

Trung Nguyen

SOFTWARE ARCHITECTURE & SOLUTION IN CITY LOGISTICS
PRODUCT SEGMENT COVERING PASSENGER LOGISTICS
PRODUCT PORTFOLIO OF ATTRACS OY AB

SOFTWARE ARCHITECTURE & SOLUTION IN CITY LOGISTICS
PRODUCT SEGMENT COVERING PASSENGER LOGISTICS
PRODUCT PORTFOLIO OF ATTRACS OY AB

 Trung Nguyen
 Bachelor’s Thesis
 Spring 2021
 Information Technology
 Oulu University of Applied Sciences

LÄHTÖTIETOMUI LIITE 1

ABSTRACT

Oulu University of Applied Sciences
Degree Programme

Author(s): Trung Nguyen
Title of the bachelor’s thesis: Software Architecture & Solution in City Logistics
Product Segment Covering Passenger Logistics Product Portfolio of Attracs Oy
Ab
Supervisor(s): Patrik Friis, Lasse Haverinen, Hannu Rauhala, Toni Penttinen
Term and year of completion: Number of pages: 63

The subject of the thesis is to document my professional software development
during my employment at Attracs Oy Ab as Software engineer. The scope of
work covers the City Logistics Product of Attracs Oy Ab.

The main aim is to increase my fundamental knowledge of Golang,
PostgreSQL, and Typescript in full-stack software development and apply the
software development experience to contribute to the City Logistics Project's
overall growth.

The software is a combination of many microservices, which I was responsible
for developing with Golang and Typescript for the web and mobile application.
The programming scope includes Client UI for web and mobile applications,
design API for server, and Database Schema.

The works were tested in the internal software demo and the production
environment, with features and bug fixes not limited to a single technology stack
or microservice. With peer code review, agile methodology in software
deliveries, the work scope resulted in good feedback from my colleagues and
customers.

Keywords: Attracs Oy Ab, City Logistics product, Software Development,
Golang, Typescript, PostgreSQL.

 2

PREFACE

The thesis work was documented in Kokkola, Finland, during my employment at
Attracs Oy Ab as a Software Engineer. The author chose the thesis topic after
discussion with Attracs Oy Ab project managers.

Supervisors of this thesis were Patrik Friis, Hannu Rauhala, and Toni Penttinen
as project managers at Attracs Oy Ab, with Lasse Haverinen, who acted as the
tutoring lecturer, along with Heidi Hedström, who provided language review.
The thesis literature is written with the supervision and direction of the
supervisors to be fulfilled.

Kokkola, 08.03.2021
Trung Nguyen

 3

CONTENTS

1 INTRODUCTION 6

2 ATTRACS OY AB 8

2.1 The employer company and the work environment 8

2.2 Attracs Oy Ab interests in City Logistics product 10

2.3 City Logistics product 11

2.3.1 The professional concepts of the City Logistics product: 11

2.3.2 The general software architecture of the City Logistics product: 13

2.3.3 Client development of City Logistics product and microservice 14

2.3.4 Server Development of City Logistics product and microservice 15

3 PURPOSE AND OBJECTIVES 16

4 DESCRIPTION OF WORK TASKS AND LEARNING 17

4.1 Thesis entry from the 31st of August to 4th of September 2020 17

4.1.1 Research and study 17

4.1.2 Theoretical background and technical information 18

4.1.3 Implementation 19

4.1.4 Reflection 20

4.2 Thesis entry from the 7th of September to 11st of September 2020 21

4.2.1 Research and study 21

4.2.2 Theoretical background and technical information 23

4.2.3 Implementation 24

4.2.4 Relfection 27

4.3 Thesis entry from the 14th of September to 18th of September 2020 29

4.3.1 Research and study 29

4.3.2 Theoretical background and technical information 30

4.3.3 Feedback service 30

4.3.4 Billing Microservice 31

4.3.5 Reflection 32

4.4 Thesis entry on the week from 21st of September to 25th of September

2020 33

 4

4.4.1 Research and study 33

4.4.2 Theoretical background and technical information 33

4.4.3 Implementation 34

4.4.4 Reflection 36

4.5 Thesis entry on the week from 28th of September to 2nd of October 2020

 37

4.5.1 Theoretical background and technical information 37

4.5.2 No-reply email implementation 38

4.5.3 Excel billing document implementation 39

4.5.4 Reflection 39

4.6 Thesis entry on the week from 5th of October to 9th of October 2020 40

4.6.1 Theoretical background and technical information 41

4.6.2 Research and study 41

4.6.3 Implementation 43

4.6.4 Reflection 44

4.7 Thesis entry on the week of 16th of October to 27th of October 2020 45

4.7.1 Research and study 45

4.7.2 Theoretical background and technical information 46

4.7.3 Implementation 47

4.7.4 Reflection 48

CONCLUSION 50

REFERENCES 52

 5

ABBREVIATIONS

GPS: Global Positioning System

UI: User Interface

UX: User Experience

HTML: Hypertext Markup Language

API: Application Programming Interface

HTTP: HyperText Transfer Protocol

SQL: Structured Query Language

LOC: Line of Code

JSON: JavaScript Object Notation

RPC: Remote Procedure Call

npm: Node Package Manager

i18n: Internationalization and Localization

DRY: Don’t Repeat Yourself

UUID: Universally Unique Identifier

DOM: Document Object Model

 6

1 INTRODUCTION

Public transport is widely used in society today to serve everyone's travel

needs. In most cities in Finland, public bus service or metro station is one of the

most commonly used means of people's daily lives.

However, for a growing population in Finland, public transport is a huge barrier

because of health and age limitations. According to Statistics Finland's statistics

on the population, there were 874,314 people at the age of 70 or older in

Finland at the end of 2019, of which 370,405 were men and 503,909 ladies (1.)

This group of people has about at least 15 percent of the population share in

the whole of Finland (1.). The number of people aged 70s or over has increased

by 100,000 every three years (2.). From 2006 to 2016, around 16 percent of

people from the age of 15 to 24 are reported not to study, work, or perform

compulsory military services due to disability or chronic illness (3.). Some

municipal offices in Finland look for other transportation means to serve their

commuting needs in such a context.

Attracs Ab Oy is a 20-year-old company in the transportation and logistics

software solutions, a fully owned subsidiary of Ahola Transport Ab Oy. With the

company mission for efficient and profitable logistics, Attracs Ab Oy develops

the City Logistics Product for Ahola Transport Ab Oy and FCG Finnish

Consulting Group Oy's joint venture in incorporating private transportation with a

smart digital solution to deliver a new intelligent city transportation solution for

people with age and health limitation.

The goals of the thesis are to document my progress in working and learning

during my employment at Attracs Ab Oy while being part of the City Logistics

Product software development team. My work involves different technologies

and programming languages to improve the software development team's

software solution for the municipal offices in city logistics and human

transportation. I will develop the software client and server with Golang,

Typescript, and PostgreSQL to deliver the goals. With practical application,

 7

results, peer code review, and customer feedback, I conduct my portfolio writing

about my professional works every week for my thesis work.

The first part of the thesis will be an introduction portfolio of the company's

current state, the work environment, and myself. This introduction will be about

theoretical and professional concepts from the work results and my professional

development and development needs. The second part will list the purpose and

the objectives of the thesis writing. The third to the final part of the thesis entries

will address my weekly work tasks, the work reflection against the theoretical

background, and the solution from the reflection.

 8

2 ATTRACS AB OY

2.1 The employer company and the work environment

Attracs Ab Oy is a 20-year-old company in the transportation and logistics

industry. The company management team includes Tommi Hollström, Juha

Åkerlund, and Toni Penttinen.

The work atmosphere is agile. The company uses project management tools, a

version control system, and a communication application to decentralize

software development and business responsibility. The responsibility

decentralizes one person or group of persons. It opens to team members to

obtain an effective way of delivering a particular task, from development to

deployment and from an internal meeting to customer meeting.

The software development environment is similarly agile oriented in terms of

development and task management. Tasks are organized weekly according to

the customer meeting and assigned to the developers. Each assignment will be

labeled with the Status (the Progress of the task), the Author (the person who is

responsible for developing the task), and the Creator (the one who create the

task). (13.)

Figure 1 Tasks Management Process

 9

From the development viewpoints, similar to industry-standard of Agile software

development, the progress of the software development starts from local

machine (14.), which changes the status of the task from Open to In Progress.

Once the task is complete, the code will be made available as a pull request,

which changes the status to Pull Request. (13.)

Each pull request will be examined by an assigned person, tested by company

CI tools that run simple unit testing to assure quality before merging to the

master branch of the application repository. If code quality is deficient, the

assigned developer will request further code revision. Afterward, the master

branch of the application repository inherits new code changes; the CI tools will

automatically deploy the latest change code to the development version, which

will change the development into nightly/test. (13.)

At this stage, the code is available in the development application version. The

project manager will test the feature in the testing environment and product of

the authored developer or the peers to ensure the developing code meets the

business requirement. The development application will be similar to the client

environment in many ways. The authored developer will request an adjustment

if the submitted feature breaks the development application or does not deliver

the business requirement. (13.)

Finally, when the code matches the specified standard, it will be ready for the

next weekly application release to the client application for up-to-date feature

change. The task status is Closed, and the developer can move on to the

following tasks. (14.)

 10

2.2 Attracs Ab Oy interests in City Logistics product

The City Logistics product is a software product of Attracs Oy Ab hereafter

known as Attracs. The software development is for Ahola Transport Oy AB and

FCG Finnish Consulting Group Oy's joint venture for delivering a smart digital

transportation solution for municipal needs.

Figure 2 City Logistics product

The product aims are to provide a cloud-based dispatching system for

municipalities to incorporate private transportation from taxi companies for a

new means of public transportation. It provides a booking solution for taxi

companies, with a booking system via mobile clients or a web portal. It also

includes microservice planning software for route planning, real-time monitoring,

automated/manual dispatching, and transportation assignment.

The service use of the software aims to provide an economical means of public

transportation with a smart system to monitor booking action behaviors from the

customer and driving experience from taxi companies. It also tailors the driving

experience to fit with many customer profiles with a large diversity of health and

age limitations. This customization ensures the pickup to drop-off experience is

seamless in municipal agreement with the taxi companies. (15.)

 11

2.3 City Logistics product

2.3.1 The professional concepts of the City Logistics product:

Figure 3 User flow of City Logistics product

The service is meant to be a digital platform for the municipality to support a

group of people who cannot use public transportation due to health and age

limitations by providing private transportation means through an agreement with

taxi companies. The platform would support this special group of people to

make transportation reservations, enabling the municipal office to arrange those

reservations and bookings through an intelligent digital platform to create a

 12

private vehicle to provide the transportation service for the one who requests

the service.

The service customer can request a taxi reservation from the municipal offices

through a browser, mobile application, or by making a phone call. This service

is a part of the booking platform, a digital microservice provided for the

municipal office to support the locality. The customer can use the booking

through a mobile application, a web application, or a phone call to the office to

make known the booking request.

The booking requests are then processed and handled by the digital planning

microservice, where the office through the platform will order a vehicle from the

taxi company to drive the booking. The planning service, operated through an

intelligent algorithm and municipal operators, will look for any available vehicles

from the taxi to drive the booking. The planning microservice algorithm will

determine the available vehicles are suitable for the booking person by criteria

of disability vehicle support (stair climber, ramp, low floor, rollator), general trip

costs, availability, location at given booking time and other parameters like a

vehicle CO2 emission. The planning service reduces the waiting time and

provides a fair judgment on what kind of vehicle is the best fit for the booking.

When the platform processes the booking and finds a suitable vehicle for the

booking, the taxi driver will receive a trip from the platform to drive the booking

person. The taxi driver response to the offers by the driving microservice mobile

application to keep track of the driver working hour, his acceptance to take on a

booking and real-time monitor the status of the trip base on the GPS reading of

the driver phone through the driver app (On customer being pickup, driven and

dropped off). The driver mobile application ensures that there could be a driver

available for the booking. It monitors the traffic route on whether the booking is

delivered by a driver at all. After the booking is driven, the driver application will

create a bill for the taxi company driver to send that trip invoice to the municipal

office to pay for the trip cost. (15.)

 13

2.3.2 The general software architecture of the City Logistics product:

Figure 4 Technology Stack for A Microservice of City Logistics

According to Wikipedia, A microservice is not a layer within a monolithic

application (for example, the web controller or the backend-for-

frontend). Rather, it is a self-contained piece of business functionality with clear

interfaces and may implement a layered architecture through its internal

components.

The City Logistics product architecture is classified as Microservice Architecture

(17.). Even though the understanding and definition for microservices in City

 14

Logistics Oy are not definitive or distinctive, it can be characterized by the

following traits:

● Isolation: Services in a microservice architecture interact over HTTP/2

network protocol using gRPC(gRPC Remote Procedure Calls). (11.)

● Productivity: Services are defined and focus around a business feature of

the City Logistics product. (Figure 2.)

● Flexibility: Services may have different programming libraries or

frameworks to fit best on its needs and purposes. (Figure 3.)

● Scalability: Services are scalable and thus autonomously developed and

independent from others in deployment. (Figure 21.)

● Faster product development cycle: Services work independently, and

components can be developed, modified and deployd individually.

2.3.3 Client development of City Logistics product and microservice

Client development or frontend development is a practice of converting data to

a graphical interface through the use of HTML, CSS, and JavaScript so that

users can view and interact with that data. (19.) For the City Logistics product,

the business service is providing for both web and mobile platforms, using

TypeScript as the client programming language across microservice.

TypeScript is a strict syntactical superset of JavaScript that has optional static

typing and is compiled down to an idiomatic JavaScript. Using the type system

from TypeScript brings benefit to client development in writing predictable and

readable code that eliminates typos or type assumption mistakes. The interface

APIs of the data set are often self-explanatory and discoverable through type

declaration as opposed to using JavaScript. Thus, unit testing in client

development will spend more time focusing on testing feature-capability over

type checking. (19.)

 15

lit-HTML is a client-side JavaScript library that supports TypeScript. It let the

developer writes HTML templates in TypeScript and renders or re-render those

templates with data to create and update the User Interface. lit-HTML is efficient

and considered extremely fast for its rendering UI mechanism. Unlike Virtual

DOM libraries, the library only updates the User Interface parts that change and

do not re-render the entire view. Because lit-HTML is not a framework and

focuses on efficiently creating and updating DOM, it is combined with Apache

Cordova to build a hybrid mobile application for Android and IOS from one

single codebase (5.) (20.).

Apache Cordova is a mobile application development framework. In the City

Logistics product, Apache Cordova (or Cordova) allows standard web

technologies – HTML5, CSS3, and idiomatic JavaScript for cross-platform

development with access to device’s capabilities such as network status, GPS,

and location.

2.3.4 Server Development of City Logistics product and microservice

Go is a statically typed, compiled programming language designed at Google.

Go is syntactically similar to C, but with memory safety, structure typing. The

language is often referred to as Golang because of its domain name,

golang.org. (21.) The language consists of:

● A syntax and environment utilizing patterns more common in dynamic

languages.

● Fast compilation.

● Native binaries produced without external dependencies.

● Remote package management (get) and online package documentation.

 16

Because of the lightweight characteristics for fast compilation without

dependencies, the microservices’ server is written in Golang.

PostgreSQL is an open-source object-relational database system that uses and

extends the SQL language combined with many features that store and scale

the complicated data workloads. Some storage features, such as Indexes,

Schemas, and Data Types, are often utilized in creating and maintaining a

robust and performant database infrastructure. Attracs’ own customized library

is used for connecting to PostgreSQL from the Golang server.

 17

3 PURPOSE AND OBJECTIVES

My purpose and objectives for the thesis work are as following:

● To get familiar with Attracs Ab Oy microservice technology stack.

● To familiarize with client-side development with lit-HTML and TypeScript

on the library to create web and mobile application features through
webpack and Cordova.

● To get familiar with server-side development, using Golang and

PostgreSQL.

● To make a sizeable code contribution to the microservices that I will work
on, from a small to medium and large-scale task.

 18

 19

4 DESCRIPTION OF WORK TASKS AND LEARNING

4.1 Thesis entry from the 31st of August to 4th of September 2020

On the 31st of August, after a month of working at Attracs Oy Ab, I started my

thesis work. At this point, I was moderately familiar with the fundamentals of

internal company technical infrastructure and workflow and had become

accustomed to the technologies and the digital solution delivery. The first four

weeks helped me develop more insights and expertise about the client and the

server programming languages. This experience allowed me to be more

prepared to start my first thesis week.

4.1.1 Research and study

I have earlier received some UI-related problems with the customer mobile app.

The issue was about making the UI more convenient and intuitive for our

customers to make a booking. The solution was from the community perception

of intuitive UI and UX research on how the user will use the mobile screen

device. (Figure 6.)

 20

Figure 5 UX Study on Mobile Device Screen (4.)

In our case, we wanted the thumb motion to make a booking in our UI without

having to outreach their one-hand holding. According to a research (4.), 75% of

mobile app users use their smartphone in one-hand holding position and thus

have limited comfortable screen interaction in the screen area. By placing the

booking input at the bottom of the screen and pushing them gradually to the top

by the completion status, we achieved screen comfort for the use case of one-

hand holding, left-hand interaction, and two-handholding position.

4.1.2 Theoretical background and technical information

The User Interface is written in an HTML templates in TypeScript by lit-HTML to

render the UI with data. lit-HTML has two main APIs: html and render().

● The html template tag is used to write templates.

● The render() function is used to render a template to a DOM container.

 21

A lit-HTML expression does not trigger any DOM to be created or updated. It is

only a description of DOM, called a TemplateResult. The html`` or

TemplateResult needs to pass to the render() function to trigger the UI

rendering. (5.)

Another concept of lit-HTML for making dynamic UI change in the mobile

application is called directives. Directives are function that changes the

appearance or behavior of a UI or a DOM element.

Internally, lit-HTML uses the Part interface to represent the dynamic DOM

associated with a binding. A directive has access to the Part associated with its

binding. For example, it can find the current value of the part and set a new

value for the part. Directives in lit-HTML shares a common usage and

understanding with other client-side libraries and framework directives and

component states in:

● Modifying the behavior of an element.

● Responding to events that change the directives’ behavior.

● Asynchronous directives.

● One binding type directive.

Apache Cordova is used to creating a hybrid app using Cordova CLI on Android

and IOS platforms. Cordova is a native wrapper application where the lit-HTML

and TypeScript code is embedded to create a native shell application. This

native shell application is the platform web view component that loads the web

application and gives the developer the ability to create and publish native

applications that can be submitted to each of the platform’s app stores. (23.)

4.1.3 Implementation

The implementation was a twofold process: to update the component data and

to clear the UI. As a lit-HTML web component, the component has its local state

 22

data to contain information (5). In this UI component, the local state data was

the search field typing data and other address data. Once the user fills the input

data, the local state's component binds them to the mobile application UI and

updates the interface.

Figure 6 Clear Search Field Mock Code

Thus, in the reverse logic, once the local component data was cleared on the

condition that all the search fields are complete, the local information was reset

to have an empty string and update the object google map prediction as an

empty object. (Figure 7).

I also worked on other UI tasks to build a button to clear the mobile app search

input. The issue occurred as the need to undo a booking exhibit gradually—the

current interaction in removing search fields one-by-one to be a poor, labor-

intensive user experience.

4.1.4 Reflection

The implementation in this week includes:

● Using lit-HTML to render HTML template elements.

 23

● Listening to events to change the component state and directives.

By using the lit-html to render HTML template from listening to component

states, the application was able to perform the clear search function as

intended.

The concepts of render() and directives in lit-HTML is noteworthily similar to

how other common client-side libraries and framework manipulate web

component UI. This application of the concepts and the skills learned from it is

beneficial in improving the basic understanding of web development regarding

DOM manipulation and how DOM manipulation is used in client-side libraries

and frameworks to create a good UI behavior that could lead to a good UX use

case.

In the current task, the immediate UX benefits from the concepts and

knowledge are to serve the feature for the visually impaired and elderly people.

Since this feature of the application is expected to be simple and performant,

the knowledge serves in providing good UX and good accessibility for this user

group.

4.2 Thesis entry from the 7th of September to 11st of September 2020

On the second week of the thesis work, I received a task to programmatically

document billing data from a certain period and sending the documents as an

attachment email to a specified address. Besides the billing task, I also received

some assignments about booking microservice concerned about UI data display

and behavior.

4.2.1 Research and study

According to Figure 2 and Figure 4, the architecture of the City Logistics product

is built on the microservice concepts. Therefore, the children applications of the

City Logistics are in compliance with this principle. Each application is

personalized for a business logic aspect of the City Logistics product.

 24

The Booking and Billing application that I was working on are an independent

application. The Booking service focus on providing different platforms for

making transportation booking to different customer audience. The Billing

service provides a systematic process of trip billing documentation and

calculation base on customer group, customer service, and municipality. To

conclude, the Billing service provides management of all billing data, and the

Booking service focus on the monitor of booking and customer data.

Regarding the task of making excel documentation of billings information, it was

implemented on the Billing service. The implementation happened of client and

server in the Billing service codebase and required knowledge of lit-HTML client

library, Excelize Golang package, SendGrid Golang package, and PostgreSQL

database access in Golang server.

Figure 7 User flow of billing document and automated emailing system

Figure 7 describes my study and research in designing and coding the Excel

billing documentation for the Billing service. The figure shows different

technologies and their interaction in a user flow for making the excel billing

documentation. The interaction starts from the client application with information

about making billing documents and sends them to the Golang server. The

Golang server receives the request and, through its mechanism and process,

 25

generates the excel billing documentation with the Excelize Golang package,

PostgreSQL database access, and SendGrid email service.

Figure 8 Search engine UI feature

For the remaining tasks that concern the general management of customer

data, the coding implementation happened in the Booking service codebase.

The need for search engine improvement led me to design the additional

searching feature in the UI client of the Booking service client. The improvement

was about filtering the search result of the search from the use of special

commands in the search box. When the user uses the command to search, the

result will be filtered through. (Figure 12.)

4.2.2 Theoretical background and technical information

Go programs are organized Go packages. A Go package is a compilation of

source files in the same directory that are compiled together. Functions, types,

variables, and constants defined in one source file are accessible to all other

source files within the same package. (24.)

A Go repository typically has only one module found at the root of the

repository. A file named go.mod there indicates the module path: the import

path prefix for all packages within the module. Each module's path not only

serves as an import path prefix for its packages but also indicates where the go

 26

command should look to download it. An import path is a string used to import a

package. A package's import path is its module path joined with its subdirectory

within the module. For example, the module github.com/360EntSecGroup-

Skylar/excelize contains a package in the directory excelize/. That package's

import path is github.com/360EntSecGroup-Skylar/excelize. Packages in the

standard library do not have a module path prefix. (24.)

Excelize is a library written in pure Go and providing a set of functions that allow

writing and reading from XLSX files. The library reads and writes XLSX files

generated by Microsoft Excel™ 2007 and later. Basic usages from Excelize to

implement the billing documentation includes (25.):

● NewFile: a function to create a new file with type File by default template.

(26.)

● NewSheet: a function to create a new sheet by given worksheet name.

When creating a new XLSX file, the default sheet will be created when

you create a new file. (26.)

● SetCellValue: a function to set a value of an excel cell.

● SaveAs: a function to create or update to an xlsx file at the provided
path. (26.)

SendGrid is a cloud-based SMTP provider that allows you to send email without

having to maintain email servers. SendGrid manages all of the technical details,

from scaling the infrastructure to ISP outreach and reputation monitoring to

whitelist services and real-time analytics. SendGrid also provides client libraries

in Golang to integrate the email system with an application. (34.)

The database/sql is a Go package for using SQL databases from Go. (27.) The

package can provide usage such as:

● Database connection.

● SQL query execution.

● Dealing with NULL value.

 27

Package http is a Go package that provides HTTP client and server

implementations. The HTTP implementations include some of the common

HTTP requests such as Get, Post, Put, and Delete. (28.)

4.2.3 Implementation

The implementation of the Excel billing documentation happened in the Billing

service. The implementation required changes to the client and server of the

Billing application. In the client of the application, the application was

implemented to display a form UI. This form UI registered the user interaction

and triggered the generation of the Excel billing document in the Go Server. The

Go server received the trigger event from the client through an HTTP request,

process the event, and complete its task.

 28

Figure 9 lit-HTML client component

The Lit-HTML provides HTML template and directive to let the developer

program an UI that could function with some behavior. The form in the client

was created by using this provision from lit-HTML to listen to user interaction of

typing and form submission (.5). After registering the user interaction for

creating a billing document in the client side, the UI form component calls for

 29

the server Excel billing document through HTTP API request to complete the

user request.

Figure 10 Document Excel in Server-side

The Go server of the Billing service completes the user request by generating

an Excel document through an API request. This API was completed the user

request by asking the Go server to create the document from the Billing service

database data.

This API listened for the customer request from the client side, using the

net/http Go package. The net/http package provides an http handle for the Go

server to know the context of the API request. By reading the API request

context, the http handle tells the Go server to generate the Excel Document with

the context received from the client side. (28.) The context of the API, in this

case, lets the server known the Excel document needs to contain the billing

data.

 30

To get the billing data and to generate the Excel document for the customer

request, the Go server uses database/sql package to retrieve the billing

information and renders the Excel document from the data by Excelize Go

package. (26.) (27.) (Figure 10.) The compilation for the Excel document, once

complete, returns a byte value for the server. Using this byte value, the Server

sends the document via email to complete the user request.

The implementation for the search engine improvement happened in the

Booking service application. The implementation required creating a Typescript

function to filter the result from the search through a typing command. This

typing command would support Finnish, English, and Swedish language. For

example, suppose the search feature operated in English base on the keyword

type-attribute-search. In that case, it would be tyypi-haku in Finnish and

Swedish, typ-sökning. (Figure 13.)

Figure 11 Search function with lit-HTML

The Typescript function was created to validate the search string from the

typing event and to filter the search result using a JavaScript global function

Array.filter(). This function is triggered through the directives concepts of Lit-

HTML, allows simultaneous reading, validation, and filtering to achieve the

results.

 31

4.2.4 Reflection

Since the works were involving development in different microservice, the

microservice concept became clearer for me in practical use and theoretical

understanding. I exposed myself to different documentation and implementation

within the City Logistics and observing the depth of technology being utilized

and optimized to enhance the core features. The Booking and Billing service

each had different responsibilities to handle different workloads and

performance.

The Excel billing documentation task in the Billing application taught me about

the codebase of its service and how the same technologies stack is applied and

used across the City Logistics product. The usage of lit-HTML concepts such as

directive and HTML template was used in implementation for the client in the

development of the feature. It resulted in fast development and interaction for UI

component behavior. The benefit of this lightweight client library in the Billing

application is performance since the API could contain two thousand bills per

day and twenty thousand bills per week. The reading and rendering by using

directive and lit-HTML template ease the DOM usage for data binding and

rendering.

The usage of the Go Excelize package fits the Billing service context because it

provides a comprehensive and programmatic way to render thousands of bills in

a systematic manner. During the implementation, I was able to test the

performance of the Excel documentation on the local machine data and internal

company data. The compilation process for data with two hundred bills from my

local data and nine hundred bills from the company internal data was relatively

lightweight and fast.

The application of the feature in the future in the City Logistics product is

practical for documentation with Excel need. The branches of this application

and need are typically conveyed and resulted in official documentation and

presentation. Thus, to have a bigger impact of the feature, the accuracy of the

 32

information and the performance of the rendering is the key factor in this

development.

For the Booking service, the improvement for the search engine was useful for

the customer data use. In terms of UX, it provides a faster way of searching for

results. This feature is useful in the Booking microservice because of the data

management and search need. The filter search for specific data type uses the

specific command and supports a multi-language filter for the same data

presentation.

4.3 Thesis entry from the 14th of September to 18th of September 2020

I worked on a different business sector of the City Logistics product this week.

This business sector is about monitoring the quality of the transportation service

and complaints of the quality from the customers. It is called the Feedback

service. The Feedback service is a self-contained application because it has its

own database, server, API routes, and client application. And thus, as a

microservice, the implementation code about Feedback service is focused only

on the management of service quality. (Figure 2.) I also continued further my

Excel Billing work in a different branch of applicability for the different billing

documentation needs.

The concept of microservice in software development was clearer to me. The

Feedback microservice also has its own codebase, similar to the way Booking

and Billing microservice have. This codebase of the Feedback application

contains a similar technology structure to other services as observed and

described in Figure 4. Yet, having the same technologies stack that

personalizes for the data structure of the Feedback business strategy, the

Feedback application, and the City Logistics in general benefits in productivity

and quality of code implementation and server performance. (17.)

 33

4.3.1 Research and study

Feedback microservice, in comparison with other services, was young and lack

of applicability. Because it was newly developed, the code quality and features

are relatively simple and not yet reliable for commercial use. The tasks I

received for the Feedback service were to make an additional refinement to

improve its commercial value before the presentation and demo to our

customer. This refinement for the Feedback application required the use of the

Vaadin component in our client UI presentation with Lit-HTML. It also required

me to be familiar with more advanced programming concepts about this

application, such as its data structure and the use of Enums in software

development.

The Billing application also received an additional request for Excel billing

documentation use. Because of this need, I continued my knowledge and skills

learned from the previous week of developing the Excel billing documentation

into a new branch of billing need.

4.3.2 Theoretical background and technical information

Vaadin is a framework for developing reactive client-side web apps. Views are

web components built with Typescript and lit-HTML. The framework is

lightweight and performant due to its compatibility with the lit-HTML library. It

also provides UI components encapsulate with useful functionality and a read-

made theme for data management usage.

Grid is the Vaadin component that is used in the implementation of the feature

for improvement in data presentation. The UI components are compatible with

lit-HTML and TypeScript, provides a definitive and functional way of presenting

Array data for client UI. Each item in the items array assigned to the <vaadin-

grid> represents a single row in the grid. (29.)

Enums, in computer science, is called enumerated type. It is a data type

consisting of a set of named values called elements, members, enumeral, or

 34

enumerators of the type. Enums allow a developer to define a set of named

constants. Using enums can make it easier to document intent or create a set of

distinct cases. TypeScript provides both numeric and string-based enums. (30.)

4.3.3 Feedback service

To present the service quality and complaint data in the Feedback client, the UI

was constructed by rendering the Grid UI provided by the Vaadin component.

This Grid UI contains useful data assertion features such as sorting, filtering,

and reading of data context. The feature usage of the Grid component helps the

developer to create UI with creative behavior that fits the management context

of the Feedback application.

By building a UI component from the use of the sorting and filtering function of

the Grid component, the UI was able to display a graphical reading of the

service complaint data. These functions helped the implementation in reading

the complaint data structure and in constructing the UI behaviors and styling.

The assignment in the Feedback codebase also extended my general

understanding and improvement of the data structure of the service. I was

learning and adding enums data type for the data structure to improve the

definitive reading of the complaint data structure. This improvement resulted in

faster rendering and development for the lit-HTML, enforced with strong typing.

4.3.4 Billing Microservice

I spent my following half of this week for the billing microservice to continue with

a new Excel billing documentation. The feature was about generating an excel

document with all the billing data from a month.

The general implementation of the feature is similar to previous Excel billing

documentation implementation. It required the client of the Billing service to

provide an UI where the customer could interact with. When the customer

interacts with the UI, the client sent the API request for the server for generating

the Excel documentation with a month data. The technology concepts involved

 35

were the use of Go package net/http and database/sql for database processing.

The Excel compilation was used by the Go Excelize package for the reliability in

rendering and compilation of large data amounts.

The difference to this Excel Billing documentation feature was about the amount

of data being processed and compiled by the Go server. Since the amount of

data is a month of bills, the API was required to provide meaningful information

of time range so that the server could access the PostgreSQL database and

proceed with the compilation. Within the API, the server application would query

from the PostgreSQL database for the data. The data, upon which being

fetched and serialized into an interface, was used to generate the billing

document's content programmatically.

When the generating content was complete, the Go server named the file and

returned the buffer data of the excel file. The buffer and the file name were then

set as a server response attachment with the body of binary and spreadsheet

type to make the file downloadable upon the API call.

4.3.5 Reflection

My thoughts on the work being done during the week are reflective of the thesis

theme. The microservice architecture divides the City Logistics core feature into

different codebases that utilize the same technology stack to achieve a different

technical purpose and commercial results.

My work this week involved the development of the Feedback service helped

me observed the benefits of the City Logistics code organization. I was able to

recycle the concepts of lit-HTML in the technical context of the Feedback

application. The common knowledge of lit-HTML, such as directives, was

exhaustively utilized in the Feedback client application. The feedback

information needed to be presented as a listing, and my implementation for lit-

HTML was adapting well to the data structure.

 36

My knowledge and skill of TypeScript in client development were also

heightened by advanced concepts and applicability. I was able to use and test

my understanding of enums in TypeScript to develop a type-safe data type for

the client application. This type-safe usage of enums was developed more in

the feedback data structure, and it prevented crashes from unexpected value

and unknown type.

The enums data type usage in the feature is useful in general software

development for designing a good data structure. The future extension for

enums applicability is for using the constant value of the enums in comparison

situations. Since the value and type of the enum are unchanged and immutable,

the comparison for client feature and function is reliable to produce a reliable

Boolean comparison result.

For my implementation of the Excel billing documentation in the Billing service, I

was able to re-use the previous knowledge with a new branch of application and

need. The usage of the feature for the current implementation was heavy-

loaded due to the time range difference. I was able to produce a desirable

performance for a month data from my local machine data and the company

internal data. The struggle of the implementation was to have complete

accuracy in the billing, as the documentation was for official use. I was able to

produce a complete accuracy in my local machine, but I met with some

duplication data problem with the company internal data.

4.4 Thesis entry on the week from 21st of September to 25th of September
2020

During this week, I spent my time developing new features for the feedback

microservice. My task was about making a correct display of summary

information regarding the complaint and rating of our City Logistics product.

 37

4.4.1 Research and study

Since the tasks I received were mainly about service quality management and

monitors, the implementation was coded in the Feedback service codebase.

Creating a display of rating and complaint summary information required

implementation in the client UI and Go server of the Feedback application. The

code implementation required computation for the summary data from the

database, and displaying that computation results in the client UI through an

API. The computation was handled by using the provided function from

PostgreSQL, and the application read the computation results by using Golang

struct data type and TypeScript interface data type.

4.4.2 Theoretical background and technical information

A TypeScript Interface is a structure that defines the contract in the TypeScript

application. It defines the syntax for classes to follow. Classes that are derived

from an interface must follow the structure provided by their interface. An

interface is defined with the keyword interface, and it can include properties and

method declarations using a function or an arrow function. (31.)

A Golang struct (short for "structure") is a collection of data fields with declared

data types. Golang has the ability to declare and create its own data types by

combining one or more types, including both built-in and user-defined types.

Each data field in a struct is declared with a known type, which could be a built-

in type or another user-defined type. Structs are also considered as a template

for creating a data record, like an employee record or an e-commerce product.

(32.)

The AVG() is an aggregate function in PostgreSQL. The AVG() function allows

calculating the average value of a set. COALESCE is a conditional expression

function. The COALESCE function evaluates arguments from left to right until it

finds the first non-null argument.

 38

4.4.3 Implementation

In the Typescript application, I developed an API function that handled the GET

HTTP method for the component and a customized interface that matched the

JSON structure from the Golang interface structure. When the API function was

called, the parsing of the value by name would be matched. The API would be

used in the parent component to fetch the server's summary data when the user

went to the dashboard view of the application or login and was redirected to the

dashboard. The parent recognized the category of the current view, passing

through the children component the summary data and the current view enums

so that the children component could render the summary of the data UI base

on which category of the dashboard was being viewed.

The API, being recognized in the server, would request it to make a set of

serialization in order to obtain the summary data, which is of the following:

● The total and average rating of the booking microservice in the previous

week and month,

● The total and average of positive and negative feedback of the system in

the same duration

● The total and average amount of policy violation during the same period

and how long the violation claim being processed.

From the HTTP handler, the server resolved the summary data from two

sources, from the internal microservice database and through RPC connection

API. When fetched from these sources, the resolved summary data would be

compiled into an interface and serialized into JSON data to send to the client for

API consumption.

For the internal microservice database source, the backend server requested

PostgreSQL to send the total and average counting of the negative and positive

feedback and violation through the SQL script and scan the result to the

summary data interface.

 39

Figure 12 Server computes PostgreSQL query

In Figure 14, The Go code demonstrated how the server requested the data

from the SQL script and scanned the results to the Go summary data interface.

Most of the functionality, such as filtering and calculating the total and average

amount of data, was used by the SQL function to enhance the overall

readability and reduce the performance load of the Go Server calculation, even

though the load was not subtly stressful. However, the scanning could fail

because the average AVG() function calculation from PostgreSQL could return

nil value when the calculation value was empty, so using COALESCE() acting

as the safety net returns 0 edge case happened. Furthermore, since the time

value of the summary data was the timestamp, the filter was being compared

and handled inside the PostgreSQL database. The comparison extracted the

month and week values of the data. It validated with the previous month and

week value from the current timestamp to filter for the expected data within the

filtered time range.

 40

4.4.4 Reflection

The task for the week happened in the Feedback service with the need to

display the summary information about the service of City Logistics product. To

complete the task, I created a PostgreSQL computation query to get the

summary data from the Feedback service database. The summary data is read

by the Go server and served to the client through an API request. The client UI

consumes the API with the UI component to display the dynamic data from the

database.

The success of the task is about having an accurate computation for the

summary data. To produce an accurate result, I chose to make the computation

in the PostgreSQL database and return the results for the server for API use. By

using an aggregate function and conditional expressions to create the

computation query, the results were crash-proof for the Golang server and fast.

The applicability of the implementation is the knowledge of making computation

data in the PostgreSQL database over the Go server. Computation in

PostgreSQL is faster in Golang because of the large amount of information in a

month time range. The computation cost presents when the data amounts to

twenty-thousand units. In the Golang server implementation, the computation

executes in the server once the data is fetched from the database. When using

computation in the PostgreSQL database over in Golang server, the server can

skip the computation and only be concerned about reading the data.

The other success point of the feature was also to construct the API for the

server to serve the data for client UI consumption. I was able to use Golang

knowledge with Go package net/http and database/sql to achieve the results.

The data in the client was able to render dynamically with computation results

from the database.

 41

4.5 Thesis entry on the week from 28th of September to 2nd of October
2020

In the fifth week, I continued my programming work on the Feedback service

and Billing service. My work on the Feedback during this week was about

making an automation no-reply that will be sent according to the boolean status

of the Feedback data. For the Billing service, I developed language support for

the Excel document billing.

4.5.1 Theoretical background and technical information

Dynamic email template is an HTML emails with design and appearance. The

adoption of dynamic email provides a way to display informative data over

regular text-only emails. SendGrid provides basic instruction in using a dynamic

email template (34.):

● Create an API key.

● Design the dynamic template.

● Send the email using the SendGrid Go package.

Environment variables are variables in the local machine system that describe

the machine environment. Aside from ‘built-in’ variables, environment variables

can also be created independently. Since they are bound to the environment,

they are great for things such as API access tokens. The variable can be set to

one value on the development machine and another in the production

environment without having if-statements or special config files. (33.)

 42

4.5.2 No-reply email implementation

Figure 13 Email functionality with SendGrid

First of all, I integrated SendGrid into the application server. The integration

work would produce a no-reply email template in English, Swedish, and Finnish.

These email templates would include dynamic data placeholders. The server

uses this dynamic data placeholder to populate feedback information from the

client. Afterward, on each API request sent to our server of the feedback

information, the server would read the context of the API. If the reading from the

API results in the data information with a Boolean status as truthy, the server

will send an email automatically. (Figure 15.)

The integration also involved a setup of the SendGrid service into our

application. This setup is a way to secure fetching and storing the API key and

API template in order to securely use the SendGrid service. To make the setup

functional, the API key was stored as an environment variable, and the API

template was stored inside a YAML file. Putting API credentials in an

environment variable prevents exposure risks. This sensitive data is only

 43

available for use by the fetching mechanism developed in the server. (Figure

15.)

4.5.3 Excel billing document implementation

The implementation of the Excel billing document for this feature happened in

the Billing service codebase. This implementation is similar to the previous

billing document implementation. The bill was generated in the server through

an API by using the Go package Excelize. The data of the bill is fetched from

the database by Go package database/sql to populate into the Excel billing

document.

Since the billing needs to support multi-language formats, additional changes

were needed in the billing API. The API received in the Go server provides

context about the language format for the billing document. From this language

format context, the server generates the language content of the document by

using the i18n (internalization) package, a client and server library to support

multi-language content. This package allows the rendering of the billing content

in the language that the server requested. (9.) (10.)

4.5.4 Reflection

My work for the week including the development tasks for both the Feedback

and Billing service. The Feedback service task was able to complete by having

a no-reply email system being integrated into the service. For the Billing service,

the improvement for the Excel billing document was able to support multi-

language content.

The no-reply email system implementation in the Feedback service produced a

favorable result. The key factors of the result come from developing the server

to have a secure integration to use the SendGrid service and to send the no-

reply email from the Boolean status of the data structure. The integration was

achieved securely by developing accurate and dynamic reading for the API key

from the Golang server through the environment variable. The setup and

 44

integration also resulted in supporting the no-reply email content available with

different language need and with data being dynamically populated to the email

content.

The implementation in the Billing service is about creating language-support

Excel billing documents. This implementation was achieved by having additional

improvement for the Excel billing API. The API received from the Golang server

was able to provide a meaningful context of the human language need. This

need is read by the Golang server to generate the content according to the API

context by using the i18n (internationalization) package. The end results are the

Excel billing documents are available in English, Finnish and Swedish

language.

The applicability of the feature lay on the ability to provide multi-language

content from the Golang server. By successfully using the i18n package in the

Golang server, the server could provide dynamic language content. This

applicability is meaningful because the branches of potential development could

be the support of providing a language-based PDF billing document and report

or having a Word document report with language support.

4.6 Thesis entry on the week from 5th of October to 9th of October 2020

For this week, my task was about creating a two-way data interaction between

the Feedback service and the Billing service. Specifically, The Billing service

needs to display Feedback information from the Feedback database. In addition

to displaying the data, the Billing service could create new data for the

Feedback service in the Billing client. The implementation required the use of

gRPC, Google protocol buffers, and Google protocol buffers.

 45

4.6.1 Theoretical background and technical information

Figure 14 Remote Procedure Control

From official Golang documentation (6.), RPC is a go package "provides access

to an object's exported methods across a network or other I/O connection. After

registration, exported methods of the object will be accessible remotely. A

server may register multiple objects (services) of different types, but it is an

error to register multiple objects of the same type".

The other concept of development that I must be acquainted with during the

development of the feature was the Google protocol buffer. In general, it is

Google way of serializing structure data in a small, fast, and simple mechanism

(8.). The developer defined the characteristics and behaviors of the data

through a protocol syntax was. The data definition was then used to generate a

source code of the defined structured data to and from various data languages.

4.6.2 Research and study

The Billing client requires database access to the Feedback service to display

data and to make changes to the Feedback data source. This database access

to the Feedback database is provided by a protocol context from the RPC

 46

connection. This protocol context could be a request for retrieving data or for

creating new data. The protocol context includes the Golang struct or the data

structure of the Feedback service. This structure is generated by the protocol

definition of Google Protocol Buffers. (11.)

The development of the gRPC function includes:

1. Create the RPC connection of the Feedback service in the Billing

service.

2. Serve the data by retrieving and creating requests by using the RPC

function.

Figure 15 Creating RPC Server Simplified Code

The Feedback service provides the gRPC connection for Billing client use to

receive the Feedback database access. The Billing service receives the

Feedback data in the server and serves the Feedback data in its client

application. The client application uses the Feedback data from the API to

render UI interaction.

In the sending data implementation, the data first received in the Billing server

and compiled as a caller request. The request is sent to the Feedback service

server after being compiled in the Billing server. The Feedback server

 47

processes the Billing data with validations and stores data in the Feedback

database.

4.6.3 Implementation

The implementation of the task started with writing a protocol definition for the

RPC connection. The protocol definition describes the Feedback service data

structure. The definition also includes the type of database connection to the

Feedback service and provides to the Billing service GET and CREATE change

to the Feedback service database. Once the writing of the protocol is complete,

the Google Protocol Buffers generate the definition into Golang code.

The Billing server uses the definition in the Golang code to read the Feedback

service data structure. It also allows the Billing service to make database

changes in the Feedback service through this Golang code definition. The

Billing server reads the Golang definition of the Feedback data and serves the

function to its client through an API. The client of the Billing service receives

and makes changes to the Feedback database through this API. (Figure 19.)

 48

Figure 16 Protocol Buffers Process Simplified

4.6.4 Reflection

Feedback and Billing service are two self-contained applications. Because of

using gRPC, the Billing service does not need to create a database about

Feedback data. The Feedback data is provided to the Billing service through

gRPC data streaming. This data streaming lets the Billing service have access

to the Feedback database and data structure.

This access ensured the code quality because the Feedback data structure

access provided to the Billing service is consistent in data type and value. Since

the Google protocol buffers create this API definition for client and server in

TypeScript and Golang, a software solution was not limited to a use case and

the schema of the database tables.

The task was successful in providing this gRPC access for the Billing service. In

the implementation, I was able to create a bidirectional steaming of Feedback

 49

data for the Billing service. This bidirectional streaming allows the Billing service

to connect its client to the Feedback server and database.

Another practical use of the protocol is its support for the English, Finnish, and

Swedish languages. With the use of i18n (internalization) (9.) (10.) in the client,

the protocol helped to define the enums as a constant variable. Translation

works and data flowed from the client to the database were no longer relying on

a string but a number by value. The use could be to interpret language text with

i18n for the client UI display and translate the text value regardless of the

language base on the enums generated and serialized by the protocol files.

The practicality of protocol had been very useful in reducing the data structure's

guesswork and reducing unnecessary DRY code, allowing the developer to be

more focused on development.

4.7 Thesis entry on the week of 16th of October to 27th of October 2020

This week was the final week of the thesis work and writing. For the weeks, my

task was about making a code quality improvement on the Feedback service.

The improvement for code quality was implemented in the client and server with

TypeScript and Golang programming language.

4.7.1 Research and study

The leading reasons for the refactoring work had been the accumulation of

technical debts in the codebase and the database structure. The requested

change also affected many APIs that both client and server feature of the

microservice application depends. The previous week, a meeting was being

held to discuss the software implementation's technical limitation from the

database to client use. A decision for change was made with the presence of a

lead developer and a project manager.

The columns of the database, for example, are storing data as text values for

reference data instead of UUID, which increased the difficulty in indexing data

for microservice and database tables. In the database table, data of different

 50

users were stored in one table of the database, magnifying the problem of

magic numbers. Also, some database tables were redundant and could be

merged as a property of a table as JSONB data type (12.) to reduce the work of

data indexing.

Figure 17 Database structure improvement

In other places of the microservice codebase, server-side feature for using data

was also primarily affected and impacted by data structure definition and

database functions tagged by the data structure. The impact touched many API

functionalities, changing the way of how the backend server functioning. The

change from the API, in turn, led to the change of the client code.

The change of improvement to the database of the microservice and any

cascading functionality was acceptable. The application was yet released for

commercial use, so implementing change did not impact City Logistics Product.

4.7.2 Theoretical background and technical information

JSONB is a data type of PostgreSQL and is stored in a decomposed binary

format. Storing JSON data in PostgreSQL database as JSONB type provides

fast processing but adding conversion overhead to input. JSONB also supports

different operators such as getting object by key, by index, and at the specified

path. (12.)

A database index is a data structure that improves the speed of data retrieval

operations on a database table at the cost of additional writes and storage

 51

space to maintain the index data structure. Indexes are used to quickly locate

data without having to search every row in a database table every time a

database table is accessed. Indexes can be created using one or more columns

of a database table, providing the basis for both rapid random lookups and

efficient access of ordered records. (35.)

4.7.3 Implementation

The implementation work started with the database changes of the Feedback

service. The changes in database structure were defined by the business

strategy of the Feedback service. The change would include indexing columns,

time record columns, and Feedback service columns. The indexing columns are

Index and Uuid data type, and the time record columns are timestamp data

type. (Figure 21.) The Index and Uuid data types provide a reference method in

making queries for a single or cluster of information. The timestamp record

column provides a systematic filter for retrieving the data on the timestamp unit.

The table also contains other central information about the table. This

information is defined as the central data column of the table. The value and

data type of these columns are determined by the technical application and

business strategy of the Feedback service. For the dynamic column information,

the integer data type is used because the column provides Enums interpretation

in the Go server and TypeScript client with a constant value. For static column

information, JSONB data type is used to store information from the Go server

as a snapshot. This snapshot of JSON data provides the read-only replication of

information.

The change in the Feedback service database also resulted in changes for the

API of the Golang server and TypeScript client. The changes in the Golang

server and client API were about the modification to the table data changes in

data type. The Feedback database table provides Uuid and index data types for

indexing and reference. The retrieval and modification of the data from the Go

server were able to make fast and performant queries on this data type as a

 52

result. This improvement on reading the database results in the server provides

a robust way for client applications to consume the data with consistency.

4.7.4 Reflection

The work of this week was able to connect to the overall theme of the Thesis

topic. Services of the City Logistics are developed in the microservice

architecture to provide an optimal technical solution for the services’ aspect.

Therefore, a self-contained development environment of services includes a

personalized collection of database tables, client applications, and server API.

The change and improvement introduced in the Feedback service were able to

bring the technical infrastructure to focus on the Feedback business strategy.

The technical changes include database tables, server API, and client

implementation.

Figure 22 HTTP Handlers for data list

One example of the efficiency from the infrastructure change is the stability in

developing Golang server API. The use case for this example is about data

 53

listing for API consumption. The changes in database level provide consistency

in reading data structure information across the Feedback application with good

indexing and time record. With the data type change that supports dynamic data

such as Enums, the client implementation with TypeScript and Golang,

therefore, are type-enforced and predictable. This predictability also prevents

server and client applications from crashing because of reading a contradict

type value.

 54

CONCLUSION

The thesis started on the date 31st of August and ends on the date 27th of

October, lasted about eight working weeks of my employment at Attracs Oy Ab.

During my thesis work, I developed my programming language skills of

Typescript, Golang, PostgreSQL and various other libraries as part of my

development work and responsibility at Attracs Oy Ab. I became more integral

with the development team in developing the client and the server on four

different microservices of Attracs Ab Oy City Logistics Product and Android,

IOS, Web application powered by Server-Side development.

I was involved with several server feature tasks, some web and mobile

application changes, and bug fixes for the on-production-deployment

microservices. These tasks were my introduction to Attracs City Logistics

Software Development. I gradually started to pick up the Go syntax for the

server-side development and progressively adapted to the Attracs development

standard on Go and Typescript development standards.

Even though features had been used in the production environment, I was later

corrected by a senior colleague that there is room for server code improvement

in terms of readability and performance-wise. This correction resulted in some

code change to increase the developer experience of the microservice

repository for the team. My microservice tasks were about one month and a

week working on bug fixes to medium and large-scale features, where it

happened on the server and client-side.

I was also active in the development of one internal deployment microservice.

The responsibility ranges from the design and planning to implementation of

Golang server-side API, Typescript User Interface and client functionality, and

the data structure PostgreSQL database, including the software architecture of

the microservice with Google Protocol Buffers.

 55

The development work for this microservice ended on a good note with feature

weekly developed and demo for the municipal client on our nightly deployment.

It resulted in several ten different features, from small to large, being delivered

agilely with agile results.

Starting with little knowledge and skills in Go, the thesis works ended with

productive work produced with newfound experience. The results were fruitful in

Go development on the server-side, Typescript for the client development, and

the server interaction of Go to the PostgreSQL database. More high-level

programming work on the general design of data structure microservice feature.

 56

 57

REFERENCES

1. Statistics Finland, Number of persons aged 70 or over 874,000. Date of

retrieval 20.04.2021

https://www.stat.fi/til/vaerak/2019/vaerak_2019_2020-03-

24_tie_001_en.html#:~:text=According%20to%20Statistics%20Finland%

27s%20statistics,by%20100%2C000%20in%20three%20years.

2. Findicator 2020, Age Structure of population. Date of retrieval

01.11.2020

https://findikaattori.fi/en/table/14

3. Statistics Finland, 2017, Inactive population, Date of retrieval 01.11.2020

https://www.stat.fi/til/tyti/2016/13/tyti_2016_13_2017-04-

12_kat_004_en.html

4. Mobile Usability

https://medium.com/@cayetanogros/mobility-usability-dc0bc61d05c1

5. Writing templates 2017, lit-HTML guide, Date of retrieval 05.11.2020

https://lit-html.polymer-project.org/guide/writing-templates

6. Package RPC 2020, Golang documentations by Google, Date of retrieval

16.11.2020

https://golang.org/pkg/net/rpc/

7. Protocol Buffers, Protocol Buffers documentation by Google, Date of

retrieval 16.11.2020

https://grpc.io/docs/what-is-grpc/introduction/

 58

8. Protocol Buffers, Protocol Buffers documentation by Google, Date of

retrieval 16.11.2020

https://developers.google.com/protocol-buffers

9. Internalization and Localization, Wikipedia, Date of retrieval 16.11.2020

https://en.wikipedia.org/wiki/Internationalization_and_localization

10. i18n, i18n npm documentation, Date of retrieval 16.11.2020

https://www.npmjs.com/package/i18n

11. Defining services, Protocol Buffers documentation, Date of retrieval

17.11.2020

https://developers.google.com/protocol-buffers/docs/proto3#services

12. PostgreSQL, JSON Functions and Operators, Date of retrieval

30.11.2020

https://www.postgresql.org/docs/9.6/functions-json.html

13. What is Agile Software Development, ClickUp, Date of retrieval

27.01.2021

https://clickup.com/blog/agile/agile-software-development/

14. Agile Software Development, Wikipedia, Date of retrieval 27.01.2021

https://en.wikipedia.org/wiki/Agile_software_development

15. Henkilöliikenteen välityspalvelut, FCG Finnish Consulting Group Oy,

Date of retrieval 27.01.2021,

https://www.fcg.fi/kestava-elinymparisto/kaupunkisuunnittelu-ja-

kehitys/henkiloliikenteen-valityspalvelut

16. Package excelize, GoDoc, Date of retrieval 27.01.2021

https://godoc.org/github.com/360EntSecGroup-Skylar/excelize

 59

17. Microservices, Wikipedia, Date of retrieval 14.02.2021

https://en.wikipedia.org/wiki/Microservices

18. Typescripts, Wikipedia, Date of retrieval 14.02.2021

https://en.wikipedia.org/wiki/TypeScript

19. Front-end Web Development, Wikipedia, Date of retrieval 14.02.2021

https://en.wikipedia.org/wiki/Front-end_web_development

20. Apache Cordova, Wikipedia, Date of retrieval 14.02.2021

https://en.wikipedia.org/wiki/Apache_Cordova

21. Golang programming language, Wikipedia, Date of retrieval 14.02.2021

https://en.wikipedia.org/wiki/Go_(programming_language)

22. Apache Cordova, Wikipedia, Date of retrieval 14.02.2021

https://lit-html.polymer-project.org/guide/creating-directives

23. What is Hybrid App Development, Chris Griffith, Date of retrieval

14.02.2021

https://ionic.io/resources/articles/what-is-hybrid-app-development

24. How to write Go Code, Godoc, Date of retrieval 16.02.2021

https://golang.org/doc/code#Organization

25. Excelize, 360EntSecGroup-Skyler, Date of retrieval 16.02.2021

https://pkg.go.dev/github.com/360entsecgroup-skylar/excelize

26. Excelize, 360EntSecGroup-Skyler, Date of retrieval 16.02.2021

https://github.com/360EntSecGroup-Skylar/excelize

 60

27. SQLInterface, Golang Wiki, Date of retrieval 19.02.2021

https://github.com/golang/go/wiki/SQLInterface

28. SQLInterface, Golang Wiki, Date of retrieval 19.02.2021

https://golang.org/pkg/net/http/

29. Grid, Vaadin Fusion, Date of retrieval 19.02.2021

https://vaadin.com/components/vaadin-grid/html-examples

30. Enums, The TypeScript handbook, Date of retrieval 19.02.2021

https://www.typescriptlang.org/docs/handbook/enums.html

31. TypeScript Interfaces, Tutorial Teacher, Date of retrieval 20.02.2021

https://www.tutorialsteacher.com/typescript/typescript-interface

32. Golang struct, Golang programs, Date of retrieval 20.02.2021

https://www.golangprograms.com/go-language/struct.html

33. How to set environments variable, Dominik Kundel from Twilio, Date of

retrieval 20.02.2021

https://www.twilio.com/blog/2017/01/how-to-set-environment-

variables.html

34. How to send an email with dynamic transactional templates, SendGrid,

Date of retrieval 20.02.2021

https://sendgrid.com/docs/ui/sending-email/how-to-send-an-email-with-

dynamic-transactional-templates/

35. Database Index, Wikipedia, Date of retrieval 20.02.2021

https://en.wikipedia.org/wiki/Database_index

 61

