

Youqin Sun

A Comparison between Java and
Go for Microservice Development
and Cloud Deployment

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

06 April 2021

 Abstract

Author
Title

Number of Pages
Date

Youqin Sun
A Comparison between Java and Go for Microservice
Development and Cloud Deployment

38 pages
06 April 2021

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Mobile Solutions

Instructors

Patrick Ausderau, Senior Lecturer
Anne Pajala, Lecturer

In the era of Big Data and light-speed socio-economic development, the scalability,
availability, and reliability of software systems become increasingly important. As
cloud technology advances and matures, a growing number of organizations are mov-
ing their operations to the cloud (Babar and Chauhan, 2011). However, the processes
of developing applications with different programming languages may differ from one
to another. Software projects with similar functionalities may require different re-
sources and produce distinct performance outcomes if they are not built with the same
language.

In this paper, the theoretical knowledge of cloud computing, containerization and mi-
croservice was presented based on up-to-date resources. Two microservices with
equivalent functions were successfully developed and deployed to the Google Cloud
Platform using Docker, Helm and Kubernetes. One of the projects was developed with
Java and the other with Go. Furthermore, the discrepancies in resource consumption
and efficiency were observed and analyzed. Moreover, it was found that the applica-
tion developed with Go was more efficient and cost-effective. However, the exact ad-
vantages and drawbacks of each language depends heavily on the scale, complexity
and features of the software system to be developed. Each programming language
offers distinct features and various supporting libraries and frameworks. Therefore,
extensive research on how to maximize the advantage of those elements for the best
outcome of the target application is strongly advised prior to the implementation of
such projects.

Keywords Microservice, Java, Go, Kubernetes, Docker, Cloud

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical Background 3

2.1 Cloud 3

2.1.1 Cloud Computing 3

2.1.2 Cloud Services 4

2.2 Container Technology 5

2.2.1 Container and Container Image 5

2.2.2 Containerization 6

2.2.3 Container Orchestration 7

2.3 Microservices 8

3 Project Planning 10

3.1 Languages and Frameworks 10

3.2 Development and Deployment Mechanisms 12

4 Project Implementation 14

4.1 Application Development 14

4.2 Packaging for Cloud Development 15

4.3 Cloud Deployment 22

4.4 Load Testing 24

4.5 Outcomes and Analysis 25

5 Conclusion 32

References 34

List of Abbreviations

API Application Programming Interface. A collection of protocols defining how

to interact with a software intermediary (IBM, 2021).

AWS Amazon Web Service. A cloud-computing platform provided by Amazon.

CD Continuous Deployment.

CI Continuous Integration.

CPU Central Processing Unit. The main processer of a computer system.

CLI Command Line Interface. A program accepting text input to execute system

functions.

GCP Google Cloud Platform. A collection of computing infrastructures provided

by Google as a set of cloud services (Gupta et al., 2020).

GKE Google Kubernetes Engine. An environment to run and manage container-

ized applications using Google infrastructure (GKE, 2021).

IaaS Infrastructure as a Service. Computing infrastructures provided as an

online service (Tang, Ren and Pan, 2014).

JAR Java ARchive. A file format for zipping many Java class files into one ((Or-

acle, 2021).

MSA Microservice Architecture. A software development method focusing on in-

dependence for efficiency and scalability (Redhat Microservices, 2020).

PaaS Platform as a Service. A platform provided as a service for customers to

develop, deploy and manage applications (Tang, Ren and Pan, 2014).

POM Project Object Model. An XML file containing information and configuration

details for a project created with Maven (Apache Maven, 2021).

SaaS Software as a Service. A software provided as a service based on sub-

scription to or rental of the software (Tang, Ren and Pan, 2014).

URL Uniform Resource Locator. A reference to the location of web resource(s)

over the Internet.

VCS Version Control System. A system that keeps track of changes made to a

file or a set of files (Bieniusa, Thiemann and Wehr, 2008).

1

1 Introduction

The world is experiencing an explosion of information as Internet-capable devices are

generating an unprecedented amount of data every day, which needs to be stored, pro-

cessed and delivered constantly. As the backbone to this phenomenon, cloud technology

is emerging and seeing steady and fast growth as more and more services are made

available through the cloud. (Moud et al., 2020.) Nowadays nearly all the most popular

applications on the market are deployed and offered via the cloud, which enables instant

and seamless interactions between users and applications. (Ahmad and Kamvar, 2013.)

As cloud computing gains popularity around the world, the number of businesses provid-

ing and using virtual services over the cloud increases significantly. (Babar and Chau-

han, 2011.)

Despite the conveniences and advantages to the end users, cloud development and

deployment face numerous challenges (Ahmad and Kamvar, 2013). The process of

building applications with different programming languages may vary to a great extent.

Because different programming languages have different libraries, tools and mecha-

nisms when it comes to cloud building and deployment. Furthermore, applications with

identical functionalities but made with different languages may require non-identical com-

puting resources and infrastructures. (Li and Wan, 2018.)

After they have been deployed to the cloud successfully, one application may perform

very differently from another. Each programming language offers unique benefits and

produces distinctive challenges as well, even though the exact advantages and concerns

depend on the purpose and use case of the application certainly.

The goal of this thesis is to find out the differences in the processes of application devel-

opment with different programming languages and frameworks for cloud deployment and

analyze the benefits and concerns during the implementation process. The project is

also aimed to compare the cloud computing resources needed for different applications

and observe the performance results after the projects have been deployed to the cloud.

Java and Go were chosen as two example programming languages to develop two mi-

croservices with similar functionalities, which provide users with lottery number services,

2

generating selected sets of lottery numbers or retrieving past winning numbers. Further-

more, both applications were deployed to the Google Cloud Platform (GCP) using

Google Kubernetes Engine (GKE), Helm and Docker. Hence, the ultimate purpose is

narrowed down to discover the answers to the above-mentioned questions based on

those resources as well as the mechanisms related to them.

The content of this thesis includes an Introduction section, which introduces the project

idea, scope and objectives, followed by the Theoretical Background, which explains the

theoretical knowledge of technologies. Project Planning laid out the programming lan-

guages, frameworks and mechanisms used in the thesis, as well as tools, systems and

platforms for cloud deployment. Project Implementation documents in detail the imple-

mentation process of the software projects. The testing against the microservices and

the performance results are documented in this section as well. The observations and

final outcome of this thesis can be found in the Conclusion part.

3

2 Theoretical Background

2.1 Cloud

2.1.1 Cloud Computing

The cloud, once seen as a buzzword, is evolving into a popular technology, which is

being widely used across industries all over the world (Wang, 2019). In the information

technology industry, the cloud by definition means an enormous network of servers dis-

tributed across the world but connected together over the Internet. As a result, one single

harmonious ecosystem is formed, as seen in Figure 1. The whole network can be used

to store, manage and deliver content for its users. With the cloud technology, data is

highly available and can be accessed easily at any desired location or time through any

Internet-connected device, eliminating the restrictions of storing to and retrieving from

physical storage systems locally. (Microsoft Azure, 2021.) Despite all the advantages,

the new technology emerged with concerns as well, including risks in security and data

privacy, and doubt about its performance and reliability (Efozia et al., 2017).

Figure 1. Cloud computing (Microsoft Azure, 2021).

4

Cloud systems can be generally divided into three categories: private, public and hybrid.

Private cloud is a system, which is designed for and can be accessed by only one or-

ganization. If the platform shares resources over the Internet and is open to the public, it

is called a public cloud. Resources offered over this system might be free or charged

based on usage. A hybrid cloud combines the previous two environments. Depending

on the situation, resources and services can be shared between the public and private

sectors in a hybrid system to achieve a more cost-effective formation. (IBM, 2021.)

Cloud computing is defined as computing infrastructures made available through the In-

ternet, a modern and advanced alternative to the traditional way of using computing pow-

ers locally (Ray, 2018). In traditional data centers, devices and equipment need to be

installed on site and maintained by its owner, which is costly, and the usage of resources

is not optimized. (Shuping and Feng, 2019.)

With the emergence and advancement of cloud computing technologies, IT resources

are offered on demand to customers regardless of their type, industry and size. The

resources are highly available, which customers can order and use whenever it is nec-

essary, and they pay for what they use only. Cloud technology makes the usage of com-

puting resources more efficient and cost-effective. Over the cloud, users have access to

a wide range of services, which enable businesses to build more innovative systems.

Moreover, the deployment and management of applications are made easier and faster

globally as cloud infrastructures are distributed across the world. The elasticity feature

of cloud provides auto scaling instantly based on actual data generation, mitigating the

worries of peaks in business activities. (AWS, 2020.)

2.1.2 Cloud Services

Cloud computing service types include Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS). The service content ranges from

hardware, software and networking to databases, storage and intelligence. Through

cloud computing technology resources can be accessed in a more flexible manner and

at different scales. Users of cloud services are charged typically by how much they ac-

tually use. In this way, operating costs are lowered, and resources are used more effi-

ciently. (Microsoft, 2020.)

5

With cloud computing services available, organizations no longer need to buy and main-

tain their own physical hardware and data centers all the time. Instead, they can order

the infrastructures from the Internet only when it is necessary and at a scale they desire.

Moreover, they can scale up or down the service freely based on the business require-

ments and market demands. (Amazon Web Service, 2020.) Currently major cloud ser-

vice providers dominating the market include Amazon Web Service (AWS), Microsoft

Azure and Google Cloud Platform, with many more fast-growing players emerging and

joining the competition (Li and Wan, 2018).

2.2 Container Technology

2.2.1 Container and Container Image

A container image is a software package composed of all the elements needed for an

application to be deployable, including code, system tools, libraries, runtime, and set-

tings. The package is normally a lightweight and standalone executable file. (Docker,

2020.) The binary file also provides the requirements to run the container, and the de-

scription about its necessities and capabilities. If a container is not given additional rights

when created, it can access only the resources included in the container image. (RedHat

OpenShift, 2020.)

As Figure 2 illustrates, a container in cloud computing is a software package containing

all the components that are needed for an application to run in any computing environ-

ment easily and consistently. It represents a virtualization approach to system operation.

It is formed by packaging the code and all dependencies of an application into a stand-

ardized unit of software. A container image must be created beforehand. The image

transforms into a container when the binary file is executed in a computing infrastructure

during runtime. (Docker, 2020.) A container uses an image file to create the run-time

environment and run the application defined by the image. Therefore, container and con-

tainer image represent two inseparable phases to run a container application. (phoe-

nixNAP, 2020.)

6

Figure 2. Containers (Google, 2020)

Containers make use of the operation system it is running on to provide services to it,

thus they are very lightweight by nature (Sami and Mourad, 2018). Also, it is becoming

an increasingly popular choice by organizations for long-running services, large scales

of batch processing, as well as workloads of Internet of Things and Artificial Intelligence

(Khan, 2017).

2.2.2 Containerization

Containerization is the process of encapsulating the code and dependencies of a soft-

ware application into a portable package so that it can be run in any computing environ-

ment (IBM, 2020). This technology is an implementation of operating system virtualiza-

tion, which allows applications to run in isolated containers (Citrix, 2020). With maturing

containerization technology, developers no longer need to worry about bugs that might

occur due to different operating systems, because all the libraries, dependencies and

configuration files needed for the software to run are packaged together with the code

(IBM, 2020).

7

Figure 3. Containerized applications (Docker, 2020)

As illustrated by Figure 3, containerization effectively decouples the worries of software

developers and operation teams, as the developing teams can concentrate their efforts

on responsibilities of application development and dependencies, while the operators

are relieved from the problems caused by software versions and configuration specifica-

tions. This process also enables fast, consistent, and reliable deployment of the applica-

tion regardless of differences in operating platforms. (Google, 2020.)

2.2.3 Container Orchestration

As cloud computing and container technology advances, modern applications are made

of dozens of or even hundreds of components, which are loosely coupled and contain-

erized microservices. To make sure an application functions as desired, all those com-

ponents must work together harmoniously and consistently. Cloud orchestration repre-

sents the process of synthesizing numerous workloads across possibly several different

cloud platforms into a single workflow by automating the work of container deploying,

managing, scaling and networking. (Redhat Containers, 2020.) The automated imple-

mentation processes keep all tasks synchronized and reduce manual intervention. More-

over, permission oversight and policy enforcement can be configured to ensure perfor-

mance and security.

8

Orchestration tools are designed to configure, deploy, and manage computer and soft-

ware systems in public, private, and hybrid cloud infrastructure. The technology is typi-

cally used to allocate storage capacity, manage networking, and create virtual machines.

Furthermore, servers can be provisioned, deployed, and started or stopped by imple-

menting a cohesive workflow. (Redhat Containers, 2020.)

2.3 Microservices

In the era where the world is filled with constantly dynamic business needs and exorbitant

amounts of data from a wide range of client types, including web browsers and native

mobile applications from various kinds of devices, such as computers, tablets and mo-

biles, software applications must be developed in a way that can adapt to such diversity

as well as non-predictable business activities, such as sudden spikes in data handling.

The software industry finds it difficult to keep up with speed with the traditional monolithic

architecture in such environments, and their effort to find a new alternative facilitated the

emergence and popularization of a new concept for software development, the micro-

service architecture (MSA). (Alshuqayran, Ali and Evans, 2018.)

Microservice is an architecture technology of momentous importance in the Internet in-

dustry (Wang Bin et al., 2017). A microservice refers to the smallest independently de-

ployable component or process of an application. Each microservice implements a spe-

cific function with its own logic and database. Typically, a microservice defines an inter-

face as well for other services to interact with it. (Li et al., 2018.)

As demonstrated in Figure 4, microservice architecture is an architectural framework,

which breaks an application into a considerable number of small and lightweight compo-

nents that can function independently from each other. Microservices each work on their

own, meaning individual failure does not impact the entire software functionality. This

architecture also allows easier debugging, faster development of new components and

seamless continuous integration and continuous delivery. (Redhat Microservices, 2020.)

9

Figure 4. Monolithic VS. Microservices (RedHat Microservices, 2020).

In the traditional monolithic approach where almost all parts of an application are built

into one huge-sized piece of software, everything is entangled together, thus modifica-

tion of any small element may break the whole application. Compared to traditional mon-

olithic applications, microservice architecture offers advantages in efficiency and robust-

ness, as it breaks an entire application into the smallest units, which operate inde-

pendently from each other and are managed separately by different teams typically. Ap-

plications built with microservice mechanisms are becoming increasingly popular. (Rah-

man and Gao, 2015.)

Microservices allow more detailed and individualistic control of applications deployed on

the cloud, as each microservice functions independently and communicates with other

applications on its own over an Application Programming Interface (API). It is becoming

adopted more widely in the industry. Depending on the application functionality and im-

plementation, each microservice may consume different amounts of resources. (Jindal,

Podolskiy and Gerndt, 2019.) Each microservice can be maintained separately, which

improves its scalability and availability. However, instead of in-process calls, this needs

to be implemented via costly remote calls and the overhead for synchronization across

components is higher. (Fazio et al., 2016.)

10

3 Project Planning

3.1 Languages and Frameworks

Java is a programming language used by millions of engineers and has more than 50

billion Java Virtual Machines worldwide (Oracle, 2021). Java was chosen as the pro-

gramming language to develop the first application for this thesis project because it is

one of the most popular programming languages used worldwide, as seen in Table 1,

which lists the top 10 popular programming languages in 2020 based on the number of

jobs on the market for each language as well as the average annual salary for a devel-

oper of that language.

Table 1. Top 10 most popular programming languages (NorthEastern University, 2021).

Top 10 Popular Programming Languages 2020

1 Python

2 JavaScript

3 Java

4 C#

5 C

6 C++

7 GO

8 R

9 Swift

10 PHP

The Spring Framework was chosen for creating the Java application of this thesis project.

Spring is an open-source application framework for the Java programming language. As

a very popular choice among Java developers, it includes many modules which program-

mers can select freely based on their needs (Gajewski and Zabierowski, 2019). Spring

offers various kinds of tools and libraries, which helped speed up the development pro-

cess and ensure the security of the application (Spring, 2021).

11

The Go programming language, which can be referred to as GoLang, is an open-source

programming language designed at Google. As shown in both Table 1 and Table 2, Go

is becoming a very popular programming language worldwide. It is also the language

used to develop some of the major cloud infrastructures, such as Docker and Kuber-

netes, which led to its prevalence especially in the cloud-computing field (GoLang, 2021).

The two planned applications for this thesis project are two microservices to be devel-

oped and deployed in the cloud, therefore Go was chosen as the programming language

for the second application.

Table 2. TIOBE index for March 2021 (TIOBE, 2021).

March 2021 March 2020 Programming Language Change Ratings

1 2 C ↑ 15.33%

2 1 Java ↓ 10.45%

3 3 Python 10.31%

4 4 C++ 6.52%

5 5 C# 4.97%

6 6 Visual Basic 4.85%

7 7 JavaScript 2.11%

8 8 PHP 2.07%

9 12 Assembly Language ↑ 1.97%

10 9 SQL ↓ 1.87%

11 10 Go ↓ 1.31%

Similar rankings of Java and Go among other programming languages can also be seen

in Table 2, the TIOBE Index. The ratings are calculated by using data from the most

dominant search engines. The number of skilled developers and training courses pro-

vided on the market are taken into account for the calculation as well. (TIOBE Index,

2021.)

12

3.2 Development and Deployment Mechanisms

Git was used as the Version Control System (VCS) and GitLab was chosen as the plat-

form to host the repositories of both software projects because it offers built-in tools for

Continuous Integration (CI) and Continuous Deployment (CD). As the service that holds

the second largest number of project repositories, GitLab has gained higher popularity

in recent years (Safari et al., 2020).

Google Cloud Platform (GCP) is a cloud platform that offers quality infrastructure and

high standard services for cloud computing, data storage and machine learning (Google

Cloud, 2021). GCP was selected as the target platform to deploy the two microservices

in view of the fact that it is considered one of the most prominent cloud service providers

with various kinds of services for enterprises and individual users all around the world

(Mitchell and Zunnurhain, 2019). Based on pre-study and research carried out by the

author of this thesis, GCP has very detailed and well-written documentation and step-

by-step tutorials1 for beginners. Furthermore, the platform kindly offers a free-trial pack-

age worth €248 for a period of 90 days, which serves well the purpose of this project.

Docker was decided to be the tool to create Docker images for the applications. And

Docker Hub was hosting the repository for the images for cloud deployment. Docker is a

set of products that offer PaaS to enable software delivery as containers by encapsulat-

ing the code and all related configuration files and dependencies into standardized pack-

ages with virtualization at operating-system level. With Docker in use, developers gain

the freedom to use tools, systems and environments of their own choice. (Docker, 2020.)

As cloud technology prevails, Docker has grown into one of the most widely used con-

tainerization systems, with which smooth cooperation between application developers

and operators is guaranteed. With high portability and scalability as its features, Docker

enables faster development and better performance. (Avino et al., 2017.)

Kubernetes, or K8s, is a platform for container orchestration. It is compatible with various

container tools, including Docker. This lightweight and extensible mechanism is de-

signed for containerized workloads management, which automates container deploying,

scaling and operating jobs. (Kubernetes, 2020.) As container technology advances, the

Kubernetes community grows rapidly, and its contributors have made it one of the most

1 https://cloud.google.com/kubernetes-engine/docs/quickstart

13

active open-source projects in GitHub. (Dikaleh, Sheikh and Felix, 2017.) As a result,

more services, support and tools are developed and can be accessed more easily. Ad-

ditionally, Google Kubernetes Engine (GKE), whose API uses Kubernetes commands

and can be managed by the platform, was selected for cloud deployment on GCP. There-

fore, Kubernetes was considered a highly suitable tool to deploy the Docker images to

the cluster, which consists of a number of virtual machines.

Helm is a highly reliable open-source package management tool for Kubernetes with

more than thirty thousand stars in its GitHub repository. The package manager is well

maintained by its big contribution community of over one thousand companies, and

widely used across the world with over two million of downloads in every single month.

(CNCF, 2021.) With Helm, developers can build, publish, and download Helm charts for

applications through which the applications can then be defined, installed and upgraded

on the Kubernetes platform (Helm, 2021). Therefore, Helm was chosen as the tool to

build Helm charts for both applications and install them to the Kubernetes clusters.

14

4 Project Implementation

4.1 Application Development

One of the purposes of this thesis was to discover the differences in many aspects of

two microservice applications with identical functionalities but developed with different

programming languages. To fulfill this objective, the development of two applications was

the first step in the implementation process. During the research process, the definition

of microservice was well taken into consideration, and the target functionality of the ap-

plications was to be reliable, efficient, simple and independent.

The final choice on the software application was to make a backend lottery number ser-

vice, which can provide users randomly generated lottery numbers for new lottery tickets

and retrieve past winning numbers. Each time users need to decide on the number of

lottery tickets to buy and are allowed to select one of the three lottery types: Viking Lotto,

Finnish Lotto and Euro Jackpot. The default value is one set of lottery numbers for the

Finnish Lotto. To check previous winning numbers, a user needs to specify a lottery type

and the week and year to be checked with. When a request is received from a user, the

application sends a request to the Veikkaus API2 for draw results and returns the result

to the user.

@RestController

public class RestApi {

 @Autowired

 private WinningNumberRetriever retriever;

 @GetMapping("/lng")

public LotteryNumberGenerationResult getLotteryNumbers(

 @RequestParam(defaultValue = "1") int howMany,

 @RequestParam(defaultValue = "Finnish Lotto") String lottoType) {

 return new LotteryNumberGenerationResult(lottoType, howMany);

 }

 @GetMapping("/result")

public LotteryNumber getWinningNumber(

 @RequestParam (required = true) String lottoType,

 @RequestParam (required = true) int year,

 @RequestParam (required = true) int week) throws IOException {

 return retriever.getWinningNumber(year, week, lottoType);

 }

}

2 https://www.veikkaus.fi/api/draw-results/v1/games/

15

Listing 1. Code for Java app API.

The first application was developed with Java, as the developer already had experience

of working with it. The project was created with Maven, which is a tool to create Java

projects and manage dependencies using Project Object Model (POM) files. Projects

created with maven have a standard structure to facilitate navigation. Product code and

test code are separated from each other, with each having its own source tree in parallel.

(Apache Maven, 2021.) The source code of the Java application is available on a GitLab

repository3.

import (

 "net/http"

 lnsapi "lns_golang/src/api"

)

func main() {

 http.HandleFunc("/result", lnsapi.GetPastWinningNumber)

 http.HandleFunc("/lng", lnsapi.GetLotteryNumbers)

 http.ListenAndServe(":8080", nil)

}

Listing 2. Code for Go app API.

The second application was planned to be written in Go. The developer did not have any

previous experience with the programming language, but it took less than two weeks to

learn the most basic fundamentals. Go supports type safety and built-in data types and

data can be entered dynamically. Collections in Go are simplified into arrays with dy-

namic size. In addition, Go offers a rich standard library, which contains numerous well-

designed and practical packages. The API of this application was written with the built-

in net/http package, as shown in Listing 2. The source code of this microservice can

be found on a GitLab repository4 as well.

4.2 Packaging for Cloud Development

The packaging process of the applications included the steps taken to prepare the appli-

cations from source code to a Java ARchive (JAR) file for the Java project and a binary

for the Go application, and then a docker image, which was uploaded, to the docker

repository in Docker Hub. Helm charts were created to generate template resource and

3 https://gitlab.com/youqins/lns_java
4 https://gitlab.com/youqins/lns_golang

16

config files, which were manually updated before they were packaged into a tar, file to

upload to a Helm chart repository, which was hosted in Gitlab.

Figure 5. Packaging flowchart-Java app.

The packaging process as displayed in Figure 5 illustrates how the Java application was

packaged. The flowchart included packaging steps from source code to docker image. It

explained how the Helm chart was prepared for cloud installation. The project was cre-

ated with maven, which offers the possibility for packaging the source code into a JAR

file.

FROM openjdk:11-jre

COPY target/*.jar /

WORKDIR /

CMD ["java", "-jar", "lns_java-0.0.1-SNAPSHOT.jar"]

Listing 3. DockerFile for Java app.

With Docker installed locally, a docker command line interface (CLI) was available, with

which the docker image was created by issuing the command docker build based on

the instructions in the Dockerfile which was created manually with project specifications,

as illustrated in Listing 3. A docker repository, as shown in Figure 6, was necessary in

Docker Hub for the docker image to be uploaded to and later pulled from it and Docker

images were pushed with tags, which were used later to identify which image to pull for

creating Helm charts.

17

Figure 6. Docker repo for both projects in Docker Hub.

In order to prepare for the installation to Kubernetes, Helm, which is the Kubernetes

package manager, was installed locally so that the Helm CLI could be used to create

Helm charts. When the command helm create was issued via the CLI inside the target

project, default template files were generated to allow manual modification with project-

specific values. A Helm chart includes a Kubernetes deployment, specifying the pod to

be deployed for lottery-service application, and a Kubernetes service, providing the ac-

cess point to the lottery-service pod.

apiVersion: v1

kind: Service

metadata:

 name: {{ include "lottery-service.fullname" . }}

 labels:

 {{- include "lottery-service.labels" . | nindent 4 }}

spec:

 type: ClusterIP

 ports:

18

 - port: 80

 targetPort: 8080

 protocol: TCP

 name: http

 selector:

 {{- include "lottery-service.selectorLabels" . | nindent 4 }}

Listing 4. service.yaml for Java app.

When a Helm chart is used for installation, it creates a deployment resource and a ser-

vice resource in the Kubernetes cluster. As illustrated in Listing 4, the service.yaml file

provided access to the pod via the port 80. The IP address was a ClusterIp, which was

internal to the cluster where the pod was installed.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: {{ include "lottery-service.fullname" . }}

 labels:

 {{- include "lottery-service.labels" . | nindent 4 }}

spec:

 replicas: 1

 selector:

 matchLabels:

 {{- include "lottery-service.selectorLabels" . | nindent 6 }}

 template:

 metadata:

 labels:

 {{- include "lottery-service.selectorLabels" . | nindent 8 }}

 spec:

 {{- with .Values.imagePullSecrets }}

 imagePullSecrets:

 {{- toYaml . | nindent 8 }}

 {{- end }}

 containers:

 - name: {{ .Chart.Name }}

 image: "{{ .Values.image.repository }}:{{ .Values.image.tag | de-

fault .Chart.AppVersion }}"

 imagePullPolicy: {{ .Values.image.pullPolicy }}

 ports:

 - name: http

 containerPort: 8080

 protocol: TCP

 livenessProbe:

 httpGet:

 path: /lng

 port: 8080

 readinessProbe:

 httpGet:

 path: /lng

 port: 8080

 resources:

 {{- toYaml .Values.resources | nindent 12 }}

Listing 5. deployment.yaml for Java app.

19

A Kubernetes deployment describes how the pod instances should be created or modi-

fied. Also, the deployment generated from a Helm chart creates a pod running the con-

tainer. The deployment.yaml file in Listing 5 defined the container image by specifying

the image repository and tag.

image:

 repository: lnsth/lottery-number-service

 pullPolicy: IfNotPresent

 tag: "latest"

imagePullSecrets:

 - name: lottery-svc-registry-credentials

Listing 6. Values.yaml for Java app.

The Values.yaml file Listing 6 describes the image repository, pullPolicy and tag needed

to pull the docker image from Docker Hub. It also included the imagePullSecrets, which

was manually configured in Kubernetes. The Secrets were created to hide credentials

for accessing a private repository.

apiVersion: v2

name: lottery-service

description: A Helm chart for Kubernetes

type: application

version: 0.1.0

appVersion: 1.16.0

Listing 7. Chart.yaml for Java app.

The Chart.yaml file was used to hold the meta data about the Helm chart, as displayed

in Listing 7. Once all the values related to the application had been updated, the com-

mand helm package was issued to create the Helm chart. Helm charts were uploaded to

the Helm chart repository in GitLab via CI and later downloaded for installation on Ku-

bernetes clusters.

20

Figure 7. Packaging flowchart-Go app.

The packaging process of the Go application was very similar to that of the Java project,

as demonstrated in Figure 7. One difference was that the built-in go build tool was used

to create the binary executable file for building the docker image. The process of prepar-

ing the Helm chart followed the same steps as the Java application.

image: maven:latest

stages:

 - build

 - test

 - package

 - docker

 - helm

 - deploy

build:

 stage: build

 script:

 - mvn compile

test:

 stage: test

 script:

 - mvn test

jar:

 stage: package

 script:

 - mvn package

 artifacts:

 paths:

 - target/*.jar

 expire_in: 1 week

buildImage:

21

 stage: docker

 image: docker:19.03.12

 services:

 - docker:19.03.12-dind

 variables:

 IMAGE_NAME_WITH_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG

 script:

 #default - echo $CI_REGISTRY_USER $CI_REGISTRY $CI_REGISTRY_PASSWORD

 - |

 if ["$CI_COMMIT_REF_NAME" == "master"]; then

 echo "we are on master"

 IMAGE_NAME_WITH_TAG=$CI_REGISTRY_IMAGE":latest"

 fi

 - echo 'preparing to build and push image $IMAGE_NAME_WITH_TAG'

 - docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY

 - docker build -t $IMAGE_NAME_WITH_TAG .

 - docker push $IMAGE_NAME_WITH_TAG

helm:

 stage: helm

 image: dtzar/helm-kubectl:3.4.1

 script:

 - cd helm

 - helm package lottery-service

 artifacts:

 paths:

 - helm/lottery-service-*.tgz

Listing 8. CI file for Java app (Part 1).

All the above-mentioned packaging steps were included in the CI process and automated

through preconfigured stages in the GitLab CI file, as shown above in Listing 8. During

the package stage, mvn package was used to create a JAR file. At the docker stage, a

docker image was created and pushed to the specified repository in Docker Hub. A Helm

chart was prepared for cloud installation during the last stage.

pages:

 image:

 name: dtzar/helm-kubectl:3.4.1

 stage: deploy

 variables:

 DOCKER_IMAGE_NAME_WITH_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG

 script:

 - mkdir -p ./public

 - "echo \"User-Agent: *\nDisallow: /\" > ./public/robots.txt"

 - cd helm/lottery-service

 - wget https://github.com/mikefarah/yq/releases/down-

load/v4.2.0/yq_linux_amd64 -O /usr/bin/yq && chmod +x /usr/bin/yq

 - yq eval '.image.tag="latest"' -i values.yaml

 - cat values.yaml

 - cd ..

 - helm package lottery-service --destination ../public

 - cd ../public

 - helm repo index --url https://${CI_PRO-

JECT_NAMESPACE}.gitlab.io/${CI_PROJECT_NAME} .

 artifacts:

 paths:

 - public

 only:

 - master

22

Listing 9. CI file for Java app (Part 2).

With the CI step pages in Listing 9, which was executed on master branch only, a Helm

chart was created to the /public destination directory. This was accessed later to down-

load the chart for helm installation in Kubernetes. A Uniform Resource Locator (URL)

was generated with helm repo index, through which the file could be downloaded and

viewed.

Figure 8. Screenshot of Java app CI/CD Pipelines.

Each time when a new commit was pushed to the project repo in GitLab, a new Pipeline

was triggered to run through all the stages defined in the CI file, as shown by the screen-

shot of part of the Java application’s CI Pipelines in Figure 8. New packages with the

latest master were built and pushed to DockerHub and Helm Chart Repo automatically.

4.3 Cloud Deployment

The precondition for any operation on GCP is to create an account on the platform. The

first step was to select a project or create a new one if no existing projects were available.

After the project was all set up, which might take as long as half an hour, the GKE page

could be navigated to through the left-side menu. From there, the user can create a new

cluster, which will present him/her with the options to set up the details.

In Kubernetes, a node is a server carrying and processing applications. It represents the

smallest hardware unit, which can be a physical or virtual machine. A group of nodes

form a cluster. (Google Cloud. 2021.) For the purpose of this thesis, a standard cluster

23

with five nodes was created. One of them was used to deploy an application and the rest

for load testing which needed one master and three workers. Once the cluster was cre-

ated, the command kubectl get nodes was used to list all the nodes, as shown below

in Listing 10. The Cloud Shell Editor offered by GCP was used to connect to it for further

operations.

xiaoouvivian_it@cloudshell:~ (metropolia-thesis)$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

gke-load-testing-cluster-default… Ready <none> 5m25s v1.19.7-gke.2503

gke-load-testing-cluster-default… Ready <none> 5m24s v1.19.7-gke.2503

gke-load-testing-cluster-default… Ready <none> 5m24s v1.19.7-gke.2503

gke-load-testing-cluster-default… Ready <none> 5m23s v1.19.7-gke.2503

gke-load-testing-cluster-default… Ready <none> 5m25s v1.19.7-gke.2503

Listing 10. Output of kubectl get nodes to show created cluster nodes.

Since the Helm charts with the latest code commit were uploaded to the Helm Chart

Repo in GitLab, the installation of the applications was done simply with a few com-

mands:

• helm repo add helm-repo-golang https://youqins.gitlab.io/lns_golang/

• helm repo add helm-repo-java https://youqins.gitlab.io/lns_java/

• helm install lottery-service-golang helm-repo-golang/lottery-service-go-
lang

• helm install lottery-service-java helm-repo-java/lottery-service

The helm repo for each application was created inside its project’s repository in GitLab.

The first two commands were used to add the paths to the helm repos for the two micro-

services. Once configured, Kubernetes knew where to download the Helm charts for

cloud installation. The applications were installed with the third and fourth command sep-

arately.

xiaoouvivian_it@cloudshell:~ (metropolia-thesis)$ kubectl get pod

NAME READY STATUS RESTARTS AGE

lottery-service-java-5f6d97d6f5-175xb 1/1 Running 0 48s

Listing 11. Output of kubectl get pod to show all running pods.

After the installation had been completed, the status of the service was checked with the

command kubectl get pod. The output lists all the running pods and their detailed infor-

mation. As shown in Listing 11, one pod of lotter-service-java has been ready and run-

ning for 48 seconds. In addition, the number for restart of the pod was 0, which meant

the application had not been restarted so far.

https://youqins.gitlab.io/lns_golang/

24

4.4 Load Testing

Load testing is defined as generating large waves of concurrent user requests towards

a target application to simulate real-life usage as a way to assess its performance (Wes-

cott, 2013). Load testing, which is a standard way to measure the behavior of a software

project under load in the industry, is considered a crucial part in the evaluation of large-

scale software systems because various kinds of potential issues related to load can be

discovered when big scale requests are received by the system synchronously. (Chen

et al., 2017.)

Locust5 is an open-source tool designed to create realistic loads of user requests against

a dynamic website. In most cases, it is used to test web services, but that does not

exclude its ability to work with other systems or protocols. (Locust, 2021.) The tool allows

testers to decide the number of users to generate and the spawn rate through a simple

and user-friendly web interface, on which the testing progress and real-time data are

displayed in separate graphs.

xiaoouvivian_it@cloudshell:~ (metropolia-thesis)$ kubectl get pod

NAME READY STATUS RESTARTS AGE

locust-master-5675988db9-572n4 1/1 Running 0 109s

locust-worker-699c9bbd9-55b8z 1/1 Running 0 109s

locust-worker-699c9bbd9-8xk9p 1/1 Running 0 108s

locust-worker-699c9bbd9-h7j7x 1/1 Running 0 108s

lottery-service-golang-788f69ddc 1/1 Running 0 2m51s

Listing 12. Installation of Locust and target app on different nodes.

In this project, load testing was used to measure the availability, efficiency, resource

consumption and performance of the two applications with identical functionalities but

developed with different programming languages. Locust was the tool installed to carry

out such testing. To ensure the accuracy of results, the testing was performed on one

application at a time with the application installed on a separate node from Locust, as

shown in Listing 12.

xiaoouvivian_it@cloudshell:~ (metropolia-thesis)$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(s) AGE

Kubernetes ClusterIP 10.52.0.1 <none> 443/TCP 31m

locust LoadBlancer 10.52.13.122 34.67.196.254 5557:30685/TCP 54s

lottery-service… ClusterIP 10.52.8.52 <none> 80/TCP 2m56s

5 https://locust.io/

25

Listing 13. Output of kubectl get svc to show information of all running services.

As displayed in Listing 13, after the application was successfully installed on the cluster,

the kubectl get svc command was used to expose its Cluster-IP. This IP was used

as the target for Locust to send user requests to. In addition, Locust was configured to

have an External-IP, which was used to open in a web browser locally to set the number

of users and spawn rate against the application.

Figure 9. Number of users and spawn rate for loading testing.

The number of total users to simulate was set to 30 and the spawn rate to 5 per second

for the testing of both applications in this project, as displayed in Figure 9. The request

was sent to /lng without any parameters, and the default response of one set of numbers

for the Finnish Lotto was returned. The testing for both applications lasted 10 minutes.

The test progress and the outcome data were accessible from the same user interface

of Locust.

4.5 Outcomes and Analysis

Based on the experience of the projects implemented for this thesis, the programming

process with Java was slightly smoother partly due to the prior experience the developer

26

had with the language. Nevertheless, Go was not a difficult language to learn by following

the tutorials offered by golang.org6. The coding process took actually shorter time com-

pared to the Java project since there was no change in the application logic and the

number of code lines was similar. The exact statistics of the projects are listed in Table

3 for comparison. The number of lines of code for the two projects were quite close.

However, a relatively big difference in the sizes of the Docker images was observed, with

the Java application over 43 times bigger. In addition, its binary file was more than twice

the size of the Go app.

Table 3. Statistics about the two applications.

Item Java App Go App

Lines of code 403 351

Binary file size 16.55M 7.2M

Docker image size 318MB 7.38MB

During load testing, the Total Requests per Second and the Response Times over time

from the applications were captured. The overall Request Statistics and Response Time

Statistics were presented in the Locust Test Report as well. The resource usage metrics

were available in GKE Workloads on GCP. The data from the above-mentioned re-

sources were examined for both the Java and the Go applications.

6 https://tour.golang.org/list

27

Figure 10. Locust test report of Go app.

As displayed on the Locust Test Report of the Go application in Figure 10, the total num-

ber of requests processed reached almost one million during the 10-minute testing, out

of which 0 failure was recorded. It took less than 20 seconds for the service to be able

to handle almost 3000 requests per second. However, it experienced a sudden drop after

two minutes to around 1300 until the end of the process. For each second, the system

was able to process more than 1600 requests on average. The response time started at

28

17ms, but the number increased to 140 after two minutes and remained at this level for

the rest 8 minutes.

Figure 11. Locust test report of Java app.

The Test Report of the Java application is displayed in Figure 11. On the report, the total

number of requests was 957,778 and all requests received successful responses. The

29

average value for request per second reached almost 1600. At the beginning of the test-

ing, the graphs of request and response demonstrated sharp rises and drops before they

reached a stable level.

Figure 12. CPU usage of Go app (left) and Java app (right).

The central processing unit (CPU) usage of both applications is displayed in Figure 12.

The metrics on the left represents the data of the Go app and the one on the right side

is for the Java app. CPU usage of the Go application never went over 0.25 and the

average value was around 0.15. While the CPU usage of the Java software system went

up to almost 1 at its peak and the average was between 0.4 and 0.5.

Figure 13. Memory usage of Go app (left) and Java app (right).

30

The memory usage metrics of the two systems are shown in Figure 13. The memory

used by the Go project was lower than 2 Mib during the first 5 minutes. Despite the

sudden rise afterwards, the number was lower than 6MiB at the highest level. Whilst the

memory usage of the Java application started at number higher than 96MiB. Also, it went

over 128MiB during most of the time of the testing.

Figure 14. Disk usage of Go app (left) and Java app (right).

The disk usage metrics of both microservices are demonstrated in Figure 14. The values

remained at a constant level. No change was observed in the numbers during the testing.

The limit for volume capacity was 843MiB. In addition, 12.000KiB was used by each

application. There was no difference in this regard between the two software systems.

From the statistics displayed in the above Locust Test reports in Figure 10 and Figure

11, the overall performance outcomes of the two microservices were both satisfactory.

They were both considered reliable since no crash was observed during the testing cycle.

However, the Go application was able to handle over 35,000 more requests during the

10-minute test and all the numbers about response time were lower than those of the

Java microservice. It was also observed that the Go app took less time to gain the ability

to handle a large number of user requests. However, the developer was not able to un-

derstand the sudden drop in the number of requests displayed on the Total Request per

Second graph. More investigation and testing were needed to discover the possible root

causes.

31

The exact average values of resource consumption for the whole testing cycle were not

available from the GCP service. However, the data displayed on the graphs on the met-

rics in Figure 12 and Figure 13 revealed quite big differences in CPU and memory usage

by the two microservices. The numbers on the graphs showed that the CPU consumed

by Java the application was nearly two times higher. In addition, it used nearly 20 times

more memory resources. Further investigation was needed to decide how much this is

related to the Java programming language and the Spring framework used for the devel-

opment.

32

5 Conclusion

This thesis aimed to discover the advantages and challenges of different programming

languages in terms of microservice development and cloud deployment. Two applica-

tions were planned to be developed for identical functions but with different programming

languages, one with Java and the other with Go, for cloud deployment to the GKE on the

GCP with Docker, Helm and Kubernetes. To achieve these objectives, two applications

were successfully developed and deployed to the target cloud platform. Moreover, the

advantages and challenges of each language in this regard were analyzed thoroughly

from different perspectives. The measurements included the programming experience

with both languages, the packaging procedures as well as the cloud deployment pro-

cesses. Most importantly, the performance outcomes and resource consumption of both

projects were tested and analyzed after they were deployed to the cloud.

In terms programming languages, as one of the most popular and well-paid programming

languages among developers (North Eastern University, 2021), Java has a relatively

longer history and bigger community. The language features a comparatively bigger

number of libraries, frameworks and system tools available for project development.

Thus, Java represents a good choice to build large-scale applications with complicated

features (Chang et al., 2019). Furthermore, Java can define business logic in a way that

cannot be handled by simple operators (Lee, Kang and Hur, 2012).

Go on the other hand offers a way to write simpler code due to its feature of encapsula-

tion with structs and built-in packages. In addition, Go is a compiled language, which

makes it a very fast language ideal for building software systems that are demanding on

efficiency and reliability. (Yasir et al., 2019.) Some of the most popular cloud platforms

are written in Go, including Docker and Kubernetes (GoLang, 2021), which makes it in-

creasingly popular for cloud computing.

However, the most important findings of this thesis concluded that the sizes of both the

binary file and the Docker image of the application written in Go were much smaller than

the Java project, despite the fact that the number of lines of code for the two projects

were very close. After being deployed to the GCP, the Go software system required

much less computing resource when running in the cloud. Furthermore, it took less time

to pick up a relatively large number of user requests and the charts for user request

handling during the load testing process were less volatile. More importantly, the system

33

was able to handle more user requests within the same time duration and the response

time was shorter compared to the application written in Java. With all those discoveries

in mind, it is safe to say the application developed with Go for this thesis was more effi-

cient and cost effective.

Nevertheless, the exact strengths and weaknesses of different programming languages

in this regard may vary largely due to differences in purpose, use case, complexity, scale

and many other aspects of the application itself. Each programming language features

different advantages and offers a different number of supporting libraries and frame-

works. Therefore, extensive research and pre-testing on how to magnify the advantages

and mitigate the drawbacks of those aspects for the overall benefits of the target appli-

cation is strongly advised prior to the implementation of such projects.

34

References

A. Bieniusa, P. Thiemann and S. Wehr, "The Relation of Version Control to Concurrent
Programming," 2008 International Conference on Computer Science and Software En-
gineering, Wuhan, China, 2008, pp. 461-464.

A. Gupta, P. Goswami, N. Chaudhary and R. Bansal, "Deploying an Application using
Google Cloud Platform," 2020 2nd International Conference on Innovative Mechanisms
for Industry Applications (ICIMIA), Bangalore, India, 2020, pp. 236-239.

Apache Maven. 2021. What is maven? Online. <https://maven.apache.org/what-is-ma-
ven.html>. Accessed: 5 January 2021.

Amazon Web Service. 2020. What is cloud computing? Online. <https://azure.mi-
crosoft.com/en-us/overview/what-is-cloud-computing/>. Accessed: 3 October 2020.

Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt. 2019. Performance Modeling for
Cloud Microservice Applications. In <i>Proceedings of the 2019 ACM/SPEC Interna-
tional Conference on Performance Engineering</i> (<i>ICPE '19</i>). Association for
Computing Machinery, New York, NY, USA, 25–32.

AWS. 2020. What is cloud computing? Online. <https://aws.amazon.com/what-is-cloud-
computing/>. Accessed: 10 December 2020.

Citrix. 2020. What is containerization and how does it work? Online. <https://www.cit-
rix.com/glossary/what-is-containerization.html>. Accessed: 5 October 2020.

CNCF. 2021. Helm Project Journey. Online. <https://www.cncf.io/cncf-helm-project-jour-
ney-report/>. Accessed: 5 January 2021.

Docker. 2020. What is a Container? Online. <https://www.docker.com/resources/what-
container/>. Accessed: 27 September 2020.

Fei Li, Joachim Fröhlich, Daniel Schall, Markus Lachenmayr, Christoph Stückjürgen, Se-
bastian Meixner, and Frank Buschmann. 2018. Microservice Patterns for the Life Cycle
of Industrial Edge Software. In <i>Proceedings of the 23rd European Conference on
Pattern Languages of Programs</i> (<i>EuroPLoP '18</i>). Association for Computing
Machinery, New York, NY, USA, Article 4, 1–11.

Feilong Wang. 2019. The Journey of Cloud Computing with Open Source. In <i>Pro-
ceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing
Companion</i> (<i>UCC '19 Companion</i>). Association for Computing Machinery,
New York, NY, USA, 167.

G. Avino, M. Malinverno, F. Malandrino, C. Casetti, and C. F. Chiasserini. 2017. Char-
acterizing Docker Overhead in Mobile Edge Computing Scenarios. In <i>Proceedings of
the Workshop on Hot Topics in Container Networking and Networked Systems</i>
(<i>HotConNet '17</i>). Association for Computing Machinery, New York, NY, USA, 30–
35.

GKE. 2021. GKE overview. Online. <https://cloud.google.com/kubernetes-en-
gine/docs/concepts/kubernetes-engine-overview>. Accessed: 1 April 2021.

https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview

35

GoLang. 2021. Go Documentation. Online. <https://golang.org/doc/>. Accessed: 12
March 2021.

Google. 2020. containers at Google. Online. <https://cloud.google.com/containers>. Ac-
cessed: 27 September 2020.

Google Cloud. 2021. Google Cloud Products. Online. <cloud.google.com>. Accessed:
19 February 2021.

Helm. 2021. What is Helm? Online. <https://helm.sh/>. Accessed: 6 January 2021.

H. I. Moud, J. Hariharan, H. Hakim, C. Kibert and I. flood, "Sustainability Assessment of
Data Centers Beyond LEED," 2020 IEEE Green Technologies Conference (GreenTech),
Oklahoma City, OK, USA, 2020, pp. 62-64.

H. Safari, N. Sabri, F. Shahsavan and B. Bahrak, "An Analysis of GitLab's Users and
Projects Networks," 2020 10th International Symposium onTelecommunications (IST),
Tehran, Iran, 2020, pp. 194-200.

H. Sami and A. Mourad, "Towards Dynamic On-Demand Fog Computing Formation
Based On Containerization Technology", 2018 International Conference on Computa-
tional Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2018, pp.
960-965.

IBM. 2021. What is Cloud Computing? Online. <https://www.ibm.com/cloud/learn/cloud-
computing>. Accessed: 11 March 2021.

IBM. 2020. What is containerization? Online. <https://www.ibm.com/cloud/learn/contain-
erization>. Accessed: 5 October 2020.

IBM. 2021. Application Programming Interface (API). Online.
<https://www.ibm.com/cloud/learn/api>. Accessed: 2 April 2021.

Jihyun Lee, Sungju Kang and Sung Jin Hur, "Web-based development framework for
customizing Java-based business logic of SaaS application", 2012 14th International
Conference on Advanced Communication Technology (ICACT), PyeongChang, 2012,
pp. 1310-1313.

Khan, A. 2017, "Key Characteristics of a Container Orchestration Platform to Enable a
Modern Application", IEEE Cloud Computing, vol. 4, no. 5, pp. 42-48.

Kubernetes. 2020. What is Kubernetes? Online. <https://kubernetes.io/docs/con-
cepts/overview/what-is-kubernetes/>. Accessed: 7 October 2020.

Linlin Tang, Pingfei Ren and Jengshyang Pan, "An improved k-subset algorithm for load
balance problems in Cloud Computing," 2014 IEEE 3rd International Conference on
Cloud Computing and Intelligence Systems, Shenzhen, China, 2014, pp. 175-179.

Locust. 2021. What is Locust? Online. <https://docs.locust.io/en/stable/what-is-lo-
cust.html>. Accessed: 19 February 2021.

M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen and M. Villari, "Open Issues in Schedul-
ing Microservices in the Cloud," in IEEE Cloud Computing, vol. 3, no. 5, pp. 81-88, Sept.-
Oct. 2016.

https://www.ibm.com/cloud/learn/api

36

M. Gajewski and W. Zabierowski, "Analysis and Comparison of the Spring Framework
and Play Framework Performance, Used to Create Web Applications in Java," 2019
IEEE XVth International Conference on the Perspective Technologies and Methods in
MEMS Design (MEMSTECH), Polyana, Ukraine, 2019, pp. 170-173.

M. Rahman and J. Gao, "A reusable automated acceptance testing architecture for mi-
croservices in behavior-driven development", Service-Oriented System Engineering
(SOSE) 2015 IEEE Symposium, pp. 321-325, 2015.

Microsoft. 2020. What is cloud computing? Online. <https://azure.microsoft.com/en-
us/overview/what-is-cloud-computing/>. Accessed: 4 October 2020.

Microsoft Azure. 2021. What is the cloud? Online. <https://azure.microsoft.com/en-
us/overview/what-is-the-cloud/>. Accessed: 11 March 2021.

Muhammad Ali Babar and Muhammad Aufeef Chauhan. 2011. A tale of migration to
cloud computing for sharing experiences and observations. In <i>Proceedings of the 2nd
International Workshop on Software Engineering for Cloud Computing</i> (<i>SE-
CLOUD '11</i>). Association for Computing Machinery, New York, NY, USA, 50–56.

N. Alshuqayran, N. Ali and R. Evans, "Towards Micro Service Architecture Recovery: An
Empirical Study," 2018 IEEE International Conference on Software Architecture (ICSA),
Seattle, WA, USA, 2018, pp. 47-4709.

N. F. Efozia, E. Ariwa, D. C. Asogwa, O. Awonusi and S. O. Anigbogu, "A review of
threats and vulnerabilities to cloud computing existence," 2017 Seventh International
Conference on Innovative Computing Technology (INTECH), Luton, UK, 2017, pp. 197-
204.

N. Shuping and W. Feng, "The Network Architecture Design of Distributed Dual Live
Data Center," 2019 IEEE International Conference on Power, Intelligent Computing and
Systems (ICPICS), Shenyang, China, 2019, pp. 638-642.

Nicholas J. Mitchell and Kazi Zunnurhain. 2019. Google cloud platform security. In
<i>Proceedings of the 4th ACM/IEEE Symposium on Edge Computing</i> (<i>SEC
'19</i>). Association for Computing Machinery, New York, NY, USA, 319–322.

NorthEastern University. 2021. The 10 Most Popular Programming Languages to Learn
in 2021. Online. <https://www.northeastern.edu/graduate/blog/most-popular-program-
ming-languages/>. Accessed: 10 March 2021.

Oracle. 2021. Java Programming Language. Online. <https://www.oracle.com/java/>.
Accessed: 4 March 2021

phoenixNAP. 2020. Docker Images vs Containers. Online. <https://phoe-
nixnap.com/kb/docker-image-vs-container>. Accessed: 27 September 2020.

P. P. Ray, "An Introduction to Dew Computing: Definition, Concept and Implications," in
IEEE Access, vol. 6, pp. 723-737, 2018.

RedHat OpenShift. 2020. Docker Images. Online. <https://docs.openshift.com/enter-
prise/3.0/architecture/core_concepts/containers_and_images.html#docker-images>.
Accessed: 27 September 2020.

37

Redhat Containers. 2020. What is container orchestration? Online.
<https://www.redhat.com/en/topics/containers/what-is-container-orchestration>. Ac-
cessed: 6 October 2020.

Redhat Microservices. 2020. What are microservices? Online.
<https://www.redhat.com/en/topics/microservices/what-are-microservices>. Accessed:
6 October 2020.

R. M. Yasir, M. Asad, A. H. Galib, K. K. Ganguly and M. S. Siddik, "GodExpo: An Auto-
mated God Structure Detection Tool for Golang," 2019 IEEE/ACM 3rd International
Workshop on Refactoring (IWoR), Montreal, QC, Canada, 2019, pp. 47-50.

Salman Ahmad and Sepandar Kamvar. 2013. The dog programming language. In
<i>Proceedings of the 26th annual ACM symposium on User interface software and tech-
nology</i> (<i>UIST '13</i>). Association for Computing Machinery, New York, NY, USA,
463–472.

Serjik Dikaleh, Ozair Sheikh, and Chris Felix. 2017. Introduction to kubernetes. In <i>Pro-
ceedings of the 27th Annual International Conference on Computer Science and Soft-
ware Engineering</i> (<i>CASCON '17</i>). IBM Corp., USA, 310.

Spring. Why Spring? Online. <https://spring.io/why-spring>. Accessed: 3 March 2021.

S. S. Brimzhanova, S. K. Atanov, Moldamurat Khuralay, K. S. Kobelekov, and L. G. Ga-
garina. 2019. Cross-platform compilation of programming language Golang for raspberry
pi. In <i>Proceedings of the 5th International Conference on Engineering and MIS</i>
(<i>ICEMIS '19</i>). Association for Computing Machinery, New York, NY, USA, Article
10, 1–5.

TIOBE Index, TIOBE Index for March 2021. 2021. Online. <https://www.tiobe.com/tiobe-
index/>. Accessed: 12 March 2021.

Tse-Hsun Chen, Mark D. Syer, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mo-
hamed Nasser, and Parminder Flora. 2017. Analytics-driven load testing: an industrial
experience report on load testing of large-scale systems. In <i>Proceedings of the 39th
International Conference on Software Engineering: Software Engineering in Practice
Track</i> (<i>ICSE-SEIP '17</i>). IEEE Press, 243–252.

W. Li and X. Wan, "An Analysis and Comparison for Public Cloud Technology and Market
Development Trend in China," 2018 5th IEEE International Conference on Cyber Secu-
rity and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge
Computing and Scalable Cloud (EdgeCom), Shanghai, China, 2018, pp. 200-205.

Wang Bin, Yang Shulin, Ren Xuelei, and Wang Guyang. 2017. Research on Digital Pub-
lishing Application System Based on Micro-Service Architecture. In <i>Proceedings of
the 2017 VI International Conference on Network, Communication and Computing</i>
(<i>ICNCC 2017</i>). Association for Computing Machinery, New York, NY, USA, 140–
144.

Wescott, Bob. 2013. The Every Computer Performance Book, Chapter 6: Load Testing.
CreateSpace.

Yee-Kang Chang, Patrick Tiu, Eric Lau, Leo Christy Jesuraj, Alvin So, and Gilbert Kwan.
2019. Hands-on workshop on fast, efficient & seriously open cloud-native Java. In

38

<i>Proceedings of the 29th Annual International Conference on Computer Science and
Software Engineering</i> (<i>CASCON '19</i>). IBM Corp., USA, 373–375.

	1 Introduction
	2 Theoretical Background
	2.1 Cloud
	2.1.1 Cloud Computing
	2.1.2 Cloud Services

	2.2 Container Technology
	2.2.1 Container and Container Image
	2.2.2 Containerization
	2.2.3 Container Orchestration

	2.3 Microservices

	3 Project Planning
	3.1 Languages and Frameworks
	3.2 Development and Deployment Mechanisms

	4 Project Implementation
	4.1 Application Development
	4.2 Packaging for Cloud Development
	4.3 Cloud Deployment
	4.4 Load Testing
	4.5 Outcomes and Analysis

	5 Conclusion
	References

