

1

Michael Aro

Intents Registry Eclipse Plugin

Technology and Communication

2012

2

FOREWORD

Writing a thesis is a long process, but it is ultimately rewarding when you can hold

the finished product in your hands and be proud of it. I would like to first and

foremost thank my awesome family for supporting me all the way and for keeping me

going whenever I was about to get stuck.

Secondly, I would also like to thank Dr Ghodrat Moghadampour for sharing the

knowledge and guiding me through the complexity and beauty of software

engineering over the past couple of years. I would also like to send a big kudos to Dr

Friedger Muffke for giving me the opportunity and support to work on this project

and use it as a bachelor thesis and giving constructive feedbacks on the project.

Personally, I would like to thank the Vaasa Polytechnic staff including but not limited

to Dr Jarmo Makela, Antti Virtanen, Kalevi Ylinen, Vesa and his wife, Tarja Siren,

Timo Kankaanpää, Maj-Gret Berg, Dr Ritva Rapila, Elina Luokkanen, Johan Dams,

and Dr Seppo Makinen.

I would also like to thank the OpenIntents team and the Android, Eclipse and open

source community. All of the people who work to make the products better either

directly or with bug reports and patches, help on forums, question and answer sites,

and creating documentations, libraries and tools are a big reason why these different

platforms work and thrive. I am an open source activist and I fully believe in the idea

of contributing back whenever you take given the possibility.

Last, and definitely not least, I wholeheartedly thank my friends for their words of

encouragement and support.

Michael Aro

3

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

ABSTRACT

Author Michael Aro

Title Intents Registry Eclipse Plugin

Year 2012

Language English

Pages 64 + 10 Appendices

Supervisor Dr Ghodrat Moghadampour, VAMK

Mentor Dr Friedger Müffke, Founder of OpenIntents and Droidcon

The thesis has been carried out with the OpenIntents organization. The purpose of

this project was to build an Eclipse plugin that enables developers to use the

extensible markup language (XML) data available in the OpenIntents intents registry

and insert code blocks corresponding to the selected intents directly into their

Android projects. It is easily accessible via the menu feature of Eclipse. In addition,

developers can browse online for libraries, application source code, uris, extras and

other artifacts and information needed to do their work without leaving the Eclipse

integrated development environment.

The program was implemented on top of the Eclipse framework. Eclipse is the target

integrated development environment (IDE) because of its modular and pluggable

structure, its significant amount of users including OpenIntents developers, who can

benefit from the plugin and provide feedback for further improvement. Eclipse has

support for multiple languages and operating system platforms. Also part of this

project is learning how to contribute to open source projects by organizations such as

OpenIntents and Eclipse Foundation through open source programming.

The main achievements of this project were a developer friendly codebase on Github,

a release in the Eclipse marketplace and plenty of developer and user-oriented

documentation. Using this plugin is user-friendly. The intents registry plugin and

Eclipse IDE complement each other by creating an efficient Android application

development environment.

Keywords Plug-in, Intents, Registry, Eclipse, open source, OpenIntents

4

Contents

FOREWORD .. 2

ABSTRACT .. 3

LIST OF FIGURES, TABLE AND SNIPPETS ... 7

1 INTRODUCTION .. 12

1.1 OpenIntents .. 13

1.2 Goal of the work ... 13

2 TECHNOLOGY OVERVIEW ... 15

2.1 Eclipse Plugin Development and Platform API ... 16

2.1.1 Eclipse Plug-in .. 18

2.1.2 Structure of a plugin .. 18

2.1.3 Plug-in Directory or JAR file .. 20

2.1.4 Installing a Plug-in .. 22

2.1.5 Extensions and extension points ... 23

2.1.6 Building and Maintaining the Github Update Site 25

2.2 Updating the repository .. 26

2.3 Internationalization and Help ... 26

2.4 ANT .. 27

2.5 Android and Intents .. 27

2.5.1 Structure of Intent ... 27

2.5.2 Explicit and Implicit intents .. 28

2.5.3 Open Intents .. 28

2.5.4 Open Intents registry ... 29

2.5.5 Intent Filters .. 30

2.5.6 Android Manifest File ... 30

5

2.5.7 Android Manifest Editor ... 31

2.5.8 Default Java Editor .. 32

3 THE APPLICATION DESCRIPTION ... 33

3.1 Application Requirements .. 33

3.2 Functional Specification ... 34

3.3 Class Hierarchy .. 35

3.3.1 Main UI Classes .. 36

3.3.2 Handler Classes ... 38

3.3.3 Plugin Activator and Logging Classes .. 38

3.3.4 Model and Parser Classes ... 40

3.4 Description of Functions .. 40

3.4.1 Insert Code Block .. 40

3.4.2 Browse Intent .. 41

3.5 Deployment Diagram ... 43

4 DATA PERSISTENCE AND GUI DESIGN ... 44

4.1 Main GUI ... 44

4.2 Browser Window .. 45

5 IMPLEMENTATION ... 46

5.1 Software Methodology ... 46

5.2 Data Retrieval and Persistence ... 46

5.3 Generating Resources ... 49

5.4 View and Dialog Handler ... 50

5.5 Logging .. 52

6 TESTING .. 53

6.1 JUnit Testing .. 53

6

6.2 SWTBOT .. 54

6.3 Inserting Code Blocks .. 55

6.4 Browsing Libraries and Artifacts ... 56

7 SUMMARY .. 57

7.1 Publishing plugin to the Eclipse marketplace .. 57

7.2 Becoming a contributor / committer .. 58

7.2.1 Contributing to OpenIntents .. 58

7.2.2 Project mailing list .. 58

8 CONCLUSION ... 59

8.1 Future Work ... 60

8.1.1 Feature ... 60

9 REFERENCES .. 61

APPENDIX 1 .. 65

7

LIST OF FIGURES, TABLE AND SNIPPETS

FIGURE 1. ECLIPSE PLATFORM UI .. 15

FIGURE 2. A SCREENSHOT OF THE ECLIPSE API SPECIFICATION 17

FIGURE 3. ECLIPSE EXTENSION POINT STRUCTURE .. 19

FIGURE 4. DECLARING A NEW EXTENSION .. 20

FIGURE 5: INTENTS REGISTRY ECLIPSE PLUGIN PROJECT TREE 21

FIGURE 9. PROJECT PAGE ... 24

FIGURE 10. CODE REPOSITORY ... 25

FIGURE 11. OPEN INTENTS ONLINE REGISTRY .. 30

FIGURE 12. PREFERENCES DIALOG SHOWING FILE ASSOCIATION BETWEEN EDITOR AND

FILE TYPES .. 31

FIGURE 13. DEFAULT EDITOR ... 32

FIGURE 14. USE CASE DIAGRAM OF THE PLUGIN ... 35

FIGURE 15. A PACKAGE DIAGRAM OF THE PLUGIN SHOWING THE RELATIONSHIPS

AMONG THE PACKAGES .. 35

FIGURE 16. STRUCTURE OF THE MAIN VIEW ... 36

FIGURE 17. FILTER DIALOG CLASSES .. 37

FIGURE 18. HANDLER CLASSES .. 38

FIGURE 19. PLUGIN ACTIVATOR AND LOGGING CLASSES ... 39

FIGURE 20. PARSER AND MODEL CLASSES .. 40

FIGURE 21. SEQUENCE DIAGRAM – ADD INTENT ... 41

8

FIGURE 22. SEQUENCE DIAGRAM – BROWSE INTENT .. 42

FIGURE 23. DEPLOYMENT DIAGRAM FOR THE PLUGIN .. 43

FIGURE 24. ADD INTENT .. 45

FIGURE 25. BROWSE INTENT .. 45

FIGURE 26. LOCAL REGISTRY OF INTENT ACTIONS AND TITLES 50

FIGURE 27. LOGGING ... 52

FIGURE 28. INTENT SELECTION PAGE ... 55

FIGURE 29. INTENTS REGISTRY BROWSER VIEW ... 56

FIGURE 30. PLUGIN ON THE ECLIPSE MARKETPLACE .. 57

TABLE 1: ECLIPSE PLATFORM COMPONENTS .. 17

SNIPPET 1. PLUGIN MANIFEST .. 22

SNIPPET 2. PROPERTIES FILES FOR ORG.OPENINTENTS.INTENTSREGISTRY 22

SNIPPET 3. EXTENSION POINTS ... 23

SNIPPET 4. EXPLICIT INTENT .. 28

SNIPPET 5. IMPLICIT INTENT .. 28

SNIPPET 6. AN OPEN INTENT .. 29

SNIPPET 7. ANDROID MANIFEST FILE ... 31

SNIPPET 8. INTENT TAG .. 47

SNIPPET 9. PARSE METHOD... 47

SNIPPET 10. INTENTSREGISTRYPARSER .. 48

SNIPPET 11. INTENTSREGISTRYRESOURCE ... 49

9

SNIPPET 12. EXECUTE METHOD OF FILTER DIALOG .. 50

SNIPPET 13. EXECUTE METHOD OF INTENTSREGISTRYVIEW .. 51

SNIPPET 14. REGISTRYRESOURCE JUNIT TEST CASE ... 53

SNIPPET 15. INTENTSREGISTRYVIEW TEST CASE ... 55

10

LIST OF ABBREVIATIONS

API Application Programming Interface.

Bug Flaw in software.

Bugzilla Bug tracking software.

Committer Committer is an individual who has been given the

write access to a codebase hosted by someone.

Eclipse Popular open source software tool platform featuring a

GUI and IDE.

GUI Graphical User Interface.

IDE Integrated Development Environment.

Java A computer language.

JIT Just-In-Time.

JUnit Unit testing framework for the Java programming

language.

PDE Plug-in Development Environment.

Plug-in Software aimed to provide additional functionality on

top of the Eclipse platform.

Git A distributed version control system

Github A public git repository.

UML Unified Modelling Language.

URL Uniform Resource Locator.

SDK Software Development Kit.

11

OS Operating System

SQL Structured Query Language

XML Extensible Markup Language

HTTP HyperText Transfer Protocol

ANT A build library

JRE Java Runtime Environment

SWTBot An open-source Java based GUI testing tool for SWT

and Eclipse based applications

SWT Standard Widget Toolkit

Test case The smallest unit of a test

OI OpenIntents

12

1 INTRODUCTION

The programming process includes the design, writing, testing, and maintenance of

source codes with the end result of creating a file or set of files that can be executed

on different platforms. In order to write a program, a code editor is needed for writing

and editing the code. Integrated development environment (IDE) is an application

program that can run on the desktop or in the cloud for the development of

applications in different programming languages including Eclipse plugins.

Typically, it consists of a code editor for editing files, compiler, debugger and a

graphical user interface. There are numerous ides such as Cloud9, Eclipse, and Visual

studio to mention a few.

Eclipse is a community for individuals and organizations who wish to collaborate on

commercial-friendly open source software. Its projects are focused on building,

deploying and managing software across the lifecycle. The Eclipse Foundation is a

not-for-profit, member supported corporation that hosts the Eclipse projects and helps

cultivate an open source community and an ecosystem of complementary products

and services. The Eclipse project was originally created by IBM in November 2001

and supported by a consortium of software vendors. The Eclipse Foundation was

created in January 2004 as an independent not-for-profit corporation to act as the

steward of the Eclipse community. Today, the Eclipse community consists of

individuals and organizations from cross section of the software industry. /35/

Plugin systems are built into IDEs for easy extensibility. The main idea is to keep the

core IDE as slim as possible while plugins are added to provide additional functions

or features depending on the use cases.

13

1.1 OpenIntents

OpenIntents is an open-source organization that design and develop open intents and

interfaces to make Android applications work closely together. They provide free and

open source software based on Google’s Android mobile platform and an open

framework. The organization was interested in making a plug-in for Eclipse that

allows using Intents within the Eclipse IDE. This allows the developers to browse an

online intents registry within Eclipse and insert a code block corresponding to the

selected intents directly into their Eclipse project.

The plug-in is released under Apache 2.0 License and is freely available for anyone to

download. This allows anyone to contribute to the open source community by

modifying the source code of the plug-in. It works well on Eclipse Helios (version

3.6), Indigo (version 3.7) and Juno (version 4.2).

The plug-in is both Java and Eclipse based. It uses a simple data model wrapped into

an API and then built an Eclipse based application that uses the API. It is free, open

source and developed as a tool to be used by OpenIntents developers.

The intents registry Eclipse plug-in comes with a set of features, such as code

insertion for intents and an easy to use web browsing interface for access to libraries.

At the heart of this software is an intents registry. This registry, much like a typical

XML data source, defines all of the unique intents both actions and titles used

throughout the plug-in. Using combinations of actions and titles we can define

intents.

1.2 Goal of the work

• Experiment with Eclipse plug-in development: Eclipse is made up of so many

plug-ins, and small runtime kernel and together they make up the Eclipse

environment. Contributing to Eclipse is a very interesting challenge given the

huge codebase of the software, and trying to understand the extension of

14

different plugins within this framework to make a new one. More importantly,

I wanted to try and do something I have never done before.

• I was also interested in learning about open source programming and making

contributions to free and open source software that can be used by others.

• Build an Intents Registry Eclipse plugin. Once the experimentation with

Eclipse is done and there is a familiarity with the Eclipse APIs and codebase,

build a plug-in on top of it.

In the subsequent chapters, we will go through the Eclipse framework and concepts

as well as open intents registry. We will also get familiar with the aspect of Android

system that is relevant to this plug-in. Code editors will be discussed. Once the

Eclipse, Android, editors, plug-in structure and requirements for the plug-in have

been described, we will move on to the design and implementation of the plug-in.

This will be followed by the conclusion, future work, references and deployment of

the plug-in.

15

2 TECHNOLOGY OVERVIEW

The tools and technologies used for this application include Eclipse framework, Java.

Git, Ant, JUnit, SWTBot and xml. Eclipse for RCP and RAP developers is the IDE

used.

Eclipse is a free and open-source software framework which is platform independent.

It is written mainly in Java. The Eclipse libraries have been used to develop Eclipse

IDE and Eclipse compiler.

The next figure shows the screen shot of the workbench window. The package

explorer on the left displays the projects and files in the workspace of the user. The

default java editor of type text editor in the centre displays the source code content of

a file. And the bottom view shows the console for displaying contents of output

streams.

Figure 1. Eclipse Platform UI

Java is a programming language and computing platform first released by Sun

Microsystems in 1995. It is the underlying technology that powers state-of-the-art

programs including utilities, games, and business applications. Java runs on more

16

than 850 million personal computers worldwide, and on billions of devices

worldwide including mobile and TV devices. /36/

Extensible Markup Language (XML) is a simple, very flexible text format derived

from SGML (ISO8879). Originally designed to meet the challenges of large-scale

electronic publishing, XML is also playing an increasingly important role in the

exchange of a wide variety of data on the web and elsewhere. /37/

2.1 Eclipse Plugin Development and Platform API

Eclipse is an open source community and a platform consisting of Eclipse and

Eclipse-based products that can be extended or integrated into other applications by

developers. The Eclipse Platform, which is a part of the Eclipse project, allows

developers to extend the IDE functionality through the plug-ins. A developer can

create custom editors, menus, commands, or wizards as part of a plug-in by extending

the Eclipse platform. Eclipse can also be integrated with other applications, for

example in a web application. Eclipse is built on the OSGi framework. The

framework provides an open architecture that is modular and dynamic and required

for running the Eclipse IDE.

There are many Eclipse projects namely Business Intelligence and Reporting Tools

(BIRT), data tools platform, the core Eclipse project, Eclipse modeling project,

Mylyn, SOA platform project, technology project, tools project, test and performance

tools platform project, and the web tools platform project. Within the core Eclipse

project is the Eclipse platform which provides the core APIs and services for creating

plug-in extensions. It provides the runtime environment in which the plug-ins are

loaded, integrated and executed. It is this platform that enables developers to build

tools. One can think of the platform as universal since it is an IDE that can manage

any kind of resource such Java, XML, HTML, JSP, CSS files to mention a few of

them.

17

The following table illustrates several components of the Eclipse platform. /1/

Table 1: Eclipse Platform components

Name Description

Ant Eclipse/Ant integration

Core

Platform runtime and resource management

CVS Platform CVS Integration

Debug

Generic execution debug framework

Releng

Release engineering

Search

Integrated search facility

SWT

Standard Widget Toolkit

Team/Compare

Generic team and compare support frameworks

Text

Text editor framework

User Assistance

Help system, initial user experience, cheat sheets, etc.

UI Platform user interface

Update Dynamic Update / Install / Field Service

The platform API is a set of interfaces that enables a developer written application or

plug-in to communicate with the Eclipse platform.

Figure 2. A screenshot of the Eclipse API specification

18

2.1.1 Eclipse Plug-in

A plug-in is used to group code into a self-contained, extendable and sharable unit.

Plug-ins are self-contained as each plug-in contains some portion of code. The plug-

in specifies other plug-ins (or java packages) it requires in order to work as well as

the set of java packages it provides. Eclipse based software typically contains

multiple plug-ins, which can be added, replaced or removed to alter the functionality

of the program.

A plug-in can be extended using extensions and extension points and can provide one

or more extension points so other plug-ins can add to the functionality of the plug-in.

It may also provide extensions to connect to other plug-ins.

A plug-in can be shared by exporting it to a directory or jar file and added to other

applications. They can be grouped into features which can be distributed and installed

into applications.

Eclipse plug-ins are based on OSGi bundles. OSGi is used to manage the plug-ins in

an Eclipse application. A plug-in must contain a manifest file with valid OSGi

headers for plug-in name and version. Extensions and extension points functionality

added by Eclipse in addition to OSGi. To use extensions you must provide a

plugin.xml file. PDE provides a full featured project and editor for creating and

editing these files. /2/

2.1.2 Structure of a plugin

Eclipse is not a single monolithic program, but rather a small kernel containing a

plug-in loader surrounded by many plug-ins. The loader is an implementation of

OSGi specification and provides the environment in which plug-ins execute. An

example of how plug-ins depend on one another is shown in Figure 3 below.

19

Figure 3. Eclipse Extension Point Structure

The dependencies of a plug-in are declared in the MANIFEST.MF while the services

are declared in the plugin.xml file. The behavior is in the code. Plug-ins are loaded

when needed, a term referred to as lazy-loading. The benefits of this include reduced

startup time and memory usage.

The plug-in loader reads the manifest and plugin.xml file for each plugin on startup.

A structure is built based on this information.

20

Figure 4. Declaring a new extension

The figure above shows an example of how a new extension is declared in the plug-in

manifest with lines highlighting how the plug-in manifest references various plug-in

artifacts.

2.1.3 Plug-in Directory or JAR file

The Intents Registry Eclipse plug-in JAR, org.openintents.intentsregistry_1.0.0.jar,

contains files similar to a typical plug-in, including java class files, various images

used by the plug-in and the plug-in manifest.

• Java classes – The classes that are contained within the plug-in can be found

in a standard java directory within the plug-in JAR file.

• Icons – By default, image files are placed in the icons or images folder. This is

referenced in the plugin.xml and by the various plug-in classes.

21

• MANIFEST.MF – This file contains the runtime information of the plug-in

such as the identifier, version, name and other plug-in dependencies.

• Plugin.xml – The extension and extension points are described by this file in

XML format.

The plug-in JAR must have a name and placed in a special directory for Eclipse to

find and load. The JAR name can be a combination of the plug-in identifier declared

in the MANIFEST, an underscore, version in dot separated form, such as:

Org.openintents.intentsregistry_1.0.0.jar

The plug-in JAR is usually placed in a special folder called plugins of the Eclipse

installation directory.

Figure 5: Intents Registry Eclipse plugin project tree

22

2.1.4 Installing a Plug-in

Plug-ins can be installed in several ways in the Eclipse installation directory:

1. A plug-in can be placed in the plugins directory as siblings to other Eclipse

plug-ins.

2. A plug-in can be downloaded to Eclipse from an update site which is usually

created by the provider of the plug-in.

3. Downloading Eclipse from the marketplace using the Eclipse marketplace

client.

4. Placing the Eclipse plug-in in a product-specific directory and creating a link

file for Eclipse to find and load the plug-in.

Plug-in Manifest

For every plug-in, usually there is a MANIFEST.MF and plugin.xml files. Within

each manifest, there are usually entries for name, identifier, activator, version and

provider.

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: %Bundle-Name

Bundle-SymbolicName: org.openintents.intentsregistry; singleton:=true

Bundle-Version: 1.0.0

Bundle-Activator: org.openintents.intentsregistry.IntentsregistryActivator

Bundle-Vendor: %Bundle-Vendor

Snippet 1. Plugin Manifest

Strings in the manifest file such as the plug-in provider can be externalized by

moving it into a build.properties or plugin.properties file. This process enables

internalization for the localization of the software in different languages.

Bundle-Vendor = OpenIntents

Bundle-Name = Intentsregistry Plug-in

intentsregistry.view.category.name = OpenIntents

intentsregistry.view.name = Intentsregistry

Snippet 2. Properties files for org.openintents.intentsregistry

23

Plug-in identifier

This identifier (Bundle-SymbolicName) is designed to uniquely identify the plug-in

within the Eclipse system. Usually it is based on the Java package naming

convention, e.g. org.<organization or company name>.<product name>. In this

particular case, the identifier is org.openintents.intentsregistry. It is also possible to

have several plug-ins in one product. In such a case, then the different plugins can

consist of extra parts in addition to the convention mentioned earlier as in

org.openintents.intentsregistry.help, org.openintents.intentsregistry.tests, and

org.openintents.intentsregistry.features.

Plug-in version, name, and provider

Every plugin must be specified by a version (Bundle-Version) using three digits

separated by dots. The first number shows the major version number, the second for

the minor version number and the third specify the service level. An example is 1.0.0.

Version less than 1.0.0 such as 0.5.0 are typically used for the alpha version of the

software and 1.0.0 and above for the beta version. The plug-in name is not unique and

is used to represent the name of the plug-in. The provider is a non-unique name often

used to describe the company or organization that makes the plug-in.

2.1.5 Extensions and extension points

A plug-in specifies an extension point for other plug-ins to extend its functionality.

 <extension

 point="org.eclipse.ui.views">

 <category

 name="%intentsregistry.view.category.name"

 id="org.openintents.intentsregistry">

 </category>

 <view

 name="%intentsregistry.view.name"

 icon="icons/sample.gif"

 category="org.openintents.intentsregistry"

 class="org.openintents.intentsregistry.views.IntentsregistryView"

 id="org.openintents.intentsregistry.views.IntentsregistryView">

 </view>

 </extension>

Snippet 3. Extension points

24

The attribute defines the extension point in the extension element.

Activator

This is the plug-in class that consists of functions to initialize and access static

resources, preferences and state information of the plug-in.

Creating feature project

In order to create an update site project, a feature project is created with settings

defined for version, name, provider, update site url and the plug-in id. The id is used

to reference the plug-in. Information about feature description; copyright notice and

license agreement are defined as well in the feature project.

Creating Eclipse Update site and Project updates site hosting

The update site is created after the feature project. A web server is used to host the

contents of the project update site. The update site is located as gh_pages in Github.

/39/. The project page is shown in Figure 9.

Figure 6. Project page

25

Code Repository

The code repository for the project can be found on this site shown in Figure 8. /39/

Figure 7. Code repository

2.1.6 Building and Maintaining the Github Update Site

The update site support consists of one or more feature projects and one update site

project. The update site build is done by an ant script in the

org.openintents.intentsregistry project, called build.xml.

There are three types of information that are kept for a version:

1. The site.xml holds references to the version

2. The jars built for the features

3. The jars for the associated plugin

Steps to create a plugin repository for a new Intents Registry Eclipse Plugin

1. Update the plug-in project in Eclipse

2. Add other plug-in sub-projects to the Github repository

3. Publish the update project to the gh-pages of the master branch of the

repository

26

2.2 Updating the repository

There are several ways to work with git and commit code to OpenIntents Github

repository. One way is the local branch to commit process for contributing to the

project. The following shows the typical flow. Initialize the local branch for the first

time:

git init

Add the updated source files:

git add org.openintents.intentsregistry

git add org.openintents.intentsregistry.feature

git add org.openintents.intentsregistry.help

git add org.openintents.intentsregistry.test

Once you are satisfied with the changes, and everything is working, commit those

changes to the local branch: The principle here is to “commit early and commit often”

git commit a m ‘Updated Version Numbers’

Update the Github repo

git push origin

2.3 Internationalization and Help

Eclipse and the JRE expose APIs for GUI and languages from the code. And as the

software is being used in different parts of the world with different languages, there is

a need to internationalize the plug-in by externalizing the strings and translating them.

Eclipse supports multiple languages.

The Eclipse framework was used to include an online help which provides details

about the features in the plug-in.

27

2.4 ANT

Apache ANT serves as a tool to build the software. An ANT build script is written in

Eclipse where various attributes are defined within the project element in the XML

structure.

2.5 Android and Intents

Intent is an asynchronous message that enables component or code in the same or

different applications to interact and request services from each other during run-

time. It describes an operation to be performed. An activity component can send one

or more intents to the Android system to start another activity. A broadcastreceiver

component receives broadcast intents and a service component can be communicated

with in the background through the startservice or bindservice intent.

Intent is an object itself and all intents are instances of the android.content.Intent class

Tasks are carried out based on the interaction of several or many intents within or

outside an application.

2.5.1 Structure of Intent

The primary pieces of information in intent are:

• action – The general action to be performed, such as ACTION_VIEW

• data – The data to operate on such as person record in the contacts database,

expressed as Uri

In addition to this primary attributes, there are a number of secondary attributes that

you can also include in intent:

• Category – Gives additional information about the action to execute. For

example, CATEGORY_LAUNCHER

• Type – Specifies an explicit type (a MIME type) of the intent data. Normally

the type is inferred from the data itself

28

• Component – specifies an explicit name of a component class to use for the

intent.

• Extras – This is a bundle of any additional information. This can be used to

provide extended information to the component. For example, if we have an

action to send an e-mail message, we could also include extra pieces of data

here to supply a subject, body, etc. /34/

Android support explicit and implicit intents

2.5.2 Explicit and Implicit intents

In explicit intents, a component is named which is run by the Android system. It

provides the exact class to be called. An example explicit intent in a code snippet to

add a new account is shown below:

Intent k = new Intent(exampleAccount.this, Account.class);

k.putExtra("example", false);

startActivityForResult(k, 1);

Snippet 4. Explicit intent

Implicit intents do not describe the class or component to be called.

Intent z = new Intent(Intent.EDIT_VIEW);

z.setAddress(example.getUrl());

startActivity(z);

Snippet 5. Implicit intent

2.5.3 Open Intents

They facilitate interactions within an application as well as interactions with other

applications. This intent can be used by other applications, or use the intents of other

applications. OpenIntents provides several reusable components including OI About

which displays a general about box for author information, OI File Manager which

provides “Open” and “Save as” dialogs; OI Safe which encrypt strings with a single

master password and OI Update which set up version checking other than the Google

play. /40/

29

A developer can use these components in their application through intents. For

example, the About dialog can be used in a developer application by calling the

SHOW_ABOUT_DIALOG intent:

Intent intent = new Intent("org.openintents.action.SHOW_ABOUT_DIALOG");

startActivityForResult(intent, 0); /44/

Snippet 6. An Open Intent

2.5.4 Open Intents registry

The registry provides the following elements for extracting information about the

various intents which can be implemented or called by other activities.

• Action

• Additional_extra_keys

• Basic_URI

• Category

• Extra_key

• Input

• Intent_Extra

• MIME_types

• Output

• Provides_intents_URIs

• URI_variants

30

The open intents registry is an xml file as shown below in Figure 9. /41/

Figure 8. Open Intents online registry

2.5.5 Intent Filters

An intent filter wraps around one or more pieces of information in an intent. It

specifies the intent type that an activity, service or broadcast receiver can interact

with. These filters are defined within the AndroidManifest.xml file.

2.5.6 Android Manifest File

Android applications typically have this file which provides vital information about

the application. The package name for example serves as the unique identifier for the

application. It also contains component information for components like activities,

services, broadcast receivers and content providers. For example, in snippet 7 of the

AndoridManifest.xml for a Guestbook, there is an activity containing an intent-filter.

This filter contains actions like “android.intent.action.MAIN” and

“android.intent.category.LAUNCHER” classes. These are the kinds of actions being

referred to in the open intents registry. /45/

31

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.finbrein.guestbook.android.client"

 android:versionCode="1"

 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="8" android:targetSdkVersion="10" />

 <uses-feature android:name="android.hardware.camera" />

 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.CAMERA"/>

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <activity android:name="org.finbrein.guestbook.android.client.Guestbook"

 android:label="@string/app_name"

 android:configChanges="orientation|keyboardHidden">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 </application>

</manifest>

Snippet 7. Android Manifest file

2.5.7 Android Manifest Editor

Eclipse has a default text or structured text editor for files with .xml extension.

During the installation of Android Development Tools (ADT) plugin into the Eclipse

IDE, this setting is changed for AndroidManifest.xml file to use the visual Android

manifest editor as the default.

Figure 9. Preferences dialog showing file association between editor and file types

32

2.5.8 Default Java Editor

Unlike the Android manifest editor, the default text editor is text based. Actions, uris,

extras and other pieces of information that describes intent can be added to the default

editor while actions can be added to the Android manifest file. The figure below

shows a default java editor with intent and an action with the name

“android.intent.action.MEDIA_SCANNER_SCAN_FILE”.

Figure 10. Default editor

33

3 THE APPLICATION DESCRIPTION

The main functionality of this application is to integrate the online intents registry

with the Eclipse IDE and provide a mechanism to search through the intents as well

as add intents to the editors in the IDE. In order to achieve this, a plug-in written

using Java and Eclipse API is required. This plug-in provides a dialog box, menus

and views on top of the Eclipse platform. Libraries from the Java software

development kit, org.eclipse.jface.text, org.eclipse.ui.texteditor, org.eclipse.ui,

org.eclipse.swt, org.eclipse.core.runtime, org.eclipse.core.resources, etc. were

referenced. The following requirements were gathered for the project.

3.1 Application Requirements

Requirement analysis consist of the applications must have, should have and nice to

have.

The application must have

• A persistence layer (a text file) - the registry data should be persisted on

the client machine and available to Eclipse even when there is no internet

access to the online intents registry.

• A search function for intents - Create a dialog box for displaying titles or

descriptive names of intents and for adding actions to the code in the

programmer’s editor.

• A browser within Eclipse

• Eclipse 3.x and 4.x compatible - the Intents Registry plugin for the Eclipse

IDE has never existed for this popular IDE. Eclipse has a very robust API

that allows developers to design and develop plugins.

• Multi-platform support - The plug-in is compatible with all operating

systems that support Eclipse. Most important operating systems targeted

are Linux, Mac OS X and Windows.

• Synchronization - Local storage of intents should be in sync with the

online intents registry.

34

The application should have

• Insert a code block (intents, extras, interfaces, etc.) into the Eclipse editor

• Intents accessible via a menu

The application is nice to have

• Intents accessible via a context menu

• Intents accessible via a code completion feature

• A no-sql database (couch DB) for persistence

• Insert a code block in the Android manifest file

• A help function

3.2 Functional Specification

An OpenIntents or Android developer can access the online intents registry via

browsing or searching the data within Eclipse. The intents, extras and action data

stored in a text file within Eclipse can be updated automatically via internet

connection and users can still have access to the data when there is no internet access.

The following use case diagram documents the use cases performed by the developer

of Android application using the intent registry plugin for open intents, libraries, uris,

extras and other types of artifacts within Eclipse. Three main functions including the

search function, browsing and inserting code blocks into the android developer editor.

35

Figure 11. Use case diagram of the plugin

3.3 Class Hierarchy

The application consists of several packages such handlers, net, views, dialogs,

model, intentsregistry and property tester. Each package consists of classes that

define and implement behaviour that are common to the classes. Some classes derive

from other classes forming a hierarchy of classes.

Figure 12. A package diagram of the plugin showing the relationships among the

packages

36

3.3.1 Main UI Classes

The IntentsregistryView class defines the view for displaying the browser. It receives

user interactions and implements appropriate changes. The most important functions

within the class are highlighted below:

• createPartControl: This is a callback that will allow the creation of the

viewer and initialize it

• setFocus: pass the focus request to the viewer’s control

• IntentsregistryView: The constructor

The structure of these functions can be visualized in the figure below.

Figure 13. Structure of the main view

The IntentsregistryFilterDialog class implements a filtered selection dialog and is the

main class for searching and filtering intents. The class is responsible for displaying

a set of items to be selected by the user. The IntentsregistryResourceSelectionHistory,

ResourceFilter and ShowOnlyLowerCaseStringsAction are enclosed within the

IntentsregistryFilterDialog. Main functions of the class include:

• createExtendedContentArea: creates an extended content area located

above the details

• createFilter: creates an instance of a filter

37

• fillContentProvider: fills content provider with matching items

• getDialogSettings: returns the dialog settings

• getItemsComparator: returns the comparator to sort items inside the

content provider

• validateItem: validates the item

• fillViewMenu: Fills the menu of the dialog

• applyFilter: applies the filter created by createFilter() method to the items

list

• getElementByName: returns the name of the given object

Figure 14. Filter dialog classes

38

3.3.2 Handler Classes

The handler classes receive, send and process messages. The

OpenIntentsregistryFilterDialogHandler class open the intents registry filter dialog.

The OpenIntentsregistryViewHandler open the Intentsregistry view while the

OpenIntentsregistryHelpHandler show help for the intents registry. The most notable

function common to these handler classes is the execute method stated below:

Execute: executes with the map of parameter values by name

Figure 15. Handler classes

3.3.3 Plugin Activator and Logging Classes

The application lifecycle starts and stops within the IntentsregistryActivator. It is the

main entry point into the program. It exploits interfaces and functionalities provided

by the plug-ins and libraries. The IntentsregistryLog is responsible for collecting log

information about the plug-in. This is necessary for debugging in case something

goes wrong. The main attributes of the IntentsregistryActivator class are

• PLUGIN_ID: the plug-in id

• Plugin: the shared instance

The main functions include:

• Start: method is called when plug-in is started

39

• Stop: method is called when plugin in stopped

• getDefault: returns the shared instance

• getImageDescriptor: returns an image descriptor for the image file at the

given plug-in relative path

• getConfigDir: answer the configuration location for this plug-in

• saveConfigPrefs: save the configuration preferences if they have been

loaded

The most notable functions of the IntentsregistryLog class are:

• logInfo: log the specified information

• logError: log the specified error

• createStatus: create a status object representing the specified information

• log: log the given status

Figure 16. Plugin Activator and logging classes

40

3.3.4 Model and Parser Classes

The IntentsregistryParser parses the input source file and collects the information into

a file while the IntentsregistryResource generates data for the

IntentsregistryFilterDialog object. Notable functions within the classes include:

• List: creates a list of items received from the online intents registry xml file

• generateResources: read the list of items and store them in a text file as “=”

delimited text

Figure 17. Parser and model classes

3.4 Description of Functions

This section provides a detailed description of the main functionality of the

application. The use case diagram will be analysed and given a detailed description.

The implemented classes for these functions are explained in subsequent chapters.

3.4.1 Insert Code Block

A user clicks the OpenIntents menu and chooses Add Intent… to open a dialog box.

The user enters a search item to display a set of filtered items in the menu item box.

41

Figure 18. Sequence diagram – add intent

The sequence of actions is described as follows

• User enters a search item

• Item is analysed and filtered intents are sent to the dialog box

• User selects the desired intent and click the OK button

• Intent is added to the code editor of the IDE

3.4.2 Browse Intent

To view a page, a user has to open the OpenIntents menu and select Browse online to

open the browser window. The user enters a url to fetch the page.

42

Figure 19. Sequence diagram – Browse intent

The sequence of actions is described as follows

• User enters a url in the address bar of the browser window

• If the page is available, then it is displayed to the user

43

3.5 Deployment Diagram

The architecture of the application can be described below. The intents are stored in

an xml file on the OpenIntents web server while Eclipse is the client pulling data

from the external source and storing it within a text file. The content of the text file is

processed and provided as application data to Eclipse. The figure below shows the

deployment diagram for the plug-in using HTTP client to communicate with the web

server containing the online intents.

Figure 20. Deployment diagram for the plugin

44

4 DATA PERSISTENCE AND GUI DESIGN

This overview is intended to give a very high-level introduction of the design

methodologies, interesting and important design decisions about the Intents Registry

Eclipse plugin, key model and components of the plugin, how they work individually

and how it all fits together.

Persisting and retrieving data within Eclipse can be done in various ways by storing it

in a file, database or caching network data. To store the data, a flat file data source of

type text was used. The intents are stored in a text file for easy retrieval rather than

using an xml file. Using the text file is more suitable for the application. The plug-in

uses a simple document model for data storage. To address the problem of efficient

retrieval of data from the storage, a text file was used over XML. Reading data from

an xml file takes longer than a text file since every path to a single data will be

traversed from the root element. Our data model is simple enough to require a simple

database for building this application.

The main GUIs are the filtered selection dialog box and the browser box which

displays the intents and the window for browsing online respectively.

4.1 Main GUI

The user has to select the “Add Intent…” menu from the Eclipse menu bar to have

access to the intents, extras, actions, interfaces as well as other application data.

Below is a design of the filtered selection dialog created with the Balsamiq mockup

tool. A user enters an item to open within the matching items box. The matching

items box displays a list of items matching the text entered.

45

Figure 21. Add Intent

4.2 Browser Window

The browser window is used to connect the openintents website and browse the site.

Items can be downloaded or copied into Eclipse editor like as obtainable in a typical

browser.

Figure 22. Browse Intent

46

5 IMPLEMENTATION

The plug-in is built on Eclipse platform by extending Eclipse classes via their

interfaces using the Java language. The application was developed for real-time with

an emphasis on reliability and availability. Details of the application can be found in

the comments of the attached source codes for the application.

5.1 Software Methodology

Extreme Programming was applied for developing the software. This is necessary in

order to deliver working prototypes of the software quickly and make corrections to

bugs and bad design ideas before moving on. Since the application is quality driven

based on test-driven development (TDD), it is necessary that written codes are tested

before or during the development. Several spike solutions were created to figure out

answers to the technical and design problems of the project. This actually involved

two people working in pair.

5.2 Data Retrieval and Persistence

To get data into the file from the XML data source received by the HTTP client, a

decision was made between SAX and DOM. DOM (Document Object Model)

describes the XML file as hierarchy and which is stored in memory. It is resource

intensive. Therefore, SAX, a simple API for XML was chosen and applied. Below is

one of the several nodes or tags in the registry.xml file.

<node>

<Action>com.mgeek.android.musicbox.PLAYBACK_VIEWER</Action>

<Additional_extra_keys/>

<Basic_URI/>

<Category/>

<Extra_key/>

<Input/>

<Intent_Extra/>

<MIME_types/>

<Output/>

<Provides_intent_URIs/>

<URI_variants/>

<Body>

<p>Shows a player, this is not really a protocol, maybe the author of the app can

tell us more.</p>

47

</Body>

<title>Playback Music</title>

</node>

Snippet 8. Intent tag

The parser interface, org.xml.sax.XMLReader interface is the key for parsing the xml

based registry. It hides the complexity of different input formats and parsing libraries

while providing a simple and powerful mechanism for client applications to extract

structured text content and metadata. All this is achieved with a single method. Below

is the method extracted from the code snippet below to pull data from the xml data

source on the web server.

public abstract void parse(InputSource paramInputSource)

 throws IOException, SAXException;

Snippet 9. Parse method

The parse method takes the source to be parsed as inputs and output the results as

SAX events which are sent as callbacks to the methods of a ContentHandler instance

given to the parse method:

Once an instance of the class, XMLReader in the list() of the code snippet below is

obtained, XML can be parsed from a variety of input sources. These input sources are

InputStreams, Files, URLs, and SAX InputSources. /3/

The list() method will iterate through the <node> tags and read the content of each of

them. Only the <title> and the <action> tags of each <node> tag will be read as

defined in the code and stored in the file using the startDocument() function.

public class IntentsregistryParser {

 class HowToHandler extends DefaultHandler {

 BufferedWriter out = null;

 boolean title = false;

 boolean oiAction = false;

 public void startElement(String nsURI, String strippedName, String tagName,

Attributes attributes) throws SAXException {

 if (tagName.equalsIgnoreCase("title"))

 title = true;

 if (tagName.equalsIgnoreCase("Action"))

 oiAction = true;

 }

48

 @Override

 public void endDocument() throws SAXException {

 try {

 out.close();

 } catch (IOException e) {

 IntentsregistryLog.logError(e);

 }

 }

 @Override

 public void startDocument() throws SAXException {

 try {

 out = new BufferedWriter(new

FileWriter(IntentsregistryConstants.PROPERTY_DEFAULT_REGISTRY_FILE));

 } catch (IOException e) {

 IntentsregistryLog.logError(e);

 }

 }

 public void characters(char[] ch, int start, int length) {

 try {

 if (oiAction) {

 out.write(new String(ch, start, length));

 oiAction = false;

 }

 else if (title) {

 out.write("=" + new String(ch, start, length) + "\n");

 title = false;

 }

 } catch (IOException e) {

 IntentsregistryLog.logError(e);

 }

 }

 }

 public void list() throws Exception {

 XMLReader parser = XMLReaderFactory.createXMLReader();

 parser.setContentHandler(new HowToHandler());

 parser.parse(new InputSource(new

URL(IntentsregistryConstants.DEFAULT_BASE_URL).openStream()));

 }

}

Snippet 10. IntentsregistryParser

49

5.3 Generating Resources

A simple text file is used to store the xml data retrieved from the intents registry xml

data source. This file is regularly updated from the web server. To get data out the file

from the file system into Eclipse, you go through BufferedReader object.

public class IntentsregistryResource {

 private static ArrayList<String> resources = new ArrayList<String>();

 static Map<String, String> resourcez = null;

 static {

 generateRescources();

 IntentsregistryParser intentList = new IntentsregistryParser();

 try {

 intentList.list();

 } catch (Exception e) {

 IntentsregistryLog.logError(e);

 }

 }

 private static void generateRescources() {

 try {

 BufferedReader in = new BufferedReader(new

FileReader(IntentsregistryConstants.PROPERTY_DEFAULT_REGISTRY_FILE));

 String str = "";

 resourcez = new HashMap<String, String>();

 while ((str = in.readLine()) != null) {

 resources.add(str.substring(str.indexOf(IntentsregistryConstants.EQUAL_DELIMITER) + 1,

str.length()));

 resourcez.put(str.substring(0,

str.indexOf(IntentsregistryConstants.EQUAL_DELIMITER)),

str.substring(str.indexOf(IntentsregistryConstants.EQUAL_DELIMITER)+1, str.length()));

 }

 in.close();

 } catch (IOException e) {

 IntentsregistryLog.logError(e);

 }

 }

 // @return the resources

 public static ArrayList<String> getResources() {

 return resources;

 }

 /**

 * @return the resourcez

 */

 public static Map<String, String> getResourcez() {

 return resourcez;

 }

}
Snippet 11. IntentsregistryResource

50

The content of the registry file in the plugin is shown below in Figure 11.

Figure 23. Local registry of Intent actions and titles

5.4 View and Dialog Handler

There are two main user interfaces in this application with behaviour defined in the

IntentsregistryView and IntentsregistryFilterDialog classes. The IntentsregistryView

is responsible for displaying the browser while the IntentregistryFilterDialog is

responsible for displaying the dialog box containing filtered intents. In order to have

the filter dialog appear, an handler method to open the IntentregistryFilterDialog is

defined below:

public Object execute(ExecutionEvent event) throws ExecutionException {

 new IntentsregistryFilterDialog(HandlerUtil.getActiveShell(event),

isEnabled()).open();

 return null;

}

Snippet 12. Execute method of Filter Dialog

51

The method to open the IntentsregistryView is as follows:

 /**

 * Open the intentsregistry view.

 */

 public Object execute(ExecutionEvent event) throws ExecutionException {

 // Get the active window

 IWorkbenchWindow window =

HandlerUtil.getActiveWorkbenchWindowChecked(event);

 if (window == null)

 return null;

 // Get the active page

 IWorkbenchPage page = window.getActivePage();

 if (page == null)

 return null;

 // Open and activate the Intentsregistry view

 try {

 page.showView(IntentsregistryView.ID);

 } catch (PartInitException e) {

 IntentsregistryLog.logError("Failed to open the Intentsregistry view", e);

 }

 return null;

 }

Snippet 13. Execute method of IntentsregistryView

52

5.5 Logging

Exceptions and service related information are appended to a log file. The activator

has a getLog() method for accessing the plug-in logging mechanism.

Several methods are used to log the error messages and exceptions to the log for the

Intents Registry Eclipse plugin.

 public static void logInfo(String message) {

 log(IStatus.INFO, IStatus.OK, message, null);

 }

 public static void logError(Throwable exception) {

 logError("Unexpected Exception", exception);

 }

 public static void logError(String message, Throwable exception) {

 log(IStatus.ERROR, IStatus.OK, message, exception);

 }

Snippet 14. Logging

53

6 TESTING

In order to have a reliable and robust plug-in, there is a need to for testing the code.

New features will always be added to the project; therefore, there is a need to test and

add tests as the project evolve and to ensure that the product keeps functioning

properly over many releases. This section contains all testing information including

unit tests and user testing.

The JUnit library was added to the test project as a dependency for testing and writing

the unit tests. These are small units of codes that are designed to be efficient. Each

method validate one logical piece of code. Methods within the test classes have an

Assert.* call in them.

6.1 JUnit Testing

JUnit is a simple, open source framework to write and run repeatable tests. It is an

instance of the xUnit architecture for unit testing frameworks. JUnit features include:

• Assertions for testing expected results

• Test fixtures for sharing common test data

• Test runners for running tests. /42/

Snippet shows the test written to assert that the IntentsregistryView resource object

will contain a list of intents received from the server.

public class IntentsregistryResourceTest {

 @Test

 public void testGetResources() {

 assertEquals(84, IntentsregistryResource.getResources().size());

 }

 @Test

 public void testGetResourcez() {

 Map<String, String> resourceMap = IntentsregistryResource.getResourcez();

 assertNotNull(resourceMap.size());

 }

}

Snippet 15. RegistryResource JUnit Test Case

54

6.2 SWTBOT

SWTBot is an open-source java based UI/functional testing tool for testing SWT and

Eclipse based applications.

SWTBot provides APIs that are simple to read and write. The APIs also hide the

complexities involved with SWT and Eclipse. This makes it suitable for UI/functional

testing by everyone, not just developers. SWTBot also provides its own set of

assertions that are useful for SWT. You can also use your own assertion framework

with SWTBot.

SWTBot can record and playback tests and integrates with Eclipse, and also provides

for ant tasks so that you can run your builds within CruiseControl or any other CI tool

that you use.

SWTBot can run on all platforms that SWT runs on. Very few other testing tools

provide such a wide variety of platforms. /43/

Snippet shows the test written to test an SWT based GUI.

public class IntentsregistryViewTest {

 private static SWTWorkbenchBot bot;

 @BeforeClass

 public static void beforeClass() throws Exception {

 bot = new SWTWorkbenchBot();

 bot.viewByTitle("Welcome").close();

 }

 @Test

 public void testCreatePartControlComposite() {

 // Get text after the label "Address"

 SWTBotText textWithLabel = bot.textWithLabel("Address");

 // Set the focus and write a text into the text field

 textWithLabel.setFocus();

 textWithLabel.setText("my text");

 assert(textWithLabel.getText().equals("my text"));

 assertTrue(true);

 }

55

 @Test

 public void canOpenABrowser() throws Exception {

 bot.menu("OpenIntents").menu("Browse online").click();

 }

}

Snippet 16. IntentsregistryView Test Case

6.3 Inserting Code Blocks

The plug-in defines an Intents Registry which allows users to insert code blocks

within the Eclipse IDE. Appendix 1 contains and installation and user manual for the

tool. In this section, we will describe how the tools work without mentioning specific

details. The picture in Figure shows the dialog box for searching, filtering and adding

intents to the editor in Eclipse.

Figure 24. Intent selection page

56

The process starts with clicking on the OpenIntents menu and selecting “Add

Intent…”. This will fire up the handler which calls the dialog box pre-populated with

data.

6.4 Browsing Libraries and Artifacts

The intents registry view below allows the developers to browse the libraries and

other artifacts. Buttons are added to allow the go to the forward or back page. The use

can also type urls to the address bar to browse different sites.

Figure 25. Intents registry browser view

57

7 SUMMARY

The previous chapters gave an overview of the module. The structure and

functionalities were discussed. In the entire chapter, the Intents Registry Eclipse

plugin project was analysed. As a proof of concept, a tool for browsing the registry

within Eclipse has been created.

7.1 Publishing plugin to the Eclipse marketplace

Eclipse marketplace provides an easy to use means of finding, downloading and

installing Eclipse based plugins directly within Eclipse using the marketplace client

that comes pre-installed with the latest versions of Eclipse IDE. The Intents Registry

Eclipse plugin contains a description of the plugin, current version number, the

author, license used, supported platforms and IDEs to mention a few. By publishing

the Intents Registry Eclipse plugin to the Eclipse marketplace, it will gain exposure to

many users in different parts of the world.

Figure 26. Plugin on the Eclipse marketplace

58

7.2 Becoming a contributor / committer

I have being consistent as a developer with OpenIntents working on projects and

already I have a committer access. The benefit of this is that I can quickly check in

code to our repository without waiting for approval patches to be approved. An

individual cannot gain a committer status except nominated by other committers.

7.2.1 Contributing to OpenIntents

There are several ways to contribute to OpenIntents. One can help with

documentation, translation of software to different languages, bug reporting, feature

request, bug fixing and feature development. OpenIntents allows me to publish the

project using the Apache 2.0 open source license. This allows other developers to

contribute to the plug-in project. My aim is that the plug-in helps the developers to be

more productive and further development of the plugin is ensured. The mailing list

serves as a communication channel with other developers.

7.2.2 Project mailing list

The OpenIntents mailing list is open to anyone. Subscription to the mailing list is

needed to get mails in the box. There is also a Google group site for discussions,

notices and updates about the different OpenIntents projects. Interested developers

can discuss about bugs and new features for example, directly with other developers.

59

8 CONCLUSION

In this thesis, we describe the implementation of an intents registry Eclipse plugin.

This tool allows a developer to browse the intents registry made available online on

the OpenIntent’s web server. The requirement was to make this registry available to

the developer within the Eclipse IDE. The goal was to create a copy of the online

registry within Eclipse and provide an easy access for programmer to add intents to

their code in their editors. In addition, the functionality of browsing online artifacts

within Eclipse was added.

So far, the plug-in provides three views with the following contributions made by the

thesis:

• Intents selection page

• Browsing view

• Help view

• An Intents Registry Eclipse plugin was built.

It can be changed to another language. Intents can be added from the registry. These

are stable prototypes with functionalities that need to be improved but good enough

to be put to use. With the intents selection page, the user can add insert code to the

editor. With the browser view, a user can navigate the OpenIntents’ online resources

without leaving Eclipse. The help provides guides on the use of the software.

There were obvious challenges in the beginning trying to understand the Eclipse

codebase which is very large as well as how to extend it with a plugin. But it is very

rewarding to improve my problem solving, java and Eclipse development skills.

More importantly, learning how to become a good open source developer.

60

8.1 Future Work

In the future release of the system, more features will be added including context

assist using the actions of intents as proposals. This will enhance programmer’s

productivity. New user stories will be collected from the people that use the tool to

determine the useful parts, parts to be improved and the new ones to be added.

8.1.1 Feature

Content Assist – This will be made available via the code completion feature of

Eclipse.

61

9 REFERENCES

/1/ Eclipse Platform [online].

Available in URL form - http://www.eclipse.org/platform/ <Checked 08.29.2012>

/2/ Eclipse Platform API Specification [online].

Available in URL form:

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fre

ference%2Fapi%2Findex.html <Checked 08.29.2012>

/3/ SAXParser [online].

Available in URL form:

http://docs.oracle.com/javase/6/docs/api/javax/xml/parsers/SAXParser.html

<Checked 08.29.2012>

/4/ Grindstaff, Chris, “How to Use the JFace Tree Viewer,” Applied Reasoning,

May 5, 2002 (www.eclipse.org/articles/treeviewer-cg/TreeViewerArticle.htm)

/5/ Gauthier, Laurent, “Building and Delivering a Table Editor with

SWT/JFace,”Mirasol Op’nWorks, July 3, 2003

(www.eclipse.org/articles/Article-Tableviewer/table_viewer.html).

/6/ Springgay, Dave, “Creating an Eclipse View,” OTI, November 2,

2001(www.eclipse.org/articles/viewArticle/ViewArticle2.html).

/7/ Liotta, Matt, “Extending Eclipse with Helpful Views,” July 20,

2004(www.devx.com/opensource/Article/21562).

/8/ Deva, Prashant, “Folding in Eclipse Text Editors,” March 11,

2005(www.eclipse.org/articles/Article-Folding-in-Eclipse-Text-

Editors/folding.html).

/9/ Ho, Elwin, “Creating a Text-Based Editor for Eclipse,” HP, June

2003(devresource.hp.com/drc/technical_white_papers/eclipeditor/index.jsp).

/10/ Klinger, Doina, “Creating JFace Wizards,” IBM UK, December 16,

2002(www.eclipse.org/articles/Article-

JFace%20Wizards/wizardArticle.html).

62

/11/ Fatima, Azra, “Wizards in Eclipse: An Introduction to Working with

Platformand Custom Wizards,” HP, August 2003

(devresource.hp.com/drc/technical_articles/wizards/index.jsp).

/12/ Adams, Greg, and Dorian Birsan, “Help Part 1, Contributing a Little Help,”

/13/ August 9, 2002 www.eclipse.org/articles/Article-

Online%20Help%20for%202_0/help1.htm

/14/ Ford, Neal, “Centralizing Help in Eclipse,” ThoughtWorks, June 21,

2005(www-128.ibm.com/developerworks/opensource/library/os-eclipsehelp)

/15/ Zink, Lori, “Understanding Eclipse Online Help,” HP, February

2005(devresource.hp.com/drc/resources/eclipsedoc/index.jsp)

/16/ Java internationalization tutorial

(java.sun.com/docs/books/tutorial/i18n/intro/index.html).

/17/ Internationalization (I18n) (java.sun.com/j2se/1.4.2/docs/guide/intl/).

/18/ Kehn, Dan, Scott Fairbrother, and Cam-Thu Le, “How to

InternationalizeYour Eclipse Plug-in,” IBM, August 23, 2002

(eclipse.org/articles/Article-Internationalization/how2I18n.html).

/19/ Kehn, Dan, “How to Test Your Internationalized Eclipse Plug-in,” IBM,

/20/ August 23, 2002 (eclipse.org/articles/Article-TVT/how2TestI18n.html).

/21/ Kehn, Dan, Scott Fairbrother and Cam-Thu Le, “Internationalizing

YourEclipse Plug-in,” IBM, June 1, 2002 www-

128.ibm.com/developerworks/opensource/library/os-i18n

/22/ ISO 639 language codes www.unicode.org/onlinedat/languages.html

<Checked 08.29.2012>

/23/ ISO 3166 country codes (www.unicode.org/onlinedat/countries.html).

/24/ Eclipse Help: Java Development User Guide > Tasks > Externalizing Strings

63

/25/ “Dynamic Content in Eclipse Help System Pages,” Eclipse.org, December

2005(www.eclipse.org/eclipse/platform-

ua/proposals/xhtml/HelpDynamicContent.html)

/26/ Eclipse Help: Platform Plug-in Developer Guide > Programmer’s Guide

>Plugging in help

/27/ Adams, Greg, “Creating Product Branding,” OTI, November 27,

2001(www.eclipse.org/articles/product-guide/guide.html).

/28/ Glozic, Dejan, and Dorian Birsan, “How to Keep Up to Date,” IBM,

August27, 2003 (www.eclipse.org/articles/Article-Update/keeping-up-to-

date.html).

/29/ McCarthy, Pat, “Put Eclipse Features to Work for You,” IBM, October 14,

2003 (www-128.ibm.com/developerworks/opensource/library/os-ecfeat/).

/30/ Markus Barchfeld, “Build and Test Automation for plug-ins and features”

http://www.eclipse.org/articles/Article-PDE-Automation/automation.html

<Checked 08.29.2012>

/31/ Ant Web site ant.apache.org/ <Checked 08.29.2012>

/32/ Eclipse Ant FAQ (eclipsewiki.editme.com/ANTFaq). <Checked 08.29.2012>

/33/ Eclipse Help: PDE Guide > Exporting a plug-in

/34/ Android Intents

http://developer.android.com/reference/android/content/Intent.html <Checked

08.29.2012>

/35/ http://www.eclipse.org/org/#about <Checked 08.29.2012>

/36/ Java FAQ - http://java.com/en/download/faq/whatis_java.xml <Checked

08.29.2012>

/37/ XML http://www.w3.org/XML/ <Checked 08.29.2012>

64

/38/ Project URL: https://github.com/openintents/intents-registry_eclipse

<Checked 08.29.2012>

/39/ Code repository : https://github.com/openintents/intents-registry_eclipse

<Checked 08.29.2012>

/40/ OI - http://code.google.com/p/openintents/wiki/OpenIntents <Checked

08.29.2012>

/41/ Intents Registry site: http://www.openintents.org/en/xml/registry <Checked

08.29.2012>

/42/ Junit - http://junit.sourceforge.net/doc/faq/faq.htm#overview_1 <Checked

08.29.2012>

/43/ SWTBot - http://www.eclipse.org/swtbot/ <Checked 08.29.2012>

/44/ OI About - http://www.openintents.org/en/node/202 <Checked 08.29.2012>

/45/ Intent Filters - http://developer.android.com/guide/components/intents-

filters.html <Checked 08.29.2012>

65

APPENDIX 1

INSTALLATION

System Requirements

The Intents Registry Eclipse plugin is compatible with the following Eclipse

versions:

• 3.6.x (Helios)

• 3.7.x (Indigo)

• 4.2.x (Juno)

Update Site Location

The update site is located at http://openintents.github.com/intents-

registry_eclipse/org.openintents.intentsregistry.update/

Installation

There are several ways to install the plug-in, like any other plug-in, by applying the

following steps.

Using the Eclipse marketplace client

1. Install or update using the Eclipse Marketplace (recommended)

Help -> Eclipse Marketplace

66

2. Find by typing “Intents Registry” in the search box and click the search button

Intents Registry Eclipse Plugin (by OpenIntents, Apache 2.0)

On the “Eclipse Marketplace”, click on the “Install” button.

67

3. Confirm selected features and click on the “Next” button

68

4. Accept the license and click on the “Finish” button.

5. Accept the security warnings and restart Eclipse when prompted.

69

Installing via the update site

1. Install new software

2. Press the “Add…” button on the ‘Available Software’ page

In the “Add Repository” dialog, enter the following information and press the “OK”

button

Name: Intents Registry Eclipse Plugin

URL: http://openintents.github.com/intents-

registry_eclipse/org.openintents.intentsregistry.update/

70

3. Click the Next button on the “Install Details” page

71

5. Accept the License Agreement and click on the “Finish” button.

6. Accept the security warnings and restart Eclipse when prompted

72

Usage

The installation will add “OpenIntents” to the menu bar of the Eclipse workbench

window.

Once the plugin has been installed, you can use it to insert intent actions into your

code by selecting the appropriate title from the dialog box. You can also use it to

browse the source code of libraries that you use in your software development. Here

is an example to illustrate this.

Assume that you are working on a project and you want to add an action to Intent for

displaying data to the user, you will select “View data” on the dialog box which will

add the corresponding action to your code.

73

74

