

Creating Pipeline and Automated Testing on GitLab

Saad Turky

 Master’s Thesis
 March 2021
 Information and communication technology
 Master’s Degree Programme in Full Stack Software Development

Description

Author(s)
Turky Jgeif, Saad

Type of publication
Master’s thesis

Date
March 2021

Language of publication:
English

Number of pages
93

Permission for web
publication: x

Title of publication
Creating Pipeline and Automated Testing on GitLab

Degree programme
Full Stack Software Development

Supervisor(s)
Salmikangas, Esa & Huotari, Jouni

Assigned by
Nestronite Oy

Abstract

It was identified by the assigner Nestronite Oy that the main objective was to create a modern
software development environment for the cloud-based application called Jaxber. That includes
continuous integration, deployment (CI/CD), and automated testing. The value of software testing is
significant. Nevertheless, software development environments can create time and cost limitations
that make it hard to completely test an application preceding release. If faults slip unnoticed into
the production environment, the end result can be customer dissatisfaction and increased
maintenance costs.

The goal of the author was to create the required environment. The author studied the
requirements of creating a pipeline, Docker, Robot Framework, and its libraries. The focus was on
how to test the application using the Robot Framework on GitLab. The author used a diary-based
method where he explained his work by writing everything about his learning during the period of
writing. The relevant data for the qualitative research was gathered on a daily basis and followed up
by a weekly reflective summary. The reporting time covered nine weeks in calendar time.

Based on the results, the automated test, building, and deployment were achieved successfully.
Where the development environment created a pipeline containing three stages. The first stage was
Docker. In this stage, the author used Dockerfile for production. In the second stage, the author
deployed the application on GitLab pages in order to test it using Robot Framework. The last stage
was the test using Robot Framework, where the author created a test cases file at the root of the
application, then called it in this stage.

Related to GitLab, the author created a virtual machine. On this virtual machine, the author set up
the GitLab runner to run the pipeline, in addition to all the packages that could be installed on this
virtual machine to reduce the time of the test.

Keywords/tags (subjects)
Containers, Docker Engine, Docker architecture, Robot Framework, GitLab, Continuous integration

Miscellaneous (Confidential information)

1

Contents

1. Introduction ... 7

1.1 Background and motivation ... 7

1.2 Research Focus ... 8

1.3 Research Method .. 8

2. Diary Reporting .. 10

2.1 Week 1 .. 10

2.1.1 Wednesday 3 June 2020: Introduction ... 10

2.1.2 Containers.. 11

2.1.3 Thursday 4 June 2020: Benefits of containers .. 11

2.1.4 The cases of using containers .. 12

2.1.5 Friday 5 June 2020: Docker Engine ... 13

2.1.6 Saturday 6 June 2020: Docker architecture ... 14

2.1.7 The uses of Docker .. 15

2.1.8 Sunday 7 June 2020: The concept of Docker ... 16

2.1.9 A Container and the difference between it and the virtual machine 16

2.1.10 Monday 8 June 2020: Creating Containers .. 18

2.1.11 Docker Images vs Containers .. 18

2.1.12 Weekly Analysis ... 19

2.2 Week 2 .. 19

2.2.1 Tuesday 9 June 2020: Get started with Docker...................................... 19

2.2.2 Example of running an Ubuntu container. .. 20

2.2.3 Sunday 14 June 2020: A practical example of creating an image 25

2.2.3.1 Introduction .. 25

2.2.3.2 Create an image .. 25

2.2.4 Weekly Analysis ... 25

2

2.3 Week 3 .. 26

2.3.1 Monday 15 June 2020: Create the image .. 26

2.3.2 Friday 19 June 2020: Use the Docker Compose 29

2.3.3 Saturday 20 June 2020: Get started with docker compose 30

2.3.4 Weekly Analysis ... 34

2.4 Week 4 .. 34

2.4.1 Wednesday 1 July 2020: Introduction to Robot Framework 34

2.4.2 Thursday 2 July 2020: Robot Framework definition 35

2.4.3 Friday 3 July 2020: The importance of Robot Framework 36

2.4.4 Weekly Analysis ... 37

2.5 Week 5 .. 37

2.5.1 Saturday 4 July 2020: The Robot Framework ecosystem 37

2.5.2 Monday 6 July 2020: A small exercise ... 38

2.5.3 Tuesday 7 July 2020: Introduction to Ride .. 40

2.5.4 Weekly Analysis ... 44

2.6 Week 6 .. 44

2.6.1 Friday 10 July 2020: First Test Case Using Ride 44

2.6.2 Saturday 11 July 2020: Template ... 46

2.6.3 Sunday 12 July 2020: Working with Browsers Using Selenium 51

2.6.4 Monday 13 July 2020: Test Case Using Chrome Browser 53

2.6.5 Tuesday 14 July 2020: Test Case Using Firefox Browser 58

2.6.6 Wednesday 15 July 2020: Working with Setup and Teardown 59

2.6.7 Weekly Analysis ... 62

2.7 Week 7 .. 62

2.7.1 Thursday 17 July 2020: GitLab ... 62

2.7.2 The Basics of GitHub and GitLab ... 63

2.7.3 Friday 18 July 2020: GitHub vs GitLab .. 63

3

2.7.4 Wednesday 22 July 2020: Continuous integration and delivery 69

2.7.5 Weekly Analysis ... 69

2.8 Week 8 .. 70

2.8.1 Thursday 23 July 2020: Benefits of CI/CD ... 70

2.8.2 The importance of GitLab CI/CD ... 71

2.8.3 The definition of Pipeline .. 71

2.8.4 Friday 24 July 2020: Types of pipelines .. 71

2.8.5 Configure a pipeline .. 72

2.8.6 Saturday 25 July 2020: Creating a simple .gitlab-ci.yml file 72

2.8.7 Sunday 26 July 2020: Dealing with complex scenarios 74

2.8.8 Monday 27 July 2020: Dealing with missing software/packages 75

2.8.9 Weekly Analysis ... 77

2.9 Week 9 .. 79

2.9.1 Monday 14 December 2020: Dockerizing the application 79

2.9.2 Tuesday 15 December 2020: GitLab pages ... 81

2.9.3 Test automation .. 82

2.9.4 Some Problems I faced .. 84

2.9.5 Weekly Analysis ... 86

3. Discussion .. 87

3.1 Research Results ... 87

3.2 Recommendations .. 88

3.3 Reflections on Research Method ... 89

3.4 Reflections on the Research ... 89

References ... 90

4

Figures

Figure 1. Engine components flow. .. 13

Figure 2. Docker architecture. .. 14

Figure 3. A container consists only of a given application and its dependencies. 16

Figure 4. The difference between container and VM. ... 17

Figure 5. welcome page from Nginx. ... 22

Figure 6. The execution of docker exec command. ... 23

Figure 7. The result after applying the command docker run. 24

Figure 8. The final result. .. 24

Figure 9. Robot Framework architecture. .. 36

Figure 10. General overview of the framework. ... 37

Figure 11. The result of executing testcases. ... 39

Figure 12. The log from. ... 39

Figure 13. The XML file. .. 40

Figure 14. The window of creating new project. ... 40

Figure 15. Creating the test cases file. ... 41

Figure 16. The tab Run. .. 41

Figure 17. Created test cases file. .. 42

Figure 18. The navigation bar. .. 42

Figure 19. The search keyword. ... 43

Figure 20. The list of the keywords. ... 43

Figure 21. The result after creating test case file... 44

Figure 22. The documentation window. .. 45

Figure 23. Logs we added. .. 46

Figure 24. The code in the Text Edit. .. 47

Figure 25. The start button to run the test case. ... 47

Figure 26. The report and log which are showing the details of the execution. 48

Figure 27. The report. ... 48

Figure 28. The log file. .. 49

Figure 29. The changes we made to create failure case. ... 49

Figure 30. The failure of the test case. ... 50

Figure 31. The report file in a red color because of the failure. 51

5

Figure 32. The log file containing a red color because of the failure case. 51

Figure 33. Selenium official website. ... 53

Figure 34. How to download chrome supported by Selenium. 54

Figure 35. The downloads as per the operating system. ... 54

Figure 36. The downloadable files. .. 54

Figure 37. The test case details. ... 55

Figure 38. The result of running the test case. .. 55

Figure 39. The website we tested. ... 56

Figure 40. Adding more tests cases.. 56

Figure 41. The details of report . .. 57

Figure 42. The details of the log. .. 57

Figure 43. The test cases using Firefox browser. ... 58

Figure 44. The result using Firefox browser. .. 59

Figure 45. The Setup and the Teardown. ... 60

Figure 46. Arguments separated with the pipe character. .. 60

Figure 47. Teardown case. ... 60

Figure 48. Writing the keywords to the test suite. .. 61

Figure 49. Test Execution Details. .. 61

Figure 50. The most used repository tags on GitHub.com. ... 63

Figure 51. Operations Dashboard .. 64

Figure 52. Incoming bug reports displayed in your GitHub repository. 65

Figure 53. Incoming bug reports displayed in your GitHub repository. 65

Figure 54. Import projects from 3rd parties. ... 66

Figure 55. Custom enterprise features of GitHub .. 67

Figure 56. The enterprise of GitHub and GitLab starter plan 68

Figure 57. The build is successful. .. 73

Figure 58. The build is failed. ... 73

Figure 59. The build is failed. ... 75

Figure 60. The jobs are running in parallel. .. 77

Figure 61. Application files ... 79

Figure 62. Docker.prod file ... 79

Figure 63. The .gitlab-ci.yml file ... 80

Figure 64. Docker image created and pushed successfully. .. 80

6

Figure 65. The pushed image in the container registry. .. 80

Figure 66. The .gitlab-ci.yml file after adding the second stage. 81

Figure 67. Job succeeded. .. 81

Figure 68. The application after deploying on GitLab pages. 82

Figure 69. Application files ... 82

Figure 70. Test cases file. ... 83

Figure 71. The final shape of the .gitlab-ci.yml file after adding the third stage. 83

Figure 72. The pipeline stages. ... 83

Figure 73. Test with Robot passed successfully. .. 83

Figure 74. The .gitlab-ci.yml file ... 84

Figure 75. The test cases file .. 85

Figure 76. Failing the test ... 85

Figure 77. Robot runs manually. .. 85

7

1. Introduction

1.1 Background and motivation

Nestronite Oy, which was founded in 2011, participated in the development of

FreeNest. FreeNest is an open source-based platform aimed to streamline teamwork

and project management. In order to improve their operational capabilities,

Nestronite Oy needs to create a modern software development environment for the

cloud-based application called Jaxber. That includes continuous integration,

deployment (CI/CD), and automated testing.

The value of software testing is significant. Nevertheless, software development

environments can create time and cost limitations that make it hard to completely

test an application preceding release. If faults slip unnoticed into the production

environment, the end result can be customer dissatisfaction and increased

maintenance costs.

Test automation permits your team to implement more tests in less time, improving

coverage and delivering human testers to do more advanced, examining testing.

Automation is especially useful for test cases that are implemented continually.

The company has a development environment on GitHub, and it wants to expand to

test its applications in different environments like GitLab.

CI and CD are two abbreviations often used in modern development practices and

DevOps. CI refers to continuous integration, an essential DevOps best procedure

where developers regularly combine code changes into a central repository where

automated builds and tests run. But CD can either mean continuous delivery or

continuous deployment.

Continuous integration sets great importance on testing automation to make sure

that the application is not broken-down whenever new commits are integrated into

the main branch.

Continuous delivery is continuous integration's extension because it deploys all code

changes automatically to the testing and/or production environment after the stage

of the build.

The motivation for the choice of subject is to learn new and modern technologies.

Learning to build a pipeline includes many factors, the most important of which are

8

Docker, Robot Framework, and git. Learning these factors will increase the skills of

the author, especially the skills that are required to find a job these days.

1.2 Research Focus

The goal of the author is to create a modern software development environment for

the cloud-based application called Jaxber. That includes continuous integration,

deployment (CI/CD), and automated testing. The main reason to select this research

is to learn modern technologies such as Docker and Robot Framework framework,

which are among the most important modern technologies to test applications

besides that will help the author to develop his skills.

1.3 Research Method

In this research, the author utilizes a diary-based method where he writes down his

learning and problem-solving. The relevant data for the research is gathered during

June–July 2020 on a daily basis and followed up by a weekly reflective summary. The

reporting period covers approximately 60 days in calendar time. It should also be

noted that chapters two and three are written using the first person due to the diary

method.

Daily Diary Methodology is a group of valuation methods that let researchers to

review individuals’ experiences, behavior, and circumstances in natural settings, in or

on the brink of real-time, and on repeated measurement occasions over an outlined

period (ranging from a couple of days to months). Semantically, the term “daily diary

methodology” implies a once-per-day evaluation method. Often, the term is

employed in a wider sense to incorporate methods assessing individuals at multiple

times per day (also called “experience sampling”; Hektner, Schmidt, &

Csikszentmihalyi, 2007).

 Additionally, the term “daily diary methodology” indicates the utilization of some

kind of diary (paper-and-pencil or electronic) and is thus constrained to self-report

data. Recently, however, the scope of intensive repeated measurements in

naturalistic settings has broadened to incorporate also non-self-reported aspects of

everyday experience, like psychophysiological status, physical activity, and auditory

environment.

9

 “A fundamental benefit of diary methods is that they permit the examination of

reported events and experiences in their natural, spontaneous context, providing

information complementary to that obtainable by more traditional designs (Reis

1994).”

 Another is the dramatic reduction in the probability of retrospection, accomplished

by reducing the amount of time elapsed between an experience and the account of

this experience. Diaries offer the field of psychology with a powerful group of

methods for studying different human phenomena involving personality processes

(e.g., Bolger & Zuckerman 1995, Fabes & Eisenberg 1997, Rhodewalt et al. 1998).

 Daily diary methods are the best when the research question aims at capturing

representations of momentary experience or episodic memory of experiences. When

the research question aims at capturing generalized beliefs (semantic memory),

global or retrospective self-reports should be selected (Conner, Barrett, Bliss-

Moreau, Lebo, & Kaschub, 2003).

10

2. Diary Reporting

2.1 Week 1

2.1.1 Wednesday 3 June 2020: Introduction

Today I will start writing my thesis which is related to pipeline and test automation.

One of the most important requirements of the pipeline is called the Docker file. So,

for today I planned to read about what is Docker especially? And containers in

general, because I had no idea about containers before.

I read about Docker and found that very deep and interesting. There are thousands

of articles, research, and courses about it.

The developer usually works on different projects in several languages, and each

project requires different packages or system variables (Environment Variables) from

the other project. Sometimes you use specific libraries or programs within your project

that depend on various versions of the same package, in addition to the possibility that

the developer may face difficulty in managing the packages, programs and services

that work in his device because of the abundance or multiplicity of copies that he

needs. He may also face some problems when transferring the project from the device

used for development, to the device on which the program will work, or the server

that will run this program. The program may not work in the production environment

(Production) due to the difference in packages or system variables between the

production environment and the development environment. In such a case, the

developer needs more time to discover the problem and determine the package that

he needs or the variable that needs to be prepared in the production environment.

Because of these and other problems, some developers resort to running projects on

virtual machines in which they simulate the production environment, and this method

also has some problems. Sometimes it may be difficult to simulate the production

environment, or it may take a long time to prepare the environment on the virtual

machine, in addition to the inability to isolate incompatible packages with each other

within the virtual environment easily. This problem cannot be solved by using the

virtual environment and running it on the server and using it in production because

11

the virtual devices consume a lot of device resources, and the virtual device needing a

long time during operation. All of the problems above can be solved by using Docker.

2.1.2 Containers

Containers are an implementable unit of software. In it we can package the application

code, besides its libraries and dependencies, which help us to run it anywhere,

desktop, traditional IT, or the cloud.

To do this, containers benefit from a form of operating system virtualization in which

they take advantage of the features of the operating system to isolate processes and

control the size of CPU, memory, and the disk that those processes have access to.

Containers are small, work quickly, and portable because, different from a virtual

machine, containers do not need OS in each instance and can, instead, simply to get

maximum advantage of the features and resources of the host OS.

Containers appeared for the first-time decades ago with versions like FreeBSD Jails and

AIX Workload Partitions, but most modern developers consider 2013 as the start of

the modern container era with Docker. (Containers, July 2020).

Finally, I can say I understand what containers are or what Docker is, was not difficult

but required working hard and spending a lot of time to read about this important

matter. I can say that I achieved my goals for today.

2.1.3 Thursday 4 June 2020: Benefits of containers

Yesterday went very well, where I understood the general concept of containers and

Docker. Today I felt it is important to learn more about containers, so I decided to

learn why we need containers or what are the benefits we can gain from containers.

In addition, we should learn the cases of using the containers. I can briefly explain

the most important benefits of containers as follows:

Light weight: Containers use the kernel of machine OS, canceling the need for a

complete OS instance per application and making container files small and easy on

resources. The smaller size of containers, compared to virtual machines, make them

spin up rapidly and support for native cloud applications that scale horizontally

better.

12

Portable and independent platform: Containers hold all their dependencies with

them, which means that we can write the software one time and then run it without

having to reconfigure it via laptops, cloud, and internal computing environments.

Supports modern development: Because of a mixture of its deployment portability/

consistency via platforms and its small size, containers are fit to patterns of modern

development and applications, for instance: DevOps, serverless, and microservices,

which are built by using code deployments in small increments.

Improved use: Like VMs before them, containers allow developers and operators to

improve CPU and memory use of physical machines. Where containers can do

further like, enable microservice architectures, the components of the application

can be deployed and scaled precisely. (Containers, July 2020).

2.1.4 The cases of using containers

Containers became increasingly important, especially in cloud environments. Many

companies are thinking of using containers as a replacement of VMs as a platform for

their applications and workloads. But within this scope, there are key utilization

cases of containers.

Microservices: Containers are small and lightweight, which makes them a decent

counterpart for microservice structures where applications are developed of many

loosely coupled and freely deployable littler administrations.

DevOps: the mixture of microservices as architecture and containers as a platform

may be a common foundation for several teams that embrace DevOps because of

the way they build, ship, and run the software.

Hybrid, multi-cloud: Because containers can run consistently anywhere, via laptop,

on-premises, and cloud environments, they're a perfect underlying architecture for

hybrid cloud and multi-cloud scenarios where organizations find themselves

operating across a mixture of multiple public clouds together with their own data

center.

Application modernizing and migration: one among the foremost common

approaches to modernizing applications starts by containerizing them to migrate to

the cloud. (Containers, July 2020).

13

I think today I learned important things about containers and the cases of their using

because if you need to understand any new subject, you should read and go deeper

in order to gain a comprehensive understanding of the topic.

2.1.5 Friday 5 June 2020: Docker Engine

During my reading yesterday, I noticed that there was an important thing to start

understanding Docker; it was Docker engine. I specified today for the Docker engine

only. I think it won’t be a long day.

Docker Engine is a client-server application with the following significant segments:

 A server is a sort of long-running project called a daemon procedure (the

Docker command).

 A REST API that determines interfaces that projects can use to converse. With

the daemon and teach it what to do.

 A command-line interface (CLI) client (the Docker command).

Below are the Docker engine components, as shown in figure 1.

Source: https://docs.docker.com/get-started/overview/

Figure 1. Engine components flow.

14

The CLI utilizes the Docker REST API to control or connect with the Docker daemon

through direct CLI orders. Numerous other Docker applications utilize the hidden API

and CLI. The daemon makes and oversees Docker objects, for example, pictures,

holders, systems, and volumes.

After reading in detail about the Docker Engine, I can say that today's goal was

achieved. I also found that it is important to read about Docker architecture and the

uses of Docker, so I will address these two topics tomorrow.

2.1.6 Saturday 6 June 2020: Docker architecture

My objectives for today are:

 Docker architecture

 The uses of Docker.

Both are related to understanding more about Docker. I think I need to spend a lot of

time to read and understand the Docker architecture very well.

Docker utilizes client-server engineering. The Docker client converses with the Docker

daemon, which does the hard work of building, running, and conveying your Docker

containers. The Docker client and daemon can run on a similar framework, or you can

interface a Docker client to a remote Docker daemon. The Docker client and daemon

convey utilizing a REST API over UNIX attachments, or a system interface. In figure 2

presents the Docker architecture diagram.

Source: https://docs.docker.com/get-started/overview/

Figure 2. Docker architecture.

15

2.1.7 The uses of Docker

Fast and consistent application delivery: Docker simplifies the development lifecycle

by permitting developers to work in unified environments using local containers that

give your applications and services. Containers are important for continuous

integration and continuous delivery workflows.

Consider the following example:

 Developers write code and share their work with colleagues using Docker

containers.

 They use Docker to push their applications into a test environment and

implement automated and manual tests.

 When developers find errors, they can fix them in the development

environment and redeploy them in the test environment for testing and

verification.

 When the test is completed, getting the fix to the customer is as simple as

pushing the updated image into the production environment.

Responsive deployment and scaling: Docker’s container-based platform allows for

portable workloads. Docker containers can work on a developer’s laptop, on virtual

machines during a data center, on cloud providers, or during a mixture of

environments.

Docker’s portability and lightweight nature also make it easy to dynamically manage

workloads, scaling up applications and services as business needs dictate, in near real-

time.

Running more workloads on the same hardware: Docker is lightweight and fast. It

provides a viable, cost-effective alternative to hypervisor-based virtual machines, so

you can use more of your compute capacity to achieve your business goals. Docker is

perfect for high-density environments and for small and medium deployments where

you need to do more with fewer resources.

I got a lot of information about today's goals. Everything was new for me; in addition

to I faced some difficulties with Docker architecture. After the reading, I can say that I

have the base to go through deeper with Docker.

16

2.1.8 Sunday 7 June 2020: The concept of Docker

The objectives that I set for today are the concept of Docker to define Docker

specifically and to know the difference between container and virtual machine. I

think they are important and essential to learn more about Docker.

Docker is a tool intended for system managers and developers, used in building and

running programs within a specific environment by running the project inside Docker

Containers. Which facilitates the process of moving the project from one device to

another. Without the need to modify system settings and variables or install or

download specific packages, where only Docker is installed, and pre-made containers

are run with specific settings that allow the application to run within these containers.

A "Docker image" is a stack or collection of layers that are created from sequential

instructions on a Dockerfile. The layers are "Read-Only." Although that is an exception

of the topmost layer, which is "Read-Write" type. The Docker images can be

recognized either by their "unique image ID," which is provided by Docker, or a

convenient name or tag, which is provided by us means users. Finally, users can push

or pull them from Docker Hub.

2.1.9 A Container and the difference between it and the virtual machine

A container is a group of packages isolated from your local device. You can run and use

the programs inside the container without the packages inside the container

interfering with the packages already installed on your device. The components of the

Docker container are presented in figure 3.

Figure 3. A container consists only of a given application and its dependencies.
. Source: https://devopswithdocker.com/part1/

17

If we need a project that must be run on a Ubuntu distribution (is an operating system),

we can either use a Ubuntu container or a virtual machine with a distribution on it, to

set up the virtual machine we will reserve for it a certain amount of storage space in

the device, and a space of RAM, , then we will download a complete Ubuntu

distribution and install it in the virtual machine Let's try or create the project inside

the virtual machine, and this will take a very long time, while our use of the Ubuntu

container will not take much time, because the Docker does not install the entire

distribution inside the container, but it installs only the distribution packages, and it

uses the kernel of the operating system On your device, this will help reduce the use

of device resources in addition to the operating speed, as the kernel will be shared

between the container and your operating system, and the difference will be only in

packages because it works inside the container separately from the operating system.

To clarify the difference further, suppose you want to run three different applications

on your personal device (or on a server, for example). But each application needs

different packages from the other application. These packages may conflict with each

other, so you need to isolate these applications from each other. The following image

explains how to isolate these applications with virtual machines (for example, by using

VirtualBox) and how to isolate them with Docker containers, see figure 4.

By the end of this interesting day, I gained so important and much information, which

increased my knowledge about Docker and containers. For me, I felt as if I need to

know more about this important topic.

Figure 4. The difference between container and VM.

18

2.1.10 Monday 8 June 2020: Creating Containers

An exciting day ahead. My today's goals are:

 How to create containers

 the difference between Docker image and containers.

Both are very important for any researcher and considered essential to learn Docker.

In order to create a container, you need to define the Docker on the attributes of the

container that you want to create, for example, if you want to create a container for

the Ubuntu system (that is, it contains libraries and packages for Ubuntu) then you

need to tell Docker that you need an Ubuntu container with a version of 16.04 for

example, and here we need for the mage.

The image is a text file that contains the attributes and settings of the container that

you want to create, and you can create more than one container using the same image.

The images are built based on other images. If you want to create an image that

contains special packages to run, for example, the Apache server. You will often fetch

an Ubuntu image or an image of any other system and then write specific commands

to install and set up the Apache server. In this way, Apache’s image has been created,

but you have already re-used an image and added some packages, and edited its

settings.

In order to create a reliable image, we need an image of operating systems, which

means that we need to have an image source. Docker provides stores where users can

download images from (Docker Hub). Some of these images are formal and are

provided by Docker Team. Other images are created by a group of developers who

uploaded them for instant use. However, users can create their own images if they

could not find what they are looking for.

2.1.11 Docker Images vs Containers

“When discussing the difference between images and containers, it isn’t fair to
contrast them as opposing entities. Both elements are closely related and are part
of a system defined by the Docker platform.
Images can exist without containers, whereas a container needs to run an image
to exist. Therefore, containers are dependent on images and use them to construct
a run-time environment and run an application.
The two concepts exist as essential components (or rather phases) in the process
of running a Docker container. Having a running container is the final “phase” of
that process, indicating it is dependent on previous steps and components. That is
why Docker images essentially govern and shape containers”.
Source: https://phoenixnap.com/kb/docker-image-vs-container

19

The day was interesting, where I achieved the objectives I set for today, which helped

me to know more about creating containers and the difference between image and

container. By the end of these goals, I am ready to start with Docker practically.

2.1.12 Weekly Analysis

During the week, I have been getting familiar with Docker. I addressed different

concepts of Docker. Where I addressed the containers in general, the benefits of the

container in addition to the cases of using them. Also, this week I went through

Docker deeper, where I read about Docker engine, Docker architecture besides the

uses of Docker, which are important to know why we need Docker.

I also found that we need to define the concept of Docker, which gave us a general

overview of it. The knowing of the difference between the container and the virtual

machine was important because I considered it as one of the bases which will help

me to increase my knowledge with Docker, in addition to creating containers and the

comparison between Docker images and container.

I also talked about my feeling during the study which, reflect my insisting to learn

more and more. I think I now have a lot of information that will help me to get

started with Docker.

I think that the information that I got is very important and necessary, so I will

continue searching for this important topic even after finishing my study. My

question after the end of this week is, “what should I learn more about this

important topic?” Finally, I think the results I gained during this week was very

productive.

2.2 Week 2

2.2.1 Tuesday 9 June 2020: Get started with Docker

Today I will start with Docker practically because I feel it is the time to go deeper and

know more. My objectives for today are:

 Get started with Docker by applying the commands of Docker.

 Taking an example of running an Ubuntu container.

20

I will install Docker on my computer then run Hello world for the first time for me.

Afterward, I will run the Ubuntu container.

After installing Docker on your device, execute the following command:

docker run hello-world

The run command creates a container for the image (in this example, the name of the

image is hello-world) and then runs this container. The image hello-world is an

example used for testing only; the run command assumes that the image is already on

your device. If it does not find the image, it will automatically pull the image from the

Docker repository and then create a container for the image.

2.2.2 Example of running an Ubuntu container.

First, to run a container, there must be an image containing a description of the

container. The images are fetched from Docker Registry, which is a group of stores

that contain Docker images. Of course, you can create your own Registry and provides

a Docker Registry with the name Docker hub, as mentioned earlier. From it, we bring

the official images and some other images that the developers upload them.

Run the following command to pull out an image from the Registry, which is the Docker

Hub by default:

docker pull nginx:1.14

The pull command is used to drag or download an image to your device. Nginx is the

name of the image. The part that falls after the colon sign (:) is a tag that varies with

the image. But it represents the program version or the package that this image runs,

and you can not write the tag to get the last version. You can see all images available

on the Docker Hub website.

Now try the command:

docker images

It will show you all the images loaded on your device, and now to run the Nginx

container execute the run command:

docker run --name mytest nginx:1.14

21

The container will now run (if you run the run command and the image is not available,

it will execute the pull command automatically). The name command is an optional

command that you can implement to name the container, with the name you type

after the command. If you do not name the container, then an automatic name will be

given to it. To exit from the container, the terminal, press ctrl + d or type exit

command. To list all containers that are currently running, run the command:

docker ps

You can also add the -a option to the previous command to see all previously run

containers, including containers that are not currently running. If you exit from the

terminal that you ran the command through and then executed the ps command, you

will notice that the container was closed once the terminal is closed; this is because

Docker containers are in one of two states, either working in the front (Foreground)

or in the background (Detached). By default, Docker containers work in the

foreground, meaning that they work within the terminal emulator that works now,

and do not work as a Demon in the background, so We use the d- command to run the

container in the background:

docker run -d --name mytest nginx:1.14

Note: If you implemented the previous command to run the container, an error will

occur when executing this command. Because you are trying to create a container that

already exists, either you change the name or delete the old container.

Now to check if everything is working properly, we know that Nginx is running on port

80, so you will probably type localhost: 80 in the browser to try it out, and surprisingly

it won't work.

Because the container is an environment isolated from your operating system. Nginx

actually works on port 80 inside the container, but it does not work outside it, so we

use p- with the run command to post ports from the container to the host:

docker run -p 8000:80 -d --name mytest nginx:1.14

With this command, Port 80 will be published from inside the container to Port 8000

outside, so you can now write localhost: 8000 inside your browser, and as a result, you

will see the welcome page from Nginx as shown in figure 5.

22

Source: https://3alam.pro/3mmarg97/series/introduction-to-docker/lessons/what-is-docker

Since the container is running in the background now, it will not stop working as you

exit the terminal, and to stop the container from running, use the stop command:

docker stop mytest

To run a previously created container, use the start command instead of the run

command. You do not need to create a container again:

docker start mytest

Note: When using the start command. You can not specify the port or specify

whether the container can work in the background or not. But the container will

work with the same settings that you specified when you created the container using

the run command. When you run the container test, you will be able to access Nginx

through port 8000. The container will work in the background.

You can connect with the terminal of the container on which you are working to

execute orders using the exec command:

docker exec -it mytest bash

The exec command executes a shell command inside the container, while it -i opens

the input stream (STDIN) and t creates (TTY) to deal with the terminal, so the two

options together allow you to stay inside the container terminal and execute the

commands.

Figure 5. welcome page from Nginx.

23

Using the exec command without these two options. The command will be executed

without allowing you to enter the terminal to execute the commands. Since the exec

command needs to pass a terminal command to it, you can pass the bash to open it

and be able to execute the commands inside it, see figure 6 to get more about the

idea.

When executing the uname command, my device’s hostname was shown at the

beginning, but after executing the exec command you notice that the shell prompt

has changed due to the use of the container shell. When executing the uname again,

we notice that the hostname has changed, so it is possible to do any command here

to apply to the container. If you no longer want the container, you can delete it using

the rm command:

docker rm mytest

Finally, one of the great features of Docker is the Volumes. Where you can install

(mount) a folder from your device to another path in the container. One of the

benefits of this is that you do not need to copy your project files. For example, from

your device to the container. But you can also access the same files from within the

container or from your device, each in a different path, and to try this feature, I

created a file named aaa.html on my device, and I will run a container that can access

this file so that Nginx provides me with the file when I enter its path and I can open

the file through the browser:

docker run -d -p 8000:80 --name mytest -v

~/Desktop/Workspace:/usr/share/nginx/html nginx

Figure 6. The execution of docker exec command.

24

The -v option is to do the mounting, ~ / Desktop / Workspace is a path on my computer

that contains the aaa.html file, and usr / share / nginx / html / is the path Nginx uses

on the container. See figures 7 and 8, which are showing the result.

What a good day. I addressed a good number of commands of Docker. I achieved my

goals of today better than expected. I read and practiced several commands. The

quantity of information that I got was very great.

Figure 8. The final result.

Figure 7. The result after applying the command docker run.

25

2.2.3 Sunday 14 June 2020: A practical example of creating an image

2.2.3.1 Introduction

We previously explained what a Docker is, clarified its importance, explained the

concept of a container, created a container, and explained some of the commands for

dealing with the container. Now we will explain how to create an image based on

another image.

The container needs vary according to the project you are working on. Packages,

requirements, and settings may vary from project to project. You might be working on

a project that needs a copy of Python as well as settings for Nginx to use as a proxy. In

another project, you may need a specific copy of PHP with a copy and settings for the

Apache server, often you will search in the Docker Hub for an image that is right for

you, but often you may not find exactly what you need, then you will have to create

an image to use to create the container you need.

2.2.3.2 Create an image

The images are created with specific commands written inside a text file called

Dockerfile. It contains chain orders or instructions explaining to Docker how to build

the image. Docker images are often created based on other images. In order to create,

for example, an image of Nginx, you need to build it based on the Ubuntu image

because Nginx will not work without an operating system (in a few cases, Docker

images may already be created from scratch).

2.2.4 Weekly Analysis

This week I got started with Docker practically. I started by installing Docker on my

device. I noticed that if you want to install Docker on Windows, you need to upgrade

your windows version to premium. The command "docker run hello-world" was very

enough as the beginning of practicing and understanding Docker's commands.

By taking the example of running Ubunto container, I can say I have learned a lot

about Docker, at least as a beginner for me, where I applied many and different

commands. Going through this example made me feel that the learning of Docker is

not difficult but requires working hardly. In my view, it is not different from learning

any programming language.

26

This week’s outcome was really impressive, and I think that I am starting to acquire a

new skill, which is Docker.

2.3 Week 3

2.3.1 Monday 15 June 2020: Create the image

Another exciting day because I set it to create an image. This day will be practical,

totally. I think I will achieve my goal by practicing several commands of Docker and

patience because I am sure I will face some difficulties for the first time.

Initially, create a file named "Dockerfile" which is the text file that will contain

instructions for creating the image. The Docker commands are written as follows:

INSTRUCTION [arguments]

Where INSTRUCTION is any Docker command, where we will learn some of them now.

Arguments are the sentences that will be written after the command as information

that is passed to this command to process according to the command. Comments can

be written in the file preceded by the hash (#) sign.

The first command that writes at the beginning of all Dockerfile files is the FROM

command and passes the name of the image you want to base your image on, for

example:

FROM ubuntu:16.04

With this line, we have specified for Docker that we will build an image based on the

Ubuntu image with version 16.04. When creating a container from your image, Docker

will pull the Ubuntu image and then execute the rest of the commands based on the

Ubuntu image.

One of the most frequently used commands is the RUN command, which executes

commands in the container terminal, for example:

RUN apt-get update && apt-get install -y nodejs npm
RUN mkdir /application

Note that the sentences after the RUN command are all normal commands. The first

updates the repositories and installs the NodeJs package, and the second will create a

file. You can type the RUN command multiple times.

27

If you want to copy a file from your device to the container, you can use the COPY

command or the ADD command, and they do almost the same thing, but the COPY is

more readable, and the ADD command supports adding files to the container from a

specific link and not just from your device. The benefit of these two things is copying

your project files to the container or copying a configuration file for a specific package

or any other package. Example:

COPY package.json /application
ADD https://example.com/folder/file.js /application

Sometimes you may need to execute a command in the terminal while the container

is running and not during its build (with each container run). Here you can use the CMD

command and execute the command you want (you can only use one copy of the CMD

command, and if you write more than one, the last one will be executed only). Use the

WORKDIR command to specify the working folder in which to execute commands, for

example:

WORKDIR /application
CMD npm start

Or you can use ENTRYPOINT for the same function. But what is the difference between

CMD and ENTRYPOINT?

In short, most images use the command /bin/sh -c as the ENTRYPOINT to it, then the

command in the CMD is passed to the ENTRYPOINT, so you can change the

ENTRYPOINT, and the command in the CMD will be passed to that ENTRYPOINT

Example:

ENTRYPOINT ["/bin/cat"]
CMD ["/path/to/file"]

This command will print the file specified in the CMD using the cat command. This path

has been passed to ENTRYPOINT.

Sometimes you may need to set the Environment Variables in the image, and you can
do this using the ENV command as in the following example:

ENV VAR=value

You can also specify more than one variable with one ENV command:

ENV VAR1=value \

28

 VAR2=value

With the EXPOSE command, you can specify the ports used within the container. If we

create a server using Node which uses Port 80, we will set the command EXPOSE as

follows:

EXPOSE 80

You may be wondering, what is the benefit of specifying the ports used with EXPOSE,

and we will always use the -p option under the run command to specify the port?

When specifying the port using EXPOSE, you will not be able to access this port from

your device unless you use the p- option. But other containers will be able to access

this port within that container, but when you use the p- whether with or without

EXPOSE, the result is the same. However, it is preferable to use EXPOSE to act as

documentation of the ports to be used. You can also write EXPOSE and use the option

-P instead of -p to post all the ports specified in EXPOSE abroad without rewriting them

under the run command. To read about EXPOSE in detail, see this answer.

https://stackoverflow.com/questions/22111060/what-is-the-difference-between-

expose-and-publish-in-docker/22150099#22150099

For more details on more Docker file commands, read the official reference. After

completing writing the previous commands for the file, this is the complete file:

Now we are going to build the image using the command:

docker build -t mytest:latest .

“FROM ubuntu:16.04
Fetch the Ubuntu image
RUN apt-get update && apt-get install -y nodejs npm
Update repositories and download NODE
RUN mkdir /application
Create the folder that contains the application
COPY package.json /application
Copy the npm package file
To the folder we created
Package.json file must be available
Besides the Dockerfile file
WORKDIR /application
Select working folder
CMD npm start
Executing the command npm start”

29

The -t option enables you to specify the name and tag for the image. In the previous

example, we chose the name mytest for the image, and we used the latest as the name

for the tag, then we specify the folder that contains the Dockerfile file and put a point

mark to indicate that the file is in the same working folder that I am browsing. Docker

will execute the previous orders line by line and print the line it is working on, and in

case of any error, you will know where it happened. After completing building the

image, it will print for you:

Successfully built a499ec6eafd0
Successfully tagged mytest:latest

Of course, your image ID will differ. You can now run the docker images command to

display all your images, and the image you created should appear:

Now try running a container from the image we created:

docker run mytest

The output, of course, will vary depending on your package.json file.

Finally, I can say that I really achieved my goal when I built the image successfully. It

took so long time to read and practice. I got a lot of information, which made the

feeling that I am progressing day by day.

2.3.2 Friday 19 June 2020: Use the Docker Compose

Introduction

My objectives for today are to learn how to create several containers by using

Docker compose. I need to read about Docker compose to understand the idea. I

think it will be a theoretical day.

One of the most important benefits offered by containers is the ability to prepare them

easily. Whenever you want, you can prepare a container that simulates any

environment quickly, so one of the new practices is to make a single container do only

one job. For example, to develop a PHP site, it is better to create a container for the

webserver only, a container for databases, and a container for PHP. The greatest

benefit in this way is the ability to install or remove any element (container) from this

design easily without the need to take a long time in preparing packages and

environment variables, and others. For example, if you need to use Redis in your

30

project, all you have to do is fetch an image of Redis and link it to the rest of the

containers. If you need to change the database, for example, from Mysql to MongoDB,

you must replace a MongoDB container with a Mysql container. All of these operations

can be difficult if you are working on one container. Each time, you have to edit a lot

of settings in Dockerfile, which may be very large due to the use of a lot of tools in it,

and the time is golden for the developer, you will not like, of course, to delay the

delivery of a project or delay in launching it. It is better to finish the project in less time

than the specified time, and for this, the programmer should use tools that facilitate

and speed up the development process. Based on the previous, the Docker Compose

tool is a great tool for attaching containers to each other, so by using one file, you will

be able to link the containers easily (the method of installing the tool). In this section,

we will explain some of the Docker Compose commands, and then we will apply a

realistic example to it.

Today I read about Docker compose in addition, I also watched some videos. I think I

got good and useful information related to my today's goal.

2.3.3 Saturday 20 June 2020: Get started with docker compose

Yesterday was theoretical, where I read about Docker compose, but the information

that I got was quite enough to start with Docker compose. So, my today's goal is to

get started with Docker compose.

As with creating an image, Docker Compose relies on a file that contains the

instructions it needs to know what to do. Compose instructions are written in the

YAML language inside a file as YAML or YML. The first step to using Docker Compose

is to create a file named docker-compose.yml.

At the beginning of each compose file, we specify the version of the file that we are

working on. Each copy contains different advantages from the previous version. You

can see the differences between copies of the compose files and the Docker

compose versions that run each version of it. Refer to this link, and in this

explanation, we will adopt version 3.

31

With Docker Compose, you will be able to distribute each part of your application on

several containers. So, you can run NodeJs on one container, Nginx on another

container, and a third container to deal with your project files, each of these parts is

called Service, open a new Code block inside services to define each Service you

have:

In this example, we have two services, the first one is called mysystem, and it pulls the

ubuntu image from the Docker Hub. The second one is anotherone, and instead of

fetching the image from the Docker Hub, it builds the Dockerfile file located inside the

myimage folder. This, of course facilitates the running of these containers. In large

projects, when dividing the project requirements into services, you will need to run a

large number of containers, and Docker Compose will facilitate you to run or stop them

all at once using one command.

We got to know the image and build command, but of course, there are many other

commands related to services, such as the ports command that helps you define and

direct ports (in the Dockerfile files, the EXPOSE command or the use of -p is used after

the Docker command to specify the ports, but dealing with the ports in the Docker-

compose file Easier).

You also notice that we specify the port on which a specific service is running in the

container (port 80, for example) and direct it to a specific port on the hosting device

(port 8000 in the example). Using port 8000, by typing localhost: 8000 in the browser,

for example.

“version: "3"
services:
 mysystem:
 image: ubuntu:16.04
 anotherone:
 build: ./myimage”

“version: "3"
services:
 mysystem:
 image: ubuntu:16.04
 anotherone:
 build: ./myimage
 ports:
 - 8000:80
 - 9000:9000”

32

To connect between containers, Docker Compose automatically creates a network

between the containers so that they can be connected, you can, of course create your

own networks, but we will not address this issue in this simple series.

To ensure successful communication between containers, the depends_on command

is used. Where you specify the services (containers) on which the service you used

the depends_on command depends on and what the Docker Compose does is sorting

the work of the containers, as the running of a container should not relying on

another container that has not been created.

Note the use of depends_on on the first container (mysystem), thus Docker Compose

will ensure that the mysystem container will be run before anotherone and third_one,

so that the container playback order is as follows:

mysystem -> anotherone -> third_one

Or

mysystem -> third_one -> anotherone

A useful command is also the container_name command, and by using it, you can

specify the name of the container, and it makes the name-- option in the Docker run

command. The service name (such as mysystem or anotherone) does not represent

“version: "3"
services:
 mysystem:
 image: ubuntu:16.04
 environment:
 MY_VARIABLE: 1342
 depends_on:
 - anotherone
 - third_one
 anotherone:
 build: ./myimage
 ports:
 - 8000:80
 - 9000:9000
 third_one:
 image: example”

“version: "3"
services:
 mysystem:
 image: ubuntu:16.04
 container_name: mytest”

33

the container name, but rather a name used to deal with the service within the

Docker-compose file mostly the container name will have the same name as a serial

number, but to specify a specific name for the container, you will need the

container_name command.

Finally, we will touch on a very important feature, which is the Volumes, and we have

explained it beforehand, but we give an example of how to use it in the Docker

Compose file:

To run the services you defined in the Docker-compose file, in the folder containing

the file, execute the command:

docker-compose up

You can use -d as the flag for the previous command to run services in the background.

To stop services:

docker-compose stop

As for stopping (and deleting) all services (containers), networks, and Volumes that

were created with the up command, we use the following command:

docker-compose up

Sometimes you use a Dockerfile file and need to rebuild it after editing it, and then

you do one of the following:

docker-compose build
docker-compose up –build

The first command rebuilds the images, the second rebuilds and runs them.

Although the features we covered are just a few of the advantages of Docker

Compose, and there are many other commands that are detailed. For more, see the

official documentation. Generally, the competence gained during the day was very

good.

version: "3"
services:
 mysystem:
 image: ubuntu:16.04
 volumes:
 - ./myfolder:/var/www

34

2.3.4 Weekly Analysis

This week was really eye-opening. Where I read and learned more about Docker

compose. I touched on Docker compose in general. Then I got started with it

practically. Working with Docker compose was very interesting because it deals with

several containers.

I addressed many of the Docker compose commands, which were very useful. Where

the examples were clarifying the idea behind Docker compose and how it works. I

think I touched on the most important commands in this week related to Docker

compose. In general, I think I can say that I summed up the most important things

you need to know about Docker compose.

Although I learned much about Docker, I still feel that I need to learn more to

develop my skills with Docker. I found that the importance of Docker increasing day

by day. In my view, any company or programmer needs to learn this skill because it

will become a basic thing in the future.

2.4 Week 4

2.4.1 Wednesday 1 July 2020: Introduction to Robot Framework

Robot Framework is also a new technique for me. So, I need to study this concept in

general to get a comprehensive idea about it. That will be my objective I set for

today. Testing is important for any activity to be succeeded. This should be for

software also. It covers the verification and validation of the software. Testing

practices include the unit and functional testing that proves the needed functionality.

However, the testers should make manual efforts to make sure that the program

that should be tested works as required, as part of the software acceptance process.

Because of the increase in the size of the programs, the process of the testing

became automated, leaving behind huge information in the form of audit trails of

tests that have to be available to the user at a glimpse and without which the

purpose of the acceptance test automation is defeated.

Robot Framework adds this missed link that combines with the testing tool used for

implementing acceptance testing over the software and builds this implementation

into separated structures of tests sorted in an appropriate hierarchical way. This is

led to correct execution and generates orderly reports. Because of an open-source

35

framework, this tool enables you to perform acceptance testing in a hierarchical way

and generating automated reports. In addition to it allows you to build your own

tool. Or even use it with other tools as part of a custom test environment setup

required for your team.

It was an easy day. I managed to achieve my goal by reading different articles. The

information I got was useful and broadened my horizon to advance my

understanding of this important topic.

2.4.2 Thursday 2 July 2020: Robot Framework definition

Yesterday I studied Robot Framework in general; therefore, I found that it is

important to define it more accurately. Today's objective will be Robot Framework

definition especially.

Robot Framework is an open-source automated framework. It can be used for

automated testing and robotic process automation (RPA). Many companies are using

Robot Framework in their software development. It is open and extensible; we can

merge it with another tool to get powerful automation solutions. Because it is open-

source, it is free to utilize without any license costs.

Robot Framework has easy syntax, using keywords that a human can read. It is possible

to extend its abilities by libraries of Python or Java.

Robot Framework is hosted on GitHub. You can find more information,

documentation, source code, and issue solutions there. Downloads are hosted at PyPI.

It is an operating system and an independent application. The main framework is

executed by Python and runs on Jython (JVM) and IronPython (.NET).

Robot Framework is issued under Apache License 2.0, and most of the libraries and

tools in its system are also open source. The framework, in the beginning, was

developed at Nokia Networks and became open-sourced in 2008. Robot Framework

architecture is presented in figure 9.

36

Source: https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html

I can say that I achieved better than expected for the day and got a lot of important

information related to the Robot Framework.

2.4.3 Friday 3 July 2020: The importance of Robot Framework

To like something, you must know its importance. From this point of view, I devoted

this day to studying its importance of the Robot Framework.

 Robot Framework is easy to use the syntax of tabular for creating test cases.

 It has the ability to create reusable higher-level keywords from the existing

keywords.

 Provides clear reports and logs in HTML format.

 It is application independent.

 Provides a simple library API to create test libraries that can be executed with

Python or Java.

 Robot Framework provides a command line and XML based output files for

continuous integration systems.

 Provides support for Selenium library, which is used for web testing, Java GUI

testing, SSH, and so on.

 Creates data-driven test cases.

 Support for variables, for testing in various environments.

Figure 9. Robot Framework architecture.

37

The information I got was not very great, but it was important, and by the end of the

day, I can say that I successfully achieved the goal that I set for this day.

2.4.4 Weekly Analysis

This week was interesting. Where I completed reading about Docker and starting the

most important part of my research, which is Robot Framework; from my point of

view, learning Robot Framework is like learning a programming language, and then

will increase the skills that I have acquired, which will help me find a job. I considered

this week as a start point to go far with this awesome technique. I studied this

concept in general; then I touched on its importance. Besides, I saw some small

courses about it. I think it was quite enough to start learning.

2.5 Week 5

2.5.1 Saturday 4 July 2020: The Robot Framework ecosystem

I decided that my goal for today is to continue the theoretical side of studying the

Robot Framework, so it is very important to look at the Robot Framework ecosystem.

The following chart shows a general overview of the framework and various related

components, see figure 10.

Source:
https://subscription.packtpub.com/book/application_development/9781783283033/1/ch01lvl1sec10
/the-robot-framework-ecosystem

Tests and Test Data: This is the tests' configuration, consist of test and data files and

folders besides the contents of those that dictate the implementation of the test.

Figure 10. General overview of the framework.

38

Test Results: These are the results of the tests which are used to determine the

results of tests, as well as logs that can be used to evaluate different parts of the test.

Robot Framework: This is the main framework that implements the most important

things, to get things done.

Test tool driver: This makes the communication available between the framework

and actual tools. It can be specially designed to meet specific requirements with the

existing test tool.

Testing Tool: This is the actual software responsible for performing acceptance

testing.

End Application (System under test): This is the software we want to test for use by

the client or end-user.

Finally, the outcome of the information I got was very great as I studied all the parts

mentioned in figure 13 in detail, which helped me get a wonderful understanding of

the topic.

2.5.2 Monday 6 July 2020: A small exercise

Today's goal will be practical; as usual, I will apply a small exercise to clarify the idea.

To explain the idea of the Robot Framework, I will create a simple example as

follows:

1. Create a folder and name it “my first exercise” for example, this folder will be

the root folder.

2. Inside my first exercise folder, create a folder and name it testcases, this will

contain the test file.

3. Inside testcases folder, create a file and name it TestCase1.robot; write the

following inside:

Note that we have to left two spaces before and after the log keyword.

Test Cases

First Test Action log this is a basic test

39

4. Now open the command line and go to the project directory, then run the

project by writing the following command:

 robot testcases

You have to get like figure 11.

This means that the project ran successfully. You can see the results and log from

HTML pages that have been generated from running the project. When we used a

simple log statement, we get a logged message in the out log, as shown in figure 12.

Figure 11. The result of executing testcases.

Figure 12. The log from.

40

You can also easily read the generated XML file, which can be used by another

external tool as an input parameter. See figure 13.

Really it was a good day. I achieved my goal easily and understood the main idea

behind the idea of the Robot Framework. Generally speaking, I got a fair amount of

information.

2.5.3 Tuesday 7 July 2020: Introduction to Ride

Today will be a continuation of the practical application of the Robot Framework. I

have decided to address the Ride editor for today or in this section because I will use

the Robot in GitLab using YMAL file next weeks.

Ride is the editor of Robot Framework; also, we will write test cases in Ride. In this

section, we will go through the Ride editor to explain some important features and

options that are available in this editor.

Create a New Project

To create a new project, open Ride editor, click on the file menu and select new

project. Once we selected this option, we will get the following window, as shown in

figure 14. (Robot Framework, July 2020).

Figure 13. The XML file.

Figure 14. The window of creating new project.

41

In the field of name, we will enter the name of the project. Then we will select the path

of the project directory in the field of Parent Directory. We could change the location

if that required. We can save the project as a file or directory; further, we can save the

project in format ROBOT, TXT, TSV, or HTML. Now we will write the project's name and

let's name it "First test," as shown in figure 15. (Robot Framework, July 2020).

The project's name appears on the left side, and on the right side, we can see three

tabs Edit, TextEdit, and Run. When you click on Edit, you will find that Edit has many

options on the UI. In this section, we can add data on which our test is dependent. We

can import Library, Resource, Variables, add scalar, add list, add dict, and Add

Metadata. The details which are added in the Edit section will appear in the next tab,

Text Edit. You can write your code in the text edit section. If there any change

happened in the Textedit, it will appear in the Edit section. So, both sections Edit and

TextEdit, are dependent on each other, and all changes will be seen on both. We can

use the tab Run when the test cases are ready, see figure 16. (Robot Framework, July

2020).

Figure 15. Creating the test cases file.

Figure 16. The tab Run.

42

With Run UI allows to run the test case, and we will see options like start, stop, pause,

continue, next test cases, step over, etc... You can also create Reports, Log for the test

cases that you are implementing. To create a test case, right-click on the project name

"First Test” click on the new test case, then write the name of the test case in the field

of name, for example, "TESTCASE0" and press “OK”. Once you click “OK” the following

you will get like figure 17. (Robot Framework, July 2020).

The test case contains options like Documentation, setup, teardown, tags, timeout,

and Template. They have an edit button; when you click on it, a screen appears where

you can enter the details for each option. We can write the test cases in the tabular

format, as shown below. Robot Framework test cases are keyword dependent, and we

can write the keywords by using built-in keywords or keywords imported from the

library. Further, we can create user-defined keywords or variables, etc., in the Robot

Framework. You can run or stop the test case from the navigation bar, as shown in

figure 18.

Figure 18. The navigation bar.

Figure 17. Created test cases file.

43

You can find the search keyword in the navigation bar like figure 19.

If you want to get the list of keywords the Robot Framework provides, press

ctrl+space in the tabular. It will show you all the keywords available, as shown in

figure 20. (Robot Framework, July 2020).

This will help to remember the keyword that we forget. We have the details with

each keyword; these details explain how to use this keyword.

All the information that I gained today was totally new and very important for any

researcher to know about it. I think I am on the right way to learn Robot Framework.

By achieving today's goal, I feel that my level became good, and the coming days will

be very practical.

Figure 19. The search keyword.

Figure 20. The list of the keywords.

44

2.5.4 Weekly Analysis

This week went very well and better than expected. I got a lot of valuable

information besides the interesting feelings that I felt during the search and practice.

I am happy with what I have learned so far.

I studied the Robot Framework ecosystem in detail, which is one of the most

important parts that we should learn to understand the idea of Robot. I also took a

small exercise which helps the new researcher to get the idea about the Robot where

taking a practical example help to understand the idea behind any new topic.

In addition, I had to take a look and use the Ride editor because I will use the Robot

within a YML file coming weeks, and this will be useful to get a general idea about

Ride and how to practice it using YML file.

2.6 Week 6

2.6.1 Friday 10 July 2020: First Test Case Using Ride

This week will be an extension of the practical side of the Robot Framework. Today I

will explain the most important features of this Editor.

In this example, we will explore the RIDE and work on our first test case. First, we

need to create a project by opening the Ride editor; then, we should click on the new

project from the file menu. Here I am going to name the project “First test”

afterward, we will right-click on the project name and click on new test case, I will

name it “TESTCASE0” and click Ok. See figure 21. (Robot Framework, July 2020).

Figure 21. The result after creating test case file.

45

You can see three tabs shown for the test case created: Edit, Text Edit, and Run. The

Edit tab has two formats: Settings and Tabular. We will discuss them later.

The Settings Format

We will see documentation, setup, teardown, tags, timeout, and template when we

click on Settings.

Documentation

Here you can add details about your test case so that it becomes easy for future

reference. See figure 22. (Robot Framework, July 2020).

Click the OK button to save the changes.

Setup and Teardown

When we have a setup specific to a test case, it will be implemented before the test

case execution, and the test setup that will be implemented after the test case is

done for teardown. (Robot Framework, July 2020).

Tags

They are used for tagging test cases to include and exclude specific test cases. (Robot

Framework, July 2020).

Timeout

Figure 22. The documentation window.

46

It used to set the timeout on the test suit. We will keep it empty now. (Robot

Framework, July 2020).

Finally, I can say that I explain some features of this editor, and I think I still need to

go through the features of this editor.

2.6.2 Saturday 11 July 2020: Template

Yesterday went very well. Today, I will continue explaining the features of the Ride

editor and taking a practical example.

This will contain the keywords to be used for the test case. It is used for data driven

test case. The high-level user-defined keyword is identified in the template, and test

cases are used to pass data to the keyword.

We will write our first test cases and implement the same to see the output. In the

tabular format.

In this test case, we are going to add some logs, and we will look at the output of it.

See figure 23. (Robot Framework, July 2020).

As shown above, we have used the keyword Log to log messages. Depended on the

keywords specified in Edit, we will get the code in Text Edit, as shown in figure 24.

(Robot Framework, July 2020).

Figure 23. Logs we added.

47

You may write the test case in the Text Edit, and you will see the changes in the

tabular format as well. Now, I will run the test case and see the output. To run the

test case, we need to click on Start in the tab Run, as shown in figure 25.

Below is the output of the test case:

Our test has implemented successfully, and the details are, as shown above, give the

status as PASS.

Figure 24. The code in the Text Edit.

Figure 25. The start button to run the test case.

48

Besides, we can see the details of the execution in Report and Log as screenshot

shown in figure 26. (Robot Framework, July 2020).

When you click on the report button, you will see the output like figure 27.

In Report, it shows the details like the start time, end time, path to the log file, status

of the test case, etc.

Figure 26. The report and log which are showing the details of the execution.

Figure 27. The report.

49

Click on Log; here are the details of the log file. See figure 28. (Robot Framework, July
2020).

The Log file shows the details of the test execution and keywords we gave for the

test case. In both files report and log, we get green color for the status. Let us make

changes that will lead us to the failure of the test case fail and see the output, as

shown in figure 29. (Robot Framework, July 2020).

Figure 28. The log file.

Figure 29. The changes we made to create failure case.

50

In the above test suit, we have written the Log keyword wrongly; when running the

test case, it will fail, as shown in figure 30.

Here the test case has failed. See the highlighted error in the screenshot above that it

tells about the test case.

Now we will see the report and log output; when the test suit fails, the color is

changed to red, as shown in figures 31 and 32. (Robot Framework, July 2020).

Figure 30. The failure of the test case.

51

It was a wonderful day; I could achieve my goal where I explained the features

besides the first test case. The quantity of information that I gained during the day

was great.

2.6.3 Sunday 12 July 2020: Working with Browsers Using Selenium

Selenium Library

Through my study about test automation, I found that most developers using the

selenium library, so I found that it is important to recognize what this library is, which

is today's goal.

It is a library specialized in testing webpages, but this use does not stop at the goal of

the test only but extends it to include simulations of using the web, automation, and

the operations carried out on the pages of websites and web systems in addition to

scraping the web and collecting data.

Selenium works by running the browser and loading the site automatically and then

performing various and multiple operations such as filling data in specific fields,

reading the content of the site pages, implementing mouse and keyboard clicks on

Figure 31. The report file in a red color because of the failure.

Figure 32. The log file containing a red color because of the failure case.

52

the page components, implementing JavaScript codes, navigating between pages and

many other things.

Selenium does not have its own browser, and in order to work, a Firefox or Chrome

browser is required, and if you want your program to run in the background, you can

use the PhantomJS browser (called a headless browser). As it loads the site into

memory and enables you to perform all operations available on regular browsers but

without showing any graphics to the user.

The importance of Selenium

Selenium’s importance is evident in several aspects. By using it in web testing and

examining. You will most likely write a little code to test a large system according to

the concept of blackbox automating testing or BAT. In contrast to other forms of

testing, in which you may need to write a large software code to examine the

properties of small in the system. This means we have reduced the time and effort

needed to conduct blackbox testing.

Selenium offers an integrated framework for examining and testing web systems,

and this facilitates the process of building applications that test other applications.

Thus you will not repeat building many test codes, and you will not fall into the

problem of maintaining and following up the test codes, all you have to do is build

the test application in a correct way.

Selenium's importance also stems from the fact that it simulates the real user

behavior of the site. Some automation frameworks inject the browser with software

codes to simulate the user's operations, such as pressing a specific button. Also,

Selenium supports a wide range of the most popular browsers on different platforms

such as Linux and Windows.

We can summarize the importance of Selenium as follows:

 Saving time and effort

 Ease of use

 Compatibility with different browsers

 Working in many operating environments

 They are used for checking, automating, and simulating user behavior.

53

Generally, Today I was able to obtain abundant and sufficient information about this

wonderful library, and I think I am ready to go ahead with this library and study its

instructions in detail.

2.6.4 Monday 13 July 2020: Test Case Using Chrome Browser

Today I have been thinking to take another practical example about a test case using

a browser, but I also found I have to talk about installing drivers of a browser. So, my

objectives for today will be to install a driver for a browser in addition to a practical

example.

We need to install the drivers for chrome to work with Selenium. We can download

them from Selenium official website https://www.seleniumhq.org. See figure 33.

In the part of Selenium WebDriver, click download and got to the Platforms

Supported by Selenium on the Browsers select your browser, press on

documentation, and download the latest version. Here I will use chrome browser, as

shown in figure 34.

Figure 33. Selenium official website.

54

Select the latest version. It will show the downloads as per the operating system. See

figures 35 and 36.

Figure 34. How to download chrome supported by Selenium.

Figure 35. The downloads as per the operating system.

Figure 36. The downloadable files.

55

Download the version according to your operating system from the above list. It will

download as a zip file. When the file is downloaded completely, unzip it and copy the

.exe driver file to the python folder (C:\Python27).

Now we have installed the driver for chrome. We can start with writing test cases

that will open and close the browser.

First open Ride, and then in the test case, we will open the site

"https://www.jamk.fi/fi/Etusivu/" in chrome, and the test case details will be, as

shown in figure 37. (Robot — Working With Browsers Using Selenium Library, July 2020).

Now we will run the test case and see the result, as shown in figures 38 and 39.

Figure 37. The test case details.

Figure 38. The result of running the test case.

56

When the test case pass, we will see the chrome browser will open with the tested

website. Now we will add more tests, as shown in figure 40.

 Open Browser: will open URL “https://www.jamk.fi/fi/Etusivu/” in Chrome

browser.

 Capture Page Screenshot: will take a screenshot for the website and the

image’s name is page.png.

 The last is close browser.

After running the test cases above we will get the details of report and log, as shown

in figures 41 and 42.

Figure 39. The website we tested.

Figure 40. Adding more tests cases.

57

Report:

Log:

Figure 41. The details of report .

Figure 42. The details of the log.

58

Details of log:

By the end of the day, I can say that my knowledge becomes better, and I

understood the idea behind the Robot Framework because the quantity of the

information I gained was really wonderful and helpful.

2.6.5 Tuesday 14 July 2020: Test Case Using Firefox Browser

Today is a continuation of yesterday because I found it important to touch upon the

use of the test using Firefox to cover the topic of working with browsers.

We have to install the Firefox driver and save it in the python folder. Firefox test case

and the result as shown in figures 43 and 44.

Figure 43. The test cases using Firefox browser.

59

2.6.6 Wednesday 15 July 2020: Working with Setup and Teardown

Today's objective will be explaining the important rest features of the Ride editor

with an example to finish this chapter and move to the last part of this thesis.

Setup

This is a set of keywords to be implemented before the start of test suite or a test

case implementation.

Teardown

This is a set of keywords to be implemented after the start of test suite or a test case

implementation.

We will work on a project setup and use setup and teardown. The opening and

closing of the browser are the most common steps in test cases.

Now, we will add the keyword open browser in the case of setup and close browser

in the case of the teardown.

Now, open Ride and create a new project, then create a test case. Also, we need to

import Selenium Library to use the keywords concerning the browser and interact

with the pages. See figure 45. (Robot Framework, Working With Setup And Teardown, July

2020).

Figure 44. The result using Firefox browser.

60

In the above screenshot, we have options in the settings section, and here we will

use the Setup and the Teardown. Click Edit to enter the keyword, and arguments

must be separated with the pipe character (|), as shown in figure 46. (Robot

Framework, Working With Setup And Teardown,July 2020).

In the teardown case, we will enter the close browser keyword, as shown in figure

47.

Figure 45. The Setup and the Teardown.

Figure 46. Arguments separated with the pipe character.

Figure 47. Teardown case.

61

Then, we will write the keywords to the test case, as shown in figure 48.

We have Input Text in the test case. The opening and closing of the browser are

coming from Setup and Teardown Settings. Below are Test Execution Details. See figure

49. (Robot Framework, Working With Setup And Teardown, July 2020).

By the end, I can say that I have completed all the important features required,

which I have applied with example. The information that I got was just to complete

the features of this editor and finish this chapter completely.

Figure 48. Writing the keywords to the test suite.

Figure 49. Test Execution Details.

62

2.6.7 Weekly Analysis

This week I have completed the Robot Framework chapter, which I consider as the

core of the thesis. I have focused on the recognition of the Selenium library and

working with browsers.

I touched on practical examples and explained some of the Ride editor features. I

noticed how Robot works and learned how to test an application using Chrome and

Firefox browsers. According to what I got this week, I think I need to address more

tests in the future to be professional.

2.7 Week 7

2.7.1 Thursday 17 July 2020: GitLab

This will be the last chapter related to this thesis. Generally, GitLab is not new for me.

I have used it before, and I have its basics. But this time, I will use CI/CD pipeline.

Before that, I have to explain the general idea behind it and the basics of GitHub and

GitLab, which they will be my objectives for today.

GitLab is a web DevOps lifecycle tool that gives a Git-repository manager providing

wiki, issue-tracking, and continuous integration, which called CI/continuous

deployment, which called CD pipeline, using an open-source license, developed by

GitLab Inc. Ukrainians Dmitriy Zaporozhets and Valery Sizov programmed the

software.

The code was written in Ruby, with some parts later rewritten in Go, initially as a

source code management solution to cooperate with his team on software

development. It later developed to an integrated solution containing the software

development lifecycle and then to the fully DevOps lifecycle. The current machinery

stack includes Go, Ruby on Rails, and Vue.js.

It follows an open-source development model where the main functionality is

released under an open-source (MIT) license while the additional functionality is

under a proprietary license.

63

2.7.2 The Basics of GitHub and GitLab

GitHub is a web-based repository holding platform with 26 million users (March

2017). Originally, GitHub started in 2008 and was founded by Tom Preston-Werner,

Chris Wanstrath, and PJ Hyett.

GitHub projects can become public, and every shared code is freely open to

everybody. You can create private projects as well, but only three contributors are

allowed on the free plan.

Generally, 26 million people and more than 1.5 million organizations created 67

million repositories on GitHub in 2017, see figure 50. (GitLab vs GitHub: Key

differences & similarities, July 2020).

source: https://usersnap.com/blog/gitlab-github/

Like GitHub, GitLab is a repository manager that allows teams to cooperate on code.

Written in Ruby and Go. GitLab offers some similar features for issue tracking and

project management as GitHub.

GitLab is founded in 2011 by Dmitriy Zaporozhets and Valery Sizov. The employs of

GitLab quite 500 people and has quite 1,400 open source contributors. Consistent

with Wikipedia, GitLab has more than 100,000 users (March 2017) and is used by

enterprises like IBM, Sony, and NASA. (GitLab vs GitHub: Key differences &

similarities, July 2020)

Finally, I spent a lot of time reading about GitLab and GitHub and managed to learn a

lot about them in addition to my previous knowledge. I can say that I got a good

amount of important information.

2.7.3 Friday 18 July 2020: GitHub vs GitLab

Yesterday was a totally theoretical day, today's goal will also be theoretical, which is

the difference between GitLab and GitHub. I will address these differences from

several aspects, the most important of which are:

Figure 50. The most used repository tags on GitHub.com.

64

Authentication Levels: With GitLab, you can set and alter people’s permissions

consistent with their role. In GitHub, you will determine if someone gets a read or

write access to a repository.

With GitLab, you can give access to the issue tracker (for example) without giving

permission to the source code. This is clearly great for larger teams and enterprises

with role-based contributors.

Built-in CI / CD & going Beyond CD: One of the main differences between GitLab and

GitHub is the built-in CI/CD of GitLab. CI is a great time saver for a lot of development

teams and a great way of QA.

GitLab gives its very own CI for free. So, you do not need to use an external CI

service. And if you are using an external CI, you can integrate with Jenkins, Buddy,

Codeship, and others.

As GitLab mentioned with its latest release is clearly deals with the DevOps market

besides offering an operations dashboard that allows you to understand the

dependencies of your development and DevOps efforts, see figure 51. (GitLab vs

GitHub: Key differences & similarities, July 2020).

source: https://usersnap.com/blog/gitlab-github/

Also, GitLab is dealing with the topic of Auto CI and how to automatically run CI/CD

without a person setting it up.

“But, really, every project should be running some kind of CI. So, why don’t we just
detect when you’ve pushed up a project; we’ll just build it and we’ll go and test it,

Figure 51. Operations Dashboard

65

because we know how to do testing”.
Mark Pundsack, source: gitlab.com

Issue Tracking: GitLab and GitHub provide a simple issue tracker that permits you to

change status and assignee for several issues all together.

Both are wonderful issue trackers, especially when associated with a visual bug

tracker like Usersnap. While your developers still enjoy the good issue tracking

interface of GitLab & GitHub, your testers and users can simply report bugs through

the Usersnap tool.

Reports of Bug and user feedback can be sent automatically to GitLab or GitHub. Or

you can pre-filter them inside Usersnap and manually send them to your

development project, see figures 52 and 53.

source: https://usersnap.com/blog/gitlab-github/

Figure 52. Incoming bug reports displayed in your GitHub repository.

Figure 53. Incoming bug reports displayed in your GitHub repository.

66

source: https://usersnap.com/blog/gitlab-github/

Import & Export: When deciding about moving to GitLab or GitHub, you ought to

consider the setup costs; and resources needed for getting started. Therein regard,

the subject of obtainable import and export features are pretty important.

GitLab presents detailed documentation on how to import your data from other

suppliers like GitHub to GitLab, see figure 54. (GitLab vs GitHub: Key differences &

similarities, July 2020)

source: https://usersnap.com/blog/gitlab-github/

GitHub, on the opposite hand, does not offer like detailed documentation for the

more common git repositories. However, GitHub presents to use GitHub Importer if

you've got your source code in Subversion, Mercurial, TFS, and others.

Also, when it involves exporting data, GitLab looks to do a good job, offering you the

power to export your projects, including the subsequent data:

 Wiki and project repositories

 Project uploads

 The configuration including webhooks and services

 Issues with comments, merge requests with diffs and comments, labels,

milestones, snippets, and other project entities.

On the other hand, GitHub looks to be more restrictive when it involves export

features of existing GitHub repositories. (GitLab vs GitHub: Key differences &

similarities, July 2020)

Integrations: Both GitLab and GitHub offer a good range of 3rd party integrations.

Integrating your version system with other application enhance your workflows and

may boost productivity for your developers and your non-developers.

In order to see out if your favorite apps are compatible with GitLab and GitHub, I like

to recommend reading the documentation of GitLab and GitHub.

Figure 54. Import projects from 3rd parties.

67

Further to the available integration partners, GitHub released GitHub marketplace in

May 2017, presenting you with chose tools and applications.

GitLab took an identical path and offered multiple integrations for development and

DevOps teams. (GitLab vs GitHub: Key differences & similarities, July 2020)

The GitHub community: GitHub situated itself among its community of developers.

And its popularity is especially driven by the highly active GitHub community of many

developers. You will discuss problems and perhaps learn a couple of unofficial but

awesome hacks there. On the opposite hand, GitLab undertook some wonderful

activities, like holding community events and connecting open source contributors.

If you are searching for the biggest community of developers, the chances are high

that GitHub is the better place to be.

If you are trying to find the most important community of developers, the likelihood

is that GitHub is that the better place to be. (GitLab vs GitHub: Key differences &

similarities, July 2020)

GitLab Enterprise vs GitHub Enterprise: On an enterprise level, you ought to

consider further factors when you want to make a decision of whether to use GitLab

vs GitHub.

GitHub is very popular among developers, and over a previous couple of years, it

gained popularity among larger development teams and organizations too. See figure

55. (GitLab vs GitHub: Key differences & similarities, July 2020)

source: https://usersnap.com/blog/gitlab-github/

Figure 55. Custom enterprise features of GitHub

68

On the opposite hand, GitLab is very strong on enterprise features, too. With

different enterprise plans available, GitLab is especially popular among larger

development teams.

Below is how GitLab and GitHub compare pricing.

While the enterprise of GitHub plan starts at 2,500 USD per 10 users per year (= 250

USD per user), the enterprise of GitLab starter plan is 39 USD per user/per year. See

figure 56. (GitLab vs GitHub: Key differences & similarities, July 2020)

source: https://usersnap.com/blog/gitlab-github/

Wrapping it up: Undoubtedly, GitHub remains the most popular git repository with

the most important number of users and projects. However, GitLab is doing a great

job offering your development teams great tools for more useful workflows.

Today went well. I learned the differences between the most popular DevOps webs.

Today's outcome was very impressive. (GitLab vs GitHub: Key differences &

similarities, July 2020)

Figure 56. The enterprise of GitHub and GitLab starter plan

69

2.7.4 Wednesday 22 July 2020: Continuous integration and delivery

Today will be so short where I only dedicated it to understanding continuous

integration and continuous delivery in general.

Continuous integration and continuous delivery enable DevOps teams to extend

software development speed and deliver better quality code quicker. Continuous

integration works to integrate code from your team during a shared repository,

vastly improving your deployment pipeline. Developers share their new code during

a Merge Request, which triggers a pipeline to create, test, and validate the new code

before merging the changes in your repository. Continuous delivery deploys the code

of CI-validated to your application.

All code is tested all over each stage, guaranteeing better quality builds and

applications with less bugs. CI/CD pipelines can identify what happens when builds

pass or fail these tests, which means that errors are identified much faster. As code

runs all over each stage of the development process, it is continually validated

compared to many other changes in the repository happening concurrently, which

guarantees code integrity through the pipeline. Together, CI and CD speed up how

quickly your team delivers results for your customers and stakeholders.

Continuous delivery is often utilized interchangeably with a continuous deployment

release process, but there is a subtle difference between the two. Continuous

deployment indicates that all validated code deploys to production automatically,

whereas continuous delivery means that this code can be deployed. The flexibility for

code to be deployed at any time is what distinguishes delivery from deployment, and

practicing continuous deployment is possible when continuous delivery is already in

place. (Continuous integration and delivery1, July 2020).

Although the day was short, I found many important sources which are talking about

the importance of CI/CD. The information I gained today was enough to understand

what CI/CD pipeline is.

2.7.5 Weekly Analysis

This week was totally theoretical. I read so many sources concerning GitLab and

GitHub. The information I got was abundant. I addressed in detail what Gitlab is,

which is clarified the idea behind it.

70

Then I touched on the differences between GitLab and GitHub from different

aspects; the most important of them were authentication levels, Built-in CI / CD,

issue tracking...etc.

Afterward, I addressed the concept of continuous integration and continuous

delivery, which I consider the goal of this thesis.

Finally, this week was interesting. Despite I do not like, theoretical side, but I have

seen some videos related to CI/CD pipeline to be more interesting and feel fun

during the reading. My question now is: 'What are things that I need to know about

CI/CD?' to be more familiar with this important aspect.

2.8 Week 8

2.8.1 Thursday 23 July 2020: Benefits of CI/CD

Today I will continue with the theoretical part, which is related to CI/CD pipeline. So,

the objectives that I set for today are:

 Benefits of CI/CD

 The importance of GitLab CI/CD

 The definition of Pipeline.

CI/CD automates workflows and lessens error rates in a production environment,

which may have far-reaching effects on not just development teams but through an

entire organization.

 More time for innovation

 Better retention rates

 More revenue

 Business efficiency.

For example, a development environment with less manual tasks means that

engineers can spend more time on revenue-generating projects. With less errors,

teams are more effective and spend less time putting out fires. When processes,

such as unit testing, are automated, engineers are happier and can concentrate on

where they add the most value.

CI/CD gives automation into the DevOps lifecycle. With fewer manual work, DevOps

teams work more effectively and with greater speed. An automated workflow also

lessens the chance of human error and improves handoffs, which improves overall

71

operational efficiency. Organizations that execute CI/CD make better use of their

resources and have a good edge over those who do not use CI/CD. (Continuous

integration and delivery1, July 2020).

2.8.2 The importance of GitLab CI/CD

In order to complete all the required basics of CI/CD, many CI platforms depend on

integrations with other tools to achieve those needs. Lots Of organizations have to

keep on costly and complicated toolchains to have full CI/CD capabilities. This often

means keeping on a separate SCM like Bitbucket or GitHub, connecting to a separate

testing tool that connects to their CI tool, which connects to a deployment tool like

Chef or Puppet, that also connects to different security and monitoring tools.

Rather than just concentrating on building great software, organizations have to also

keep and manage a complicated toolchain. GitLab is a single application for the full

DevOps lifecycle, meaning we achieve all the basics for CI/CD in one environment.

(Continuous integration and delivery1, July 2020).

2.8.3 The definition of Pipeline

A pipeline is a way to describe the set of stages placed in your CI/CD configuration. If

your CI/CD has three stages: build, test, deploy, then your pipeline will look like this:

Build → Test → Deploy

A CI/CD pipeline is the end to end steps your repository requires when new commits

are pushed to the repository.

Finally, it was a long day. I read different sources to achieve my objectives. I think the

outcomes of today were very good.

2.8.4 Friday 24 July 2020: Types of pipelines

Another wonderful day. I found it important to know the types of pipelines, so one of

my goals for today will be to learn about the types of pipelines and the configuration

of pipeline.

Pipelines are often configured in many various ways:

 Basic pipelines run the whole thing in each stage concurrently, afterward

the next stage.

72

 Directed Acyclic Graph Pipeline (DAG) pipelines are depended on

relationships between jobs and can run more rapidly than basic pipelines.

 Multi-project pipelines merge pipelines for various projects together.

 Parent-Child pipelines split up complex pipelines into one parent pipeline,

which will trigger many child sub-pipelines, which all run within the same

project and with an equivalent SHA.

 Pipelines for Merge Requests run merge requests only (rather than for each

commit).

 Pipelines for Merged Results are merge request pipelines that act as if

changes from the source branch have already been merged into the objective

branch.

 Merge Trains utilize pipelines for merged results to queue merges one after

the other.

2.8.5 Configure a pipeline

To configure a GitLab pipeline, we need to create a file called “.gitlab-ci.yml”, this file

contains the configurations of what CI does with your project. Its place in the root of

your repository. On push an application to your repository, GitLab will search for the

.gitlab-ci.yml file and begin jobs on Runners consistent with the contents of the file

for that commit.

I can say that identifying the types of pipelines is very important to determine the

type of pipeline required. Today’s goals have been achieved by looking at the

required sources, and the information obtained was important and new.

2.8.6 Saturday 25 July 2020: Creating a simple .gitlab-ci.yml file

I am very excited because today, I decided to create the first .gitlab-ci.yml file. I felt

that it is time to go forward with this step after the days spent reading CI/CD pipeline

and the level that I got.

Let's assume that we have two text files that contain the phrase 'Hello world,' and

we want to run GitLab pipeline to test. In this case, we must add the following code

to the .gitlab-ci.yml file as follows:

test:

 script: cat file1.txt file2.txt | grep -q 'Hello world'

73

Committing it, our build is successful, as shown in figure 57.

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

If we changed the phrase to 'Hello Africa' the build will fail, as shown in figure 58.

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

To run jobs sequentially, we will define the order by specifying stages, so our .gitlab-

ci.yml file will be as follows:

“stages:
 - compile
 - test
 - package
compile:
 stage: compile
 script: cat file1.txt file2.txt > compiled.txt
 artifacts:
 paths:
 - compiled.txt
 - expire_in: 20 minutes
test:
 stage: test
 script: cat compiled.txt | grep -q 'Hello world'

package:
 stage: package
 script: cat compiled.txt | gzip > packaged.gz
 artifacts:
 paths:
 - packaged.gz”

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

Figure 57. The build is successful.

Figure 58. The build is failed.

74

If we do not want that "compile" file to be downloadable, we will make our

temporary artifacts expire by setting expire_in to '20 minutes'.

By the end of the day, my goal was achieved successfully; with this example, I felt

happy, and the competence gained during that day was wonderful.

2.8.7 Sunday 26 July 2020: Dealing with complex scenarios

Today's goal is a continuation of yesterday, but today a more complex scenario than

yesterday will be dealt with. Let's assume we want to package our app into .iso

image instead of .gz; since CI does the whole work, we can add more jobs to it. ISO

images can be created by using the mkisofs command. Here's how our config should

look:

“image: alpine
stages:
 - compile
 - test
 - package
... "compile" and "test" jobs are skipped here for the sake of compactness
pack-gz:
 stage: package
 script: cat compiled.txt | gzip > packaged.gz
 artifacts:
 paths:
 - packaged.gz
pack-iso:
 stage: package
 script:
 - mkisofs -o ./packaged.iso ./compiled.txt
 artifacts:
 paths:
 - packaged.iso”

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

75

Note that it is not necessary that the job name should be the same. In fact, if they

were the same, it is not possible to run the jobs in parallel inside the same stage.

Anyhow, the build is failing; see figure 59.

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

The problem is that mkisofs is not contained in the alpine image, so we need to

install it first.

The goal of today has been achieved by applying the example in practice. Today, I got

a lot of information that was very important and useful, and I think it is important to

continue dealing with other cases in order to obtain an ideal pipeline.

2.8.8 Monday 27 July 2020: Dealing with missing software/packages

The goal of today is to continue building the pipeline in parallel. From my point of

view, this is one of the most important types of pipelines, so I am very excited to

apply it practically.

According to the Alpine Linux website, mkisofs is a part of the xorriso and cdrkit

packages. These are the wonderful commands that we need to install a package:

“echo "ipv6" >> /etc/modules # enable networking
apk update # update packages list
apk add xorriso # install package”

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

For CI, these are just the same as any other commands. The list of commands we

want to pass to the script should look like this:

“script:
- echo "ipv6" >> /etc/modules
- apk update
- apk add xorriso

Figure 59. The build is failed.

76

- mkisofs -o ./packaged.iso ./compiled.txt”

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

Let's put commands concerning package installation in before_script. Note that if you

use before_script at the beginning of a configuration, then the commands will run

before all jobs. In our case, we just want to run it before a specific job.

Our final .gitlab-ci.yml:

“image: alpine
stages:
 - compile
 - test
 - package
compile:
 stage: compile
 script: cat file1.txt file2.txt > compiled.txt
 artifacts:
 paths:
 - compiled.txt
 expire_in: 20 minutes
test:
 stage: test
 script: cat compiled.txt | grep -q 'Hello world'
pack-gz:
 stage: package
 script: cat compiled.txt | gzip > packaged.gz
 artifacts:
 paths:
 - packaged.gz
pack-iso:
 stage: package
 before_script:
 - echo "ipv6" >> /etc/modules
 - apk update
 - apk add xorriso
 script:
 - mkisofs -o ./packaged.iso ./compiled.txt
 artifacts:
 paths:
 - packaged.iso”

77

Now, we have three sequential stages, but jobs pack-gz and pack-iso, within the

package stage, are running in parallel, see figure 60.

source: https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/

With the result of this example, I believe that the goal assigned to this day was

achieved by creating an ideal pipeline, and with this result, I see that the information

or rather the efficiency gained for this day was great and very impressive.

2.8.9 Weekly Analysis

During this week, I have been getting familiar with the most important benefits of

CI/CD which, I had to know them before starting it practically. Then I addressed the

importance of GitLab CI/CD. Besides, I found it is important to define the pipeline,

especially.

Through this week, I also familiarized types of pipelines, which was totally new for

me, and knowing about these types has increased my knowledge of what a CI/CD

pipeline is.

Then I touched on how to configure a pipeline and it is the core of the research.

Where I learned everything related to it. Afterward, I have created the first simple

.gitlab-ci.yml. This file contains the configurations of what CI does with your project.

Figure 60. The jobs are running in parallel.

78

After creating this simple file, I found that it is important to create a file that

simulates a scenario more complex. Then I created a more complex scenario until I

created an integrated pipeline that works in parallel.

I think the results I gained during this week were very productive, and generally, I got

a good level of new technologies, which increased my skills.

79

2.9 Week 9

2.9.1 Monday 14 December 2020: Dockerizing the application

Today, I decided to start creating the pipeline for the application I wanted to test.

Today my objective will be the first stage of this pipeline, which is Docker. During the

research period, I found two types of Dockerfile, a development type, and a

production type. First, I created a file called .gitlab-ci.yml in the root of the

application folder. Besides, a file called Dockerfile.prod, as shown in figure 61.

 In the Dockerfile.prod I copied and installed all the required files and dependencies

to create the Docker image, as shown in figure 62.

Figure 62. Docker.prod file

Figure 61. Application files

80

Then in the .gitlab-ci.yml file, I defined the stages and script. To start creating the

Docker image of the application and push it into the container registry, as shown in

figure 63.

After I committed all the files into the GitLab repository, the CI/CD pipeline run and

started creating the image, then pushed the image into the container registry, as

shown in figures 64 and 65.

Figure 63. The .gitlab-ci.yml file

Figure 64. Docker image created and pushed successfully.

Figure 65. The pushed image in the container registry.

81

The goal of today is achieved successfully by applying the example in practice. Today,

I got a lot of information that was very important and useful. Also, the error message

that I faced during the process of creating the Docker image helped me increase my

skills to avoid this error in the future.

2.9.2 Tuesday 15 December 2020: GitLab pages

Today, I will address one of the most important GitLab features, which is GitLab

pages. This feature helps to deploy the application, which will facilitate creating test

automation for this application. Therefore, my objectives that I set for today are

GitLab pages and test automation. I defined the second stage in the .gitlab-ci.yml file

and became, as shown in figure 66.

It is important to say that I had to set the path to the public folder because another

folder will not work after I committed the new changes. The job succeeded by

deploying the application, as shown in figures 67 and 68.

Figure 66. The .gitlab-ci.yml file after adding the second stage.

Figure 67. Job succeeded.

82

2.9.3 Test automation

This will be the third stage in the pipeline. In this stage, I created a folder in the root

of the application called Tests containing the test cases file, written using the

Selenium library, as shown in figures 69, 70, and 71.

Figure 68. The application after deploying on GitLab pages.

Figure 69. Application files

83

After I pushed the new changes, the pipeline became three stages, and the test

passed successfully, as in figures 72 and 73.

Figure 70. Test cases file.

Figure 71. The final shape of the .gitlab-ci.yml file after adding the third stage.

Figure 72. The pipeline stages.

Figure 73. Test with Robot passed successfully.

84

The day was interesting, where I achieved the objectives I set for today, which

helped me to know more about GitLab features and test automation. By the end of

these goals, I can say that I became familiar with creating a GitLab pipeline.

2.9.4 Some Problems I faced

During the Docker stage, I faced the following error:

This problem is a result of the variable “as build” so in order to solve it, you have to

install the latest version of the Docker engine on your gitlab-runner.

Related to Robot Framework stage, I created a stage running in the parallel type of

pipeline. The first one is to run the application, and the second one to run the file

containing test cases of Robot Framework. In the test case file, I tried to test the

application depending on the localhost. That was the problem I faced. The

application was running, and the Robot was working faster than the application's

running. Then the test failed, as shown in figures 74, 75, and 76.

$ sudo docker build -f ./Dockerfile.prod -t gitlab.labranet.jamk.fi:4567/jaxber-2020/documentation .

Step 1 : FROM node:13.12.0-alpine as build

Error parsing reference: "node:13.12.0-alpine as build" is not a valid repository/tag

Figure 74. The .gitlab-ci.yml file

85

Figure 76. Failing the test

I tried to solve this problem by reducing the Selenium Speed but that did not help. I

also tried to overcome this problem by setting Robot’s operation to run manually, as

shown in figure 77.

The solutions I mentioned above were not helpful. I had to search for a long time

until I found the answer. The problem was that the localhost works on a personal

computer and can not be considered as a URL. To solve this problem, I have to

deploy the application on one of the host websites. Fortunately, GitLab provides this

service, so I can deploy the application to the pages of GitLab, then I can test the

application using Robot Framework as I mentioned in 2.9.2 and 2.9.3.

Figure 75. The test cases file

Figure 77. Robot runs manually.

86

2.9.5 Weekly Analysis

During this week, I became familiar with creating a pipeline. Where I learned about

dockerizing an application for production. Also, this week I learned a lot about the

GitLab features, especially GitLab Pages. Where this feature helps to deploy an

application then facilitates the test automation.

Also, this week, I touched on creating a test cases file using the Selenium library in

order to test an application using Robot Framework. I can also say that the problems

I faced during creating this pipeline and its solutions increased my ability to avoid

them in the future, thus shortening the time. Finally, the goal of the thesis, which is

to create an environment development on GitLab to test the company's application

by creating a pipeline using Robot Framework, was achieved successfully.

87

3. Discussion

3.1 Research Results

The research goal, which was to create a modern software development

environment for the cloud-based application called Jaxber, was achieved. That

includes continuous integration, deployment (CI/CD), and automated testing, made

this research very informative. During the search online, I found that learning new

technologies like Docker, Git, and Robot Framework became very important. Indeed,

some companies require knowing these technologies as a condition to get the job.

For me, everything was totally new except my knowledge of GitLab's basics.

However, it should be emphasized that great strides have been made in the learning

of these technologies as well. I will now explain the results I achieved during the

thesis writing process. I believe that the created environment works successfully.

First, I created a pipeline including all the technologies addressed in this research.

The first stage was about the Docker file. Where I managed to dockerize “which

means the process of running an application within a Docker container” the

application for production. This stage's success made me feel I can dockerize an

application for development and production. Even the errors I got during this stage

made my skills better to avoid these errors in the future.

In the second stage, I consider the core of the research. I managed to create test

automation using Robot Framework. This stage was the most difficult. It took a lot of

searching and communicating with experts. Until I got a new GitLab feature, which is

called Pages. This feature helped in deploying the application and provided a URL.

Thus, I managed to create the test automation. But I had to add the deploy stage to

the pipeline, where the pipeline splits into three stages, which are docker, deploy (on

GitLab Pages), and the test (Robot Framework). These results can be used by the

students, companies, or software engineers interested in DevOps or test automation.

Although the results are successful, more test cases should add to the test file.

88

It is important to say that I created my virtual machine, where I installed a GitLab

runner and the most important packages required to reduce the time of the test.

3.2 Recommendations

This research for everybody who is interested in DevOps, students, and software

engineers. Through this research, the reader can understand modern software

technologies—for example, Docker, Robot Framework, and pipeline. The research

results help the reader in shortening the time and effort to learn new technologies.

The assigner asked me to attend the conference AWS DevDay Online which was held

on October, 15 and give recommendations on how to develop Jaxber development

environment in the near future. I attended the following lectures:

 Architecting and Running Microservices

 Container Cluster Optimisation

 Getting started with CICD for

 Implementing Cloud Security Automation at scale

 modern application development.

This conference was more than wonderful, where I learned a lot, especially in

relation to my research topic of pipeline creation.

In my opinion, I recommend creating a development environment on AWS because

you will get the control and confidence you need to securely run your business with

the most secure cloud computing environment. Moreover, cloud-based computing

has economic benefits as users would pay for only the services they request. (AWS

Cloud Security, February 2021)

The reliability and safety of AWS may be safer than GitLab environment, according to

AWS. In terms of Integrations AWS CodeCommit can connect with the following

products:

 AWS Management Console

 AWS CLI

 AWS SDKs.

AWS CodeCommit also supports all Git commands and your existing Git tools. Also,

you can integrate with your development environment plugins and continuous

integration/continuous delivery systems.

89

The results obtained are related to web-based applications only. It is not applicable

to all kinds of applications. For example, I addressed Jaxber React version application

as I built it to the web by running the web build script then tested it using

SeleniumLibrary.

In the case of React Native, we need to use AppiumLibrary to test the app instead of

SeleniumLibrary. So, I recommend the new researchers to read and understand the

differences between Robot Framework libraries.

3.3 Reflections on Research Method

“A poorly designed diary study can involve considerable effort but may yield little
useful information.” (Bolger, Davis & Rafaeli 2003, 581.)

“Novice student autoethnographers also face considerable difficulties with the
research, thesis production, examination, and supervision process.” (Doloriert &
Sambrook 2012, 88.)

These warnings should be taken seriously but they need not be feared. The thesis

writing process has been demanding but also satisfying. When I started doing the

research diary my plan was to write a page or two pages per day for nine weeks. By

the middle of the reporting period, I noticed that there was already plenty of

research material. The ease of writing was clearly one of the best aspects of the

method.

Weekly analyses were very important. It summarizes what I learned for the last

period. It also reveals the competence of the information that I gained, and identified

the points of strength and weakness that made me plan better for the upcoming

weeks.

3.4 Reflections on the Research

I found the research is important and useful for any new researcher in this field. This

was one of the motivations to go through this research. This research did not cover

all the details related to the aspects I addressed because it is so wide. But I can

consider it as a solid basis for new researchers or for those who are interested in

learning modern technologies.

During the research, I gained a lot of new information regarding Docker, git, and

Robot Framework, which increased my skills in this field. This research required a lot

of work and effort, where I read and watched different kinds of sources and videos.

90

References

AWS Cloud Security, Accessed in February 2021. Retrieved from:
https://aws.amazon.com/security/

Bolger, N., Davis, A., & Rafaeli, E. 2003. Diary Methods: Capturing Life as it is Lived.
Annual Review of Psychology, 579-616. Accessed on 3 August 2020. Retrieved from:
https://www.researchgate.net/publication/10974933_Diary_Methods_Capturing_Lif
e_as_it_is_Lived

CI/CD pipelines. Accessed in July 2020. Retrieved from:
https://docs.gitlab.com/ee/ci/pipelines/

Containers. Accessed in July 2020. Retrieved from:
https://www.ibm.com/cloud/learn/containers#toc-containeri-Qt_5RXC_

Continuous integration and delivery. Accessed in July 2020. Retrieved from:
https://about.gitlab.com/ci-cd/

Continuous integration and delivery1, Accessed in June 2020. Retrieved from:
https://about.staging.gitlab.com/ci-cd/

Docker Image vs Container: The Major Differences. Accessed in June 2020. Retrieved
from: https://phoenixnap.com/kb/docker-image-vs-container

Docker overview. Accessed in June 2020. Retrieved from:
https://docs.docker.com/get-started/overview/

Dockerfile reference. Accessed in June 2020. Retrieved from:
https://docs.docker.com/engine/reference/builder/

GitLab CI: Run jobs sequentially, in parallel or build a custom pipeline. Accessed in
July 2020. Retrieved from: https://about.gitlab.com/blog/2016/07/29/the-basics-of-
gitlab-ci/

GitLab vs GitHub: Key differences & similarities. Accessed in July 2020. Retrieved from:
https://usersnap.com/blog/gitlab-github/

GitLab. Accessed in July 2020. Retrieved from: https://en.wikipedia.org/wiki/GitLab

How is Docker different from a virtual machine?. Accessed in June 2020. Retrieved
from: https://stackoverflow.com/questions/16047306/how-is-docker-different-from-
a-virtual-machine

Lischetzke, T. (2014). Daily diary methodology. Accessed on 3 August 2020. Retrieved
from:
https://www.researchgate.net/publication/260917855_Daily_Diary_Methodology

91

Robot — Working With Browsers Using Selenium Library. Accessed in July 2020.
Retrieved from:
https://www.tutorialspoint.com/robot_framework/robot_framework_tutorial.pdf#p
age=73&zoom=100,42,1

Robot Framework - Introduction to Ride. Accessed in July 2020. Retrieved from:
https://www.tutorialspoint.com/robot_framework/robot_framework_introduction_
ride.htm

Robot Framework - Robot Framework Tutorial. Accessed in July 2020. Retrieved
from: https://www.tutorialspoint.com/robot_framework/index.htm

Robot Framework User Guide. Accessed in July 2020. Retrieved from:
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.ht
ml

Robot Framework, Working With Setup And Teardown. Accessed in July 2020.
Retrieved from:
https://www.tutorialspoint.com/robot_framework/robot_framework_tutorial.pdf#p
age=176&zoom=100,42,1

Robot Framework. Accessed in July 2020. Retrieved from:
https://robotframework.org/

Sumit Bisht, October 2013. Robot Framework Test Automation. Accessed in July
2020. Retrieved from:
https://subscription.packtpub.com/book/application_development/9781783283033

What is Docker, Accessed in June 2020. Retrieved from:
https://3alam.pro/3mmarg97/series/introduction-to-docker/lessons/what-is-docker

What is the difference between “expose” and “publish” in Docker?. Accessed in June
2020. Retrieved from: https://stackoverflow.com/questions/22111060/what-is-the-
difference-between-expose-and-publish-in-docker/22150099#22150099

