
 

 

 

 

 

 

 

 

Card payment implementation guide for ASP.NET and PHP 

websites 

 

Alexander Hutchinson 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Thesis  

 Business Information Technology 

 August 2012 



    Abstract 
 
 
    18.08.2012 
 
Business Information Technology 
 

 

Author 
Alexander Hutchinson 

Year of entry 
2009 

Title of report 
Card payment implementation guide for ASP.NET and PHP 
websites 

Number of 
pages and 
appendices 
83 + 8 

Supervisor 
Juhani Välimäki 

 
E-commerce is growing by around 13% year on year, but more than 50% of orders on 
e-commerce sites are still abandonded prior to payment. This is due to a number of 
factors, such as consumer trust, and issues of site usability. This study tackles both 
factors by providing a guide for web developers to be able to implement effective card 
payment solutions.  
 
The guide firstly explains about the process of card payments, and explains about the 
importance of the Payment Gateway (a third party handling card payments on behlf of 
online merchants). Payment gateway integrations generally fall into two categories, 
hosted solutions (requiring the e-commerce site user to be transferred to the payment 
gateway site) and API’s (requiring the handling of credit card details by the e-
commerce site) This study focuses on the later due its complexity and important 
security considerations. 
 
The guide gives ASP.NET and PHP developers usable code examples, showing how to 
implement a basic payment page, and explains in depth about the importance of 
validating user input, to reduce security threats, and about aspects of checkout page 
usablity. It also proposes the importance of informing consumers about SLL to 
increase awareness and develop trust, further preventing security problems, and 
ultimtaly loss of sales. Concerns about loss of personal data, and card fraud are the 
main concerns for consumers. The guide explains that SSL is the main technology used 
to secure the transfer of personal information accross the internet, and is routintely 
used in e-commerce, in accordance with security guidelines.  
 
This guide then explains one aspect of maximising online sales while keeping 
consumers safe through explaining the technical implementation for accepting card 
payments for ASP.NET and PHP websites hosted on IIS for Windows Server, and 
Apache Web Server. 
 

Keywords 
e-commerce, ASP.NET, PHP, API, SSL 



 

 

 

Table of contents  

Glossary ...................................................................................................................................... 3 

1 Introduction .......................................................................................................................... 6 

2 The big picture of the e-commerce environment .......................................................... 11 

2.1 The payment process ................................................................................................ 12 

2.1.1 The parties involved ...................................................................................... 12 

2.1.2 Stages of an online payment ........................................................................ 14 

2.2 Security threats and other risks to online payments ............................................. 17 

2.2.1 Process complexity ........................................................................................ 17 

2.2.2 Sniffer Programs ............................................................................................ 17 

2.2.3 Backdoors ....................................................................................................... 18 

2.2.4 Spoofing and DNS cache poisoning ........................................................... 21 

2.3 Security methods employed ..................................................................................... 22 

2.3.1 Asymmetric cryptography ............................................................................ 22 

2.3.2 Secure Sockets Layer (SSL) .......................................................................... 23 

2.3.3 Digital certificates .......................................................................................... 25 

2.3.4 Certificate Authorities and requesting a certificate ................................... 25 

2.3.5 PCI Standards ................................................................................................ 27 

2.3.6 Payment Application Best Practice (PABP) .............................................. 28 

2.4 Payment gateway integrations .................................................................................. 28 

2.4.1 Factors influencing payment gateway choice............................................. 30 

2.4.2 Transaction types ........................................................................................... 31 

2.4.3 Google Checkout and Amazon Payments ................................................. 32 

2.4.4 PayPal .............................................................................................................. 33 

2.4.5 Authorize.net.................................................................................................. 35 

2.5 Chapter Summary ...................................................................................................... 36 

3 Front end implementation ................................................................................................ 38 

3.1 HTML Forms ............................................................................................................ 38 

3.1.1 Form attributes .............................................................................................. 39 

3.1.2 Payment page HTML ................................................................................... 40 

3.2 User input validation ................................................................................................. 46 



 

 

 

3.2.1 The composition of a credit/debit card number ...................................... 46 

3.2.2 Regular expression validators....................................................................... 47 

3.2.3 JavaScript validation and form submission script ..................................... 48 

3.3 Payment page usability.............................................................................................. 49 

3.4 SSL Certificate logos and informing users ............................................................. 52 

3.5 Chapter Summary ...................................................................................................... 53 

4 Back end implementation ................................................................................................. 55 

4.1 Payment gateway user accounts .............................................................................. 55 

4.1.1 Paypal manager account ............................................................................... 56 

4.1.2 Authorize.net test account ........................................................................... 56 

4.2 Server side code implementation ............................................................................ 57 

4.2.1 PayPal Payflow Pro ....................................................................................... 57 

4.2.2 Authorize.net Advanced Integration Method (AIM) ............................... 61 

4.3 Enabling SSL for Apache and Windows Server ................................................... 68 

4.3.1 IIS 7 for Windows Server 2008 ................................................................... 68 

4.3.2 Apache ............................................................................................................ 70 

4.4 Chapter Summary ...................................................................................................... 72 

5 Evaluation ........................................................................................................................... 73 

6 Further development ......................................................................................................... 75 

7 Summary .............................................................................................................................. 77 

8 References ........................................................................................................................... 81 

9 Appendices .......................................................................................................................... 87 

9.1 Appendix 1 - Diagram of the payment authorization process ............................ 87 

9.2 Appendix 2 – Recognisable Certificate Authority brand logos .......................... 88 

9.3 Appendix 3 - Current browser interface SSL connection and certificate 

notifications ........................................................................................................................ 89 

9.4 Appendix 4 – Payment Application Best Practices (PABP) ................................ 90 

9.5 Appendix 5 – Rendered HTML payment buttons ............................................... 91 

9.6 Appendix 6 – Nordea Bank’s SSL information to users...................................... 92 

9.7 Appendix 7 – Effective payment page design example ....................................... 93 

9.8 Appendix 8 – Implementing SSL in IIS 7.0 Windows Server 2008 ................... 94 



 

 
3 

Glossary 

Algorithm An encryption algorithm is the often multi stage process of 

converting plain text into encrypted text, the more encryp-

tion stages the stronger the encryption. 

API Application Programming Interface is a library of data struc-

tures, object classes, routines and other resources made  

available over a network to be used by calling applications. 

Attribute (HTML) Is a modifier of an HTML element, included within the 

HTML element tag. 

Back end Server side code and related architecture, including the 

server itself. 

E-commerce Electronic commerce is the process of selling goods and 

services online through a web application. 

Encryption A mathematical system whereby plain text is converted into 

a code, where only the holder of the encryption key can 

convert the code back to plain understandable text. 

Front end  User interface code and related implementation. 

IIS Internet Information Services is the web server included in 

Windows Server instances. Included with IIS are commonly 

a number of other configurable modules. 

Implementation The code writing, compiling, installation and configuration 

of a program. 

Library A collection of code files often packaged into a non editable 

.DLL or .LIB file, which enables the reuse of the code in 

many applications. 



 

 
4 

Merchant A company selling goods and/or services. The term is used 

in the card payment industry, and is commonly used in e-

commerce. 

NVP Name and Value Pairs describes a type of data set involving 

a collection of names, or keys, and a values relating to those 

names or keys.  

Payment gateway A company providing a collection of card payment services 

to online merchants such as access to many payment proc-

essors, fraud prevention and batch settlement. See section 

2.1.1  

PHP Hypertext pre-processor. A popular open source server 

scripting language for building web applications. 

Regular Expression Commonly abbreviated to RegEx, these expressions provide 

a way to check whether a text string or number matches the 

that specified in the expression. One expression can also 

check for a large number of variances efficiently. 

SDK Software Development Kit  is a package of resources and 

configurations  often associated with an IDE (Integrated 

Development Environment) to assist in the development of 

certain types of applications. 

SEO Search Engine Optimization is the process of undertaking 

tasks to improve the rating of a site with search engines. 

The hope is that the site then appears nearer to the top of 

the search results, making it easier to find. 

SSL Secure Socket Layer. An Application layer TCP-IP protocol 

encrypting the contents of HTTP packets. See section 2.3.2. 

SQL Structured Query Language, developed originally by IBM, is 

the standard language for interacting with a database. 



 

 
5 

Validation The checking of user input fields against defined allowable 

values, prior to further processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
6 

1 Introduction 

Background 

During the late 1990’s electronic commerce, later termed e–commerce, began to grow 

rapidly around the world. Between 1997 and 2000 in the United States alone as many 

as 12.000 e-commerce companies were started, involving a total of $100 billion of in-

vestment (Schneider, 2011, p. 9). Investors were eager to invest in e-commerce com-

panies seeking to capitalise on the rapid period of growth, leading the media to coin to 

term ‘dotcom boom’. Unfortunately at the time it was seemingly enough just to be an 

online business to make money. It of course transpired that a successful business needs 

more than a good idea and a website, consequently in the US more than 3000 e-

commerce companies went bust shortly after year 2000. Again the media were quick to 

report on the ‘dotcom bust’ later referring to the whole period as the ‘dotcom bubble’. 

In reality the period between 2000 and 2003 saw investment double to $200 billion in 

the US (Schneider, 2011, p. 9) as acquisition companies merged failing online busi-

nesses and implemented proper business models. 

 

The current state of e-commerce is more stable. Many of the most successful, exclu-

sively online retailers (Amazon, EBay etc.), are still very successful while most large 

traditional retailers also have a e-commerce arm to their business. E-commerce for 

many businesses accounts for an important part of their sales. According to survey by 

Cisco Research and Economics online sales will increase 13,5 % each year until 2015 

reaching a global total of $1,4 trillion (Enright, 2011). This rate of growth is especially 

impressive at a time when global economic growth (real GDP growth) is barely fore-

cast to reach 3,3% by 2014 (World Bank, 2011). 

 

The research question 

It the light of these figures it is reasonable to suggest that a web developer will at some 

stage work on building e-commerce applications. However there are alarming statistics 

relating to factors which greatly reduce the amount of sales that are generated through 

e-commerce sites. One of the biggest factors contributing to this loss of sales is poor e-

commerce site implementation. There are a number of a number of research sources 

analysing the concept of ‘shopping cart abandonment’ and the possible causes. Ac-



 

 
7 

cording to research by the Baymard Institute, an independent web research organisa-

tion, 60% of orders initiated on e-commerce sites get abandoned before payment is 

processed (Baymard Institute, 2011). In the case of an exclusively online company, 

more than half of the company’s revenue is therefore lost due to, amongst other rea-

sons, poor e-commerce site design. This may sound a bold statement, but consider that 

a customer in most cases has an intention or wish to make a purchase, evidenced by 

the time spent logging in, finding the item, and placing the item in the shopping cart. 

After which time, a percentage no doubt simply change their minds and abandon their 

purchase, but the vast majority give up for a host of other reasons, which are caused by 

poor site usability. A proportion of these reasons will be due specifically to poor pay-

ment page, or checkout implementation. 

 

On this basis this study seeks to address the knowledge gap many web application de-

velopers clearly experience in developing e-commerce websites. This study focuses on 

the more advanced types of card payment integrations, as opposed to readymade solu-

tions that are more popular, but in using them, much of the understanding of the 

process, security, and responsibility involved is taken away from the developer. This 

study therefore focuses specifically on the fundamental components of how to accept 

card payments through an e-commerce website. 

 

Addressing the research question 

The subject of card payment page implementation can be logically broken down into 

three distinct areas. Whilst there is some overlap many of the issues relating the under-

standing and implementation of payment page functionality fall into one of these three 

categories. The three categories into which this study is broken down are therefore; 

The Big Picture of the e-commerce environment, Front-End Implementation (devel-

opment of the actual payment page) and Back-End Implementation (development of 

web server code and configuration).  

  

The Big Picture chapter relates therefore to broad macro level issues relating to the 

operating environment of an e-commerce site. For instance understanding in broad 

terms the process of a card payment is important for a developer. Also important is; an 

understanding of the organisations needed in order to process payments, accounts that 



 

 
8 

need setting up by the merchant, choosing appropriate payment processors or payment 

gateway and other issues. These are all issues about which you, as a developer, would 

potentially need to provide advice to your client. This chapter explains why, and also 

focuses on studying the different services offered by two different payment gateway 

companies. Two advanced APIs (Application Programming Interfaces) will be chosen 

for further study in the following two chapters. 

 

For all e-commerce web applications adhering to financial service industry regulations 

is also a necessity. Whilst many readymade solutions take care of this on behalf of the 

merchant, some do not, and using the more advanced API’s requires that the devel-

oper ensures that, for example, personal information is kept safe. So depending on the 

type of payment page implementation requested by a potential client, the developer 

may be responsible for ensuring that some or all regulations are met. Most developers 

do not have a legal background and find it difficult or frustrating to understand the 

issues of regulatory compliance (msdn, 2006). It is therefore vital that developers have 

a practical understanding of what implications these regulations have on an e-

commerce site development. The Big Picture chapter will also cover the security issues 

that need to be addressed as part of regulatory compliance, but also in order to ensure 

the integrity of the website. Security threats and ways to combat them will therefore be 

analysed. 

 

The Front End Implementation chapter looks at the implementation of the payment 

page HTML and JavaScript. Front-end security measures such as HTML form valida-

tion scripts will be presented. The section looks at issues relating to checkout page us-

ability and issues of consumer confidence. Related to this, factors that causes users to 

decide not to click the button to pay for their order and what can be done to prevent 

this is relation to form design will also be analysed. The chapter also looks at the extent 

to which users themselves understand the security threats they are faced with when 

shopping online and looks at what can be done to increase the awareness of security 

issues. 

 

The Back End Implementation chapter looks at the implementation of server side 

code. The chapter focuses on presenting example code for implementing API calls to 



 

 
9 

make a credit card payment using the payment gateways and APIs chosen in the Big 

Picture chapter of the study. Necessary server settings relating to the security of the 

site will also be presented for two web servers commonly used for hosting ASP.NET 

and PHP websites, Apache 2.4.2 and IIS 7 for Window Server 2008. 

 

C# ASP.NET and PHP have both been chosen to provide a contrasting picture be-

tween code implementations, but mainly to increase the potential readership of the 

study. PHP has been chosen as a popular open source language for writing web appli-

cations, C# ASP.NET has been chosen to serve those more familiar with Microsoft 

programming environments. To be able to differentiate between sections of code relat-

ing to PHP and sections of code relating to ASP.NET the following colour coding 

scheme will be used throughout the study; 

PHP code ASP.NET code 

 

Aims and scope of the study 

E-commerce site implementation is an extensive area, too large to cover in its entirety, 

so this study focuses on arguably the most important element of the process, the trans-

fer of money from the customer’s bank account to the merchant’s bank account. 

Strangely this critical part of the process is often brushed over in many e-commerce 

books, but this study aims to provide detailed, but accessible, information to web ap-

plication developers about all aspects of implementing card payment functionality. The 

study is an exclusively secondary research paper which aims to pull together informa-

tion from many different sources into one concise and easy to read document, which 

can be used as a guide for further study or of course as a guide to implementing pay-

ment functionality to a website. The information required to understand and develop a 

card payment page would involve many sources, finding and studying these sources 

would require a lot of time and patience. So this study is aimed at busy developers who 

need the important facts presented in a concise way. Primary research is not a part of 

this study, as the principal aim of the study is to provide a guide, rather than build a 

research document. In addition to these aspects what is included in the scope of the 

study is detailed in the previous pages.  

 



 

 
10 

Regarding what will not be covered; comprehensive instructions on building a worka-

ble PHP or ASP.NET website will not be covered, only code will be provided for 

payment page event handling. Instructions on deploying a web application to Apache 

or IIS will not be given. CSS code implementations will not be included, as these 

would be entirely subjective to the individual branding of the company selling through 

the site. Database security issues are out of scope as the decision to save sensitive data 

is a wider issue relating to the type of business and shopping cart implementation, 

rather than specifically relating to the payment page. Indeed shopping cart process 

analysis and implementation is a very broad subject so is also outside the scope of this 

study. Log-in implementation and user authentication are not covered as again these 

are broader decisions relating to the general website implementation. The assumption 

will be made throughout this study that the user has been authenticated prior to navi-

gating to the payment page, as this is common practice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
11 

2 The big picture of  the e-commerce environment 

This section aims to give an overview of broader macro issues relating to the card 

payment process. The topics of this section are not things an average web application 

developer would need to know in building a site accepting card payments, but having 

knowledge of them is nonetheless important. The topics of this section are summa-

rised below, along with why they are important for a web application developer to 

know. 

 

 Process. The main stages of the process of essentially transferring monies from 

one bank account to another bank account. This section covers the various 

agents or organisations involved and what their roles are. Knowledge of this 

process and the organisations involved is important as a developer may have to 

advise the client or customer on setting up a merchant account or opening an 

account with a payment gateway or payment processor(s).  

 Security. The main threats that a web application faces will be covered, along 

with the standard set of security measures that are taken. Security for web appli-

cations accepting card payments is more complex than other web applications 

due to the fact that you have to secure not just connections to your site, but 

also in many cases ensure the connections from your site to the payment proc-

essors are also secure 

 Payment Gateways are a key part of operating a web application with payment 

functionality, this section covers the important aspects of choosing an appro-

priate payment gateway, and analyses the different types of services they pro-

vide. For the purposes of the next section of the study, two payment gateways 

will be chosen along with two contrasting integration services. These choices 

will form the basis of the study in chapters three and four. 

 

 

 



 

 
12 

2.1 The payment process 

This section of the study will summarise the transaction process of gaining authorisa-

tion for the card payment, and the subsequent settlement process, specifically the 

transfer of money from one bank account to another. The section also studies the 

various organisations involved in the process and sets out what their roles are. The role 

of the majority of these organisations has no bearing on the work of a web developer 

building a site accepting card payments, but it is important to have an understanding of 

how these organisations fit into the e-commerce process. 

 

2.1.1 The parties involved 

Payment gateway 

 

This organisation is a service provider providing card authorisation services for e-

commerce websites, or indeed any website accepting payments by card. Indeed many 

traditional ‘bricks and mortar’ business now use payment gateways instead of standard 

‘point of sale’ card readers or scanners. Indeed the Payment Gateway is the equivalent 

of the card reader machine you are no doubt accustomed to using in most retail outlets 

(Wikipedia, 2012). Some well known brand names in this business sector would be 

PayPal and Authorize.Net. These organisations are commonly interfaced via an SSL 

(Secure Sockets Layer) connection. SSL security will be discussed later in the study. 

The payment gateway co-ordinates communication with all other parties in the process, 

so therefore provides a ‘one-stop’ solution for the e-commerce site, they are then the 

main organisation of interest to the work of the web developer. 

 

Many payment gateways offer a number of different API’s (Application Programming 

Interface) (Wikipedia, 2012), each one offering different user interface experiences, for 

example one site may prefer to handle the entire process within their own pages, useful 

if the site is well trusted. Others may feel it more advantageous to transfer the cus-

tomer to the payment gateway’s own site, thus adding the trust that the payment will 

be handled securely, if they themselves are yet to build that same level of respect and 

trust. Each API has its own security processes and standards, based on how differently 

they are implemented. 



 

 
13 

 

The payment gateway server is where the e-commerce site will connect to and send all 

details of the payment. This information is quite extensive, and of course highly confi-

dential. It is therefore the case that most reputable websites accepting payments will 

connect via an SSL connection to the payment gateway. (SSL shopper, 2010), (Chan, 

Raymmond, Tharam, & Elizabeth, 2001, p. 242) 

 

The operations of most payment gateways are also restricted to certain countries, so it 

is therefore important to know from what countries your client wishes to accept pay-

ments from. (Knowledgebase, 2011) 

 

It is not a necessity to employ the services of a payment gateway company, although 

that means that the e-commerce site must co-ordinate the communication between all 

parties themselves, which if often not an efficient and cost effective way to operate as 

payment gateway fees are quite small.  If the merchant does not employ the services of 

a payment gateway they will have to implement much more rigorous security methods 

on their own, and as a payment gateway normally has a leased broadband connection 

to various payment processors, only the very largest online retailers can afford to by-

pass the services offered by the payment gateways. (Ragan, 2009) 

 

Payment Processor 

 

A payment processor is often associated with the merchant’s bank. A ‘Merchant’ is the 

company selling, and most often running the e-commerce site.  

 

The payment processor’s job is to forward details of the transaction to the card net-

work in order to gain an authorisation that the customer has enough money to pay for 

the goods. The processor has no role in the actual transfer of monies between banks, it 

is a ‘middle man’ which gets the authorisation code, and passes it back to the payment 

gateway or to the merchant e-commerce site. (Schneider, 2011, p. 422). 

 

A payment gateway with forward a transaction to one of many payment processors 

 



 

 
14 

Interbank network / banking interchange 

 

This organisation handles all communication between banks and other key financial 

institutions. Their role is important as they handle the actual ‘settlement’ process i.e. 

the transfer of the transaction amount from one bank account to another. This is done 

via a collection of interbank settlement accounts. The organisation essentially acts as a 

middleman between banks. There are national interbank networks (each country has its 

own way of organising the network) and also international interbank networks. Their 

network topology is complex and only sparse information is publically available. 

(Garfinkel, 2002, p. 612) 

 

2.1.2 Stages of an online payment 

Please refer to Appendix 1 for a simplified diagram of the card payment process. This 

section describes in basic terms the stages of the payment process and briefly about the 

security methods undertaken at each. The process described below refers to making a 

payment on an e-commerce website. Sources used throughout the following numbered 

description are Garfinkel’s book Web Security Privacy and Commerce (Garfinkel, 

2002, p. 613) , and online developer resources at developer.authorize.net 

(authorize.net, 2012). 

 

1. Customer submission 

The user initiates the payment by inputting their card details and clicking a submis-

sion button on a ‘checkout’ page. The page will be secured via SSL and web form 

data, including credit card information, is sent encrypted via HTTPS to the pay-

ment gateway. Many other variations exist including web service calls, but mostly all 

involve a simple HTTP POST method to transmit the data. 

 

2. Payment Gateway processes transaction 

The merchant is first authorized via submitting their merchant account credentials 

as part of the form POST. If the merchant’s log-in credentials can be authenticated 

the transaction details are forwarded to the payment processor’s servers, most 

commonly via another SSL connection. 



 

 
15 

 

3. Payment Processor processes transaction 

The merchant’s payment processor then routes the transaction to the merchant’s 

bank (or acquiring bank to use the official term), asking for a transfer authorization. 

 

4. Acquiring Bank processes authorization request 

The merchant’s bank then forwards the request to the interbank network, for the 

transaction in question.  

 

5. Interbank network processes authorization request 

The card interchange contacts the bank that has issued the card to the consumer to 

get authorization that there is enough funds in the account to fund the transaction.  

 

6. Issuing bank processes authorization request 

An authorization or non-authorization code is generated by the issuing bank.  

 

7. Interbank network returns the response to the acquiring bank 

Information about the implementation of network communications architecture in 

the interbank network is not readily available publically on the internet, as I would 

assume there are inherent security issues with this, but indications suggest that 

banking infrastructure uses its own set of protocols for the transfer of data in a 

highly secure way. This infrastructure also has no bearing at all on the work of a 

developer of a website accepting card payments, so is out the scope of this study. 

 

8. Acquiring bank sends the response back to payment processor 

The acquiring bank then returns the authorization or non/authorization code back 

to the processor who initiated the request, hence the response starts making its way 

all the way back through the communication chain. 

 

9. Payment processor sends the response back to the payment gateway 

Similarly then the processor returns the authorization or non-authorization code 

back to the payment gateway that initiated the request. 

 



 

 
16 

10. Payment gateway processes the response 

The gateway prepares its own return values, normally some form of success or fail-

ure value and posts it back to the webpage which posted the request via HTTPS. 

This return value is determined not just on the basis of the authorization code but 

also on the basis of other checks that are performed such as fraud checks, stolen 

card checks and others dependant on the services the gateway provides. The gate-

way then, of course if the transaction is successful, records the transaction details 

against the merchant’s user account.  

 

11. The e-commerce site handles the response from payment gateway 

The site displays a confirmation to the customer based on the authorization re-

ceived from the payment gateway, usually either an order confirmation or order de-

clined message. The site then records the order it is database to be fulfilled at a later 

time. 

 

12. Settlement process 

You will have no doubt notices that as yet no money has been exchanged, this is 

handled in essence by a separate process known as the settlement process. Settle-

ments are generally carried out in batches. The merchants will send a batch of 

transactions (the authorization codes) to their bank (the acquiring bank). The ac-

quiring bank then sends a set of settlement requests to the interbank network 

which in turn sends it to the issuers’ (the customers’) bank. The issuer’s bank ac-

count is debited the amount and the amount is held in an interbank settlement ac-

count. The acquiring bank then credits the merchants’ account with the sum and 

subsequently withdraws this figure from the interbank settlement account. 

 

 

 

 

 

 



 

 
17 

2.2 Security threats and other risks to online payments 

One of the biggest threats to the growth of online commerce remains to be concerns 

over the theft and subsequent misuse of personal information required by websites to 

process payments. (Eisen, 2009) Below is a summary of the common security issues 

and general risks encountered when paying online.  

 

2.2.1 Process complexity 

The online card payment process is a complex one (Garfinkel, 2002, p. 612), and that 

complexity brings with it inherent risks. With every transfer of a data packet from one 

server to another there is the risk that the information could be attained illegitimately. 

This is made even riskier in the sense that each organisation involved in the process 

described earlier is a separate entity, with its own standards of service and security, and 

potentially separate laws and guidelines it has to adhere to. 

 

As a developer of an e-commerce site you may have absolute confidence in the imple-

mentation of security measures on your site, but as soon as the receiver has received 

the packets from your site the security of your customer’s data is no longer in your 

hands, and could be compromised at a number of different points in the process. The 

only preventative measure a developer can take in this regard is to choose their pay-

ment gateway wisely. 

 

2.2.2 Sniffer Programs 

Theft of personal information such as names and addresses as well as of course card 

numbers and related details happens most frequently via programs that are designed to 

record network traffic between client and server. These programs essentially intercept 

and record http packet contents, and also record the source and destination IP ad-

dresses. To use an analogy it is the equivalent of tapping a phone line and listening in 

on a private conversation (Schneider, 2011, p. 460). Sniffer programs have many legit-

imate uses in regards to monitoring network traffic, but there are also used illegitimate-

ly to scan networks for packets indented for the IP addresses of vulnerable payment 

gateway servers, or they scan the packet contents directly. 



 

 
18 

 

How can this type of theft of personal and sensitive information be prevented? En-

crypting the contents of http packets so that only the intended recipient can under-

stand the contents is the most commonly employed solution. SSL, which will be dis-

cussed in the next section, is the most widely implemented way of http packet encryp-

tion. 

 

2.2.3 Backdoors 

Whilst these security threats are not specifically designed to steal personal information, 

and for our purposes payment card details, they are broader weaknesses commonly 

found in web applications, which if exploited could compromise the database a website 

uses, leaving a lot of personal and highly valuable data at risk of theft.  

 

Backdoors are essentially security weaknesses that are found in, for example, e-

commerce website implementations. Common weaknesses are those relating to poor 

user authentication relating to the site log-in or database log-in.  Many developers build 

in, for example, test user accounts to sites to allow them easy access while developing 

and testing, but forget to remove them when the site is live (Schneider, 2011, p. 460). 

An alarming number of sites for instance can be accessed by simply using Username: 

Test, Password: Test, or Admin/Test, and so on. Using these forms of usernames and 

passwords is highly dangerous as there are many hundreds of websites also using the 

exact same credentials that have likely already been compromised.  

 

Clearly this problem can be combated through more careful programming, and insist-

ing all users are first authenticated via a valid email address, and then insisting that 

passwords are Strong. A strong password can be defined (Wikipedia, 2012) as 

 A minimum password length of 12 to 14 characters if permitted  

 Generating passwords randomly where feasible  

 Avoiding passwords based on repetition, dictionary words, letter 
or number sequences, usernames, relative or pet names, romantic 
links (current or past), or biographical information (e.g., ID num-
bers, ancestors' names or dates).  

 Including numbers, and symbols in passwords if allowed by the 
system  

 If the system recognizes case as significant, using capital and lower 



 

 
19 

case letters 

 

Other types of backdoor attacks include poor user input validation on web forms. As a 

payment screen for a website invariably involves a web form, these forms of attack are 

disturbingly common. 

 

A fairly old technique, to exploit the weaknesses of the C programming language is the 

buffer overflow exploitation. This technique can be used on input fields that have no 

maximum allowable length, and allows the malicious user to input code into a text in-

put field in a high enough volume that, when sent to the server and assigned to a vari-

able, the memory buffers in the server are exceeded and the malicious code then spills 

over and starts overwriting data in the C application’s stack frame, where it can then be 

executed as a program. Although an old exploit it is reported than many developers 

still build applications that can be exploited in this way. (Garfinkel, 2002, p. 398) 

 

Luckily buffer overflow exploitations are rarely possible for applications written in 

C#/ASP.NET, due to variable data types being inherently restricted in terms of the 

amount of data that a single instance can hold.  There are of course workarounds such 

as compiling a C# ASP.NET web application in unsafe mode and then using the C# 

Fixed statement.. The fixed statement can only be used in unsafe mode (msdn, 2012). 

The unsafe context can be added to any type or member declaration, so would be 

commonly seen like this; 

 

unsafe static void FastCopy(byte[] src, byte[] dst, int count) 

{ 

    // Unsafe context: can use pointers here. 

} 

(msdn , 2012) 

 

This member declaration can then contain the fixed statement to essentially fix the 

position of certain variables using pointers, also the size of the buffer can be fixed us-

ing this statement. Both of these actions means that the C# garbage collector (the facil-

ity that resizes the buffer and empties it of discarded data) cannot move variables and 

properly manage the buffer, making buffer overflows a real danger. It is therefore im-



 

 
20 

portant as an ASP.NET developer to be aware of it, while working on web applica-

tions. 

 

The issue is reportedly also still possible for PHP applications, even though PHP is 

reputedly not vulnerable to such risks. Avoiding buffer overflow problems is one of 

the language’s founding principles (Ballad & Ballad, 2009, p. 37), but PHP language 

developers, just like other ordinary developers are human, and so there are errors in 

the PHP language. Well known weaknesses in the past have been the potential buffer 

overflow attacks than can stem from the use of the htmlentities(), htmlspecialchars() 

(Ballad & Ballad, 2009, p. 43), and the serialize() collection. The important take away 

from this is to ensure that the version of PHP on your web server is the latest and is 

always updated. Many developers report that simply limiting the maximum length of 

your text fields in web form submissions or at least validating length as part of the 

wider validation process is the most efficient and safest way to prevent these kinds of 

attacks rather than relying on the robustness of the coding language or the environ-

ment it operates in. 

 

SQL injection is the process of forcefully inserting and then executing SQL statements 

into an application. (PHP, 2012) This can be the result of a successful buffer overflow 

attack or by submitting SQL statements to a server via a web form’s input fields, i.e. 

textboxes. The hacker will insert characters, most commonly a termination character ‘;’ 

into the textbox, followed by a second command. Consider the PHP example below, 

directly inserting a HTTP post variable into an SQL statement;  

 

$name = param('name'); 

 

sql_send("insert into names (name) value ('$name');"); 

(Garfinkel, 2002, p. 470) 

 

If the user were to insert the following line into the ‘name’ textbox; 

 

Joe Bloggs)"; delete from names; 

 

then the DBMS would interpret this as actually 3 separate statements, once which in-

serts Joe Bloggs into the table ‘names’, one which then deletes all data in the table, and 



 

 
21 

a third which would generate a SQL syntax error (Garfinkel, 2002, p. 470). There are 

many other similar techniques that a hacker can use to delete or attain information 

from a database. MySQL, perhaps the most commonly used DBMS system with PHP, 

unfortunately would commit each of these statements to the database before the syn-

tax error was found. Microsoft SQL server is a little more secure in this instance, by 

employing an ‘all or nothing’ principle, essentially checking the whole statement for 

syntax errors, and integrity constraint errors, before anything is committed to the data-

base, however SQL Server has other serious weaknesses such as allowing the ability to 

execute operating system level command within an SQL statement (PHP, 2012). The 

simplest way to prevent this problem, as has been mentioned, is by fully validating the 

input received from users, either in a client script, or in server side code. User input 

should never be directly inserted into an SQL statement and then submitted without it 

being checked extensively for dangerous characters or anything else which is outside of 

a strict range of allowable characters. 

 

To summarise most backdoor attacks can be prevented by heavily limiting what the 

user can submit to your web server. Happily both PHP and ASP.NET offer good na-

tive Regular Expression validation tools as part of their standard library. Indeed the 

.NET framework offers validation tools in the form of JavaScript, which allows the 

user input to be validated before being posted to the server, which is of course the 

most secure method. PHP offers server side functions to do the same job. The eregi() 

PHP function is used to match a regular expression defined by the programmer to a 

string variable, it returns a simple Boolean value to express whether the expression 

matched the string. Methods for validating user input from web forms will be covered 

in more detail in section two of this study 

 

2.2.4 Spoofing and DNS cache poisoning 

These security threats both relate to when a website masquerades as another in order 

to dupe users in to believing they are accessing the ‘real’ site. This is an increasingly 

common problem where a DNS server’s records are hacked and changed so that 

someone typing www.mysite.com actually get sent to another bogus IP address. 

(Wikipedia, 2012) 



 

 
22 

 

A more direct form of spoofing is by using Javascript to alter information displayed in 

the browser, such as the address bar, or by replicating browser warning alerts to con-

fuse the user into taking action which ultimately leads them to provide security related 

data to third parties (Garfinkel, 2002, p. 354). A common technique is using Javascript 

to display alerts to the user saying they need to reconnect to the website, and input 

their log-in details again, thus unwittingly sending their credentials to a third party 

server. 

 

Although tough to stop the problem, preventative measures can include regularly clear-

ing your browser’s DNS cache, and ensuring your browser is up to date, as modern 

browsers are becoming better equipped to counteract such attacks.  

 

As a developer you should consider informing the user to the potential threat and in-

form them what they can do about it. 

 

2.3 Security methods employed 

This section discusses the protocols used to transmit data between client and server 

and between different servers. This is an important part of the paper as the protocols 

chosen for various parts of the communication process between two network nodes 

governs to a large extent how secure the process is. 

 

2.3.1 Asymmetric cryptography 

This type of encryption is possibly the most widely used for securing internet traffic 

(i.e. HTTP packet transfer), and is the encryption method used in arguably the most 

commonly used secure network protocol, SSL (discussed later). 

 

 Unlike symmetric key encryption, asymmetric encryption involves two keys, one to 

encrypt, one to decrypt (Garfinkel, 2002, p. 51), no one key will do both. The two keys 

are mathematically linked, although in most cases a knowledge of one key does not 

make it possible to derive the other. This is due to a mathematical phenomenon, which 

is out of the scope of this study, but the benefit to securing network communication is 



 

 
23 

that the transfer of the public key does not need itself to be secure, and the key’s value 

is not secret, hence the term ‘public’ key.  

 

The process in very basic terms can be summarized as anyone who wishes to be sent 

secure data needs to produce a pair of keys, one public, and one private kept by the 

producer of the keys. The public key is then made available to anyone wanting to send 

data to the key producer. The sender encrypts the plain text using the public key, 

which is sent and subsequently decrypted by the private key. 

 

Digital signatures use the method as a way of authenticating the sender (Wikipedia, 

2012), as a digital signature is written with the private key, hence the receiver knows 

that it has come from the assumed source, and that the public key has definitely come 

from that sender. 

 

2.3.2 Secure Sockets Layer (SSL) 

I will first give an overview of how SLL works and then discuss how and where it is 

employed as part of the online payments process. 

 

SSL is a program layer protocol located between the Internet's Hypertext Transfer Pro-

tocol (HTTP) and Transport Control Protocol (TCP) layers (Cusack, 2000). SSL has 

recently been superseded by Transport Layer Security, but as TLS is based on SSL, and 

the fact that SSL is the most commonly used term and protocol, this is what I will fo-

cus on. The term ‘sockets’ is used to refer to the process of a client computer com-

municating with a server computer over a network, or even within the same computer.  

 

SSL uses Public and Private Key Encryption (so asymmetric cryptography) via RSA to 

secure data packet contents (Wikipedia, 2012), (Garfinkel, 2002, p. 113), and also in-

cludes a digital certificate – an important part of the security process for online pay-

ments. RSA is the main algorithm method for Asymmetric cryptography (Public and 

Private Key Encryption). RSA is a three stage process involving key generation, en-

cryption and decryption. I won’t discuss the mathematical basis for the algorithm but 

an explanation of asymmetric cryptography and digital certificates is important. 



 

 
24 

 

A website developer or administrator (or any user with root access to a web server) can 

enable and configure SSL on the server (there are a variety of programs to do this, de-

pendant on the web server (Windows IIS, Apache etc)).  The configuration would typi-

cally involve the generation of keys, choosing the algorithm for that generation, re-

questing a certificate, and then choosing which web pages to use SSL for. All of these 

functions are typically performed by command line functions or via the web server SSL 

program’s Graphical User Interface (GUI). 

 

SSL is in most cases already part of your web browser’s implementation, so for the 

average user SSL is something that just ‘happens’ without your knowledge. Most users 

will only be aware of it is when a lock icon appears on the browser’s address bar when 

often the web address starts with https://.  As a user you may also receive a message 

from the Secure HTTP page request that ‘the digital certificate provided by this site 

cannot be trusted’, and then you will be prompted to add an exception for it, or leave 

the site. This happens because the web server’s SSL software has been set up to sign its 

own Digital Certificate rather than involve PKI (Public Key Infrastructure) bodies, or 

more specifically a CA (Certificate Authority), but also an RA (Registration Authority) 

(Garfinkel, 2002, p. 160) (essentially a central registry database of all certificates issued) 

and possibly also a Digital Certificate Management System.  Whilst this warning might 

be fine when the user is being asked for minimal personal information it drastically 

harms the business of the website accepting payments if the user receives warnings 

about the authentication of the website as soon as they navigate to the payments page. 

This is something which must be prevented, I will talk about this when discussing 

about Digital Certificates. 

 

Most bodies in the payment process already discussed will implement an SSL connec-

tion to their servers, so for an organisation like a payment gateway, a Digital Certificate 

Management System to manage the large number of keys and certificates that it issues 

itself but also that it holds to communicate with payment processors and other com-

panies is vital. Verisign, one of the more well known CA’s is reported to have the most 

digital certificates, and implements one a comprehensive system to manage them  

(Garfinkel, 2002, p. 182) 



 

 
25 

 

 

 

2.3.3 Digital certificates 

When making a payment online it is important to the consumer that the website can be 

trusted. Web development standards dictate that a payment page must be implemented 

with an SSL connection and must also involve a Certificate Authority in signing its dig-

ital certificates. (PCI Security Standards Council, 2010, p. 35), (authorize.net, 2012, p. 

2) But firstly what is a digital certificate? 

 

A digital certificate basically allows a web browser or other client software to verify 

that the sender of an HTTP packet is indeed sent from the expected source, so it pro-

vides a method of authentication. The certificate contains information about the com-

pany running the web site, the expiration dates of the certificate and the public key 

(required to communicate with the company’s software via the SSL connection).  A 

Certificate Authority (CA) provides an additional level of trust as the client software 

contacts the CA separately to verify the digital certificate, and so can authenticate the 

website accepting payments, this method also aims to counteract so called ‘man in the 

middle’ attacks. (Garfinkel, 2002, p. 168) 

 

However, if a website opts to purchase a basic SSL certificate, offering only Domain 

Verification, then in reality the CA is doing very little in the way of authentication, es-

sentially confirming that the www.onlinestore.com domain name belongs to a compa-

ny named Online Store Inc.  

 

2.3.4 Certificate Authorities and requesting a certificate 

As mentioned most web browsers are configured to inform the user when a digital 

certificate has been self signed, so it is vital that a proper certificate is attained for any 

website accepting card payments. Many Certificate Authorities (CAs) are trusted or-

ganisations and indeed offer a logo to be placed on the e-commerce website payment 

page to inform users that the site is trusted, although I would question how many users 

understand how this logo ensures the security of the site. Please refer to Appendix 2 



 

 
26 

for a selection of the most commonly used and sought after CA logos.  Of course a 

CA is only as useful as how trusted they are. There are differences as well in the level 

of authentication that each provides.  

 

Many of these differences in level of service are reflected in the prices for having your 

site verified by a CA. Because of this cost it is generally only large online retailers and 

financial institutions such as banks and credit card companies that subscribe to the 

highest levels of verification, as it has become the industry standard. These higher lev-

els of verification are commonly called EV-SSL certificates or Extended Validation 

SSL. This process requests more information from the company requesting the certifi-

cate and then performs regular checks to ensure they are still who they say they are, 

often by authenticating their physical presence (business address, phone number etc) 

(Wikipedia, 2012), as well as basics such as domain name ownership. Each CA offers 

slightly different services at slightly different costs. 

 

To attain a basic digital certificate the set of details you would need to provide are as 

follows: 

 

Country Name [C] A capitalized two-letter country code for you or your organization. For example, UK, RO, DE, 

etc.  

State or Province Name [SP] The name of the state or province for you or your organization in full textual form. 

For example, Quebec, Gaza, Alaska, etc.  

Locality Name [L] The name of the city or town for you or your organization in full textual form. For example Ed-

inburgh, Stockholm, Ulooloo, etc.  

Organization Name [O] The name of your organization/company/domain in full textual form. Organizational 

Unit Name [OU] The name of the organization's department in full textual form.  

Common Name [CN] Regardless of the type of certificate you intend to obtain or the purpose for which you in-

tend to use it, this field is of critical importance. This field must contain the exact domain name for which it will be 

used including the sub domain part. If the sub domain does not match then it will still be possible to use the certifi-

cate, but another one of those large warning messages will be presented to the user. So if you have 

www.domainname.com as the CN in the certificate and a user connects to domainname.com (without the www). 

then the domain names will be considered as non-matching and the warning will be issued; however, if the main do-

main part of the domain name does not match then it is unlikely that Apache will even start at all. So make certain 

that you specify the correct sub domain and that the domain name is completely free of typos.  

Email Address[EMAIL] Even in its abbreviated form it's pretty obvious what this field is for. Assuming that they 

exist, good choices would be webmaster@domainname.com or admin@domainname.com.  

(Webopedia, 2012) 

 

 



 

 
27 

2.3.5 PCI Standards 

Payment Card Industry Security Standards Council (PCI SCC) is an organization re-

sponsible for publishing a set of security standards for businesses handling card pay-

ment transactions. The organization’s work has come to focus more and more on the 

necessary standards needed for online card transactions. Their principle standards are 

published as PCI DSS (Payment Card Industry Security Standard). The standards doc-

ument is currently version at 2.0 (PCI Security Standards Council, 2010). A summary 

of the requirements to meet the standards is given below; 

 

Build and Maintain a Secure Network  

Requirement 1: Install and maintain a firewall configuration to protect cardholder data 

Requirement 2: Do not use vendor-supplied defaults for system passwords and other security 

parameters 

Protect Cardholder Data  

Requirement 3: Protect stored cardholder data  

Requirement 4: Encrypt transmission of cardholder data across open, public networks  

Maintain a Vulnerability Management Program  

Requirement 5: Use and regularly update anti-virus software or programs  

Requirement 6: Develop and maintain secure systems and applications  

Implement Strong Access Control Measures  

Requirement 7: Restrict access to cardholder data by business need to know  

Requirement 8: Assign a unique ID to each person with computer access  

Requirement 9: Restrict physical access to cardholder data  

Regularly Monitor and Test Networks  

Requirement 10: Track and monitor all access to network resources and cardholder data. 

(PCI Security Standards Council, 2010) 

 

Of course these standards relate to card payment processing service organisations spe-

cifically but many of these standards are relevant also for websites accepting card pay-

ments. Especially if, for example, the website chooses to store its customers card de-

tails on in its own database. A payment gateway company would normally be the one 

storing card details, to reduce the unnecessary transfer of valuable data across the 

internet, but many e-commerce sites also allow users to store their credit card details, 

for the sake of convenience. Therefore these standard requirements are given here as 



 

 
28 

they provide a useful checklist for any developer building a website including card 

payment functionality.   

 

2.3.6 Payment Application Best Practice (PABP) 

Whilst the PCI DSS set of standards is important for e-commerce websites as well as 

those organisations who are subject to financial regulations, the PABP set of standards 

is specifically tailored for e-commerce website operators and developers. The set of 

best practices is developed by Visa and includes 13 security standards for payment ap-

plications (which obviously includes any websites accepting card payments).  Whilst 

these best practices are not yet required by the payments industry, it is anticipated in 

that it will be in the near future (Authorize.Net, 2008, p. 4). The full set of best prac-

tices is given as in Appendix 4. 

 

 

 

2.4 Payment gateway integrations 

As discussed earlier a payment gateway essentially provides a basket of services to e-

commerce sites which would otherwise be financially unviable for the site to develop 

alone. These include merchant account services, payment processor communications 

and fraud protection (Wikipedia, 2012), (Schneider, 2011, p. 498).  It is possible to im-

plement these functions independently, but for the purposes of this study we focus on 

the most expedient and cost effective way to implement these necessary functions, for 

a small or medium sized business or organisation. Hence employing the ‘one-stop-

shop’ services of a payment gateway is the choice to make. 

 

This section discusses the implementation options generally offered by payment gate-

ways and focuses on the options offered by two of the market leading payment gate-

way businesses. Chapters three and four of this study will go on the provide example 

implementations of two contrasting options offered by the gateways, i.e. in real terms 

how would we integrate our website payments page with the payment gateway servers.  

 



 

 
29 

Based on my independent online research I can summarise that payment gateway inte-

grations are implemented in two main ways. The first option is implemented simply by 

a secure payment form hosted by the payment gateway’s own web server. This is most 

cases means the customer is transferred to the gateway’s website to complete the trans-

action. The second implementation is by using Application Programming Interfaces 

(APIs) offered by the payment gateway company. In this case, the user never leaves the 

website where the user places the order so they have the perception that the process is 

handled entirely by the e-commerce website. An Application Programming Interface is 

essentially an imported set of routines/methods/functions, data structures and object 

classes (Wikipedia, 2012). They are called in just the same way as other classes or librar-

ies that you may use in your code. 

 

 Although these are two distinctly identifiable processes, in reality the real options of-

fered are a mixture of the two. Web API’s for example basically involve a process of 

posting an HTTP request, like any other CGI formatted URL to the gateway server, 

giving a list of specified variable values (credit card number, amount, expiry date, etc), 

and then handling the response, which is again specified in documentation provided by 

the payment gateway, such as Authorize. Net’s developer guideline document 

(Authorize.net, 2012). Whilst this process is not a traditional form of API, it is exten-

sively used and mostly simply called an API.  

 

Web service protocols are another common way of making an API available to web 

developers, common web service implementations are SOAP and REST. SOAP or 

Simple Object Access Protocol, is a simple process that uses XML to transfer messages 

between servers. It relies on the parsing of the XML response. REST is newer and 

does not rely on XML parsing of the response message. Whilst this may seem compli-

cated in reality it is not. In all instances discussed above the process is very similar and 

summarised in simple terms below; 

1.  The payment form submit button is clicked 

2. The HTTP request URL is built as a string including all necessary required by 

the payment gateway, from the details submitted by the user 

3. The HTTP request is submitted to the payment gateway.  



 

 
30 

4. The HTTP response is handled by the website, most commonly by parsing an 

XML file in some standard format. 

 

Summarised from Authorize.net developer documentation (Authorize.Net, 2012) 

 

2.4.1 Factors influencing payment gateway choice 

Many gateways offer easier implementations for certain shopping cart modules. Cer-

tainly for any e-commerce site selling a range of products, a shopping cart is a neces-

sary addition to the site. There are many readymade shopping carts where the code can 

be inserting into your PHP scripts or ASP.NET code behind files, or included simply 

as a complete module with some CSS customization. Shopping cart implementation is 

out of the scope of this study, which focuses specifically on the payment process, but it 

is accepted that shopping cart implementation is important and might also influence 

your choice of payment gateway 

 

The factors discussed below to the end of section 2.4.1 are based on an article by 

Vangie Beal (Beal, 2012). 

 

Card and currency support is an important factor. You want to be able to offer your 

customers as much choice as possible, particularly if you are aiming to reach a global 

market. You need to think carefully about your customer profile and determine which 

cards you need to provide support for, and which currencies you need to accept pay-

ment in. It is normal that a good payment gateway also offers other forms of online 

payment as well as card payments. 

 

Compliance with standards is also vital. The standard set of compliances, PCI-DSS, 

has been previously covered. Any reputable payment gateway must ensure they imple-

ment these guidelines. Some card issuers publish lists of card payment service organisa-

tions that currently have been checked as being compliant. The only problem with se-

curity standards is that they are only a snapshot of the business’s compliance with the 

guidelines, they can of course choose to not comply just as soon as they have passed 

the inspection. (Visa, 2012). Companies are checked against the standards once per 



 

 
31 

year, so perhaps some record of consistent compliance would be more useful, but as it 

stands this is the best we have.  

 

Understand fully the charges the company uses. Different companies charge differently 

for different services. For example, if your client business offers a generous money 

back guarantee if not completely satisfied, then you need to ensure you pick a payment 

gateway that doesn’t over-charge for refund payments (or chargebacks). Or for exam-

ple if your client offers subscription services, you need to make sure that the gateway 

company you choose has to capacity to offer ARB services or Automated Recurring 

Billing. Not all offer this. 

 

What kind of customer support they offer is another important factor. Do they offer 

phone support, what hours do they provide this support. Also what level of informa-

tion do they provide to their customers regarding transaction details, histories, and ac-

count balances? 

 

Finally all reputable payment gateways offer fraud protection services, so you should 

make yourself aware of what they do to protect your client’s customers, and in turn 

your client’s business. As a minimum you should ensure the gateway supports the in-

dustry standard AVS (address verifications service). If your payment gateway is a 

United States based company, they should list AVS as part of their services. Other 

countries offer similar schemes whereby the consumer has to provide the billing ad-

dress registered against the card in order to complete the transaction. 

 

2.4.2 Transaction types 

It is important that the developer considers in advance what type or types of transac-

tion are needed for the e-commerce site. This is because the decision will affect greatly 

how the payment process is implemented and therefore will affect server side code 

enormously. The decision around what transaction type or types to choose is generally 

made according to what types of goods or services the business operating the e-

commerce site sells. (Paypal, 2009, p. 23) I will focus on the two main types of transac-

tion as all others are a variation of these two.  



 

 
32 

 

The first type is known as Sale Authorization and Settlement. This process attains the 

authorization and immediately flags the transaction for settlement (Paypal, 2009, p. 28). 

This transaction type is most suited for service businesses or where the customer es-

sentially receives the goods or services straight away. The second type of transaction is 

a two stage transaction known as Authorization Only (Paypal, 2009, p. 29). These 

transactions attain an authorization code, and then at some point later a Delayed Cap-

ture transaction is initiated to then flag the transaction for settlement. The Delayed 

Capture transaction can be for the same amount as the original transaction or less (in 

the case of split shipment orders). These transactions are suited to e-commerce sites 

selling physical goods where the transaction is not flagged for settlement until the 

goods have at least been dispatched to the customer. This transaction type is very 

common for business to business (B2B) firms. Business to consumer firms (B2C) of-

ten operate 1 stage transactions (i.e. your card is charged soon after your order) even if 

they are selling physical goods, meaning the customers card is charged long before they 

receive the goods. For the purposes of Sections 2 and 3 of this study I will focus on 

the 1 stage transaction type i.e. Sale Authorization and Settlement. 

 

2.4.3 Google Checkout and Amazon Payments 

I cover these services first, as they will not be covered in detail in later chapters of this 

study with regards to analysing API integrations for ASP.NET and PHP as they are 

not a payment gateway in the full sense of the term. This is principally because they 

only offer the type of integration API where the user is transferred to the Google 

checkout or Amazon website, for payment processing (Amazon, 2010), (Google, 2012) 

This is fine for businesses that do not have, or do not plan to have, a trusted brand 

name, but is limited for businesses who wish to present themselves as serious and re-

sponsible sellers of goods and services.  

 

People have become familiar with the Google brand and under certain circumstances 

their integration solution, being very simple, will suit the situation. Principally though, 

due to this simplicity the e-commerce site developer is not required to handle credit 

card details at all, indeed they are not required to handle even any code, and hence it is 



 

 
33 

not studied further here. Google’s integration solutions all comprise of a collection of 

button designs, and corresponding html code for a simple html form, which is posted 

over a non secured HTTP connection to the Google Checkout site, to which the user 

is also transferred (Google, 2012). Google also have many shopping cart integrations, 

but still with ultimately the same process, everything being handled by pages served 

from Google servers. As mentioned shopping cart implementation is not a part of this 

study, for this reason also it is not covered further. 

 

Google requires consumers to have an account with them in order they can user the 

checkout services they provide. That obviously requires users, who have already logged 

in to the e-commerce site, to be transferred to Google’s site where they are required to 

log-in again to complete the payment. This system is generally thought of as being bad 

for an e-commerce site, as there are many instances of ‘cart abandonment’ due to it, 

meaning customers never complete the transaction. This might be due to many rea-

sons; they cannot remember their Google log-on credentials, they feel concerned 

and/or confused that they have left the original site, they feel frustrated with the com-

plexity of the process, there is a technical error being transferred to or from Google’s 

site, and other reasons. 

 

From a developer point of view it is worth noting in relation to the wider development 

issues of your sites, that perhaps providing Google checkout as an additional payment 

option would be beneficial. The reason for this is that there are reportedly significant 

Search Engine Optimization (SEO) benefits to having the Google checkout button on 

the site. Google will essentially add an ‘accepts Google Checkout’ image against your 

site, and the listing will appear nearer the top of search results. Whilst no documenta-

tion could be found to support this, there are many anecdotal developer blog posts on 

this issue, stating that there are SEO benefits. 

 

2.4.4 PayPal 

Paypal, owned by Ebay, has long provided, very successfully, an easy solution for two 

individuals to exchange money, with nothing more than knowing the receiver’s email 

address. This process lent itself very well to C2C (Consumer to Consumer) environ-



 

 
34 

ments such as Ebay and other small businesses, and private entrepreneurs. Again they 

are known for their very simple integrations that are essentially the same as Google 

Checkout, both in process, functionality, and pricing. Based on my research of the 

Paypal developer’s website these integrations take the form of ‘hosted buttons’ which 

again transfer basic order details to the Paypal server through an HTTP Post (dis-

cussed in the next chapter). The button also contains re-direction code, to transfer the 

customer to Paypal where they are prompted to log-in again to their Paypal account. 

For the purposes of this study, as mentioned, these integrations will not be studied 

further. However Paypal have expanded their services to include a range of other full 

payment gateway services, including card payment processing, fraud protection and 

better security. These services are branded as Payflow integrations 

 

Paypal Payflow is a package of solutions, ranging from more simple, to quite complex. 

Payflow Link is a useful integration, which still transfers the user to Paypal servers, but 

the design of the page they are taken to matches that of the original site. Essentially 

developers can adapt payment forms to suit their needs, and alter page HTML and CSS 

coding to match their site. This interesting solution reduces the security implications 

for the e-commerce site, whilst retaining more customers as all payment processing 

appears to happen on the same website. Paypal ensure all communication is through 

SSL (Paypal, 2012, s. 2), the only down side is that the SLL certificate will also state 

Paypal as the owner, as opposed to the e-commerce site, which may alarm some con-

sumers. Also Payflow abides by PCI guidelines. 

 

Because Payflow Link is still entirely an HTML solution, it requires no server-side 

code, so will not be covered further in this study. Payflow Pro however is a full API, 

which is published as an SDK (Software Development Kit). SDK’s are offered for 

.NET, and Java, and a raw HTTPS interface is also offered for other languages, or for 

the purposes of building a custom API (Paypal, 2009, s. 13). Chapter four (Back-end 

Implementation) of this study will go into detail about how to implement this service 

for an ASP.NET website, and a PHP website.  

 



 

 
35 

2.4.5 Authorize.net 

This payment gateway is one of the most widely used for e-commerce websites based 

in the United States. The company aims to deliver a ‘transparent’ service, essentially 

meaning that the customer will in most instances remain on the e-commerce site, and 

will be mostly unaware of Authorize.com involvement in the process. This is an inter-

esting business model in comparison to Paypal who push their company branding in all 

their implementations. Based on my research of the Authorize.Net developer’s website 

a summary of the main integration options they offer is below; 

 

Simple Checkout 

Similar to Google Checkout and Paypal’s hosted buttons, this option requires no 

Server-code programming, and is a simple redirect to Authorize.com servers where the 

customer inputs their card details. Upon successful completion of the transaction they 

are then transferred back to the original site. 

 

Direct Post Method (DPM) 

This method is a HTTP post handled by the e-commerce web server. The HTTP post 

can be over an SSL connection (this can be developer defined) but is commonly 

posted using a standard HTTP request. The developer of the e-commerce site will 

need to implement the payment page (although the payment form fields are generated 

automatically by the API, additional fields can be added by the developer), handle the 

security of personal data, and handle response information from the Authorize.com 

servers.  

 

Server Integration Method (SIM) 

This method is intended for those e-commerce companies that do not want to pur-

chase and manage an SSL certificate for their site. Similarly to Paypal’s Payflow Link 

integration, Authorize.Net’s servers will serve the payment form, which can be totally 

customized to match the e-commerce site’s styling, they also handle the processing, 

and secure connections. 

 

Advanced Integration Method (AIM) 



 

 
36 

This is the most customizable method of implementation, which relies on the e-

commerce site developer to implement from scratch the payment form, required fields, 

optional fields, implementing a secure SSL connection, handling card data and user 

input validation. As this requires development in most of the areas discussed in this 

study, it will be studied further in the following chapters. 

 

The Authorize.Net website: developer.authorize.net has been used as a source 

throughout section 2.4.5 (Authorize.Net, 2012) 

 

2.5 Chapter Summary 

To summarise I will present below a list of recommendations aimed at developers in 

order for them to understand more about what is required to ensure the effective secu-

rity of an e-commerce site card payment process, and inform them in order that they 

are able to decide what additional services their client may need to register for . This is 

not a comprehensive list but aims to cover the main issues: 

 

Security threats and other risks to online payments 

 Fully validate all text fields, preferably with regular expressions, on the web form 

so that only allowable values get posted to the server. 

 Only record card numbers in the database if absolutely needed for your site’s user 

experience, and do not transfer card numbers or other personal data across the 

internet unless it is required. 

 Ensure your site implements user log ins, that are strongly authenticated. 

 Implement also a database of user accounts that employ a minimal rights policy 

 

Standard security methods employed 

 Enable the SSL software on your web server and implement an SSL connection 

for at least the payment form page. 

 Familiarize yourself with security standards and ensure they are implemented as 

necessary for your site, as well as being implemented as part of your chosen pay-

ment gateway’s service. For instance PCI DSS and PABP standards. 



 

 
37 

 Buy a subscription to a Certificate Authority, or perhaps the payment gateway 

provides this, dependant on the service you subscribe to. This will make your site 

harder to spoof, and provide customer confidence. 

 

Payment gateway implementations 

 Look to choose a reputable payment gateway that meets your requirements relat-

ing to services, and implement their suggested interface. 

 Consider the transaction types you will need according to the type of business to 

be operated through the site i.e. 1 stage transactions or 2 stage transactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
38 

3 Front end implementation 

This section looks at all issues relating to the user interface, basically the payment web 

page itself, and all related client script issues. As previously mentioned page design, is 

not covered as part of this study, principally as the level of variation is large, and is de-

pending on individual business needs, and corporate branding. For the purposes of this 

study I present the more technical aspects of implementing a payment page, or more 

specifically a payment form. The topics covered by this section are summarized below; 

 

 HTML forms. This part will look at the mechanics behind a web form, which is 

the most important aspect of payment page integration. Understanding how 

HTML forms work is vital to a developer. 

 User input validation. This part will present a client side Javascript validation 

script for a payment form. As previously discussed, validation in a client script 

is an important security measure, and must be implemented in the absence of 

validation assistance offered by the API used. 

 Payment page usability. This part analyses the elements of general page design 

and technical implementation that affect usability and therefore impact on how 

easy the page is to use.  

 Informing the user. In the previous section it was highlighted that there are po-

tential security threats posed by vulnerable browser versions, browser settings, 

and a simple lack of understanding of web security. Informing the user about 

security issues is therefore important. 

 

3.1 HTML Forms 

The HTML <form> tag is what facilitates users to be able to interact with a website. 

More specifically most instances where a user needs to submit information to the host-

ing web server are handled by implementing the necessary user input controls (for 

simple HTML these are the various forms of  <input> tags available) inside the 

<form> </form> tags. Common uses of an HTML form include submitting a contact 

form, submitting booking or reservation information, registering to a website, or for 

the purposes of this study submitting credit or debit card details to make a payment. 



 

 
39 

Users generally "complete" a form by modifying its controls (entering text, selecting 

menu items, etc.), before submitting the form to an agent for processing, by ‘agent’ we 

mean the web server (World Wide Web Consortium, 2012) 

 

3.1.1 Form attributes 

The ‘action’ attribute 

The list of attributes specified by W3C for the <form> tag includes only one which is 

required, namely the ‘action’ attribution. This attribute specifies the server side form 

handler (World Wide Web Consortium, 2012) . For the languages we are focusing on, a 

PHP form handler value would be the .php file handling the user input such as 

paymentSubmitted.php, for ASP.NET the rendered action value is typically the .aspx 

page handling the form event. By ‘rendered value’ I refer to how the code looks when 

viewing rendered page source code. As an ASP.NET programmer you wouldn’t typi-

cally need to specify these values, as they are automatically generated.  

 

These values will submit user input to the server without any validation, something 

which is not recommended as discussed in the previous section. If client side validation 

is needed the action attribute needs to refer to a JavaScript function to validate the in-

put and then, if it passes validation, the function will submit the form. You can see 

examples of this from the code given later. 

 

The ‘method’ attribute 

Although this method is not required, for the purposes of this study it will need to be 

specified for the PHP implementation of the payment page. There are two allowable 

values for the method attribute, namely ‘get’ and ‘post’. The ‘get’ value is the default. 

When a ‘get’ value is used all user submitted data is appended to the URI given as the 

‘action’ attribute value. (World Wide Web Consortium, 2012). The different fields are 

appended after a ‘?’ question mark and separated with a ‘&’ symbol. So the ‘action’ val-

ue in the PHP example above would change from; 

http://www.myserver.com/paymentSubmitted.php 

to; 



 

 
40 

http://ww.myserver.com/paymentSubmitted.php?cardNumber=1234123412341234&

expDate=0812&amount=9.99 

 

The get method, although the default should be used only when the form is idempo-

tent (i.e., causes no side-effects) (World Wide Web Consortium, 2012). This basically 

means that it should be used only for simple data requests and not for requests where 

database records could be altered. For this reason and others it should never be used 

for submitting card payment details. The ‘post’ method submits user data in a less visi-

ble way, as part of the HTTP packet contents. ASP.NET submits all form data using 

the ‘post’ method as the default, and again it is not something an ASP.NET program-

mer would need to specify. Although when making an HTTP request from the code-

behind file, something which is needed to submit the transaction data to the payment 

gateway, then it must be specified that the request must use the ‘Post’ method. This 

will be covered in more detail in the next chapter (Back-end Implementation). 

 

Hidden fields 

Most payment form implementations, including those required by the payment gate-

way APIs’ used in this study make use of hidden fields within the HTML form. Hidden 

fields are essentially input fields that are not rendered on the page, but whose values 

are submitted with the form (World Wide Web Consortium, 2012). They are an essen-

tial part of ASP.NET pages and are used for example to maintain the state of all con-

trols after the page is posted back. Other uses include storing common data used by 

the server such as user credentials in order to create a user session. Hidden fields are 

created used the <input> tag specifying the type attribute as ‘hidden’.  

 

3.1.2 Payment page HTML 

This section presents what form fields need to be included between our 

<form></form> tags in order to gather all the required data needed to make a pay-

ment submission to our chosen payment gateway. I will give the HTML code for each 

payment gateway API case study covered in the previous chapter. This will include 

therefore examples of HTML forms posting directly to the payment gateway server, 

and HTML forms which post to a form handling page on the e-commerce web server, 



 

 
41 

from which the transaction gets posted to the gateway server. For these more complex 

examples the server-side code will be covered in the next chapter. As mentioned previ-

ously no CSS code will be included as this is entirely subjective to the wider design of a 

particular site. 

 

Firstly I will cover HTML code for providing hosted buttons, .i.e. buttons that redirect 

the user to the payment gateway web server it order to make a payment. As a develop-

er you may choose to include these buttons, in addition to providing your own pay-

ment form, in order to offer the user as many payment options as possible. In the pre-

vious section I mentioned about Google Checkout and Amazon Payments. 

 

Google Checkout Button 

The code below will give an example of a payment button which transfers the user, 

with basic details about their purchase, to the Google Checkout site for payment pro-

cessing (Google, 2012) 

<form method="POST" ac-
tion="https://checkout.google.com/api/checkout/v2/checkoutForm/Merchant/1234567890" 
         accept-charset="utf-8"> 
 
  <input type="hidden" name="item_name_1" value="Peanut Butter"/> 
  <input type="hidden" name="item_description_1" value="Chunky peanut butter."/> 
  <input type="hidden" name="item_quantity_1" value="1"/> 
  <input type="hidden" name="item_price_1" value="3.99"/> 
  <input type="hidden" name="item_currency_1" value="USD"/> 
 
  <input type="hidden" name="ship_method_name_1" value="UPS Ground"/> 
  <input type="hidden" name="ship_method_price_1" value="10.99"/> 
  <input type="hidden" name="ship_method_currency_1" value="USD"/> 
 
  <input type="hidden" name="tax_rate" value="0.0875"/> 
  <input type="hidden" name="tax_us_state" value="NY"/> 
 
  <input type="hidden" name="_charset_"/> 
 
  <input type="image" name="Google Checkout" alt="Fast checkout through Google" 
    
src="http://checkout.google.com/buttons/checkout.gif?merchant_id=1234567890&w=180&h=
46&style=white&variant=text&loc=en_US" 
    height="46" width="180"/> 
</form> 

 

Developers should consider including this button with a view to the possible SEO 

benefits, and customer experience benefits of offering wider payment options. Note 

that basic order details are required. The developer should therefore consider whether 

to add the relevant values to the hidden fields outlined above as part of their server 



 

 
42 

side code implementation, so the fields are populated when the customer moves to the 

payment page. Note also that the URL specified in the action attribute will include a 

merchant ID number, this means a merchant account would need setting up (at least a 

test account). The rendered design of this button can be seen in Appendix 5. 

 

Amazon Payments SimplePay Button 

Below is the HTML implementation of Amazon’s simplest payment button, thus po-

tentially offering a payment option to those users most comfortable using Amazon’s 

own payment interface (Amazon, 2010). 

<form method ="POST" action 
="https://authorize.payments.amazon.com/pba/paypipeline"> 
<!--REQUIRED FIELDS --> 
    <input type ="hidden" name ="accessKey" value ="YourAccessKeyId"> 
    <input type ="hidden" name ="amount" value ="USD 10"> 
    <input type ="hidden" name ="signature" value 
="K2ryWe7s/0AHI0/PbuAveuUPksTefhmNCzDTold2VYA="> 
    <input type ="hidden" name ="description" value ="pay for dinner"> 
    <input type ="image" src 
="https://authorize.payments.amazon.com/pba/images/SLPayNowWithLogo.png" border 
="0"> 
    <input type ="hidden" name ="signatureVersion" value ="2"> 
    <input type ="hidden" name ="signatureMethod" value ="HmacSHA256"> 
<!--NON REQUIRED FIELDS --> 
    <input type ="hidden" name ="ipnUrl" value 
="http://yourwebsite.com/instantpaymentnotification"> 
    <input type ="hidden" name ="returnUrl" value ="http://yourwebsite.com/success"> 
    <input type ="hidden" name ="processImmediate" value ="1"> 
    <input type ="hidden" name ="cobrandingStyle" value ="logo"> 
    <input type ="hidden" name ="abandonUrl" value 
="http://yourwebsite.com/abandon"> 
    <input type ="hidden" name ="referenceId" value ="MyTransaction-001"> 
    <input type ="hidden" name ="immediateReturn" value ="1"> 
    <input type ="hidden" name ="collectShippingAddress" value ="0"> 
</form> 

 

I have indicated above the required and non required fields on the form. From a user 

experience perspective a developer should consider implementing also the non re-

quired fields. Please refer to the Amazon’s development document (Amazon, 2010) for 

an explanation of what these fields hope to achieve. Similarly to the Google Checkout 

example the rendered design of this button is given in Appendix 5.  

 

Payment form implementation 

 Now we move onto the HTML implementations for the payment form itself, includ-

ing user input fields, something not included in the two button forms above. The form 

examples given below are relevant for both the PayPal PayflowPro and Authorize.net 



 

 
43 

Advanced Integration Method chosen as the payment gateway providers for this study. 

The fields given here are the industry standard set of data required from the site user in 

order to submit a transaction. Indeed the bare minimum fields required to submit a 

transaction are actually only credit card number and expiry date, but this entails essen-

tially no security checks, so it is highly recommended that full name and address is 

asked for as well as the CVV2 (Card Verification Value) number (where this number is 

found varies between card issuers but is most commonly the last 3 or 4 digits from the 

security number printed on the back of the card) (Wikipedia, 2012). In a practical im-

plementation of an e-commerce website you may choose as a developer to allow a user 

to save previously used card details, but as this is out of the scope of this study we will 

assume the user has to submit their card details for each transaction. It is important to 

note that PCI compliance demands that if the site is storing card details it must not 

under any circumstances store CVV numbers. (PCI Security Standards Council, 2010, 

p. 8) That way if the site’s database is compromised and card numbers are stolen, not 

having the CVV number dramatically limits the places that a thief can try and make 

purchases using the card number. 

 

There are a number of other required fields (or more correctly required parameters), 

many similar to those hidden fields given in the hosted button examples shown previ-

ously, but as the HTTP request to the payment gateway server happens in server side 

code, these additional parameters are not given here as HTML, they will be given in 

the next chapter when discussing server side implementation. For security reasons also 

data held in hidden fields should only be required data for such reasons as maintaining 

user session information. 

    <!--ASP.NET--> 
    <form id="paymentForm" runat="server"> 
  
        <!--Card choices here are decided by your merchant account and what cards 

your account can accept! --> 
        <asp:DropDownList ID="ddlCardType" runat="server"> 
            <asp:ListItem>Visa</asp:ListItem> 
            <asp:ListItem>Mastercard</asp:ListItem> 
            <asp:ListItem>American Express</asp:ListItem> 
        </asp:DropDownList> 
         
        <asp:Label ID="lbCardNumber" runat="server" Text="card number 

:"></asp:Label> 
        <asp:TextBox ID="tbCardNumber" runat="server" MaxLength="16"></asp:TextBox> 
        <asp:RegularExpressionValidator 
        ID="revCardNumber" runat="server" ErrorMessage="Please check your card num-

ber!"  



 

 
44 

        ValidationExpression="^(?:4[0-9]{12}(?:[0-9]{3})?|5[1-5][0-
9]{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47][0-9]{13}|3(?:0[0-5]|[68][0-
9])[0-9]{11}|(?:2131|1800|35\d{3})\d{11})$"  

        ControlToValidate="tbCardNumber"> 
        </asp:RegularExpressionValidator> 
        <br /> 
        <asp:Label ID="lbExpires" runat="server" Text="expires :"></asp:Label> 
        <!--Include obviously all months to '12'--> 
        <asp:DropDownList ID="ddlExpiryMonth" runat="server"> 
            <asp:ListItem>01</asp:ListItem> 
            <asp:ListItem>02</asp:ListItem> 
        </asp:DropDownList>  
        <asp:DropDownList ID="ddlExpiryYear" runat="server"> 
            <asp:ListItem>2012</asp:ListItem> 
            <asp:ListItem>2013</asp:ListItem> 
            <asp:ListItem>2014</asp:ListItem> 
            <asp:ListItem>2015</asp:ListItem> 
        </asp:DropDownList> 
     
        <asp:Label ID="lbCVV2" runat="server" Text="CVV2 number"></asp:Label> 
        <asp:TextBox ID="tbCVV2" runat="server" MaxLength="4" 

Width="44px"></asp:TextBox> 
        <asp:RequiredFieldValidator ID="rfvCVV" runat="server" ErrorMessage="CVV 

number is required!" 
ControlToValidate="tbCvV2"></asp:RequiredFieldValidator> 

        <br /> 
        <asp:Label ID="lbFirstName" runat="server" Text="first name: "></asp:Label> 
        <asp:TextBox ID="tbFirstName" runat="server" MaxLength="30"></asp:TextBox> 
        <asp:RequiredFieldValidator ID="rfvFirstName" runat="server" 

ErrorMessage="First name is required!" 
ControlToValidate="tbfirstName"></asp:RequiredFieldValidator> 

 
        <asp:Label ID="lbLastName" runat="server" Text="last name: "></asp:Label> 
        <asp:TextBox ID="tbLastName" runat="server" MaxLength="30"></asp:TextBox> 
        <asp:RequiredFieldValidator ID="rfvLastName" runat="server" 

ErrorMessage="Last name is required!" 
ControlToValidate="tbLastName"></asp:RequiredFieldValidator> 

        <br /> 
        <asp:Label ID="lbStreetAddress" runat="server" Text="street address: 

"></asp:Label> 
        <asp:TextBox ID="tbStreetAddress" runat="server" 

MaxLength="30"></asp:TextBox> 
        <asp:RequiredFieldValidator ID="rfvStreetAddress" runat="server" 

ErrorMessage="Street address is required!" 
ControlToValidate="tbStreetAddress"></asp:RequiredFieldValidator> 

             
        <asp:Label ID="lbPostCode" runat="server" Text="ZIP/postal code: 

"></asp:Label> 
        <asp:TextBox ID="tbPostCode" runat="server" MaxLength="9"></asp:TextBox> 
        <asp:RequiredFieldValidator ID="rfvPostCode" runat="server" 

ErrorMessage="ZIP/Postal Code is required!" 
ControlToValidate="tbPostCode"></asp:RequiredFieldValidator> 

        <br />     
        <asp:Button ID="btPay" runat="server" Text="Pay" CausesValidation="True" /> 
    </form> 

 

For the sake of readability, only the required fields have been included. The example 

above also assumes that data relating to the order, most crucially the amount to be 

charged to the card, is already held in the e-commerce site’s database, and would nor-

mally be displayed somewhere on the page, for the user to review as they make their 



 

 
45 

payment. You will notice above that in all instances the textbox MaxLength properties 

are given values. This is an important and very simple security task. Maximum field 

lengths are defined in the PayPal developer’s guide: (Paypal, 2009) . Where possible, list 

boxes are utilized to ensure only allowable values are possible. You will also notice a 

Regular Expression Validator is used to validate the credit card number, and Required 

Field Validators are used for all other text fields. Although the payment gateway will 

also check the number against their own validators it is prudent to check it at the first 

possible opportunity to reduce transaction errors. The regular expression used will be 

explained in the next section. 

 

For PHP developers much of the code in the above example is the same except that all 

fields are standard HTML controls, as opposed to ASP.NET controls, and the valida-

tion is handled by a JavaScript call from the form’s submit button. 

<!--PHP / HTML--> 
<form id="paymentForm" action="payment_form_handler.php"> 
         card type:  
            <!--Card choices here are decided by your merchant account and what 

cards your account can accept! --> 
            <select id="ddlCardType"> 
                <option>Visa</option> 
                <option>Mastercard</option> 
                <option>American Express</option> 
            </select> 
        card number: <input name="tbCardNumber" type="text" maxlength="16" /> 
        <br /> 
        expires :  
            <!--Include obviously all months to '12'--> 
            <select id="ddlExpiryMonth"> 
                <option>01</option> 
                <option>02</option> 
                <option>03</option> 
            </select> 
            <select id="ddlExpiryYear"> 
                <option>2012</option> 
                <option>2013</option> 
                <option>2014</option> 
            </select> 
        CvV2 number : <input name="tbCVV2" type="text" maxlength="4" /> 
        <br /> 
        first name :  <input name="tbFirstName" type="text" maxlength="30" /> 
        last name: <input name="tbLastName" type="text" maxlength="30" /> 
        <br /> 
        street address : <input name="tbStreetAddress" type="text" maxlength="30" /> 
        ZIP/ Postal code : <input name="tbPostCode" type="text" maxlength="9" /> 
 
        <input id="btPay" type="button" value="pay" onclick="javascript: 

submitform()" /> 
 </form> 

 

 



 

 
46 

3.2 User input validation 

As discussed in Section 1 validating the inputted text from users of the payment form 

is vital to combat many security threats. Mainly threats to the integrity of the e-

commerce site itself, but also the resultant threats to the privacy of its users’ personal 

information. Validating all user input fields on the payment form it therefore vital. 

 

JavaScript is the most widely used client scripting language for the purposes of valida-

tion, so this section will present a script for PHP programmers to check user inputted 

text before the form is posted. The script will use Regular Expressions as a validation 

tool. For .NET programmers they can make use of .NET’s regular expression valida-

tors, so no further JavaScript needs to be written to validate form data. 

 

 There are tools available for bypassing client JavaScript validation functions, essential-

ly by manipulating the validated contents of the HTTP request packet after it has left 

the browser environment. (Lawrence, 2012) hence it is important to repeat the valida-

tion process once HTTP requests are received by the web server.  

 

3.2.1 The composition of a credit/debit card number 

Most card numbers are 16 digits long, the first one or two digits specifies the industry, 

all financial service organizations begin with 4 or 5 (hence all Visa cards start with 4, all 

MasterCard cards start with 5). The first 6 digits together make up the Issuer Identifi-

cation Number (IIN) so from the first 6 digits you can tell that the card is a Nordea 

Bank Visa Card for example. The 7th to the second to last digit is the customer’s ac-

count number, so for a 16 digit card number the account number is 9 digits long. The 

final digit is the check sum, used to validate the card according to the Luhn algorithm 

(MintLife, 2011). The regular expression validators presented below take advantage of 

this format to determine if the card number is valid. 

 



 

 
47 

3.2.2 Regular expression validators 

Regular expressions are a powerful tool for checking that a data string matches a speci-

fied rule, or indeed set of rules, and consequently they can ensure that a string, or part 

of a string matches exactly with what is specified in the expression. 

 

Before I present the expressions for validating card numbers, for the benefit of those 

not familiar with regular expression syntax I will explain the basic syntax in relation to 

the examples presented below; 

^ The match must occur at the beginning of the tested string 

$ The match must occur at the end of the tested string 

The examples below feature ^ at the start and $ at the end, this means the whole string 

tested must match exactly to the expression. 

[ ] Character grouping (only those numbers specified are allowed for that digit) 

can be a range [1-5] or an array [12345] 

(?:      ) Means a sub expression 

{n} The previous sub expression or grouping  must be matched n number of 

times 

(msdn, 2011) 

 

Below are the regular expressions for validating each major card type, of course these 

can be easily adapted to suit other card types if needed (Goyvaerts, 2009) 

 

Visa ^4[0-9]{12}(?:[0-9]{3})?$ 

Mastercard  ^5[1-5][0-9]{14}$ 

American Express ^3[47][0-9]{13}$ 

Diners Club ^3(?:0[0-5]|[68][0-9])[0-9]{11}$ 

Discover ^6(?:011|5[0-9]{2})[0-9]{12}$ 

JCB ^(?:2131|1800|35\d{3})\d{11}$ 

(Goyvaerts, 2009) 

 



 

 
48 

3.2.3 JavaScript validation and form submission script 

The script below is relevant only to the PHP developers reading this study. As men-

tioned ASP.NET developers no not need to manually write validation scripts as these 

are automatically generated by the .NET framework, if there are validator tags included 

within the HTML document. 

 

    <script type="text/javascript"> 
        function SubmitForm() { 
            var e = document.getElementById("ddlCardType"); 
            var cardType = e.options[e.selectedIndex].value; 
            var e2 = document.getElementById("tbCardNumber"); 
            var cardNumber = e2.value; 
   
            if (isValidCreditCard(cardType,cardNumber)) { 
                  document.forms["paymentForm"].submit(); 
            } 
            else{ 
 
                // Show a message to the user that card details are wrong 
            } 
        } 
 
        function IsValidCreditCard(type, ccnum) { 
            if (type == "Visa") { 
                // Visa: length 16, prefix 4, dashes optional. 
                var re = /^4[0-9]{12}(?:[0-9]{3})?$/i; 
            } else if (type == "MasterCard") { 
                // Mastercard: length 16, prefix 51-55, dashes optional. 
                var re = /^5[1-5][0-9]{14}$/i; 
            } else if (type == "Discovery") { 
                // Discover: length 16, prefix 6011, dashes optional. 
                var re = /^6(?:011|5[0-9]{2})[0-9]{12}$/i; 
            } else if (type == "AmEx") { 
                // American Express: length 15, prefix 34 or 37. 
                var re = /^3[47][0-9]{13}$/i; 
            } else if (type == "Diners") { 
                // Diners: length 14, prefix 30, 36, or 38. 
                var re = /^3(?:0[0-5]|[68][0-9])[0-9]{11}$/i; 
            } 
            else if (type == "JCB") { 
                // Diners: length 14, prefix 30, 36, or 38. 
                var re = /^(?:2131|1800|35\d{3})\d{11}$/i; 
            } 
 
            if (!re.test(ccnum)) return false; 
            // Checksum ("Mod 10") 
            // Add even digits in even length strings or odd digits in odd length 

strings. 
            var checksum = 0; 
            for (var i = (2 - (ccnum.length % 2)); i <= ccnum.length; i += 2) { 
                checksum += parseInt(ccnum.charAt(i - 1)); 
            } 
            // Analyze odd digits in even length strings or even digits in odd 

length strings. 
            for (var i = (ccnum.length % 2) + 1; i < ccnum.length; i += 2) { 
                var digit = parseInt(ccnum.charAt(i - 1)) * 2;  
                if (digit < 10) { checksum += digit; } else { checksum += (digit - 
9); } 



 

 
49 

            } 
            if ((checksum % 10) == 0) return true; else return false; 
        } 
    </script> 

IsValidCreditCard function adapted from (Breaking Par Consulting Inc, 2012) 

 

If you refer back to the PHP HTML form example given earlier you will see that the 

SubmitForm() function is called from the button within the ‘paymentForm’ form. This 

function then simply calls the IsValidCreditCard(type,ccnum) function to check the 

card number’s validity. If it is valid, it posts the form to the server handler (the .php 

file) specified in the ‘action’ attribute of the form. If the card is not valid, a message 

would normally be shown somewhere on the form, and the form is not posted. 

 

This script should be extended also to validate all user input fields such as name and 

address fields. 

 

3.3 Payment page usability 

Shopping cart abandonment is a major barrier to the success of an e-commerce web-

site. As mentioned in the introduction to this study up to 60% of shopping carts get 

abandoned at some point using the process (Baymard Institute, 2011, p. 4). A large 

percentage of those will be at the payment page, so for the purposes of this study it is 

important to look at the factors that affect payment page usability. 

 

Whilst many studies cover the full range of e-commerce usability issues, there is always 

a section focused on the payment page specifically, commonly referred to as Checkout 

Usability. There are a number of aspects relating to payment page design that can af-

fect a user’s perception of trust, leading them to abandon their order even this late 

stage (Governor Technology, 2009, p. 11). Furthermore failure to implement a simple 

easy to use design or implement adequate debugging and testing across all browsers 

can lead to users abandoning their order. Next I outline a set of recommended consid-

eration according to Governor Technology, a respected UK based software develop-

ment company (Governor Technology, 2009). There is also several of my own rec-

ommendations. 

 



 

 
50 

Form design 

Order the user fields are ordered in the same way as would appear on the card. Also 

ensure expiry date list controls are in the same format as would appear on the card. Do 

not have a default card type chosen, regardless of whether you believe most customers 

use say ‘Visa’. Ensure the card type list box is set to ‘choose’. Regarding the CVV 

number many users need help finding the code, this information is specific to the card 

issuer so should be adapted to match their choice from the card type box, often an 

image is used to show an example of where to find it. Do not include a Cancel button 

next to the ‘Pay’ or ‘Confirm’ button, many users will click the wrong one. Finally for 

validation errors, ensure you again provide helpful information about what is wrong, 

the regular expressions given earlier in this section for example could tell you if the 

card number is in the wrong format for the card type selected. 

 

User instructions 

Explain to users how to complete each field on the form, indicating required format, if 

the field is mandatory and also how the data they input will be used (Holst, 2011). Ap-

pendix 7 gives a good example of how this can be achieved. Ensure that even fields 

that seem obvious to you are explained, thus ensuring the user does not become frus-

trated. Remember that it is more likely that the user will not complete the payment, so 

all guidance is a help. Giving an example of what the inputted data should look like 

instead of extensive explanations can sometimes be more helpful. It is important to 

also indicate which fields will be treated as sensitive, for example include a lock icon 

and SSL certificate logo next to the card number field, as shown in Appendix7. 

 

Payment options 

Adding additional payment methods can greatly prevent shopping cart abandonment 

(Governor Technology, 2009, p. 11). I have already mentioned about the important 

benefits of adding Google Checkout and Amazon Payments buttons. If a user is only 

comfortable with using a certain type of payment method, and the site you are devel-

oping does not offer it, they will most likely go to another store that does. Offer as 

many different payment options as is practical and possible to offer. 

 

Gateway response handling 



 

 
51 

Handle card errors effectively, telling the user what they can do to rectify the problem, 

do not display error codes with only a generic message. For example instead of “Error 

code: 17834, payment failed” use “We are unable to process your payment, please 

double check your card details”. Indeed make sure you are able to provide information 

for all potential errors received from the payment gateway such as card declined errors: 

“Unfortunately your card has been declined, is there another card you could try?”.  

 

The other side of error code handling is success code handling, and this is equally as 

important. Although these issues relate to after the payment has been processed, return 

business is an important thing to garner in e-commerce. ‘Dead end’ receipt pages 

should be avoided, as the minimum offer a ‘continue shopping’ button, or offer a tell-

a-friend’ form or display customer service FAQs. 

 

Unsecure page browser errors 

Comprehensive cross browser testing is important to ensure your SSL certificate is 

operating properly and there are no HTML or script elements that are causing page 

errors. HTML frames on the page often cause errors such as the common Internet 

Explorer error: ‘This page contains insecure as well as secure items: Do you want to 

download insecure as well as secure items” (Entrust, 2006). Either delete the offending 

frames or inform the user not to worry about the error. 

 

Other details on the page 

Whilst it is very important to keep the payment page simple, in terms of limiting the 

number of choices the user has to make, there is other information that should be pro-

vided to reassure the user at to what they are paying for, and inform then about the 

security credentials of the page. Firstly the user should be able to see a summary of 

their order and more importantly a full breakdown of the amount they are being 

charged, including taxes, delivery, and any other charges. The page should not include 

additional advertisements, add-on purchases or other options requiring user decisions. 

Do not display disclaimers, warnings or other messages that might concern the user. If 

these must be provided, add them as a link, which would open a pop-up window, easi-

ly achieved with JavaScript. Include a customer services telephone number and the 

name and address of the company. Users may want to ask a question before submitting 



 

 
52 

the payment, if they start navigating back to find contact details, it is likely the session 

with be lost.  

 

3.4 SSL Certificate logos and informing users 

I have discussed about the necessity for PCI compliance if you are handling payment 

card information through your site in the previous section. To be compliant means you 

need an SSL certificate, preferably one issued by a Certificate Authority (CA). A study 

on SSL consumer awareness by Entrust found that a key element of consumer confi-

dence is the presence of a third party security logo, and a padlock icon somewhere in 

the browser; “85 percent of those who routinely conduct transactions online look for a 

specific icon or indicator (e.g., the “padlock” used with SSL certificate technology)” 

(Entrust, 2007). Whilst this is likely true, as this is not independent research one needs 

to be cautious of the findings. I would argue that the findings are essentially true, how-

ever far fewer regular users would really understand what these CA logos mean, i.e. 

what SSL is, what the padlock icon means, and how all these things help to ensure the 

security of your data. “Unfortunately, standard SSL certificates can sometimes be ille-

gitimately obtained and the padlock icon can be reproduced on browsers, tricking even 

seasoned Internet users into phishing or man-in-the-middle fraud attacks” (Entrust, 

2007). Consequently people who see a CA logo, such as those shown in Appendix 2, 

and a lock icon in the browser assume they are safe. If their personal information then 

gets stolen, their trust in your e-commerce site and others will be permanently dam-

aged. As a developer of an e-commerce site it if your role to explain the importance of 

extended validation (EV-SSL) certificates, to your client’s business, and ensure also 

that the site’s users are informed fully about SSL, and about checking the EV-SSL cer-

tificate’s validity from the browser address bar, prior to making a payment. Site users 

should be told what they should see when they view details of the SSL certificate (as 

shown in Appendix 3). Indeed Nordea Bank is one of the few sites found as part of 

this study that explain the idea of SSL to their site users, something which is positive, 

and demonstrates that many users do not understand the concept.. Indeed it would be 

fairly easy to include a script to detect the browser and version and then show an im-

age, showing users exactly what they should see from the browser’s address bar. 

 



 

 
53 

Informing users in this way will help to build a strong bond of trust between the site’s 

users and the company operating it. 

 

3.5 Chapter Summary 

This chapter has covered the main technical aspects of implementing a basic payment 

form, with a view to it being added to into a fully implemented checkout page. It has 

covered the HTML and JavaScript implementation of the form, looked in detail at 

page usability and consumer confidence issues. The important points to note are sum-

marized below; 

 

HTML Forms 

 Use only the ‘post’ method for submitting payment card details, never the ‘get’ 

method 

 Include extra ‘hosted buttons’ from payment providers such as Google Check-

out, and Amazon Payments. As well as potentially attracting a wider customer 

base by offering more payment options, Google Checkout is also reported to 

have Search Engine Optimization (SEO) benefits. 

 Include only required information in hidden HTML fields, necessary for such 

things as maintaining a user session. 

User Input Validation 

 Validate all user input fields in a client side script, as well as when received by 

the server. 

 Use regular expressions and the check sum calculation for validating card num-

bers. 

Payment page usability 

 Design an easy to use payment form, with a commonly used layout, informing 

the user about each and every field, such as where to find the CVV number. 

 Include as many payment options as viably possible. 

 Handle all possible response codes from the payment gateway, and handle them 

effectively, providing useful feedback to the user as to what is happening. 

SSL Certificate logos and informing the user 

 Clearly display the logo provided by the Certificate Authority (CA).  



 

 
54 

 Explain to the user what SSL is, and how visually what they should expect to 

see if they click to show details of the certificate in their browser. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
55 

4 Back end implementation 

This section looks at the server-side code implementation of a payments page. It looks 

in detail at how to interface with the payment gateway APIs chosen in chapter 2 of this 

study. In order to interface with such advantaged APIs, card details must be handled 

on the web server of the e-commerce business. Consequently Secure Socket Layer 

(SSL) connections must be implemented for the payment page. The subjects discussed 

in this section can therefore be summarised as; 

 

 Admin issues relating to each payment gateway, for instance the setting up of 

test accounts, altering code to ensure the correct credentials are used, etc. 

 Server side code will be presented relating to how to submit an HTTP request 

to the payment gateway servers, and how to handle the response. As two pay-

ment gateway implementations and two programming languages have been 

chosen for this study a total of four separate code examples will be presented in 

this section. 

 SSL implementations will be presented for two separate types of server com-

monly used for ASP.NET and PHP websites namely IIS 7 for Windows Server 

2008 and Apache 2.4.2.  

 

4.1 Payment gateway user accounts 

It may be the case that the client you would be developing for already has a merchant 

bank account, it being necessary to accept traditional point-of-sale card transactions, 

but unless they already have had an online payments facility for their customers they 

will need to set up a user account with the payment gateway of their choice. Initially a 

test user account will need setting up to debug your application extensively before live 

credit card details are used. It is also important potentially to pass on the test account 

log-in credentials to your client. If they are not familiar with the process of the pay-

ment gateway, they will need to become familiar with the transaction 

admin/management interface which is invariably included as part of the user account. 

The management interface is where the account holder can alter their account prefer-

ences, but most importantly they can pass transactions for settlement. This is normally 



 

 
56 

handled in batches automatically according to a default schedule, but it is important for 

your potential client to understand what information they can access, and alter through 

their management interface. 

 

I have discussed in chapter 2 about the decisions affecting which payment gateway to 

choose, the options offered for managing transactions is a factor affecting that deci-

sion. The detailed discussions regarding the options for different accounts are out of 

the scope of this section, but here we discuss the accounts necessary for testing trans-

actions between an e-commerce application and the gateways chosen as a focus for this 

study. 

 

4.1.1 Paypal manager account 

The transaction interface is not available unless the client signs up for a payflow pro 

account, and is prepared to pay for the signup costs. If they wish to do this they can 

from the link below: 

https://www.paypal.com/us/cgi-bin/?cmd=_payflow-get-started-outside  

However test transactions can be sent, using specific test card numbers and calling 

specific test API urls. This way the e-commerce site can be debugged, and transactions 

can be sent, and response codes can be checked and handled as they would for real live 

transactions.  

 

4.1.2 Authorize.net test account 

Authorize.net offer that you can set up a fully functioning test account, which func-

tions in the same way as a live account. The merchant (i.e. your client) then later has 

the option of upgrading the account to a live account. The test account can see set up 

from the link below: 

https://developer.authorize.net/testaccount/  

As a developer you then have the option of giving the test account log-in details to 

your client in order for them to familiar themselves with the transaction management 

interface.  

 

https://www.paypal.com/us/cgi-bin/?cmd=_payflow-get-started-outside
https://developer.authorize.net/testaccount/


 

 
57 

4.2 Server side code implementation 

4.2.1 PayPal Payflow Pro 

As discussed in the previous chapters the first payment gateway integration we will 

look at is PayPal’s most advanced integration, Payflow Pro. PayPal publish the APIs as 

code libraries for developers to include locally in their e-commerce site implementa-

tion. This is useful as it no doubt ensures fewer errors when transmitting to PayPal’s 

server, as instances of the API classes demand that all necessary information is pro-

vided prior to data being posted. The code examples are based on SDK downloads 

which can be viewed for downloaded from PayPal (PayPal, 2012). 

 

ASP.NET Implementation 

This payment gateway integration for ASP.NET is taken care of by including a .DLL 

file in your site project as a ‘new reference’, or simply place the .DLL in the bin folder 

and include the ‘using’ references relating to PayPal as shown below. 

 

For the purposes of this example most commenting has been deleted to more clearly 

show the objects that the code behind file is using from the .DLL, and better show the 

process of submitting a transaction. Although all required objects are shown in the 

code below, each object requires a number of properties to be set, which can be re-

ferred to in the full API documentation.  

 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Web; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using PayPal.Payments.Common; 
using PayPal.Payments.Common.Utility; 
using PayPal.Payments.DataObjects; 
using PayPal.Payments.Transactions; 
using System.Threading; 
 
public partial class Default2 : System.Web.UI.Page 
{ 
    protected void Page_Load(object sender, EventArgs e) 
    { 
     
        String RequestID = PayflowUtility.RequestId; 
        UserInfo User = new UserInfo("-", "-", "-", "-"); 
        PayflowConnectionData Connection = new PayflowConnectionData(); 
        Invoice Inv = new Invoice(); 



 

 
58 

        String usCurrency = "USD"; 
        Currency Amt = new Currency(new decimal(19.99), usCurrency); 
        Inv.Amt = Amt; 
 
        // *** Set the Billing Address details. *** 
        BillTo Bill = new BillTo(); 
        Bill.BillToFirstName = tbFirstName.Text; 
        Bill.BillToLastName = tbLastName.Text; 
        Bill.BillToStreet = tbStreetAddress.Text; 
        Bill.BillToZip = tbPostCode.Text; 
         
        // Set the BillTo object into invoice. 
        Inv.BillTo = Bill; 
 
        ShipTo Ship = new ShipTo(); 
        // If shipping address is different to billing address this can be set here 
 
        // ***  Create Customer Data *** 
    
        CustomerInfo CustInfo = new CustomerInfo(); 
        
        UserItem nUser = new UserItem(); 
                 nUser.UserItem1 = "TUSER1"; //e-commerce site user-name 
                Inv.UserItem = nUser; 
 
        // *** Create a new Payment Device - Credit Card data object. *** 
  
        CreditCard CC = new CreditCard(tbCardNumber.Text, 

ddlExpiryMonth.SelectedValue+ddlExpiryYear.SelectedValue); 
                   CC.Cvv2 = tbCvV2.Text; 
        CardTender Card = new CardTender(CC); 
        SaleTransaction Trans = new SaleTransaction(User, Connection, Inv, Card, 

RequestID); 
        ClientInfo cInfo = new ClientInfo(); 
        cInfo.IntegrationProduct = "Test"; 
        cInfo.IntegrationVersion = "1.0"; 
        Trans.ClientInfo = cInfo; 
        Trans.Verbosity = "HIGH"; 
 
        // Try to submit the transaction up to 3 times with 5 second delay.  This 

can be used 
        // in case of network issues.  The idea here is since you are posting via 

HTTPS behind the scenes there 
        // could be general network issues, so try a few times before you tell cus-

tomer there is an issue. 
        int trxCount = 1; 
        bool RespRecd = false; 
        while (trxCount <= 3 && !RespRecd) 
        { 
            // Submit the Transaction 
            Response Resp = Trans.SubmitTransaction(); 
 
            // Display the transaction response parameters. 
            if (Resp != null) 
            { 
                // Here would go response code handling. There is an extensive num-

ber of codes, all of which should  
                //Be handled effectively 
            } 
            else 
            { 
                Thread.Sleep(5000); // let's wait 5 seconds to see if this is a tem-

porary network issue. 
                trxCount++; 
            } 



 

 
59 

 
 
 
        } 
        if (!RespRecd) 
        { 
            // Transaction failed - provide a message 
        } 
    } 
} 

 

 

PHP Implementation 

The PHP example of how to submit a card payment transaction to PayPal is a broadly 

similar process, involving name and value pairs (NVPs) collected from data submitted 

on the HTML form. Then a call to a function in another referenced .PHP file 

(CallerService.php), namely  ‘hash_call("doDirectPayment",$nvpstr)’ . The hash_call 

function within the CallerService.PHP is the one which contructs the HTTP (or cor-

rectly HTTPS) request using a cURL PHP library.  CURL essentially allows a PHP 

application to communicate easier will many different servers over many different pro-

tocols, for instance http, https, ftp, gopher, telnet, dict, file and others. (PHP, 2012). 

This makes the process of transmitting over an SSL connection (i.e. HTTPS) easier to 

configure. CURL was added to PHP from version 4.0.2 , so you will need to check the 

version of PHP being used on your web server, and possible enable the cURL library if 

the functions used in the example above cannot be found.  

<?php 
/*********************************************************** 
DoDirectPaymentReceipt.php 
 
Submits a credit card transaction to PayPal using a 
DoDirectPayment request. 
 
The code collects transaction parameters from the form 
displayed by DoDirectPayment.php then constructs and sends 
the DoDirectPayment request string to the PayPal server. 
The paymentType variable becomes the PAYMENTACTION parameter 
of the request string. 
 
After the PayPal server returns the response, the code 
displays the API request and response in the browser. 
If the response from PayPal was a success, it displays the 
response parameters. If the response was an error, it 
displays the errors. 
 
Called by paymentPage.php. 
 
Calls CallerService.php and APIError.php. 
 
***********************************************************/ 
 



 

 
60 

require_once 'CallerService.php'; 
session_start(); 
 
 
/** 
 * Get required parameters from the web form for the request 
 */ 
$paymentType =urlencode('Sale'); 
$firstName =urlencode( $_POST['tbFirstName']); 
$lastName =urlencode( $_POST['tbLastName']); 
$creditCardType =urlencode( $_POST['ddlCardType']); 
$creditCardNumber = urlencode($_POST['tbCardNumber']); 
$expDateMonth =urlencode( $_POST['ddlExpiryMonth']); 
 
// Month must be padded with leading zero 
$padDateMonth = str_pad($expDateMonth, 2, '0', STR_PAD_LEFT); 
 
$expDateYear =urlencode( $_POST['ddlExpiryYear']); 
$cvv2Number = urlencode($_POST['tbCvV2']); 
$address1 = urlencode($_POST['StreetAddress']); 
$address2 = urlencode(''); 
$city = urlencode(''); 
$state =urlencode(''); 
$zip = urlencode($_POST['tbPostCode']); 
$amount = urlencode('19.99'); 
//$currencyCode=urlencode($_POST['currency']); 
$currencyCode="EUR";  
$paymentType=urlencode(''); // check this value from the documentation 
 
/* Construct the request string that will be sent to PayPal. 
   The variable $nvpstr contains all the variables and is a 
   name value pair string with & as a delimiter */ 
$nvpstr="&PAYMENTACTION=$paymentType&AMT=$amount&CREDITCARDTYPE=$creditCardType&ACCT

=$creditCardNumber&EXPDATE=".         
$padDateMonth.$expDateYear."&CVV2=$cvv2Number&FIRSTNAME=$firstName&LASTNAME
=$lastName&STREET=$address1&CITY=$city&STATE=$state". 

"&ZIP=$zip&COUNTRYCODE=US&CURRENCYCODE=$currencyCode"; 
 
 
 
/* Make the API call to PayPal, using API signature. 
   The API response is stored in an associative array called $resArray */ 
$resArray=hash_call("doDirectPayment",$nvpstr); 
 
/* Display the API response back to the browser. 
   If the response from PayPal was a success, display the response parameters' 
   If the response was an error, display the errors received using APIError.php. 
   */ 
$ack = strtoupper($resArray["ACK"]); 
 
if($ack!="SUCCESS")  { 
    $_SESSION['reshash']=$resArray; 
 $location = "APIError.php"; 
   header("Location: $location"); 
   } 
 
?> 
 
<html> 
<head> 
    <title>PayPal PHP SDK - DoDirectPayment API</title> 
    <link href="sdk.css" rel="stylesheet" type="text/css" /> 
</head> 
<body> 
 <br> 



 

 
61 

 <center> 
 <font size=2 color=black face=Verdana><b>Do Direct Payment</b></font> 
 <br><br> 
 
 <b>Thank you for your payment!</b><br><br> 
  
   <table width=400> 
 
        <?php  
    require_once 'ShowAllResponse.php'; 
         ?> 
    </table> 
    </center> 
    <a class="home" id="CallsLink" href="index.html">Home</a> 
</body> 
</html> 

 

Of course in this example the full response from the payment gateway server would be 

displayed on the webpage. While this is useful for testing, in practice, as I have dis-

cussed, the handling of response information should be extensive, and only useful, 

necessary and helpful information should be displayed on screen. 

 

In reality it is likely that proper response code handling would account for the majority 

of the total lines of code, as there are many different eventualities that must be ac-

counted for. Thankfully in the case of this particular payment gateway integration, and 

also with the Authorize.net integration to follow, both offer clear documentation on 

what response information is included in the associative array returned, and what it 

means to the end-user. 

 

4.2.2 Authorize.net Advanced Integration Method (AIM) 

As discussed this method involves an HTTP request using the POST method, and in-

cludes all required data as name and value pairs (NVPs). The HTTP response then 

provides details of whether the payment was successful or not. The example code im-

plementations used here as a basis can be viewed or downloaded from 

http://developer.authorize.net/downloads/samplecode/. 

 

ASP.NET Implementation 

As you can see below the HTTP response is sent to the .DLL file handling the transac-

tions so no installation of additional code libraries are needed, making it quite a simple 

process.  



 

 
62 

using System; 
using System.Linq; 
using System.Web; 
using System.Web.UI; 
using System.Web.UI.WebControls; 
using System.Net; 
using System.IO; 
using System.Collections.Generic; 
 
namespace AIM_Example 
{ 
    public partial class _Default : System.Web.UI.Page 
    { 
        protected void Page_Load(object sender, EventArgs e) 
        { 
 
        } 
 
        protected void btPay_Click(object sender, EventArgs e) 
        { 
            // By default, this sample code is designed to post to our test server 

for 
            // developer accounts: https://test.authorize.net/gateway/transact.dll 
            // for real accounts (even in test mode), please make sure that you are 
            // posting to: https://secure.authorize.net/gateway/transact.dll 
            String post_url = "https://test.authorize.net/gateway/transact.dll"; 
 
            Dictionary<string, string> post_values = new Dictionary<string, 

string>(); 
            //the API Login ID and Transaction Key must be replaced with valid val-

ues 
            post_values.Add("x_login", "API_LOGIN_ID"); 
            post_values.Add("x_tran_key", "TRANSACTION_KEY"); 
 

post_values.Add("x_version", "3.1"); 
            post_values.Add("x_delim_data", "TRUE"); 
            post_values.Add("x_delim_char", "|"); 
            post_values.Add("x_relay_response", "FALSE"); 
 
            post_values.Add("x_type", "AUTH_CAPTURE"); 
            post_values.Add("x_method", "CC"); 
            post_values.Add("x_card_num", tbCardNumber.Text); 
            post_values.Add("x_exp_date", 

ddlExpiryMonth.SelectedValue+ddlExpiryYear.SelectedValue); 
 
            post_values.Add("x_amount", "19.99"); 
            post_values.Add("x_description", "Sample Transaction"); 
 
            post_values.Add("x_first_name", tbFirstName.Text); 
            post_values.Add("x_last_name", tbLastName.Text); 
            post_values.Add("x_address", tbStreetAddress.Text); 
            //post_values.Add("x_state", "WA"); 
            post_values.Add("x_zip", tbPostCode.Text); 
            // Additional fields can be added here as outlined in the AIM integra-

tion 
            // guide at: http://developer.authorize.net 
 
            // This section takes the input fields and converts them to the proper 

format 
            // for an http post.  For example: 

"x_login=username&x_tran_key=a1B2c3D4" 
            String post_string = ""; 
 
            foreach (KeyValuePair<string, string> post_value in post_values) 
            { 



 

 
63 

                post_string += post_value.Key + "=" + 
HttpUtility.UrlEncode(post_value.Value) + "&"; 

            } 
            post_string = post_string.TrimEnd('&'); 
 
            // The following section provides an example of how to add line item 

details to 
            // the post string.  Because line items may consist of multiple values 

with the 
            // same key/name, they cannot be simply added into the above array. 
            // 
            // This section is commented out by default. 
            /* 
            string[] line_items = { 
                "item1<|>golf balls<|><|>2<|>18.95<|>Y", 
                "item2<|>golf bag<|>Wilson golf carry bag, red<|>1<|>39.99<|>Y", 
                "item3<|>book<|>Golf for Dummies<|>1<|>21.99<|>Y"}; 
  
            foreach( string value in line_items ) 
            { 
                post_string += "&x_line_item=" + HttpUtility.UrlEncode(value); 
            } 
            */ 
 
            // create an HttpWebRequest object to communicate with Authorize.net 
            HttpWebRequest objRequest = (HttpWebRequest)WebRequest.Create(post_url); 
            objRequest.Method = "POST"; 
            objRequest.ContentLength = post_string.Length; 
            objRequest.ContentType = "application/x-www-form-urlencoded"; 
 
            // post data is sent as a stream 
            StreamWriter myWriter = null; 
            myWriter = new StreamWriter(objRequest.GetRequestStream()); 
            myWriter.Write(post_string); 
            myWriter.Close(); 
 
            // returned values are returned as a stream, then read into a string 
            String post_response; 
            HttpWebResponse objResponse = (HttpWebResponse)objRequest.GetResponse(); 
            using (StreamReader responseStream = new 

StreamReader(objResponse.GetResponseStream())) 
            { 
                post_response = responseStream.ReadToEnd(); 
                responseStream.Close(); 
            } 
 
            // the response string is broken into an array 
            // The split character specified here must match the delimiting charac-

ter specified above 
            Array response_array = post_response.Split('|'); 
 
            // the results are output to the screen in the form of an html numbered 

list. 
            resultSpan.InnerHtml += "<OL> \n"; 
            foreach (string value in response_array) 
            { 
                resultSpan.InnerHtml += "<LI>" + value + "&nbsp;</LI> \n"; 
            } 
            resultSpan.InnerHtml += "</OL> \n"; 
            // individual elements of the array could be accessed to read certain 

response 
            // fields.  For example, response_array[0] would return the Response 

Code, 
            // response_array[2] would return the Response Reason Code. 



 

 
64 

            // for a list of response fields, please review the AIM Implementation 
Guide 

        } 
    } 
} 

 

The code here represents an example of how one might implement the code behind 

file of the web form example presented in the previous section. The btPay_Click 

method, as well as the control IDs given here also reflect those presented in the previ-

ous chapter detailing the HTML form code. In the previous chapter it was presented, 

in the payment form HTML code, that the card security number (CVV2) was also be-

ing collected from the user. It was discussed that this would be good practice for secu-

rity purposes. To submit this number as part of the post string, it would need to be 

added as an additional variable by adding it to the post_values dictionary. You would 

need the check the AIM integration guide, as to the correct key and value pair format, 

as it is not a standard variable. The API Login ID and Transaction Key values together 

provide the merchant authentication required for access to the payment gateway 

(Authorize.net, 2012, p. 74). You will receive your ID and Transaction Key on opening 

either an Authorize.net test account or upgrading a test account to an actual merchant 

account. 

 

All API fields should now be fairly self explanatory except for the ‘x_version’, 

‘x_delim_data’, ‘x_delim_char’. These are referred to in the documentation as best 

practice fields. They are not required but it makes the connection with the payment 

gateway more robust. In addition to these ‘x_ ncap_char’ and ‘x_relay_response’ are 

also recommended. None of these fields’ values should ever need changing but in or-

der to understand what they relate to please refer to the table below: 

 

x_version Format: 3.0, 3.1 
Notes: Indicates to the system the set of fields that will be includ-
ed in the response: 
3.0 is the default version. 
3.1 allows the merchant to utilize partial authorizations and the 
Card Code feature, and is the 
current standard version. 
It is highly recommended that you submit this field on a per-
transaction basis to be sure that 
the formats of transaction requests and the responses you receive 
are consistent. 

x_delim_data Format; TRUE, T, YES, Y 
Notes: A value of TRUE indicates a request for delimited re-



 

 
65 

sponse from the payment 
gateway. Since all AIM transactions are direct response, a value of 
TRUE is required. 
Submit this field for each transaction to be sure that transaction 
responses are 
returned in the correct format. 

x_delim_char Notes: The character that is used to separate fields in the transac-
tion response. The 
payment gateway will use the character passed in this field or the 
value stored in the 
Merchant Interface if no value is passed. 
If this field is passed and the value is null, it overrides the value 
stored in the Merchant 
Interface and the transaction response contains no delimiting char-
acter. 
It is recommended that you submit this field on a per-transaction 
basis to be sure that 
transaction responses are returned in the correct format. 

x_ encap_char Notes: The character that is used to encapsulate the fields in the 
transaction response. This 
is only necessary if it is possible that your delimiting character 
could be included in any field 
values. 
The payment gateway will use the character passed in this field or 
the value stored in the 
Merchant Interface if no value is passed. 

x_relay_response Notes: This field, when set to TRUE, instructs the payment gate-
way to return transaction 
results to the merchant by means of an HTML form POST to the 
merchant’s Web server for a 
relay response. 
For our AIM example here it should always to be set to false. 

(Authorize.net, 2012, pp. 64-75) 

 

PHP Implementation 

This implementation follows the logic of the ASP.NET version, and gives similar 

comments for each section of code. The only difference is the library used for the 

HTTP request, it being a special library which might not be enabled as standard. I will 

explain this after presenting the code. 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  
  "http://www.w3.org/TR/html4/loose.dtd"> 
<HTML lang='en'> 
<HEAD> 
 <TITLE> Sample AIM Implementation </TITLE> 
</HEAD> 
<BODY> 
<P> This sample code is designed to generate a post using Authorize.net's 
Advanced Integration Method (AIM) and display the results of this post to 
the screen. </P> 
<P> For details on how this is accomplished, please review the readme file, 
the comments in the sample code, and the Authorize.net AIM API documentation 
found at http://developer.authorize.net </P> 
<HR /> 
 



 

 
66 

<?PHP 
 
// By default, this sample code is designed to post to our test server for 
// developer accounts: https://test.authorize.net/gateway/transact.dll 
// for real accounts (even in test mode), please make sure that you are 
// posting to: https://secure.authorize.net/gateway/transact.dll 
 
$post_url = "https://test.authorize.net/gateway/transact.dll"; 
 
 // VALUES FROM THE FORM 
$firstName  = $_POST['tbFirstNmae']; 
$lastName  = $_POST['tbLastName']; 
$streetAddress = $_POST['tbStreetAddress']; 
$postcode  = $_POST['tbPostCode']; 
$ccNum  = $_POST['tbCardNumber']; 
$cvv2  = $_POST['tbCVV2']; 
$expiryMonth  = $_POST['ddlExpiryMonth']; 
$expiryYear  = $_POST['ddlExpiryYear']; 
 
 
 
 
$post_values = array( 
  
 // the API Login ID and Transaction Key must be replaced with valid 

values 
 "x_login"   => "API_LOGIN_ID", 
 "x_tran_key"   => "TRANSACTION_KEY", 
 
 "x_version"   => "3.1", 
 "x_delim_data"  => "TRUE", 
 "x_delim_char"  => "|", 
 "x_relay_response"  => "FALSE", 
 
 "x_type"   => "AUTH_CAPTURE", 
 "x_method"   => "CC", 
 "x_card_num"   => $ccNum, 
 "x_exp_date"   => $expiryMonth+$expiryYear, 
 
 "x_amount"   => "19.99", 
 "x_description"  => "Sample Transaction", 
 
 "x_first_name"  => $firstName, 
 "x_last_name"  => $lastName, 
 "x_address"   => $streetAddress, 
 "x_zip"   => $postcode 
 // Additional fields can be added here as outlined in the AIM integra-
tion 
 // guide at: http://developer.authorize.net 
); 
 
// This section takes the input fields and converts them to the proper format 
// for an http post.  For example: "x_login=username&x_tran_key=a1B2c3D4" 
 
$post_string = ""; 
foreach( $post_values as $key => $value ) 
 { $post_string .= "$key=" . urlencode( $value ) . "&"; } 
$post_string = rtrim( $post_string, "& " ); 
 
// The following section provides an example of how to add line item details to 
// the post string.  Because line items may consist of multiple values with the 
// same key/name, they cannot be simply added into the above array. 
// 
// This section is commented out by default. 
/* 

https://secure.authorize.net/gateway/transact.dll


 

 
67 

$line_items = array( 
 "item1<|>golf balls<|><|>2<|>18.95<|>Y", 
 "item2<|>golf bag<|>Wilson golf carry bag, red<|>1<|>39.99<|>Y", 
 "item3<|>book<|>Golf for Dummies<|>1<|>21.99<|>Y"); 
  
foreach( $line_items as $value ) 
 { $post_string .= "&x_line_item=" . urlencode( $value ); } 
*/ 
 
// This sample code uses the CURL library for php to establish a connection, 
// submit the post, and record the response. 
// If you receive an error, you may want to ensure that you have the curl 
// library enabled in your php configuration 
 
$request = curl_init($post_url); // initiate curl object 
 curl_setopt($request, CURLOPT_HEADER, 0); // set to 0 to eliminate 

header info from response 
 curl_setopt($request, CURLOPT_RETURNTRANSFER, 1); // Returns response 

data instead of TRUE(1) 
 curl_setopt($request, CURLOPT_POSTFIELDS, $post_string); // use HTTP 

POST to send form data 
 curl_setopt($request, CURLOPT_SSL_VERIFYPEER, FALSE); // uncomment this 

line if you get no gateway response. 
 $post_response = curl_exec($request); // execute curl post and store 

results in $post_response 
 // additional options may be required depending upon your server con-

figuration 
 // you can find documentation on curl options at 

http://www.php.net/curl_setopt 
curl_close ($request); // close curl object 
 
// This line takes the response and breaks it into an array using the specified de-
limiting character 
$response_array = explode($post_values["x_delim_char"],$post_response); 
 
// The results are output to the screen in the form of an html numbered list. 
echo "<OL>\n"; 
foreach ($response_array as $value) 
{ 
 echo "<LI>" . $value . "&nbsp;</LI>\n"; 
} 
echo "</OL>\n"; 
// individual elements of the array could be accessed to read certain response 
// fields.  For example, response_array[0] would return the Response Code, 
// response_array[2] would return the Response Reason Code. 
// for a list of response fields, please review the AIM Implementation Guide 
?> 
</BODY> 
</HTML> 

 

Similarly to the PayPal example earlier you can see here directly the use of the cURL 

library to construct and send an HTTPS request. You will need to check that the ver-

sion of PHP on your web server supports this library, also you may receive run-time 

errors. 

 



 

 
68 

4.3 Enabling SSL for Apache and Windows Server 

We will now look at the process of enabling an SSL connection for the two most 

common servers hosting ASP.NET and PHP sites. The SSL connection will need to be 

enabled for the payment page in this example, but it practical terms, a full e-commerce 

site implementation way require the connection on several pages dependent on the 

site’s design. As a simple guideline any page which is transmitting sensitive data is a 

page that should have SSL enabled.  

 

4.3.1 IIS 7 for Windows Server 2008 

For this section I will focus on how to set up SSL for a single page in IIS 7.0 for Win-

dows Server 2008. For those not familiar with Windows Server, IIS (Internet Infor-

mation Services is the web server implementation on Windows Server, and includes a 

GUI for managing all aspects of site administration. On opening IIS you will see a tree 

navigation panel on the left, click on the server name (the tree root). This displays all 

related options in the main centre window. One of the options is ‘Server Certificates’. 

On clicking this you have the option to import a certificate. This should be done if you 

have/ or your client has already bought an SSL certification service from a Certificate 

Authority (CA) (See Appendix 2 for commonly used CAs), and so will have a certifi-

cate to import. We discussed in chapter 2 that this is a necessity if an e-commerce site 

is handling credit card details. However for the purposes of testing you can also create 

your own certificate to use to encrypt HTTP responses and decrypt HTTP requests.  

To create a certificate just click ‘create self-signed certificate’, and give the certificate a 

name. 

 

The next stage is to create a website binding so the website can be accessed through 

HTTPS protocol as well as HTTP. Please refer to Appendix 9 for pictures of the rele-

vant windows. From the ‘connections’ tree navigation on the left pane in IIS, find and 

click on your website, then from the ‘actions’ menu on the right panel click ‘bindings’. 

You should already see HTTP listed as a binding. You must click ‘add’ to add the 

HTTPS binding. Choose HTTPS from the ‘type’ menu, then from the SSL Certificate 

menu, choose the test certificate you created earlier, or choose your proper SSL certifi-

cate if you have one. On clicking OK you should see now HTTPS listed with HTTP in 



 

 
69 

the binding list. You have now enabled SSL for your e-commerce site. If you try open-

ing a page, for example ‘https://myecommercesite/paymentpage.aspx’ it is likely you 

will see a warning about the self-signed certificate, if you have used the test certificate 

(Guthrie, 2007). This is one of the reasons that a certificate must be purchased from a 

CA. As well as meeting industry guidelines, a properly signed certificate stops browser 

warnings from being shown, which are guaranteed to alarm users and potentially cause 

a dramatic loss in sales. 

 

So how do we enable SSL for only the payment page? At the moment all pages on the 

site can be requested using either HTTP or HTTPS, but for the payment page we want 

to ensure that only HTTPS requests are allowable. It is not enough to ensure that the 

navigation link to the payment page is specifying HTTPS:// as this still means that a 

hacker can exploit the fact that the page can still be accessed over HTTP. You should 

instead check each request to ensure that it is a secure request, or at least always re-

direct the request to the secure version of the page. This can be done in the 

Page_Load()  method in the code behind file. The simple method below can be called 

from the Page_Load() method, redirecting the user to the secure version of the page if 

the HTTPS mode is not part of the request: 

/// <summary>   
/// Redirect to the corresponding secure page.   
/// Assumption: IIS web site is configured in port 80.   
/// </summary>   
public void RedirectToSecurePage()   
{   
    var httpsMode = string.Empty;   
    var serverName = string.Empty;   
    var url = string.Empty;   
   
    for (var i = 0; i < Request.ServerVariables.Keys.Count; i++)   
    {   
        var key = Request.ServerVariables.Keys[i];   
        if (key.Equals("HTTPS"))   
        {   
            httpsMode = Request.ServerVariables[key];   
        }   
        else if (key.Equals("SERVER_NAME"))   
        {   
            serverName = Request.ServerVariables[key];   
        }   
        else if (key.Equals("URL"))   
        {   
            url = Request.ServerVariables[key];   
        }   
    }   
    if (httpsMode.Equals("off"))   
    {   
       Response.Redirect(string.Concat("https://", serverName, url));   



 

 
70 

    }   
}  

 (Wickramasinghe, 2011) 

 

4.3.2 Apache 

I will focus here on guidelines for the implementation of SSL for the most current ver-

sion of Apache at the time of writing (2.4.2). For these guidelines I will assume Apache 

is installed on a Linux Server 

 

IIS 7.0 actually includes good support for PHP, but I would imagine that IIS would 

not be the first choice for a PHP developer to host his/her applications. Apache2 is 

build up from a large number of modules, PHP being one of them, so this level of in-

tegration makes it the most common choice of web server for PHP applications. PHP 

is a component of the popular LAMP stack (Linux, Apache, MySQL, PHP) for web 

applications. (Wikipedia, 2012) 

 

SSL is a module within Apache and is easily enabled by issuing the following command 

from the linux server’s terminal; 

a2enmod ssl 

then you will need to restart Apache, to enable to module. The next stage is to obtain 

or create a server certificate. As with our Windows Server example, we will create a test 

self-signed certificate to demonstrate the process. Again from the terminal issue this 

command; 

openssl req -new -x509 -days 365 -sha1 -newkey rsa:1024 \ 

-nodes -keyout server.key -out server.crt \ 

-subj '/O=Company/OU=Department/CN=www.example.com' 

 

 

This command creates a certificate and stores the keys in the default folders. The –subj 

option specifies basic certificate details, so these should be changed to match your e-

commerce site details, most importantly the /CN= attribute must match the site’s 

URL exactly, otherwise warnings will be produced in the requesting browser window. 

Next you need to ensure that the server accepts both secure requests and non-secure. 

This is done by editing the /etc/apache2/ports.conf file to include the following 

lines; 



 

 
71 

Listen 80 

Listen 443 

 

Port 80 is the standard HTTP port, while 443 is the standard port for secure HTTPS 

requests (Wikipedia, 2012). Now we need to configure our e-commerce site to use SSL. 

This is done via the config file for the site which is found at /etc/apache2/sites-

enabled/yourecommerbcesite. A new virtual host can be added for the page or pages 

you want to be SSL enabled. Let’s assume we would only want the paymentPage.php 

file to be SSL enabled, the config file found at the path above should therefore include 

the following; 

# ================================================= 

# SSL/TLS settings 

# ================================================= 

NameVirtualHost *:443 

 

<VirtualHost *:443> 

 

    DocumentRoot "/local/www/myecommercesite/ssl" 

 

    SSLEngine on 

    SSLOptions +StrictRequire 

 

    <Directory /> 

        SSLRequireSSL 

    </Directory> 

 

    SSLProtocol -all +TLSv1 +SSLv3 

    SSLCipherSuite HIGH:MEDIUM:!aNULL:+SHA1:+MD5:+HIGH:+MEDIUM 

 

    SSLRandomSeed startup file:/dev/urandom 1024 

    SSLRandomSeed connect file:/dev/urandom 1024 

 

    SSLSessionCache shm:/usr/local/apache2/logs/ssl_cache_shm 

    SSLSessionCacheTimeout 600     

 

    SSLCertificateFile /etc/apache2/ssl/server.crt 

    SSLCertificateKeyFile /etc/apache2/ssl/server.key 

 

    SSLVerifyClient none 

    SSLProxyEngine off 

 

    <IfModule mime.c> 

        AddType application/x-x509-ca-cert      .crt 

        AddType application/x-pkcs7-crl         .crl 

    </IfModule> 

 

    SetEnvIf User-Agent ".*MSIE.*" \   

      nokeepalive ssl-unclean-shutdown \   

      downgrade-1.0 force-response-1.0 

</VirtualHost> 

 

 



 

 
72 

The payment page, requiring SSL, could be placed in a separate folder called ‘ssl’, then 

this VirtualHost entry defines that folder as requiring SSL to access it.  The Directory 

tags specify that this host (our payment page) can only be reached via SSL. Also the 

SSL engine option must be set to ‘on’. Other important options set the types of Cipher 

to use, the versions of the SSL protocol to use and where the certificate and encryption 

keys can be found. 

 

4.4 Chapter Summary 

This chapter has presented example technical implementations of server side code for 

ASP.NET and PHP web applications, for each of the payment gateway integration 

APIs chosen as a part of chapter 2. Before this however the section presented the im-

portance of setting up test accounts with the chosen payment gateway to allow for test-

ing, and familiarization with the transaction management interfaces.  

 

Finally the section presented a guide for enabling SSL connections to the payment 

page for both the Apache Web server (most commonly used for hosting PHP web 

applications) and IIS 7 for Windows Server 2008 (used for hosting ASP.NET web ap-

plications. SSL is a requirement for meeting payment industry regulations. 

 

 

 

 

 

 

 

 

 

 

 



 

 
73 

5 Evaluation 

Broadly speaking I am very pleased with the outcome of the study, given that all mile-

stones where reached on time, with only 4 day slippage achieving the final milestone 

MS5 (Section 3 written). As I have experience of project management, I know the im-

portance of working closely in accordance with the schedule, and the importance of 

meeting incremental milestones, even if this impacts on the quality of the work. When 

I realized I had not met milestone MS4 on time I made sure that I re-forecast the 

schedule to ensure that I could still meet the remaining agreed milestones on time. I 

realised that the impact could be severe if several small failings to meet the schedule go 

unnoticed, as the cumulative effect can be large.  

 

The principal aim of this study was to provide a guide for the necessary elements of 

implementing card payment functionality to a website. Ultimately I believe that there is 

the majority of information a developer would need in order to effectively implement 

such functionality, so I feel happy this has been achieved. Also having recently re-

viewed popular answers to similar questions relating to implementing payment func-

tionality, on developer forums such as www.stackoverflow.com, I was happy to see 

that contributors had chosen to address the question in a similar way, or had at least 

covered the same topics.   Part of the core objective was also to produce a guide that 

was accessible and easy to read. This is difficult for me to access, and is only something 

that can be known through others’ feedback upon reading the study, although it has 

been conscious in my mind throughout writing it.  

 

According to my plan I decided that the best way to tackle the research question was in 

three distinct sections (later to become the 3 main chapters). These sections became 

apparent during the preliminary research stage. It appeared to me at that stage that 

each section could be researched and written almost in isolation, as they appeared well 

defined and separate. However this turned out to be more challenging than expected 

and resulted in me having to overlap the research of each section to some degree, as 

certain elements of each section overlapped.  An example of this could be that chapter 

2 is where the payment gateways would be chosen as a target for further study, but a 

big informant for that process would be the developers’ knowledge of payment page 



 

 
74 

usability, covered in later chapters, due to its close association with front end design. 

Also I repeatedly found that on progressing to the following section my overall knowl-

edge naturally became deeper, and therefore I left that I could possibly have written 

previous sections better.  Consequently it would have been easier to handle all research 

sections first, before any writing took place. 

 

As this study has focused quite heavily on quite a specific area of the much wider sub-

ject of e-commerce, it was a challenge to ensure that the scope remained focused. Con-

sequently there are many instances within the text where I had to state that although a 

certain subject could naturally be discussed at certain points, it was unfortunately out 

of scope. As a result the Further Development section of this study is possibly quite 

extensive. 

 

I didn’t experience any problems relating to lack of research resources, i.e. books. Al-

though I did attain a selection of e-commerce and web security books, the internet was 

by far the most used resource for finding current research, particularly relating to con-

sumer issues relating to e-commerce, which I used as the principal evidence of need 

for this study. 

 

Although this is not an implementation study, in order to present coherent guidance, I 

ultimately had to write quite a lot of code, or at least adapt quite heavily code examples 

provided online, this had an unexpected impact on time resources, and make meeting 

the milestones discussed earlier (principally MS5) more difficult.  

 

 

 

 

 

 

 



 

 
75 

6 Further development 

This study has covered a subject which has a number of complex elements combined 

together, and one the aims of this study was to provide an overview of all necessary 

factors to achieve, in basic terms, the acceptance of a card payment through a web-

page. Each of these necessary factors could be studied independently, and would pro-

vide more than enough material for a separate thesis study. With this in mind this sec-

tion highlights the areas where this study could be extended to include other subjects 

relating less directly to the principal aims, but would enhance the study further. Addi-

tionally this section also highlights areas where, due to limited resources, and the spe-

cific aims of this study, they could have benefited from further study. Due to these 

resource and scope issues, some subjects have not been covered as extensively as oth-

ers, so these subjects would be the ones most immediately in mind when thinking of 

further development.  

 

This study has not included any primary research. Although this was something I 

originally envisaged would form part of the study, on writing the thesis plan is became 

apparent that time resources would not allow it. Therefore this is foremost in my mind 

when thinking of further development. There is very little research about consumers’ 

experiences of checkout pages, and even less independent research. Therefore an ex-

tensive usability study of payment pages would be useful. Also a consumer survey on 

their awareness of security issues relating to online payments would be useful, particu-

larly their understanding of SSL.  I have highlighted in this study that improving con-

sumer knowledge of SSL and other security issues could directly impact the revenue of 

businesses that sell online.  

 

Database security relating to e-commerce is an area which has not been covered by this 

study but which would in reality need to be understood as most e-commerce site im-

plementations offer the facility for storing card numbers, along with other personal 

details. It is out of the scope of this study as doesn’t really directly relate to the techni-

calities of accepting card payments through a website. 

 



 

 
76 

As mentioned there are many issues relating to a wider e-commerce site implementa-

tion that would be a natural extension of this study. These would include; shopping 

cart development, looking at the differences between the extensive choices of ready-

made modules, stock reservation techniques, session handling and user authentication 

techniques.  

 

A closer look at the business decisions involved in choosing a payment gateway would 

also be a good extension to this study. The interaction between the client and the de-

veloper is an important on, as the client will no doubt have ideas about what they want 

from the e-commerce side of their business, but it would normally be the developer’s 

job to suggest an online payment gateway that could meet these requirements. There-

fore the developer would need to have a good understanding of business issues such 

as; access to payment processors, the long term business costs of selling online, scal-

ability of the system and the payment gateway service, how adaptable the payment 

gateway and indeed the e-commerce application is to changes in business rules and 

indeed the business model. An analysis of the impact of these questions for a devel-

oper would be useful to look at in more depth.  

 

Finally a more in depth look at client side security could provide further details on the 

security elements discussed in this study. For instance client SSL certificates, certifi-

cates that authenticate the client browser, are not extensively used in many e-

commerce implementations. An analysis as to why they are not considered important 

and what the implications might be for a developer would be useful to analyse. 

 

 

 

 

 

 

 



 

 
77 

7 Summary 

The growth of ecommerce has been enormous and will continue to be so according to 

research in the area (growth reported earlier in this study as being 13,5% year on year 

until 2015). The potential sales generation for individual business is therefore also 

enormous, but a large proportion (60%) of these potential sales are not being realised, 

due to customers abandoning their online transaction before payment. 

 

This study has aimed to address the reasons behind one possible cause of this so called 

‘shopping-cart’ abandonment. Research suggests that many payment pages are poorly 

designed and implemented, which at best creates a confusing experience for the con-

sumer, and at worst causes serious security issues, allowing criminals to exploit the 

website, and its customers. This study has aimed to inform developers of all the key 

factors they need to consider when designing and implementing a payment page, and 

has given example code explaining how to implement the page effectively. 

 

Chapter 2 looked into broad issues relating to the operating environment of an e-

commerce website, all of which are important for a developer to understand in order 

to advise a potential client as to their responsibilities as an online merchant.. Firstly the 

section explained the process of an online card payment, and discussed the roles of a 

payment gateway (the most important organisation of concern to a web developer), a 

payment processor, and also about the interbank communications structure concerned 

with the actual transfer of monies between bank accounts. Knowledge of payment 

gateways is necessary for a developer as in most cases this is the company that the e-

commerce application will need to communication with, through an API, in order to 

receive payments.  

 

Next security threats were discussed. The problems caused by poor network security 

(Sniffer programs and other HTTP packet manipulation problems), the problems 

caused by poor site security (such as user authentication) and webpage form implemen-

tation (poor user input validation), and also the problems caused by DNS cache poi-

soning were all discussed. Regarding network security, SSL (Secure Socket Layer) pro-

tocol is principally used, to transmit data across the internet securely. Asymmetric key 



 

 
78 

encryption is used by SSL to encrypt and decrypt HTTP packets, along with the use of 

Digital Certificates to also authenticate that packets have been send by the correct 

sender. PKI (Public Key Infrastructure ) is used to add a further layer of strength to 

this system by paying for the services of a Certificate Authority, essentially a third party 

who also authenticate that the Digital Certificate is genuine.  

 

Next the study focused on security standards relating to e-commerce, something which 

must be understood by developers. The principal sets of standards which need to be 

understood are PCI standards (Payment Card Industry Security Standards), and also 

PABP (Payment Application Best Practice). Both provide a practical set of rules to 

adhere to when developing e-commerce applications. 

 

The final part of the chapter covered the types of implementation offered by payment 

gateway companies, meaning the ways that an e-commerce site can accept payments by 

communicating with the payment gateway servers. In the main it was highlighted that 

there are two main types of implementation. The first being hosted solutions (those 

methods that require the site user to be transferred to the gateway site to complete the 

transaction), the second being API solutions, involving a more seamless experience for 

the user, where the e-commerce site server and the gateway server communicate be-

hind the scenes. Next the study looked at the factors influencing the choice of payment 

gateway. Factors highlighted included what payment cards and currencies the company 

supports, how respected they are as a company, what their fee structure is like, what 

kind of customer support they offer, and also what types of transactions they support 

all affect the decision which gateway to choose. From a developer point of view, all 

these things are affected by the type of client business you would be developing the e-

commerce site for. For instance what types of products they sell determine what types 

of transactions they require (one stage or two stage), therefore this also influences the 

choose of payment gateway. 

 

Finally several payment gateways and their services were analysed and PayPal’s Payflow 

Pro, and Authorize.Net’s Advanced Integration Method were chosen for further study. 

 



 

 
79 

Chapter 3 focused on front-end issues, such as payment form design, implementation, 

and user focused issues such as page usability. Firstly the chapter looked at the HTML 

form and import security issues relating to it such as the importance of using the ‘post’ 

method instead of the ‘get’ method. The form design as HTML was also included ex-

plaining what form fields were needed for the payment gateway API calls  relating to 

the choices made earlier in the study. 

 

 As discussed earlier in the study there are many security issues relating to user inter-

face implementation that must be handled effectively. User input validation is a very 

important aspect of front-end design, and effective validation can minimize a host of 

security threats. JavaScript is used as a first line of defence, so a user input validation 

script was presented to validate user input fields prior to posting to the server. The 

script used Regular Expressions extensively as an effective way of heavily limiting the 

allowable values in certain form fields.  

 

Next the chapter looked at payment page usability, and highlighted some important 

things to include in the design. Consistent layout, providing clear guidance on all user 

input fields (most importantly where to find the CVV (card verification value number), 

and information on what point the user is in the payment/order process are all impor-

tant. It is important to include as many payment options as possible, so as not to alien-

ate potential customers who are only familiar and comfortable with paying by PayPal, 

for instance. Handling all possible response codes from the payment gateway is also 

vital to inform the user what has happened, particularly if the payment authorisation 

failed, and most importantly tell them how they can rectify it. 

 

Finally the chapter looked a little at what SSL means to the user of the e-commerce 

site, if anything. The study found that clearly displaying the Certificate logo, and plac-

ing it specifically close to where the ‘pay’ or ‘commit’ button appears, improves the 

trust users will have of the site. Also explaining to them what SSL is and how it keeps 

them safe also builds trust, and shows the consumer that your e-commerce site is re-

sponsible and pro-active when it comes to security. 

 



 

 
80 

Chapter 4 was the final chapter and covered back-end implementation, such s server 

side code, and setting up SSL for all HTTP connections to the payments page. The 

chapter began by outlining how to get test credentials from payment gateways chosen 

in order to test API calls and check transactions are getting transmitted. Each gateway 

has its own requirements that allow test transactions to be submitted to them, and in 

most cases this involves a specific credit card number and related details, or a test mer-

chant account.that is provided for the purpose of testing. In either case it is easy to 

convert the account to start receiving live transactions, simply by altering those creden-

tials in the relevant code files. 

 

The chapter went on to summarise the important details from the comprehensive pub-

lished developer guides available, and referenced as part of this study. The most impor-

tant aspect to understand is the minimum field values that must be submitted as name 

and value pairs with each transaction. Whilst these sets of fields differ for each pay-

ment gateway and each API, this study has aimed to highlight that they are actually 

broadly very similar.  

 

Finally instructions were provided as to how to enable SSL for connections to a spe-

cific webpage hosted on either IIS 7 for Windows Server or Apache (the most relevant 

servers for hosting ASP.NET and PHP applications respectively).  

 

 

 

 

 

 

 

 

 

 

 



 

 
81 

8 References 

Amazon. 2000.  Amazon Simple Pay Advanced User Guide. URL: 

http://awsdocs.s3.amazonaws.com/SimplePay/latest/simplepay-adv.pdf. Accessed: 

22. June 2012. 

Authorize.Net. 2012. Advanced Integration Method (AIM) Developer Guide. URL: 

http://www.authorize.net/support/AIM_guide.pdf. Accessed 13. July 2012. 

Authorize.Net. 2012. Compare e-commerce APIs. URL: 

http://developer.authorize.net/api/compare/. Accessed 10. June 2012. 

Authorize.Net. 2012. Credit Card Processing Diagram.. URL: 

http://www.authorize.net/resources/howitworksdiagram/. Accessed 09 June 2012. 

Authorize.Net. 2008. Developer Security Best Practices. Utah: Cyber Source 

Corporation. URL: http://www.authorize.net/files/developerbestpractices.pdf. 

Accessed: 12 July 2012. 

Ballad, J, Ballad, W. 2009. Securing PHP Web Applications. Pearson Education. 

Baymard Institute. 2011. E-Commerce Checkout Usability. Baymard Institute. 

Beal, V. 2012. Buyer's Guide: Choosing a Payment Gateway Provider. URL: 

http://www.ecommerce-

guide.com/solutions/secure_pay/article.php/3869546/Buyers-Guide--Choosing-a-

Payment-Gateway-Provider.htm. Accessed: 23 May 2012. 

Breaking Par Consulting Inc. (2012). Credit Card Validation. URL: 

http://www.breakingpar.com/bkp/home.nsf/0/87256B280015193F87256CC70060A

01B. Accessed 30. June 2012. 

Chan, H, Raymmond, L, Tharam, D, Elizabeth, C. 2001. E-Commerce. Wiley. Sussex. 

Cusack. 2000. Secure Sockets Layer. URL: 

http://searchsecurity.techtarget.com/definition/Secure-Sockets-Layer-SSL. Accessed 

20. June 2012 



 

 
82 

Eisen, O. 2009. Telltale Signs of E-Commerce Fraud. URL: 

http://www.ecommercetimes.com/story/66278.html. Accessed 10. August 2012. 

Enright, A. 2011. Global e-commerce to reach $1.4 trillion in 2015. URL: 

http://www.internetretailer.com/2011/06/07/global-e-commerce-reach-14-trillion-

2015. Accessed 6. July 2012 

Entrust. 2006. Entrust Certificate Services Support Knowledge Base. URL: 

http://www.entrust.net/knowledge-base/technote.cfm?tn=5716. Accessed 29. June 

2012. 

Entrust. 2007. News Releases: Entrust Survey Finds Online Consumers Ready to 

Adopt Advanced Anti-Phishing Measures. URL: 

http://www.entrust.com/news/index.php?s=27003&item=72404. Accessed 30. June 

2012. 

Garfinkel. 2002. Web Security Privacy and Commerce. O'Reilly. 

Google. 2012. Buy Now Buttons. URL: 

https://developers.google.com/checkout/developer/Google_Checkout_Buy_Now_B

utton_How_To. Accessed 10. June 2012. 

Google. 2012. Google Checkout Basic HTML Integration. URL: 

https://developers.google.com/checkout/developer/Google_Checkout_Basic_HTM

L_Overview. Accessed 22. June 2012. 

Governor Technology. 2009. E-Commerce Usability Best Practices (White Paper). 

Governor Technology. 

Goyvaerts, J. 2009. Finding or Verifying Credit Card Numbers. URL: 

http://www.regular-expressions.info/creditcard.html. Accessed 24. June 2012. 

Guthrie. 2007. Tip/Trick: Enabling SSL on IIS 7.0 Using Self-Signed Certificates. 

URL: http://weblogs.asp.net/scottgu/archive/2007/04/06/tip-trick-enabling-ssl-on-

iis7-using-self-signed-certificates.aspx. Accessed 15. July 2012. 



 

 
83 

Holst, C. 2011. Fundamental guidelines of e-commerce checkout design. URL: 

http://uxdesign.smashingmagazine.com/2011/04/06/fundamental-guidelines-of-e-

commerce-checkout-design/. Accessed 6. July 2012. 

Knowledgebase. 2011. Understanding payment gateways. URL: 

http://kb.worldsecuresystems.com/000/bc_68.html. Accessed 10. August 2012. 

Lawrence, E. 2012. Introducing Fiddler. URL: http://www.fiddler2.com/fiddler2/. 

Accessed 24. June 2012. 

MintLife. 2011. Cracking the Credit Card Code. URL: 

http://www.mint.com/blog/trends/credit-card-code-01202011/. Accessed 29. June 

2012. 

Msdn . 2012. Unsafe (C# Reference). URL: http://msdn.microsoft.com/en-

us/library/chfa2zb8.aspx. Accessed: 28.May 2012. 

Msdn. 2012. fixed Statement (C# Reference). URL: http://msdn.microsoft.com/en-

us/library/f58wzh21.aspx. Accessed: 28 May 2012. 

Msdn. 2011. Regular Expression Language - Quick Reference. URL: 

http://msdn.microsoft.com/en-us/library/az24scfc.aspx. Accessed 29. June 2012. 

Msdn. 2006. Regulatory Compliance Demystified: An Introduction to Compliance for 

Developers. URL: http://msdn.microsoft.com/en-us/library/aa480484.aspx. 

Accessed 06. July 2012. 

PayPal. 2012. Documentation Tools. URL: 

https://www.x.com/developers/paypal/documentation-tools/paypal-sdk-index. 

Accessed 08. 08 2012. 

Paypal. 2012. Payflow Link User’s Guide . URL: 

https://cms.paypal.com/cms_content/AU/en_AU/files/developer/PP_PayflowLink

_FPS_Guide.pdf. Accessed 30 June 2012. 



 

 
84 

Paypal. 2009. Payflow Pro Developer's Guide. URL: 

https://cms.paypal.com/cms_content/CA/en_US/files/developer/PP_PayflowPro_

Guide.pdf. Accessed 02. July 2012. 

PCI Security Standards Council. 2010. Payment Card Industry (PCI) Data Security 

Standard. Requirements and Security Assessment Procedures . PCI Security Standards 

Council. 

PHP. 2012. cURL Introduction. URL: 

http://www.php.net/manual/en/intro.curl.php. Accessed 13. July 2012. 

PHP. 2012. SQL Injection. URL: http://php.net/manual/en/security.database.sql-

injection.php. Accessed 10. August 2012. 

Ragan, D. 2009. Payment Processors - What do I need to know if I want to accept 

credit cards on my website? URL: 

http://stackoverflow.com/questions/51094/payment-processors-what-do-i-need-to-

know-if-i-want-to-accept-credit-cards-on. Accessed 10. August 2012. 

Schneider, J. 2011. Electronic Commerce 9th edition. Cengage Learning. 

SSL shopper. 2010. Do I need an SSL certificate for my website? URL: 

http://www.sslshopper.com/article-do-i-need-an-ssl-certificate-for-my-website.html. 

Accessed 10. August 2012. 

Visa. 2012. Visa’s Global Registry of Service Providers - PCI DSS Validated Entities. 

URL: http://usa.visa.com/download/merchants/cisp-list-of-pcidss-compliant-service-

providers.pdf. Accessed 7. July 2012. 

Webopedia. 2012. Do It Yourself SSL Guide. URL: 

http://www.webopedia.com/DidYouKnow/Internet/2008/SSL_02.asp. Accessed 05. 

May 2012. 

Webopedia. 2012. SSL. URL: http://www.webopedia.com/TERM/S/SSL.html. 

Accessed 22. 05 2012. 



 

 
85 

Wickramasinghe, P. 2011. How to configure SSL on particular pages of an IIS 7 

website. URL: http://onlinecoder.blogspot.fi/2011/02/how-to-configure-ssl-on-

particular.html. Accessed 15. July 2012. 

Wikipedia. 2012. Application Programming Interface. URL: 

http://en.wikipedia.org/wiki/Application_programming_interface. Accessed 20. May 

2012 

Wikipedia. 2012. Application Programming Interface. URL: 

http://en.wikipedia.org/wiki/Application_programming_interface. Accessed 24. May 

2012. 

Wikipedia. 2012. Card Security Code. URL: 

http://en.wikipedia.org/wiki/Card_security_code. Accessed 29. June 2012. 

Wikipedia. 2012. DNS Spoofing. URL: http://en.wikipedia.org/wiki/DNS_spoofing. 

Accessed 10. August 2012. 

Wikipedia. 2012. Extended Validation Certificate. URL: 

http://en.wikipedia.org/wiki/Extended_Validation_Certificate. Accessed 10. August 

2012. 

Wikipedia. 2012. LAMP (Software Bundle). URL: 

http://en.wikipedia.org/wiki/LAMP_(software_bundle). Accessed 10. August 2012. 

Wikipedia. 2012. List of TCP and UDP port numbers. URL: 

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers. Accessed 15. 

July 2012. 

Wikipedia. 2012. Password Strength. URL: 

http://en.wikipedia.org/wiki/Password_strength. Accessed 09. May 2012. 

Wikipedia. 2012. Payment Gateway. URL: 

http://en.wikipedia.org/wiki/Payment_gateway. Accessed 5. May 2012. 

Wikipedia. 2012. Public-Key Cryptography. URL: 

http://en.wikipedia.org/wiki/Public-key_cryptography. Accessed 10. August 2012. 



 

 
86 

World Bank. 2011. The global outlook in summary, 2010-2014. URL: 

http://web.worldbank.org/external/default/main?theSitePK=659149&pagePK=2470

434&contentMDK=20370107&menuPK=659160&piPK=2470429. Accessed 6. July 

2012. 

World Wide Web Consortium. 2012. URL: 

http://www.w3.org/TR/html401/interact/forms.html#h-17.3. Accessed 15. June 

2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
87 

9 Appendices 

9.1 Appendix 1 - Diagram of the payment authorization process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acquir-
ing 

Bank 
(seller) 

INTERCHANGE

(9) 

6 

(8) 

2 

4 

3 1 

payment 
processor 

payment 

gateway 

website 
payment 
form  

5 

issuing 

Bank 
(buyer) 

7 

10 11 12 



 

 
88 

 

9.2 Appendix 2 – Recognisable Certificate Authority brand logos 

                     

 

                              

 

                  

 

 

 

 

 

 

 

 

 

 

 

 



 

 
89 

9.3 Appendix 3 - Current browser interface SSL connection and certificate 

notifications 

 

 

 

 

 

 

 

 



 

 
90 

 

9.4 Appendix 4 – Payment Application Best Practices (PABP) 

1. Do not retain full magnetic stripe or CVV2 data 
Do not store sensitive authentication data after transaction authorization (not even if encrypted). 
 
2. Protect stored data 
Mask sensitive cardholder data when displayed and when stored. Protect encryption keys against dis-
closure and misuse, and implement key management processes and procedures, including the genera-
tion, distribution, management, and storage of secure keys. 
 
3. Provide secure password features 
Require a unique username and complex password for all users with access to computers, servers, and 
databases with payment applications, including administrative access and especially access to card-
holder data. Application passwords should be complex and if possible, encrypted. 
 
4. Log application activity 
Log all computer and network access by individual users, and implement functionality to link those activi-
ties to individual users. Implement an automated audit trail to track and monitor access. 
 
5. Develop secure applications 
Develop Web software and applications based on secure coding guidelines and industry best practices. 
Emphasize information security throughout the software development life cycle and routinely review 
custom application code to identify possible vulnerabilities. 
 
6. Protect wireless transmissions 
Securely encrypt all wireless transmissions of cardholder data over both public and private networks. 
 
7. Test applications to address vulnerabilities 
Establish a process to regularly test applications and identify potential security vulnerabilities. Develop 
and deploy security patches in a timely and secure manner. 
 
8. Facilitate secure network implementation 
Implement payment applications in a secure network environment. The applications should not interfere 
with the use of network address translation, port address translation, traffic filtering network devices, 
anti-virus solutions, patch or update installation, or hardware or software encryption. 
 
9. Cardholder data must never be stored on a server connected to the Internet 
Do not configure a database server and Web server to reside on the same server or in the “demilitarized 
zone” (DMZ) with the Web server. 
 
10. Facilitate secure remote software updates 
If software updates are delivered via remote access into customers’ systems, instruct customers to pro-
vide access to the system only when needed and to disable the connection immediately after downloads 
are complete. Alternatively, if delivered via virtual private network (VPN) or other secure connection, 
software vendors should advise customers to properly configure a personal firewall to secure “always-
on” connections. 
 
11. Facilitate secure remote access to applications 
If employees, administrators, or vendors can access the application remotely, access should be authen-
ticated using a 2-factor authentication mechanism. The application should allow for technologies with 
tokens, or VPN with individual certificates. 
 
12. Encrypt sensitive traffic over public networks 
Use strong cryptography and encryption techniques (at least 128 bit) such as SSL, Point-to-Point Tun-
neling Protocol (PPTP), or Internet Protocol Security (IPSEC) to safeguard sensitive cardholder data 
during transmission over public networks. Never send cardholder information via unencrypted e-mail. 
 
13. Encrypt all non-console administrative access 
Use appropriate technologies for Web-based management and other non-console administrative ac-
cess. Telnet or remote login must never be used for administration. 
 

(Authorize.Net, 2008, pp. 4-6) 



 

 
91 

9.5 Appendix 5 – Rendered HTML payment buttons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
92 

9.6 Appendix 6 – Nordea Bank’s SSL information to users 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
93 

9.7 Appendix 7 – Effective payment page design example 

 

 

(Holst, 2011) 

 

 

 

 

 

 



 

 
94 

9.8 Appendix 8 – Implementing SSL in IIS 7.0 Windows Server 2008 

 

 

 

 

 

(Guthrie, 2007) 


