SSCN, KAIST-net). From constructed images they did a quanti-

tative comparison of peak signal to noise ratio (PSNR), root mean-square-error (RMSE) 

and structural similarity (SSIM). All experiments were done in MATLAB software. The 

data they used consisted of 7015 routine CT images from 165 different patients. These 

images were of different parts of the body. From these images they created low-dose CT 

images by introducing Poisson noise projection to routine CT images. From these im-

ages they randomly chose 200 pairs of routine and low-dose CT images for training and 

a 100 for testing. (Wenchao – Chen – Wu – Sun – Peixi. 2017.) 

All of the compared methods were able to reduce noise and artifacts from the images 

but their effectiveness on different structures varied. SSCN, KAIST-NET and SCN were 

able to remove most of the artifacts and noise from the images, and they also were able 

to maintain the majority of the structural information. SCN was best at distinguishing low-

contrast regions. When comparing abdominal CT images, SSCN, KAIST-NET and SCN 
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again performed best, being able to remove most of the artefacts and noise, while only 

suffering from small blurring. SCN was able to show structural details from the liver, ver-

tebral Colum and bones. They also did a quantitative comparison of each method using 

PSNR, RMSE and SSIM. SCN performed best on all measurements. When statistically 

comparing it to SSCN and KAIST-NET, the difference wasn’t significant, but BM3D, K-

SVD and TV-POCS were significantly worse than the other three. (Wenchao et.,al 2017.) 

To further test their method, they did the same test using dataset from Mayo clinical 

dataset (this data was made available for free use on their AI competition). Again, on 

visual comparison, SCN performed best on noise reduction and structure preservation 

and measured best in quantitative comparison. To further test their method, they exper-

imented by changing the number of kernels in competitive blocks. They noticed that in-

creasing their number made the method better, but in exchange this would increase 

training time and the need for higher computational power. They concluded that three 

kernels in a competitive block was the most cost-effective solution. (Wenchao et.,al 

2017.) 

12 Results 

Our research questions were: 

(1) In what ways can artificial intelligence be used in computed tomography? 

(2) What kind of AI based solutions are already in use in CT and what are the main 

benefits and the main disadvantages? 

12.1 In what ways can artificial intelligence be used in computed tomography? 

AI-solutions can be widely used in CT, for example to help in protocol selection, patient 

positioning, parameter selection etc. but the ones we were truly interested in were those 

that are able to reduce noise, artefacts or reconstruct Low-dose CT images. Typically 

using Low-dose CT, it reduces image quality by having low signal noise ratio (SNR). AI-

solutions aim to reduce that noise from the images. Conventional de-noising solutions 

have problems with removing low-dose CT specific artefacts. AI based methods could 

be used in restoring that missing data. They could also be used in assisting radiologists 

to analyze images by highlighting anomalies and segmenting images.   
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12.2 What kind of AI based solutions are already in use in CT and what are the main 
benefits and the main disadvantages? 

Often AI-solutions are at the stage of computer simulations. CT manufacturers have AI-

solutions on their newer CT-machines for example, GE’s true fidelity and Cannon’s AICE. 

Methods that are in use or are close to having practical use are often MBIR and IR based. 

Those often have simple algorithms and training phases, so they don’t need as much 

computational power as more sophisticated algorithms, which makes them faster. 

In our study most of the articles were about Convolutional Neural Network based meth-

ods and other Deep learning network based (MAP-NN and SCN). 

Challenges that came up for using CNN’s were that the computer’s processing power 

was often insufficient. To bypass these computing power limitations, thicker slice size 

was used. In the study by Eunhee et.,al they also chose 200 random slices from 3642 

slices. In Hoyong et.,al’s study they found that when inputting training data in patches, it 

reduces the time it takes to process it and lowered computing power requirements are 

required. For their study they used patch size of 50. Patch size is gear dependent so 

what works for someone’s application might not be viable for someone else’s. 

Another problem that was encountered was the fact that the training phase needs to be 

done separately for different doses. For example, Eunhee et.,al’s study used quarter 

dose CT images, so their application then can’t be applied for other doses without doing 

another training phase. They had ideas that this can be changed by adding more func-

tions into their algorithm. The method had simpler CNN that only had three layers, which 

meant that it was able to remove noise while needing less computing power. Adding 

more layers to a CNN, makes it better in its function but it also raises time issues and 

needed computing power. This also applies on other Network based methods i.e. adding 

blocks and kernels to SCN. Wolterink et.,al’s method had part of its network only working 

on the training phase, which led to shorter processing time and needed computing power 

on image reconstruction.   

Hoyeon et.,al’s study found that they can create from partial sinograms images that were 

comparable to images created from full sinograms. 
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The training phase offers many challenges. More data it gets, the better it gets. If the 

training phase lacks data, the reconstruction phase might ignore data that is crucial. More 

data it gets though, also the more computing power it needs.  

Generally, CNN based methods performed well on denoising and restoring structures in 

low-dose CT images. Also, they can restore missing data efficiently. Most of AI-methods 

have blurring on low noise areas, so Wenchao et.,al studied if a SCN based method had 

good results in removing these. Most of the needed computing power is used in the 

training phase, and at current hardware depending from used data size, training phases 

took from tens of hours up to even 12 days. Image reconstruction time is faster than in 

IR based methods. Methods on these studies performed visually and statistically better 

than other methods (IR) they were compared to. Usually, good structural fidelity is more 

desirable than low noise. Which gives a challenge; when removing noise, it weakens 

structural fidelity.  

In Eunhee et.,al’s, Hu et.,al’s and Wenchao et.,al’s studies, they all used MATLAB to 

simulate image reconstruction. This might cause errors with data since MATLAB is not 

optimized for deep learning applications yet. This means that simulations might not al-

ways resemble real scans or data. 

13 Conclusions 

The results from these studies is that artificial intelligence has a high potential for use in 

medical imaging, specifically in CT. Especially the ability to take low-dose CT scans and 

reduce noise and artifacts in order to get results that are comparable to routine CT scans. 

This also makes it possible to reduce a patient’s radiation dose without sacrificing image 

quality, which is the goal in every medical imaging due to the ALARA principle. 

 

Problems that deep learning-based denoising methods have is the fact that the denoising 

process also removes some data that could have been useful and potentially adds blur-

ring to the images. Another problem that arose is the fact that training an AI application 

needs lots of data. Acquisition of this data has problems, since there is patient confiden-

tiality issues and CT manufacturers sometimes do not share their full data. 

 

AI provides lots of interesting options for further research. Different networks and algo-

rithms could be refined further which makes these applications more effective and less 
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demanding for hardware. You could research different parameters, architectures and 

number of layers that makes your network most efficient. These applications could be 

made to specialize on certain artefacts like metal, optimize application for specific body 

parts or certain manufacturer’s hardware.  

14 Ethicalness and reliability 

We worked on this thesis abiding by good research ethics such as honesty, objectivity, 

openness, integrity, legality and responsibility. We carefully and critically examined our 

own work as well as the articles chosen for the thesis. We referred to all the material we 

used, and we were unbiased while analyzing the articles. The credibility and reliability of 

the authors of the used articles was protected through the analyzing process. The results 

were represented without distortion and only reliable resources were used in the infor-

mation retrieval. All the used material was looked through by both writers and the work-

load was evenly divided. All decisions were made together, as well. 
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