

Anh Vu

Real-time backend architecture using
Node.js, Express and Google Cloud
Platform

Metropolia University of Applied Sciences

Bachelor of Information Technology

Information Technology

Bachelor’s Thesis

5 January 2021

 Abstract

Author
Title

Number of Pages
Date

Anh Vu
Real-time backend using NodeJS, Express and Google Cloud
Platform

47 pages
5 January 2021

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Mobile Solutions

Instructors
 Petri Vesikivi, Head of Mobile Solutions

Real-time applications, which assure the latency within the defined time limit, are becoming
more popular due to the growth of Software as a service trend. Before the evolution of cloud
computing, the only solution was to use native WebSockets which are difficult to set up and
develop. Recently, Google Cloud Platform provides a developer-friendly, fast and
responsive platform to make the process of developing real-time applications seamless.

The purpose of the thesis was to demonstrate and build a scalable, high-available and
reliable backend architecture using Node.js and Google Cloud Platform. The thesis consists
of a theoretical background including Node.js, monolithic and microservices architecture,
serverless architecture and real-time database, which provide basic understanding of
different architectures and technical solutions. The advantages and disadvantages of the
architecture were also clearly analyzed and evaluated. Furthermore, a minimum viable
product for a taxi booking app was created to demonstrate the architecture usage in a real
use case.

To summarize, the thesis aimed to provide the insights of real-time backend architecture
using Node.js and Google Cloud Platform. Moreover, the benefits of using this technology
stacks were carefully examined in a case study. The thesis completed the first phase of the
case study project, which focused on planning and designing the application’s overall
architecture. Although the outcome of the thesis satisfied all stakeholders, there are still
many rooms for improvements in the future such as automated deployment and integration
process.

 Abstract

Keywords Node.js, Google Cloud Platform, Google Cloud Firestore,
Google Cloud Functions, real-time application

Contents

1 Introduction 1

1.1 Project technical objective 2

1.2 Project summary & business objective 2

1.3 Structure of the thesis 2

2 Theoretical background 4

2.1 Node.js 4

2.1.1 Overview 4

2.1.2 Benefits 5

2.1.3 Drawbacks 7

2.1.4 Express 8

2.1.5 MVC pattern 8

2.2 Microservices architecture 10

2.2.1 Background 10

2.2.2 Overview 11

2.2.3 Google Cloud Platform 13

2.3 Serverless architecture 15

2.3.1 Background 15

2.3.2 Overview 15

2.3.3 Google Cloud Functions 17

2.4 Cloud Firestore 18

2.4.1 Overview 18

2.4.2 Comparison with Realtime Database 19

3 Project 20

3.1 Project summary 20

3.2 Project challenges 21

3.3 Technical solutions 22

3.4 Implementation 23

3.4.1 Software architecture 23

3.4.2 Services and tools 25

3.4.3 Implementation 26

3.5 Evaluation 41

3.6 Future development 42

4 Conclusion 43

List of Abbreviations

GCP Google Cloud Platform, a cloud computing service powered by Google.

I/O Input/output, the communication between a computer and other devices.

MVC Model - View - Controller, a software design pattern which separates the

business logic to three components

MVP Model - View - Presentation, a derivative software design pattern of MVC

which strictly forbids the interaction between model and view

MVVM Model - View - ViewModel, a software design pattern which allows the view

and model to interact directly

API Application Programming Interface, a computing interface that allows the

communications between multiple services.

CI/CD Continuous integration and continuous delivery

orm Object-relational mapping

npm Node Package Manager

1

1 Introduction

The advancement of cloud computing service introduces a new way of developing low

latency, high availability and scalability real-time software with minimal cost and required

resources. People use real-time applications daily, such as online messaging, making

video calls or booking a pizza. The definition of “real time” states that the system must

respond in a time constraint (Cooling, 2019), hence, it requires a unique infrastructure to

handle live data. Over the decades, the system architecture has been changed

noticeably due to the need of minimizing cost and building complex, yet high quality

systems (Cooling, 2019).

Before the cloud computing era, most real-time applications written in JavaScript used

either Socket.io or WebSocket to maintain the live connection between client and server

sides. Although Socket.io has been praised by the JavaScript developer community for

many years, there are several drawbacks including callback-centric behavior,

inconsistent message system and bizarre encodings (Roper, 2018). Besides, the lack of

resources, including a substantial initial development budget and a team of experienced

developers, may halt the success of Socket.io (Ilya, 2020). Firebase, which is a service

of Google Cloud Platform, provides a ready-made real-time solution with a minimal initial

cost, lower maintenance and operation cost (for low to normal traffic application), reliable

performance and auto-scaled architecture. Furthermore, Firebase supports modern

architectures such as microservices and serverless architecture, which significantly

reduces the development, deployment and maintenance cost.

JavaScript has become the most popular programming language in 2019 (Chan, 2019).

With the rapid growth of JavaScript popularity in the developer community, JavaScript

projects such as Node.js have been welcomed and received positive feedback by the

community. Node.js delivers the fast, effortless, yet seamless development experience

and scalable and highly available application as a result of functional program, single-

threaded and non-blocking I/O characteristics.

2

The choice of technologies in this thesis is based on the author's working experience in

the industry; nevertheless, it is not a silver bullet, and the system architecture should be

determined per project.

1.1 Project technical objective

The final goal of the project is to build a scalable, high-available, yet reliable real-time

backend architecture using Node.js and Google Cloud Platform cloud service. The

project implementation presents the technical insight of microservices and serverless

architecture for real-time application. At the end of the case study practice, a fully

operational real-time backend architecture for a taxi booking app is built.

1.2 Project summary & business objective

The main business objective of the thesis is to present a solution for developing a fully

operational taxi booking app with minimal initial budget and high technical requirements.

The taxi company’s goal is to connect multiple taxi drivers to an existing taxi booking app

platform, which will increase the income of drivers and reduce the cost of customers. For

the first phase, the desirable outcome is to build a Minimum Viable Product which is able

to perform a full cycle from booking a taxi to ending a trip. Although there are some

existing service providers in the market, the entrance and monthly fee is not reasonable,

and the return on investment does not meet the expectation.

1.3 Structure of the thesis

The following table shows the thesis structure and the final objectives and content in

each chapter.

3

Chapter Title Final objectives / contents

Chapter 1 Introduction - Describing the background of the thesis topic.

- Presenting the thesis’s technical and business

objectives, and the project summary.

- Structure of the thesis

Chapter 2 Theoretical

background

- Supplying the theoretical background for the

project including Node.js, microservices

architecture, serverless architecture and real-

time database

- Briefly describing the reasons of choosing

Node.js and Google Cloud Platform

Chapter 3 Project - Presenting project’s details and implementation

Chapter 4 Conclusion - Summarizing thesis’s goals and outcomes

- Evaluating the project and planning for future

development

 References - Listing all the sources in the thesis

 Appendices - Listing information and code snippets

reinforcing the content.

4

2 Theoretical background

2.1 Node.js

2.1.1 Overview

JavaScript V8 engine, which was the most powerful JavaScript engine at that time, was

released by Lars Bak, a Google software engineer, in 2008 (Pasquali and Faaborg,

2017). As a result, Ryan Dahl developed Node.js, which is now the most popular

JavaScript runtime environment running outside a web browser, in 2009 (OpenJS

Foundation, 2020). For the first time in history, developers can build a backend

application using JavaScript with high-level programming language features and high

performance (Pasquali and Faaborg, 2017). Compared to other existing backend

frameworks, Node.js provides an exclusive infrastructure due to event-driven, single-

threaded and non-blocking I/O characteristics.

The main concept of Node.js is to grant the developer access to the JavaScript’s event

loop and to system resources (Wilson, 2018). Hence, the Node.js developers are

responsible for creating and handling the callback functions, which respond to registered

events. The figure 1 below shows how the event-driven architecture works in Node.js As

can be seen, events and callbacks are encapsulated and managed by a single stack,

which delegates the concurrency work to the system. At the beginning of the process,

an application makes an event to the event demultiplexer. Then the event demultiplexer

pushes several corresponding events to the event queue. The event loop iterates and

executes the events of the event queue. The event is executed by its registered handler,

and the control is given to the event loop when the handler finishes the execution. The

event demultiplexer can receive an event request, which will perform other event

execution again, while the handler is running. As an event-driven JavaScript runtime

environment, Node.js is designed to create scalable applications (OpenJS Foundation,

2020).

5

Figure 1. The reactor pattern (Casciaro and Mammino, 2020)

While other frameworks utilize parallelism by using multithreaded architecture, Node.js

applies JavaScript’s principle of single-threaded environment (Wilson, 2018). In

comparison, there are plenty of advantages and disadvantages of single-threaded

architecture. The author will discuss them in the next part.

Node.js uses a non-blocking I/O mechanism to access the system resources. In a non-

blocking I/O system, the data can be always obtainable without waiting for the data

read/write execution to complete. If the data is not ready to obtain, the system should

return a predefined value which signals the data status (Casciaro and Mammino, 2020).

2.1.2 Benefits

The adoption of Node.js has increased sharply since it was initially released, and some

popular backend frameworks, such as Express.js and Meteor.js, have been created for

6

Node.js environment. There are various reasons for the quick adoption from the

community.

Firstly, Node.js applies JavaScript concept of functional programming, thus, it is

effortless to modularize to maintain and reuse the code. According to npmjs, there are

approximately 1.5 million JavaScript package modules in January 2021 (npm, Inc.,

2020). With the significant number of packages, developers can reuse the existing

packages, or create and maintain the new one with ease.

With the power of V8 engine, it is less than a second to loop through a billion times in

JavaScript with a Macbook Pro 2019 with a 2.6 GHz Intel Core i8 processor. The script

and the figure below show the code and the outcome of the billion-time loop experiment.

Node.js is built on Chrome’s V8 engine, therefore, developers do not need to worry about

the performance in most cases.

Script 1. Looping through 1 billion times using JavaScript

Figure 2. The outcome of looping through 1 billion times

Node.js proves the concept of the single-threaded concept to be useful in developing

high quality and performance applications (Pasquali and Faaborg, 2017). In comparison

to other languages using the multithreaded mechanism, Node.js developers can leave

the concurrency burden to the system, hence, the complexity and difficulty of

7

multithreaded systems can be ignored (Meadow, 2018). Furthermore, Node.js also

supports running parallel tasks in multiple processors by using the child_process module.

Child processes mechanism allows developers to spawn, control and close the

independent processes programmatically.

The non-blocking I/O concept allows other events to complete their cycles while other

heavy load events, such as write or read files, operate. This mechanism reduces the

response time and makes the application more reactive.

In conclusion, single-threaded, non-blocking I/O and functional programming features of

Node.js benefit developers to build a fast, reliable, yet high performance application with

seamless experience.

2.1.3 Drawbacks

By using Chrome’s V8 engine, the performance of Node.js is not an issue in most cases.

However, Node.js performance is not as good as other existing backend frameworks

when running CPU-intensive tasks such as data manipulation due to its single-threaded

mechanism (Casciaro and Mammiano, 2020). Since the code runs on a single event-

loop, the CPU-intensive tasks may block other tasks to operate. Although Node.js

supports running multiple processes parallel, it is advised to consider using different

frameworks. Besides, serverless architecture such as Google Cloud Functions or

Amazon Lambda is recommended to use when dealing with CPU-intensive tasks.

JavaScript applies the functional programming paradigm, so object-oriented

programming developers may find the new paradigm uncomfortable to work with.

Besides, object-oriented programming languages apply strict type rules which require

developers to take care about the type of variables. Strict type rule is used to verify the

code validation, however, it requires more code lines to perform and it may lead to

“lasagna code” because of many abstraction layers. Meanwhile, JavaScript uses

dynamic type rules which cause some issues regarding the maintenance and

development. There are various existing solutions in the market, and the most popular

8

one is Typescript, which is released by Microsoft. It is recommended to use Typescript

when developing Node.js applications.

In conclusion, developing with Node.js may come with some issues related to

performance and development. In the scope of this thesis, Node.js is the choice for the

backend.

2.1.4 Express

Express is the most well-known web framework running in Node.js runtime environment

(MDN Contributors, 2020). Since Express was released, it has been receiving good

feedback from many experts, and it has become one of the most popular choices for

developing web servers. Express provides a layer to:

● create http request handler
● write server templates

● configure web server routes and port to listen to incoming requests
● add middleware to intercept the incoming requests.

Since Express is an unopinionated framework, it gives developers the freedom to choose

the application architecture (MDN Contributors, 2020). There is no “right” or “wrong” way

of structuring Express files, as long as it achieves the technical and business objectives.

In the thesis project, Express will be used as a web framework to develop Node.js

application.

2.1.5 MVC pattern

MVC which stands for model - view - controller is a popular software architecture pattern

(Hibbard et al, 2020). The idea behind this pattern is to break down the business logic to

three components, and each component has its own responsibility. The figure below

represents MVC components, and how they connect to each other.

9

Figure 3. MVC Design Pattern (Spinelli, 2018)

Three components are responsible for:

● model: Representing the data structure of the application. It resembles the data-

related functionality that users deal with.

● view: Displaying any elements and user interfaces which the user can see

● controller: Handling the logic of the application. It connects the view and model part

by sending requests to model, handling response and sending the response back to

view (Hibbard et al, 2020).

MVC design pattern benefits the software development by offering modularity (Chrome

Developers, 2012). Modularity reduces the cost for maintenance, modification and

feature extension. Furthermore, by separating the view, data and business logic, it is

possible for a developer team to work in different components at the same time (Chrome

Developers, 2012).

There are several extended versions of MVC such as MVP (Model - View - Presentation)

or MVVM (Model - View - ViewModel). There is no silver bullet pattern that works for

10

everything, so it is recommended to choose the pattern depending on the business

objectives, working environment and developer experience. In this thesis, MVC is the

choice for the case study’s design pattern because it is recommended by

Node.js/Express developer community.

2.2 Microservices architecture

2.2.1 Background

During the advancement of technology since the dot-com bubble, the software industry

has been transforming rapidly; Consequently, the continuous deployment and delivery

is a key factor in software engineering. The old and traditional deployment method is to

make a single unit of deployment, which requires the new deployment process whenever

a code line is added, removed or edited. Therefore, the deployment cost increases

corresponding to the software complexity. Software engineers noticed the drawback of

this pattern, and they built an alternative approach to adapt with new waves of

transformation.

For many years, the traditional software architecture was to build a big and single

monolith application which contains all tightly coupled components in a development

ecosystem (Pacheco, 2018). Monolith application benefits the development team when

they develop the software from scratch. Besides, monolith architecture promotes

seamless testing, deploying and modifying experience, thus, the developers can focus

on developing new features. Last but not least, monolith enables horizontal scaling by

running multiple instances behind a load balancer (Richardson, 2018). However, when

the application and your development team size expand steadily, it becomes “monolithic

hell”.

Monolithic hell is the state of software development when everything goes down, ranging

from speed of development, deployment and testing to reliability, modifiability and

scalability (Richardson, 2018). Since the components are tightly coupled, the bigger the

development team is, the more frustrated the developers are. When the application

grows, the frustration between different teams arises as there is no clear boundary

11

between them. Furthermore, it is immensely challenging and costly to add or replace the

current obsolete technology with the new and modern one when it comes to monolithic

architecture as the whole application has to be written again. The figure 4 below

represents a concrete monolithic hell example of an existing product. As can be

observed, all teams in FTGO are working in a single, large and complex repository at the

same time; thus, it leads to several problems regarding development, deployment and

testing.

Figure 4. A monolithic hell case: FTGO application (Richardson, 2018)

2.2.2 Overview

Monolithic had dominated the software industry until Netflix and Amazon first adopted

the microservices architecture (Brown, 2016). Microservices has taken over the

monolithic domination, and it becomes the standard for developing big, multi-services

and cross-team applications. In comparison with monolithic, multi-services provides an

architecture that combines independent, bounded and interoperable components

(McLarty et al, 2016). Adrian Cockcroft, a former software engineer of Netflix, added that

microservices composes several loosely coupled service-oriented components that have

boundaries (Richardson, 2018). The figure 5 below shows the microservices architecture

12

of the new FTGO application after transformation from monolithic architecture. As can

be seen, the old application has been divided into several service-oriented components

which are loosely coupled. Each component works on its own system, and each backend

service has an autonomous data model and database. Backend services interact with

others by using lightweight protocols such as REST. API Gateway which is a layer that

assures the reliability and maintainability of the API handles the incoming network

request from client applications to forward the requests to the correct services.

Therefore, it enables developer teams to independently develop, test, deploy and scale

without affecting other services (Richardson, 2018).

Figure 5. Microservice architecture of FTGO application (Richardson, 2018)

With microservices, developers are able to create a set of autonomous service-oriented

components which are independently developed, tested and deployed. Besides, it is

straightforward to build a horizontally and vertically scalable and robust application by

using microservices. Unlike monolithic, microservices enable developers to experiment

13

and adopt new technology for a single microservice depending on their experience, taste,

business and technical objectives (Newman, 2021).

However, since there is no conventional method to break down the system into services,

it requires deep experience and understanding of business and technology to do the job.

If it is not done right, there is a chance that the system will be a distributed monolith

application which requires to deploy multiple services simultaneously. Many developer

teams hesitate to adopt microservices architecture because of the complex distributed

systems. While monolithic has a single web server platform and a single database, the

microservices component has its own independent web server and database. To

coordinate multi-services for distribution, it requires intensive cross-team elaboration,

software engineer experience and delivery skills. Last but not least, the cost of adopting

microservices at the early phase is exceptionally expensive due to the need of skilled

developers and resources to plan, architect and build a distribution pipeline (Newman,

2021).

2.2.3 Google Cloud Platform

As the microservices has been a megatrend in the software development industry, cloud

service providers respond to it by providing a comprehensive set of tools to fully support

microservices in their cloud service. As one of the leading cloud service providers,

Google Cloud Platform offers consolidated solutions to migrate monolithic to

microservices, ranging from hosting and database services to container management

service, with scalability, high-availability, interoperability and security infrastructure

(Google, 2020). Kubernetes, which is controversially the best production-grade container

orchestration tool in the market, provides a full-scaled and secured way to deploy and

host microservices, which reduces workload and stressful working hours for developer

teams. The figure 6 below represents an example of microservices using Google Cloud

Platform. As can be observed, the microservices is hosted in a Kubernetes Engine, and

it can communicate to the backend systems by a private network connection powered

by Cloud Interconnect or Cloud VPN. Meanwhile, API Gateway is handled by either

Apigee or Google Cloud Load Balancing, which are more secure and scalable.

14

Figure 6. Google Cloud Platform microservices architecture example (Google, 2020)

For the scope of this thesis, the case study is designed by the above architecture.

However, Kubernetes is not implemented and discussed further due to its complexity

and the scale of the project.

15

2.3 Serverless architecture

2.3.1 Background

With the escalation of the Internet coverage, more than half of the global population has

the access to the digital world (Clement, 2020). Consequently, the network traffic is

increasing steadily. To ensure the availability of the system, software engineers have to

change the infrastructure to not only scale the system horizontally and vertically but also

keep the billing as minimal as possible. There is a trade-off between scalability and the

service cost management because of the service cold start. Making a high available

service results in better user-experience and expensive bills, while a less-available, yet

reasonably priced service needs time, which ranges from a few milliseconds to minutes,

to wake up the instance. Besides, it is arduous to predict the peak and the pit of network

requests.

It was not until Google released App Engine, a serverless hosting service, in 2008 that

people heard the word serverless. The original idea was to build a service that helps the

developer to focus on doing the business logic instead of spending time to configure the

system (Venema, 2018). However, App Engine had been unknown until it was previewed

in 2011. Until this point, serverless was still a blur definition for the developer community.

Other service providers such as Amazon, Microsoft and IBM released their own

serverless services in the next few years, as a result, serverless has become one of the

most popular architectures these days (Katzer, 2020). Functions as a service (FaaS)

coming with the abstract service management has removed the barrier to the backend

world for frontend developers (Dabit, 2020).

2.3.2 Overview

With the advancement of serverless architecture, the server management workload is

delegated to the cloud providers. However, the workload is not totally removed from the

teams; in fact, an operation team is in charge of handling the cloud service, while

developers can pay attention to write the business logic (Katzer, 2020). The figure below

shows an example of a monolith serverless architecture. As can be seen, the

16

infrastructure and network communication is as same as a normal server-based

application. However, serverless functions and datastore are scaled and configured by

the cloud provider.

Figure 7. An example of monolith serverless (Katzer, 2020)

Serverless architecture allows developer teams to create a powerful scalable, secured

and reliable server-based applications without server configuration and management;

hence, the developers can focus on doing business logic related tasks and the company

saves the resources for managing servers. Moreover, the cloud providers offer a pay by

usage billing option for the serverless service. In comparison with traditional server

hosting service, using serverless will lower the overall hosting cost if the application has

some peak and pit period. For example, a taxi booking app usually receives peak

network requests during weekend’s nights, while it has low network traffic during

weekdays. If the server is hosted in a traditional host service, then it will require a high

memory and multicore processor computer to ensure the highly availability during a rush

hour. However, the server does not use all the computer's potential most of the time,

thus, wasting the company's money for excessive resources (Katzer, 2020). On the other

hand, serverless provides a self-scalable solution and the pay per usage option, so it

reduces the cost for running the service.

However, serverless is still in the early phase of development, and there are several

optimizations that can be done in order to replace the traditional hosting service. The

most common problem in serverless is the cold start time. The cold start time is the time

period that requires to start an instance or service when it is in idle mode. The cold start

time depends on the cloud providers, the technology and the application size. Although

Amazon and Google have been trying to reduce the cold start time to under 1 second, it

is much bigger than a desired network request response time, which is 100ms (Shilkov,

17

2021). Moreover, serverless has some native cloud provider problems, such as network,

complex debugging system and compute time issues. With the advancement of cloud

technology, it is believed that the big tech giants can maximize the serverless’

capabilities in the near future. Besides, if the application’s network traffic is nearly

constant, it is inefficient to use the serverless pattern since the cost of running service is

higher compared to traditional one (Katzer, 2020).

2.3.3 Google Cloud Functions

Every cloud service provider offers its own serverless service, so choosing the correct

providers for the project is extremely tough, and it depends on multiple factors such as

technology, team experience, budget, project and time constraints. In terms of

technology, AWS is leading in cost-efficient and network performance while Google is

better in terms of scalability and dependency management. However, they are both fast,

reliable and less bug-prone, so technology should not be the main reason for choosing

a serverless service (TechMagic, 2020). For the scope of the project, Google Cloud

Functions will be chosen for serverless because of the author’s limited experience and

the integrity of the project.

Cloud Functions is a pay-as-you-go serverless service powered by Google. It aimed to

reduce the resources for server management and cost reduction for running and

maintaining services (Google, 2021). Besides, the automatic scaling feature and end-to-

end development and debugging system makes the development process seamless.

The figure 8 represents an example of using cloud functions to send the push notification

through Firebase Cloud Messaging service. As can be observed, when a user follows

others, the database is updated according to the action. Cloud Functions listens to the

database changes, and it sends the push notifications to the devices by the Firebase

Cloud Messaging.

18

Figure 8. An example of Google Cloud Functions for sending the push notification (Google,
2021)

2.4 Cloud Firestore

2.4.1 Overview

Since the rapid growth of NoSQL databases, cloud providers have introduced multiple

scalable database solutions such as DynamoDB, Realtime Database or Cloud Firestore.

The ultimate objective is to offer a seamless experience for developers to create and

maintain a flexible and scalable database.

Cloud Firestore enables the real time data synchronization between multiple client

applications using real time listeners. Besides, the offline support ensures the application

reliability despite network connection. With the revolution of NoSQL databases, Cloud

Firestore provides a comprehensive hierarchical data model which stores data in key

value pair format. Besides, The Cloud Firestore native querying is vivid, easy and

efficient (Google, 2021). Furthermore, Google Firebase recently introduced a complete

local testing system for Cloud Firestore and Cloud Functions, which improves the

testability and maintainability. Although Cloud Firestore does not support complex

queries such as searching documents by string, Google provides a straightforward

integration with some popular search frameworks such as Algolia and Elastic Search,

which provides the best search optimization solutions in the market. In addition, Cloud

Firestore proposes smooth integration with Cloud Functions and App Engine, which is

used in the case study. Google provides clear documentation for the Cloud Firestore, so

it is easy to integrate for traditional frontend developers or backend developers without

NoSQL database knowledge.

19

2.4.2 Comparison with Realtime Database

In addition to Cloud Firestore, Google offers Realtime Database, which is a cloud-based,

real time database solution. In comparison with Cloud Firestore, Realtime Database

provides less features and slower in terms of query response time. For example, Cloud

Firestore uses indexed queries, while Realtime Database provides a deep query

solution; hence, Cloud Firestore is faster than Realtime Database when the data set is

big enough. In terms of the billing factor, Realtime Database offers the charge rate by

bandwidth and storage, while Cloud Firestore changes the usage by number of database

operations (Google, 2021). Therefore, Realtime Database is suitable for a small

application which has unstructured data models and small dataset.

20

3 Project

3.1 Project summary

The project was built in order to create a platform which connects a taxi booking app to

small traditional taxi companies. The current taxi booking app has millions of customers

in Finland and served half million orders in 2019. The traditional taxi companies have

been struggling with their businesses since the disruptive innovation in the taxi industry.

In Finnish market, there are two ride-sharing services, Uber and Yango, which offer lower

price, better service quality and location tracking service. Therefore, the digital

transformation is vital for the survival of small taxi companies. There were some existing

applications which had the same objectives in the market. However, they had problems

related to performance and user experience issues. Firstly, drivers complained about

missing orders, which were notified by push notifications, since the drivers might focus

on driving. Besides, the current applications had several performance issues regarding

taxi availability check, order operation, or location tracking issues. The project aimed to

bring the seamless experience and high-quality application for drivers who work for the

small taxi companies in Finland.

For the final product, the company owner should be able to manage their companies,

taxis, drivers and prices, pay the invoices and subscription fees, handle the paperwork

and check past and incoming orders in the web dashboard. The admin can do the

owner’s workload and perform overall management. The mobile application should

enable drivers to perform authentication, receive orders, handle order operations, and

other user and order management work.

The case study implements the first phase of the application which represents a

comprehensive backend architecture of the server-based application. Based on the initial

scope meeting, the core features, such as taxi availability checking, order booking, order

operations, overall company management, and payment system must be implemented.

The customers also considered several possible features, which might be done in a later

stage.

21

The development team included 3 developers and 1 project manager. The author was

the lead developer for the project, and he was responsible for designing high-level

software architecture and developing the backend part. Two other developers were in

charge of developing the frontend part, including a mobile application and a web

dashboard.

After the initial meeting, the technology requirement was partly decided. There would be

3 separated applications: A web application using ReactJS, a mobile application for

drivers using React Native, and a server application using Node.js and Google Cloud

Platform. Besides, the client asked for a scalable and highly available software

applications with a tight budget, so using modern architecture, such as microservices

and serverless architecture, and using automatically scaling platforms such as Cloud

Functions and Cloud Firestore would match the initial requirements and speed up the

development process. By understanding the business objectives and technical

requirements, the first minimal viable product was successfully created.

3.2 Project challenges

The final product would be put into production to hundreds of users with bug free,

scalable and highly available qualities. Besides, the sophisticated architecture and

multiple third-party integrations should be planned ahead of the start of the project.

According to client’s requirements, the software should have low latency connection,

minimal downtime and ability to receive multiple requests during the weekends’ nights.

Besides, the client plans to create more features and integrations after the product

release, so the application size can expand sharply. Therefore, it demands a scalable,

highly available, yet flexible architecture.

Picking a technical stack is always a difficult task when starting the project from scratch.

The decision is a combination of multiple factors including developer experience, budget,

technical problems and architecture. Therefore, the technical stack should be carefully

discussed in the initial meeting between developer teams.

22

The application compels multiple third-party integrations including client taxi booking

platform, payment gateway and a Finnish bank and mobile authentication service.

Integration needs the close collaboration between multiple teams in different

organizations; hence, the time for communication should be taken into consideration

when doing the estimation. Besides, it is challenging and costly to find the bug when it

comes from the integration.

Finally, all operation issues should be clearly evaluated beforehand. Downtime or high

network latency would result in revenue and customer loss for the client. Besides, setting

up a system that can automatically deliver the software to the production should be in

the priority list since it saves resources for testing, development and deployment

process.

3.3 Technical solutions

To resolve the architecture issue, the developer team decides to use microservices

architecture for the backend part. As a result, the backend consists of several

autonomous loosely coupled service-oriented components which connect to each other

through a private network. In comparison, microservices accelerates the development

maintenance, and deployment process, and it also ensures the seamless work

collaboration between multiple teams at the same time. Besides, the serverless

architecture is used due to unpredictable number of network requests during the

weekends and highly available requirements.

Based on the developer experience and technical requirements, JavaScript and

Typescript were chosen as the main programming languages. JavaScript, which uses a

function programming paradigm, has been popular for its dynamic, flexibility and

modularity, while Typescript, which powers by Microsoft, is a “super type” version of

JavaScript. Since the core products consist of client and server applications, a full stack

programming language, such as JavaScript or Typescript, should be chosen. For the

frontend side, ReactJS and React Native, which are Facebook’s projects, have been

picked for the web dashboard and mobile application respectively. ReactJS is a well-

known library for web application development, while React Native is used to create

hybrid mobile applications. For the backend side, Node.js and its famous framework,

23

Express, along with Typescript are used to ensure the seamless developer experience

and technical requirement fulfillment. The reason to use Typescript for backend

development is that JavaScript, which supports loosely dynamic types, tends to generate

many unexpected bugs due to the nature of the backend system - heavily usage of data

models. Besides, PostgreSQL is a choice for most databases due to its consistency,

logical data structure and scalability. Since there is a need for real time connection

between client and server sides, Cloud Firestore, which is a real-time NoSQL database,

is used for the order service.

For the deployment tools, Kubernetes, which is a production-grade container

orchestration tool, is the choice for handling microservices architecture because of its

reliability, scalability and security. Due to the limitation of the topic and the complexity of

Kubenetes, Kubernetes would not be discussed in the technical implementation.

3.4 Implementation

In this section, the complete backend architecture is thoroughly evaluated, discussed

and implemented. At the end of the section, an example of the real-time backend

architecture should be created.

3.4.1 Software architecture

The software architecture follows the technical solutions that were decided during the

first technical meeting. Figure 9 below represents the overall architecture of the backend

side.

24

Figure 9. Overall architecture of the application.

As can be seen, the application contains 4 independent service-oriented components,

which represents the core features. The microservice was divided by using domain

driven design, which is a design methodology for a large-scale application. Each

microservice has its own server and database, and it communicates to each other

through a private network setting up by Google Virtual Private Cloud (VPC). Three

services, which are managed by Kubernetes engines, are automatically scaled by using

the load balancers and traffic ingress powered by Kubernetes. There are 2 components

which are dedicated to handle the operations between the application and third-party

services. The incoming network requests firstly come to an API Gateway, where they are

redirected to the desired services. The API Gateway makes the API stable regardless of

the future changes in the backend services. Besides, the API Gateway provides a server

caching service, which is powered by Redis. The caching service reduces the response

time and the workload of server instances. The serverless Cloud Functions is deployed

and ran independently, hence, it is easier to perform the maintenance and future

development. The real time connection between client and server is handled by the

combination of Cloud Functions and Cloud Firestore, resulting in real time experience,

straightforward integration and scalability. Therefore, the architecture meets all the

25

technical requirements of scalability, high availability, low latency and seamless

developer experience.

3.4.2 Services and tools

The rapid growth of cloud computing services has transformed the traditional software

developers’ working methodologies. Before the cloud computing era, it was difficult to

look for all-in-one solutions which met the technical and business requirements. Cloud

services enable business and technical teams to work under the same dome by providing

scalable, secured and economical packages. The project consumes multiple tools and

services powered by Google Cloud Platform. In the next part, the tools and services

which are not discussed in the theoretical background would be presented.

Google Cloud Platform

Google Cloud Platform (GCP) is a cloud computed platform powered by Google. GCP

supports a great range of digital products, from automatically scalable hosting services,

database services and infrastructure to data analytics and machine learning services.

GCP provides great supporting tools for microservices and serverless architecture, such

as Cloud Functions, Cloud Firestore and Realtime Database.

Google API Gateway

API Gateway provides a well-structured REST API, which can be consumed by client

applications. API Gateway provides a stable endpoint system for client and third-party

integrations regardless of the changes in the backend services (Google, 2021). Besides,

it provides a secured communication throughout the network request cycle and prevents

the cyber-attacks. API Gateway is a must-used tool for microservices architecture.

Redis

Redis is a memory-data storage which is used for server and database caching. Redis

supports various data structures including strings, lists, sets, and bitmaps, to name a

26

few. Besides, Redis has many useful built-in functions such as Lua scripting and

transactions (Redis Labs, 2021). Redis works best in the case when the service receives

multiple duplicated requests in a short period, resulting in high availability for the

application.

PostgreSQL

PostgreSQL is one of the most popular relational database systems in the market in

terms of robustness, reliability, scalability and consistency. It supports abundant data

types and data integrity. Besides, PostgreSQL is well-known for the query performance,

concurrency and disaster recovery such as database replication and database recovery

(PostgreSQL, 2021). In this project, PostgreSQL was hosted in CloudSQL, which

supports vertical and horizontal database scaling.

3.4.3 Implementation

In this section, the step-by-step guide to build a complete architecture is described as

images, scripts and descriptions.

Microservices initialization

Structuring microservices is always a controversial topic in the developer community.

Some developers prefer placing each microservice in an independent repository, others

believe that combining microservices into 1 repository gains more benefit. The structure,

regardless of the choice, should benefit the teams in terms of development, testing and

deployment process. For this project, the microservices are placed under a single

repository, because it is easier to manage, maintain and deploy by a single pipeline.

27

Figure 10. Repository structure

The figure above shows how the directories are structured in the repository. Four

directories represents four service-oriented components, and it is an independent loosely

coupled backend service. The reusable modules, if any, are placed in the same root level

with the independent services; hence, it is straightforward to inject and maintain the

modules.

Setup service

It is recommended to use the express-generator package to generate an Express

boilerplate application. For this project, the author used an existing company boilerplate,

which provides great support for the MVC pattern. Figure 11 below illustrates the final

structure of a single service. As can be observed, the structure abstracts the business

logic, the API and the model parts. The entity folder handles the model parts, while the

28

controllers and routes folders act as the controller and view respectively. Besides,

middleware, which perform repetitive business logic, are kept in a separate folder.

Figure 11. Service architecture

Setup docker

Docker is used to build an image of your application in order to run in multiple platforms.

The script below shows the docker setup for a single service.

FROM node:10.13.0-alpine
Set the working directory for the container
WORKDIR /usr/src/app
Copy package.json
COPY package.json .
COPY .env .
RUN apk add --no-cache bash

RUN npm install
ADD . /usr/src/app

Script 1. Docker configuration for Dockerfile

The script 2 illustrates the project setup using docker compose. Hence, the combination

of Dockerfile and docker-compose.yaml results in a complete image of the backend

service.

29

version: "3"
services:
 tictactoe:
 build: .
 volumes:
 - ./:/app
 env_file:
 - .env
 ports:
 - 8080:3000
 depends_on:
 postgres:
 condition: service_healthy
 command: bash -c "npm run dev"
 postgres:
 image: postgres:9.6-alpine
 restart: always
 ports:
 - 5432:5432
 environment:
 POSTGRES_DB: order_service
 POSTGRES_USER: postgres
 POSTGRES_PASSWORD: postgres
 volumes:
 - database-data:/var/lib/postgresql/data
 healthcheck:
 test: ["CMD-SHELL", "pg_isready -U postgres"]
 interval: 5s
 timeout: 5s
 retries: 5
 pgadmin:
 image: chorss/docker-pgadmin4
 ports:
 - 5050:5050
volumes:
 database-data: {}

RUN npm install
ADD . /usr/src/app

Script 2. Docker configuration for docker-compose.yaml

Server configuration for deployment

The app.yaml file is read by Google App Engine during the deployment process in order

to decide the instance and service configuration. The script 3 below illustrates a service

script which uses the automatic scaling option. As can be observed, the service has at

least 1 instance, and can scale up to 2 1024MB-memory instances. Besides, it can

handle 20 concurrent requests or use up to 80% of memory before the second instance

wakes up.

30

runtime: nodejs10
instance_class: F4
service: order-service
automatic_scaling:
 min_instances: 1
 max_instances: 2
 max_concurrent_requests: 20
 target_cpu_utilization: 0.8
 max_pending_latency: 100ms

Script 3. Script for app.yaml

Database configuration

The application uses the typeorm package to map the database entity to object using

object-relational mapping (orm) paradigm. With the support of the orm pattern, writing

database queries is fast and friendly for developers. Besides, the performance is almost

as good as the native query. It is also easy to connect the server to the database. The

script 4 below represents a json file where the database configuration is declared. This

file should be included in the “.gitignore” file since it shows sensitive information.

[
 {
 "environment": "production",
 "type": "postgres",
 "name": "production",
 "host": "/cloudsql/project-name:region:production",
 "database": "production",
 "username": "postgres",
 "password": "postgres",
 "entities": [
 "build/entity/*.js"
],
 "migrations": [
 "build/migrations/*.js"
],
 "cli": {
 "entitiesDir": "build/entity",
 "migrationsDir": "build/migrations"
 },
 "logging": [
 "error"
],
 "synchronize": "false",
 "extra": {
 "socketPath": "/cloudsql/project-name:region:production"
 }
 }
]

31

Script 4. ormconfig.json configuration

Server configuration

Configuring the server in the correct manner ensures the reliability and stability of the

application. The figure 5 below shows an example of setting up a Node.js server. As can

be observed, several middleware was added in order to log events, allow cross-origin

resources sharing (CORS), parse the requests and responses to json automatically, and

handle the errors globally. Besides, the API routes and the documentation are defined in

app.js. The backend application uses Node Package Manager (npm) to handle the

dependencies.

dotenv.config()

/**
 * Create our app w/ express
 */
const app: express.Application = express()

/**
 * HELMET
 */
app.use(helmet())
/**
 * CORS
 */
app.use(cors())
app.options('*', cors())

/**
 * LOGGING
 */
app.use(morgan('combined', {stream: morganStream}))

/**
 * Body parsers and methods
 */
app.use(
 bodyParser.urlencoded({
 extended: true,
 limit: '50MB',
 }),
) // parse application/x-www-form-urlencoded
app.use(bodyParser.json({limit: '50MB'})) // parse application/json
app.use(methodOverride())

/**
 * Router
 */

32

app.use('/api/v1/companies', router.companyRouter)
/**
 * Swagger Documentation
 */
const swaggerSpec = YAML.load(path.join(__dirname + '/docs/swagger.yaml'))
app.use('/api-docs', swaggerUi.serve, swaggerUi.setup(swaggerSpec))

app.use(errorHandler)

/**
 * Setting routes
 */

export default app

Script 5. Server configuration in App.js

The figure 6 below represents the port configuration for the server and how it recovers

from unexpected bugs. As can be observed, the database connection was tested before

the server initialization to prevent hidden bugs. Besides, the setup makes sure that the

server’s process is killed and restarted when the application gets either an uncaught

expectation or an unhandled rejection. The application uses the forever npm package to

restart the server automatically when it is programmatically killed. Therefore, it prevents

the application from running in an unsafe server state.

const logger = initLogger(module)
createConnection()
 .then(() => {
 logger.info('Connect to db successfully!')
 })
 .catch(e => {
 logger.error('Db connection error', e.message)
 })

const server = app.listen(config.port, () => {
 logger.info(‘App is running on port ${config.port)’)
})

const exitHandler = () => {
 if (server) {
 server.close(() => {
 logger.info('Server closed')
 process.exit(1)
 })
 } else {
 process.exit(1)

33

 }
}

const unexpectedErrorHandler = error => {
 logger.error(error)
 exitHandler()
}

process.on('uncaughtException', unexpectedErrorHandler)
process.on('unhandledRejection', unexpectedErrorHandler)

process.on('SIGTERM', () => {
 logger.info('SIGTERM received')
 if (server) {
 server.close()
 }
})

Script 6. Server configuration in index.js

Besides, code sanitation should be put into priority list in order to make the code easy to

develop, maintain and avoid the potential bugs. Tslint, prettier and husky are among the

most popular npm packages for Typescript code checking tools. By using these tools, it

assures the code quality, format and cross-platform support. Besides, since developers

usually have their own code styles, using these tools force developers to follow the same

code styles; hence, it reinforces the code consistency and coherence. The scripts 7 and

8 below illustrate a sample configuration for a Node.js server application. As can be seen,

the files define many coding rules. For example, the “singleQuote” rule enforces the user

to use a single quotation mark instead of the double quotation marks. However, rule

overuse may cause the nightmare for the developers.

{
 "compilerOptions": {
 "sourceMap": true,
 "lib": ["es5", "es6", "es2017", "dom"],
 "moduleResolution": "node",
 "target": "es6",
 "outDir": "build",
 "module": "commonjs",
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "skipLibCheck": true
 },
 "include": ["src/**/*.ts"],
 "exclude": ["node_modules"]
}

34

Script 7. Tslint configuration

Prettier is a well-known code formatter for JavaScript and Typescript developers. It aims

to control the code quality and code format of the application.

{
 "arrowParens": "avoid",
 "bracketSpacing": false,
 "insertPragma": false,
 "printWidth": 80,
 "proseWrap": "preserve",
 "requirePragma": false,
 "semi": false,
 "singleQuote": true,
 "tabWidth": 2,
 "trailingComma": "all",
 "useTabs": true
}

Script 8. Prettier configuration

OpenAPI configuration

Documentation is the way backend developers can communicate with frontend

developers indirectly. A clear documentation boosts the speed of development and

maintenance process since it reduces the developer’s confusion, frustration and stress

level. Besides, API documentation is used to publish the public API to the developer

community. Swagger, which is controversially the best OpenAPI documentation tool,

supports several programming languages integration. Google Cloud Platform also allows

the developer to integrate Swagger with its API Gateway, which would be discussed in

the next few pages. Swagger supports multiple formats such as json, YAML and many

other languages. Since the introduction of OpenAPI 3.0, Swagger introduces the

reusable components and a new way to define complex query params; hence, it saves

time from rewriting the same code. The script 9 shows how a Swagger reusable schema

is defined in YAML format.

components:
 # Reusable schemas, can be referenced as #/components/schemas/{schemas-name}
 schemas:
 User:
 type: object
 properties:

35

 id:
 type: number
 example: 1
 name:
 type: string
 minLength: 1
 example: John Smith
 email:
 type: string
 example: john@example.com
 city:
 type: string
 example: Espoo
 phoneNumber:
 type: string
 example: 0469132412
 address:
 type: string
 example: Espoo
 postalCode:
 type: string
 example: "02510"
 additionalInformation:
 type: string
 example: I want to work near home.
 birthDay:
 type: Date
 example: '2020-07-02'

Script 9. OpenAPI configuration example

Setup serverless

To set up a serverless application, Node.js runtime environment and Google Cloud Shell

must be installed. As discussed above, the Cloud Functions implementation is stored in

the same repository with other microservice. The script below illustrates how to start a

Cloud Functions project using Terminal. After running the script below, it introduces

several steps to configure the serverless project, such as name, programming

languages, code formatter and options to choose other GCP services.

cd functions
firebase init

Script 10. Script to init Google Cloud Functions with Typescript

36

The figure 12 shows a complete structure of a Google Cloud Functions project after

initialization. As can be observed, there are several auto-generated scripts, which

reduces time and effort to setup from scratch. Developers can start developing

immediately by changing the index.ts, for Typescript projects, and deploy a new

application using the script in the package.json file. Besides, developers can change the

code formatter’s rules, firestore’s rules or firebase configuration by editing the files

directly.

Figure 12. Google Cloud Functions structure

By default, the auto-generated project does not include the local test environment. The

script 11 below would install the correct environment and emulator for testing.

npm install --dev @firebase-functions-test @firebase/testing

Script 11. Script to install

Besides, Google allows the developer to create either HTTP Cloud Functions or Call

Functions. HTTP Cloud Functions can be called as a normal HTTP network request,

while Call Functions can be triggered in the client application.

Serverless implementation

37

With the rapid expansion of Google Cloud infrastructure, developers can optimize the

high availability, scalability and network latency by deploying the services in a specific

region or multi-regions. Multi-region service usually results in faster delay time, but more

expensive billings. There is always a trade-off between several architecture options, and

the architecture decision depends on not only technical requirements but also company

resources and developer experience (Bass, Clements and Kazman, 2012). Therefore,

the serverless implementation should be done in the same manner. The script below

shows an example of creating a Cloud Functions which has interactions with Cloud

Firestore. As can be observed, the cloud function would be hosted in europe-west1

region and has a timeout of 30 seconds. Besides, it uses the transaction for Cloud

Firestore, which assures the concurrency of the database. Besides, the Cloud Functions

can be configured to run a scheduled task. For the technical requirements, the Cloud

Functions can receive 1000 concurrence requests at the same time, and all the functions

run in their own instance; thus, it is highly available and scalable.

export const updateLobby = functions
 .runWith({
 timeoutSeconds: 30
 })
 .region('europe-west1')
 .https.onCall((data: LobbyRequest, context): Promise<string> => {
 return firestore.runTransaction(transaction => {
 const collectionRef = firestore.collection(data.collection)
 const documentRef = collectionRef.doc(data.orderId)
 return transaction.get(documentRef)
 .then(foundOrder => {
 if (foundOrder.exists) {
 const updatedData: OrderUpdatedData = {}
 if (data.answererCoordinate) {
 if (!isOrderLocation(data.answererCoordinate)) {
 throw new functions.https.HttpsError('invalid-
argument', 'answererCoordinate format is incorrect')
 }
 updatedData.answererCoordinate = new
admin.firestore.GeoPoint(data.answererCoordinate.latitude,
data.answererCoordinate.longitude)
 }
 if (data.hostCoordinate) {
 if (!isOrderLocation(data.hostCoordinate)) {
 throw new functions.https.HttpsError('invalid-
argument', 'hostCoordinate format is incorrect')
 }
 updatedData.hostCoordinate = new
admin.firestore.GeoPoint(data.hostCoordinate.latitude,
data.hostCoordinate.longitude)
 }

38

 transaction.update(documentRef, updatedData)
 return 'ok'
 } else {
 throw new functions.https.HttpsError('invalid-
argument', 'Could not find order by this id')
 }
 })
 .catch(e => {
 throw e
 })
 })
 })

Script 12. An example of Google Cloud Functions

In addition, the Cloud Functions has a useful feature that benefits this case study: It can

bind a listener to a specific Cloud Firestore collection or document. In other words, when

there is a change in the Cloud Firestore, the Cloud Functions can be triggered. As can

be observed, the function listens to every document in order-staging collection. If a

document is updated, it will trigger the listener, and send the data to third-party. As a

result, the client application can communicate with the client booking platform in a real

time connection.

exports.updateOrderListener = functions
 .region('europe-west1')
 .firestore
 .document('/order-staging/{orderId}').onUpdate(async (change, context) => {
 try {
 return new Promise((resolve, reject) => {
 sendDataToFonecta(change.after.data())
 .then(res => {
 return resolve()
 })
 .catch(e => {
 reject(e)
 })
 })
 } catch (e) {
 throw e
 }
 })

Script 13. An example of Cloud Functions listener

API Gateway configuration

39

For the API Gateway, it must be initialized and configured by the gcloud console. To

initialize, the command line gcloud beta api-gateway apis create my-api -

-project=mvp-project should be run in the terminal or in the gcloud shell. The API

Gateway can be configured by a yaml file, as shown in script 13.

swagger: '3.0'
info:
 title: my-api
 description: Sample API on API Gateway with a Google Cloud Functions backend
 version: 1.0.0
schemes:
 - https
produces:
 - application/json
paths:
 /hello:
 get:
 summary: Greet a user
 operationId: hello
 x-google-backend:
 address: https://europe-west1-mvp-project.cloudfunctions.net/helloGET
 responses:
 '200':
 description: A successful response
 schema:
 type: string

Script 13. An example of Cloud Functions listener

The script 14 below shows the script to deploy the API Gateway to the GCP using gcloud

command line. As can be observed, the config, the api name and the project name along

with the dedicated user account must be defined in the script.

gcloud beta api-gateway api-configs create my-config \
 --api=my-api --openapi-spec=openapi2-functions.yaml \
 --project=mvp-project --backend-auth-service-account=0000000000000-
compute@developer.gserviceaccount.com

Script 14. Script to init Google Cloud Functions with Typescript

Infrastructure setup

40

This part represents the project setup process in Google Cloud Console, starting from

project creation to service host management and service configuration. Gcloud

command-line interface is also used in some parts of the process.

The Google Cloud project can be created either in the Google Cloud Console or by the

gcloud command lines: gcloud projects create mvp-project. After project

creation, the project dashboard, as shown in figure 13, is visible and available to the

admin users. In the project dashboard, admin can manage the users, projects, analytics,

services and billings. The project dashboard informs general information about the

project, which gives the overall insight for admin about the project’s current status.

Figure 13. Google Cloud Console project dashboard

Admin can add, edit or remove users from the application using the IAM & Admin setup.

Besides, in the IAM dashboard, admin can restrict users to access and edit certain

resources in the application, hence, it improves the security and accessibility of the

application.

41

To enable App Engine, Cloud Functions and Cloud Firestore services, admin needs to

add a billing account and enable the services manually in the Google Cloud Console.

Then, the services can be seamlessly deployed to the services using gcloud command-

line.

3.5 Evaluation

The development team successfully built a minimal viable product for the taxi booking

app backend application, which is hosted in Google Cloud Platform. The backend

application combines modern software architecture such as microservices and

serverless and latest powerful technologies including Node.js, Express and Google

Cloud services, resulting in high availability, scalability, interoperability, security and

reliability. The outcome of the project meets the initial technical and business proposals

which were decided at the first meeting with the client.

From the technical view, the application gave an insight about a different approach to

the real time application development. The ultimate objectives of the solution are to

reduce the company’s resources for maintenance, development and deployment

process, bring the seamless experience to the developers, and deliver a scalable, highly

available, secured and reliable backend application. With the advancement of cloud

services, microservices and serverless are used to reduce the workload for the

developers, avoid monolithic hell situations and save the company’s time and money.

Meanwhile, Node.js, Express along with React and React Native provide a powerful

framework to develop the full stack applications using a single programming language.

Therefore, it removes the boundaries between traditional frontend and backend

developers.

From the business view, the application fulfilled the requirements set from the initial

meeting. The application is able to make a reliable real time connection between driver

mobile applications and a third-party client taxi booking application, which is able to

perform a full booking process. Moreover, company owners can manage their own

drivers, taxis, orders, accountant work and price lists in a single application, while the

admins can keep track of everything happening in the platform.

42

3.6 Future development

Although the first phase of the project was achieved, the current project architecture can

be improved. With the revolution of continuous integration and continuous delivery

(CI/CD), it removes mostly manual work for the deployment process, so it prevents

human-errors and reduces the overall workload significantly. Hence, CI/CD should be

added to the project. In addition, unit tests, integration tests and end-to-end tests should

be added to the architecture, because it produces a bug-free application. In conclusion,

the application architecture is still immature, so there are many rooms for improvements

in the next phases.

43

4 Conclusion

By the detailed theoretical background and the concrete implementation for a case study,

the aim of this study was to provide an approach to build a scalable, highly available,

secured and reliable backend architecture for the real time application using Node.js,

Express and Google Cloud Platform. With the revolution of the cloud computing, software

development has changed to adapt with the new wave of technical innovations.

Microservices and serverless have been adopted and proved as the new standard

architecture in the market. Besides, cloud services have changed the way of developing,

maintaining and deploying the services. Node.js and Express prove that the concept of

single-threaded, non-blocking I/O works as effectively as other traditional multithreaded

frameworks.

In conclusion, the thesis represents the insights for architecting a production-grade real

time application using modern technologies. The project result satisfies the client’s

business goals and technical requirements. With the combination of modern architecture

and Google Cloud Platform services, the project overall cost is cut by half, including the

time and money spent to develop, maintain and deploy the services. However, there is

still room for improvement in the later stage, ranging from testing to building a CI/CD

pipeline to automate the deployment process. All in all, this thesis delivers an alternative,

yet modern approach to develop a real time application, which tends to be more cost-

efficient and developer friendly.

44

References

Roper. (2018). Socket.io - The Good, the Bad, and the Ugly. [Online]. Available at:

https://dzone.com/articles/socketio-the-good-the-bad-and-the-ugly (Accessed: 31

December 2020)

Ilya. (2020). Chat solutions: what to choose between Firebase, SendBird, Node.js +

Socket.io?. [Online]. Available at: https://medium.com/@forasoft/chat-solutions-what-

to-choose-between-firebase-sendbird-node-js-socket-io-e0075e6ea408 (Accessed: 31

December 2020)

Chan. (2019). The 10 most popular programming language, according to the Microsoft-

owned Github. [Online]. Available at: https://www.businessinsider.com/most-popular-

programming-languages-github-2019-11 (Accessed: 6 February 2021)

Cooling. (2019). The Complete Edition - Software Engineering for Real-Time Systems.

[Online]. Available at: https://learning.oreilly.com/library/view/the-complete-

edition/9781839216589 (Accessed: 2 January 2021)

OpenJS Foundation. (2020). About Node.js®. [Online]. Available at:

https://nodejs.org/en/about (Accessed: 31 December 2020)

OpenJS Foundation. (2020). A brief history of Node.js. [Online]. Available at:

https://nodejs.dev/learn/a-brief-history-of-nodejs (Accessed: 31 December 2020)

Wilson. (2018). Node.js 8 the Right way. [Online]. Available at:

https://learning.oreilly.com/library/view/nodejs-8-the/9781680505344 (Accessed: 31

December 2020)

Casciaro and Mammino. (2020). Node.js Design Patterns - Third Edition. [Online].

Available at: https://learning.oreilly.com/library/view/nodejs-design-

patterns/9781839214110 (Accessed: 31 December 2020)

Pasquali and Faaborg. (2017). Mastering Node.js - Second Edition. [Online]. Available

at: https://learning.oreilly.com/library/view/mastering-nodejs-/9781785888960

(Accessed: 31 December 2020)

45

Npm, Inc. (2020). By the numbers. [Online]. Available at: https://www.npmjs.com/.

(Accessed: January 3 2021)

Meadow. (2018). Single-threaded and Multi-threaded Processes. [Online]. Available at:

https://www.tutorialspoint.com/single-threaded-and-multi-threaded-processes

(Accessed: 3 January 2021)

MDN contributors. (2020). Express web framework (Node.js/JavaScript). [Online].

Available at: https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs (Accessed: 3 January 2021)

MDN contributors. (2020). Express/ Node introduction. [Online]. Available at:

https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs/Introduction (Accessed: 3 January 2021)

Hibbard et al (2020). Your first week with Node.js, 2nd Edition. [Online]. Available at:

https://learning.oreilly.com/library/view/your-first-week/9781098122805/ (Accessed: 3

January 2021)

Chrome Developers. (2012). MVC Architecture. [Online]. Available at:

https://developer.chrome.com/docs/apps/app_frameworks/ (Accessed: 3 January

2021)

Pacheco. (2018). Microservice Patterns and Best Practices. [Online]. Available at:

https://learning.oreilly.com/library/view/microservice-patterns-and/9781788474030/

(Accessed: 4 January 2021)

Richardson. (2018). Microservices Patterns. [Online]. Available at:

https://learning.oreilly.com/library/view/microservices-patterns/9781617294549

(Accessed: 4 January 2021)

McLarty et al. (2016). Microservice Architecture. [Online]. Available at:

https://learning.oreilly.com/library/view/microservice-architecture/9781491956328

(Accessed: 4 January 2021)

46

Brown. (2016). Beyond buzzwords: A brief history of microservices patterns. [Online].

Available at: https://developer.ibm.com/articles/cl-evolution-microservices-patterns

(Accessed: 5 January 2021)

Newman. (2021). Building Microservices, 2nd Edition. [Online]. Available at:

https://learning.oreilly.com/library/view/building-microservices-2nd/9781492034018

(Accessed: 6 January 2021)

Google. (2020). Migrating a monolithic application to microservices on Google

Kubernetes Engine. [Online]. Available at: https://cloud.google.com/solutions/migrating-

a-monolithic-app-to-microservices-gke#designing_microservices (Accessed: 7 January

2021)

Clement. (2020). Worldwide digital population as of October 2020. [Online]. Available

at: https://www.statista.com/statistics/617136/digital-population-worldwide (Accessed: 8

January 2021)

Venema. (2020). Building Serverless Applications with Google Cloud Run. [Online].

Available at: https://learning.oreilly.com/library/view/building-serverless-

applications/9781492057086 (Accessed: 8 January 2021)

Katzer. (2020). Learning Serverless. [Online]. Available at:

https://learning.oreilly.com/library/view/learning-serverless/9781492057000 (Accessed:

8 January 2021)

Dabit. (2020). Fullstack serverless. [Online]. Available at:

https://learning.oreilly.com/library/view/full-stack-serverless/9781492059882

(Accessed: 8 January 2021)

Shilkov. (2021). Comparison of Cold Starts in Serverless Functions across AWS,

Azure, and GCP. [Online]. Available at: https://mikhail.io/serverless/coldstarts/big3/

(Accessed: 8 January 2021)

TechMagic. (2020). AWS Lambda vs Google Cloud Functions vs Azure Functions -

What to Choose in 2020?. Available at: https://medium.com/techmagic/aws-lambda-vs-

47

google-cloud-functions-vs-azure-functions-what-to-choose-in-2020-6d5340b79d98

(Accessed: 8 January 2021)

Google. (2021). Cloud Functions. [Online]. Available at:

https://cloud.google.com/functions (Accessed: 8 January 2021)

Google. (2020). Cloud Firestore. [Online]. Available at:

https://firebase.google.com/docs/firestore (Accessed: 9 January 2021)

Google. (2020). Choose a database: Cloud Firestore or Realtime Database. [Online].

Available at: https://firebase.google.com/docs/firestore/rtdb-vs-firestore (Accessed: 9

January 2021)

Redis Labs. (2021). Redis Home Page. [Online]. Available at: https://redis.io/

(Accessed: 12 January 2021)

Google. (2021). Redis Home Page. [Online]. Available at: https://cloud.google.com/api-

gateway/docs/about-api-gateway (Accessed: 12 January 2021)

PostgreSQL. (2021). About. [Online]. Available at: https://www.postgresql.org/about

(Accessed: 12 January 2021)

Bass, Clements and Kazman. (2012). Software Architecture in Practice, Third Edition.

[Online]. Available at: https://learning.oreilly.com/library/view/software-architecture-

in/9780132942799/ (Accessed: 16 January 2021)

