

Natalia Päivöke

Rakennusta jäykistävän profiilimaston vääntöjäykkyyden osuus rasitusten jakaumassa

Metropolia Ammattikorkeakoulu Insinööri (AMK) Rakennustekniikka Insinöörityö 25.4.2012

ALKULAUSE

Tämä insinöörityö tehtiin Finnmap Consulting Oy:lle. Työtäni ohjaavat yrityksen puolelta rakennesuunnittelija Suvi Heikkilä ja Metropolia Ammattikorkeakoulun puolelta lehtori Jouni Kalliomäki. Kiitokseni heille saamastani tuesta ja opastuksesta.

Työni onnistumisen on tehnyt mahdolliseksi Finnmap Consulting Oy:n tarjoama työympäristö, sen tekniikka ja lähdekirjallisuuden saatavuus sekä M-sektorin työtovereiden, erityisesti Anssi Vuorenmaan ja Mika Nuorasen neuvot.

Kiitos aviopuolisolleni ja perheelleni, jotka ovat kannustaneet ja tukeneet minua koko opiskelunaikana.

Helsingissä 25.4.2012

Natalia Päivöke

Tekijä Otsikko Sivumäärä Aika	Natalia Päivöke Rakennusta jäykistävän profiilimaston vääntöjäykkyyden osuus rasitusten jakaumassa 54 sivua + 5 liitettä 25.4.2012
Tutkinto	Insinööri (AMK)
Koulutusohjelma	Rakennustekniikka
Suuntautumisvaihtoehto	Rakennetekniikka
Ohjaaja(t)	Rakennesuunnittelija, DI Suvi Heikkilä Lehtori Jouni Kalliomäki

Tämä insinöörityö tehtiin rakennetekniikkaan erikoistuneelle suunnittelu- ja konsultointiyritykselle Finnmap Consulting Oy:lle. Työssä tarkasteltiin korkean toimistorakennuksen jäykistysjärjestelmää vääntöilmiön osalta. Insinöörityön tavoitteena oli selvittää avoimen profiilimaston vääntöjäykkyyden osuus rakennusta kaatavien voimien jakaumaan.

Teoreettisena taustana insinöörityössä on myös esitetty ohutseinämäisen avoimen poikkileikkauksen vääntöteoriaa eri vääntötapauksien osalta.

Profiilimaston vääntöjäykkyyden vaikutusta rakennukseen kohdistuvien vaakavoimien jakaumaan tutkittiin sekä analyyttisesti että käyttämällä elementtimenetelmäanalyysia Stru-Soft FEM-Design 10.0 -ohjelman avulla. Tutkimusta varten luotiin kahdeksankerroksinen rakennusmalli, jonka alin kerros on kellari, ja jäykistysjärjestelmä muodostuu profiilimastosta ja mastoseinästä. Profiilimasto valittiin tässä työssä tehdystä Finnmap Consulting Oy:n toteutuneiden projektien jäykistysjärjestelmien kartoituksesta.

Tutkimuksessa kävi ilmi, että profiilimaston vääntöjäykkyys pienentää yksittäisen mastoseinän vaakavoimaosuutta, muttei vaikuta paljon profiilimaston vaakarasitukseen.

Tuloksista tuli myös esiin profiilimaston vääntöjäykkyyden ja jäykistysjärjestelmän rakenteen asiayhteys. Sekä analyyttisen että numeerisen menetelmien tulokset osoittivat, että rakenteellisesti profiilimastosta riippuvaisissa jäykistyssysteemissä mastotornin vääntöjäykkyyden vaikutus yksittäisen mastoseinän osalta on merkittävä. Tutkimuksen rakennusmallin tapauksessa sen ansioista mastoseinän voimajakauma pienenee jopa 32 %.

Tutkimuksen tulosten perusteella profiilimaston vääntöjäykkyyden hyväksi käyttö rakennuksen stabiliteettitarkastelussa vaatii profiilimaston erillistä mitoitusta väännölle. Näin ollen osamaston vääntöjäykkyyden huomioimisen tarvetta rakennuksen vakavuuden tarkastelussa on harkitseva tapauskohtaisesti.

Avainsanat	jäykistysjärjestelmä,	voimajakauma,	profiilimasto,	vääntöjäyk-
	kyys, vapaa vääntö, o	estetty vääntö		

Author Title Number of Pages Date	Natalia Päivöke The role of a building's core torsional stiffness in the distribution of stress 54 pages + 5 appendices 25 April 2012
Degree	Bachelor of Engineering
Degree Programme	Civil Engineering
Specialisation option	Structural Engineering
Instructor(s)	Suvi Heikkilä, Structural Engineer, M.Sc. Jouni Kalliomäki, Lecturer

This graduate research and development project was carried out at and for Finnmap Consulting Oy – a company specializing in structural design and consulting. The subject of this study was the torsion of high office buildings' bracing system. The aim of this research was to determine the role of an open-section core's torsional stiffness in a horizontal lateral loading distribution.

This research was also based on a warping torsion theory for different torsional cases in thin-walled sections.

The influence of core torsional stiffness to the distribution of horizontal forces directed at a building was studied both analytically and by using a finite element analysis, with a help of StruSoft FEM-Design 10.0 program. For this study, a structural model of an eight floor building was created, the lowest floor of which is a cellar. Its bracing system is formed of its core and a shear wall. The core chosen for this research was used in projects concerning the survey of bracing systems, implemented by Finnmap Consulting Oy.

During the research, it was found out that the torsional stiffness of a core reduces horizontal forces of a single shear wall.

The result also showed that the torsional stiffness of a core and a bracing system are connected to each other. Both analytical and numerical results demonstrated that the influence of a core's bracing system to the torsional stiffness of a single shear wall is significant. In the case of this research model, it reduces the distribution of forces to a share wall up to 32 %.

On the basis of the research results, the stability analysis of a core torsional stiffness requires separate torsional calculations.

Keywords	bracing system, strained torsion	core,	torsional	stiffness,	free	torsion,	con-

Sisällys

Lyhenteet

1	Joho	lanto		1
2	Tutk	imuksei	n asettelu	3
3	Jäyk	istysjärj	jestelmä	5
	3.1	Masto	seinäjäykistys	5
	3.2	Masto	seinä	7
	3.3	Profiili	imasto	8
4	Ohu	tseinäm	äisen avoimen poikkileikkauksen vääntöteoria	9
	4.1	Väänn	iön peruskäsitteitä	10
	4.2	Väänte	ötapaukset	11
	4.3	Väänte	ömomentti	12
	4.4	Väänte	örasitukset	16
	4.5	Poikki	leikkaussuureet	19
5	Suur	nnittelur	n lähtökohdat	21
	5.1	Raken	inusmalli	21
	5.2	Raken	iteen kuormat	22
	5.3	Lisäva	akavoimat	25
6	Tutk	imusme	enetelmät	26
	6.1	Analyy	yttinen ratkaisu	26
		6.1.1	Laskentakoordinaatistot	27
		6.1.2	Osamastojen jäykkyydet	28
		6.1.3	Kiertokeskiö	31
		6.1.4	Voimajakaumat	32
	6.2	Nume	erinen analyysi	34
	6.3	Laskei	nta	35
7	Tulo	kset		37
8	Tulo	sten ve	rtailu	43

	8.1	Osamastojen voimajakaumat	43
	8.2	Tason kiertymä	45
	8.3	Analyyttinen ja numeerinen ratkaisu	47
	8.4	Profiilimaston vaakavoiman vaikutuspiste	48
	8.5	Johtopäätökset	49
9	Yhtee	enveto	51
Läh	iteet		53
Liit	teet		

- Liite 1. Jäykistävät profiilimastot
- Liite 2. Rakennusmallin luonnon kuormat
- Liite 3. Rakennusmallin kokonaisvaakavoimat
- Liite 4. Analyyttisen ratkaisun tulokset
- Liite 5. Numeerisen analyysin tulokset

Lyhenteet ja määritelmät

Eurokoodi	eurooppalaisia kantavien rakenteiden suunnittelua koskevia rakentamismääräyksiä.
FEM	Finite Element Method. Elementtimenetelmä. Numeerinen menetelmä differentiaali- ja integraaliyhtälöiden ratkaisuun.
FEM-Design	mallinnusohjelma kantavien betoni-, teräs- ja puurakentei- den FEM-analyysiin ja suunnitteluun.
G	poikkileikkauksen painopiste.
Profiilimasto	jäykistävä LVIS-kuilu, hissi- tai porrastorni tai niiden yhdis- telmä, joka muodostaa yhtenäisen poikkileikkauksen.
S	poikkileikkauksen vääntökeskiö.
Merkinnät	
В	bimomentti
E	kimmomoduuli
G	liukumoduuli
Н	osamaston korkeus
I _v	vääntöneliömomentti
Ι _ω	käyristymisjäyhyys
I _x , I _y	jäyhyysmomentti vastaavasti x- ja y-akselin suhteen
kL	vääntötapauksen luonnehtiva parametri

K _x , K _y	x- ja y-suuntaiset osamaston jäykkyydet
Κ _T	jäykistysjärjestelmän vääntöjäykkyys
L	vääntösauvan pituus
Μ	ulkoinen pistemäinen vääntömomentti
m	tasan jakautunut ulkoinen vääntömomentti
Q _x , Q _y	x- ja y-suuntaiset vaakavoimien resultantit
$Q_{x,i}, \ Q_{y,i}$	x- ja y-suuntaiset osamaston vaakavoimajakaumat
Sω	sektoriaalinen staattinen momentti
Т	sisäinen pistemäinen kokonaisvääntömomentti
T _v	Saint Venantin vääntömomentti
T_{ω}	sektoriaalinen vääntömomentti
T _{xy,ω}	profiilimaston vääntöjäykkyys
T _{xy,v}	mastoseinän vääntöjäykkyys
θ	vääntymä
σ	normaalijännitys
τ	leikkausjännitys
φ	kiertymä (vääntökulma)
ω	sektoriaalinen koordinaatti

1 Johdanto

Insinöörityö tehdään rakennetekniikkaan erikoistuneelle suunnittelu- ja konsultointiyritykselle Finnmap Consulting Oy:lle. Yrityksen suunnittelutoiminta kohdistuu sekä uudisettä korjausrakentamiseen laajoissa kohderyhmissä. Toiminnassa osana on myös tutkimus ja kehitys.

Tässä insinöörityössä rajoitutaan tarkastelemaan korkean toimistorakennuksen jäykistäviä rakenteita vääntöilmiön osalta. Korkeiden rakennusten jäykistys toteutetaan yleensä mastoseinäjäykistyksellä, joka usein on ainoa mahdollinen jäykistystapa. Mastoseinäjäykistys koostuu mastoseinistä ja -torneista. Mastotorneihin luetaan LVISkuilut, hissi- ja porrastornit, joita sanotaan myös profiilimastoiksi. Rakennuksen muodon ja jäykistysjärjestelmän mahdollisesta epäsymmetrisyydestä johtuen rakennukselta vaaditaan myös vääntöjäykkyyttä.

Aiemmin väännön vaikutukseen teräsbetonirakenteisiin on kiinnitetty suhteellisin vähän huomiota. Siksi tänä päivänä väännön toiminta ja sen analyysi on vielä kehittyvä alue rakennesuunnittelussa. Profiilimastojen poikkileikkausten monimutkaisuus ja epäjatkuvuus profiilimaston pituusakselin suunnassa lisäävät työmäärää jäykistysjärjestelmän sekä analyyttisissä että numeerisissa ratkaisuissa.

Tavallisesti suunnitteluprosessissa mastotornit käsitellään erillisistä ohutseinämäisistä suorista mastoseinistä koostuviksi, joista jokaisen suorakaidepoikkileikkauksen vääntöjäykkyys on pieni, mistä johtuen profiilimastojen vääntöjäykkyyttä laskettaessa suorakaidepoikkileikkausten summaa ei huomioida voimajakauman laskennassa. Tässä tapauksessa väännöstä aiheutuvat lisärasituksetkin mastotorniin voidaan sulkea pois sen mitoituksista.

Kuitenkin profiilimastojen poikkileikkaukset omaavat suhteellisen suuret vääntöjäykkyydet suoraan mastoseinään verrattuna. Näin ollen jäykistävien mastotornien osuus koko rakennuksen vääntökestävyydessä voi olla ratkaiseva. Varsinkin rakennuksilla, joilla vääntökestävyys muodostuu lähes pelkästään jäykistävän mastotornin vääntöjäykkyydestä. Kiinnostava kysymys on, miten merkittävä on profiilimaston vääntöjäykkyyden vaikutus rakennuksen stabiliteettiin? Minkä verran se vaikuttaa osamastojen voimajakaumaan? Tämän insinöörityön päätavoitteena on selvittää avoimen profiilimaston vääntöjäykkyyden osuus rakennusta kaatavien voimien jakaumaan.

Tutkimusta varten luodaan kahdeksankerroksinen (yksi kellarikerros) rakennusmalli, jonka jäykistysjärjestelmä koostuu avoimesta profiilimastosta ja mastoseinästä. Rakennusmallin jäykistävät rakenteet suunnitellaan paikallavaletuiksi. Tavoitteet saavutetaan laskemalla jäykistäville rakenteille jakautuvat voimasuureet normeissa ja eurokoodeissa esitetyillä laskentamenetelmillä analyyttisesti ja käyttämällä numeerista analyysia FEM-Design 10.0 -ohjelman avulla. Analyyttisen laskennan aputyökaluna käytetään Microsoft Excel -ohjelmaa. Voimajakaumat määritetään rakennusmallin kuudennen kerroksen katon tasolla murtorajatilan kuormitusyhdistelmälle. Tutkimusmenetelmien tulosten suuruksia ja suhteita vertaillaan keskenään. Lopputulokset esitetään taulukko- ja diagrammivertailuina. Niiden pohjalta tehdään johtopäätöksiä. Kirjallisuuden avulla pyritään löytämään ratkaisuja tai ehdotuksia mahdollisiin ongelmakohtiin.

2 Tutkimuksen asettelu

Väännön toiminta ja analyysi jäykistävissä rakenteissa on hyvin laajaa ja suhteellisen vähän käytetty alue. Tästä syystä insinöörityö rajoitetaan niin, että tutkittavan alueen tulokset olisivat mahdollisimman selkeitä ja luotettavia.

Profiilimaston vääntöjäykkyyden osuus kokonaisstabiliteetin tarkastelussa tutkitaan rakennusmallin avulla (kuva 1). Malli luodaan Finnmap Consulting Oy:n käynnissä olevan projektin pohjalta valiten mukaan vain sen ei-jäykistävät rakenteet ja lisäämällä siihen tutkimuksen tarkoitukseen sopiva jäykistysjärjestelmä. Malliksi tehtiin kahdeksankerroksinen toimistorakennus, jonka alin kerros on kellari.

Kuvio 1. Rakennusmallin pohjakuva.

Jäykistysjärjestelmä valitaan niin, että rakennuksen vääntökestävyys muodostuu lähes pelkästään jäykistävän mastotornin vääntöjäykkyydestä, mikä antaa mahdollisuuden saada tutkimukseen selkeät vertailuarvot.

Jäykistysjärjestelmä muodostetaan hissi- ja porrastornista ja umpinaisesta mastoseinästä. Rakennusmallista tehdään kolme tutkimusvaihtoehtoa mastoseinän eri pituuksilla:

- vaihtoehto 1: mastoseinän pituus on 7 metriä
- vaihtoehto 2: mastoseinän pituus on 3 metriä
- vaihtoehto 3: ei ole mastoseinää.

Profiilimaston valinta perustuu Finnmap Consulting Oy:n toteutuneiden projektien jäykistysjärjestelmien kartoitukseen. Valinnan lähtökohtana ovat profiilimaston poikkileikkaussuureet ja lähinnä sen vääntötapaus. Valintana on sellainen profiilimasto, joka rakennusmallissa vastaisi parhaiten todellista rakennetta, pystyisi yksinään toimimaan koko rakennuksen jäykistävänä osamastona ja sen vääntötoiminta voitaisiin käsitellä yhdistetyn väännön teorian mukaan.

Kartoitus tehtiin jäykistävien profiilimastojen ratkaisuihin nähden kymmenistä eri projekteista, joiden kohteina ovat toimistorakennukset. Tutkittujen profiilimastojen poikkileikkaussuureet on laskettu Section Editor -ohjelman avulla, joka on osa StruSoft FEM– Design -ohjelmistoa. Kartoituksen tulokset on esitetty liitteessä 1.

Mastoseinän ja profiilimaston poikkileikkaukset oletetaan vakioiksi koko jäykisteiden korkeudelta. Mastotorni käsitellään yhtenäisenä avoimena poikkileikkauksena. Poikkileikkauksen aukkojen osittaisen sulkemisen vaikutusta ei huomioida.

Tässä työssä laskennallisesti tarkastellaan vain vaakavoimien jakauma jäykistäville rakenteille murtorajatilassa. Muiden rakenteiden kantavuutta ei tarkastella, vaan ne pyritään arvioimaan sellaisiksi, että rakennus toimii.

Rakennusmallin ei-jäykistävien rakenteiden liitokset oletetaan niveliksi. Näiden tai muidenkaan liitosten toimintaa tai vaatimuksia ei tarkastella.

Rakennukseen kohdistuvat kuormat määritetään eurokoodien SFS-EN 1991-1 osien 1, 3 ja 4 sekä SFS-EN 1992-1-1 mukaisesti. Tuulikuorman oletetaan vaikuttavan ulkoseinää vastaan kohtisuorasti. Sivutuulitapauksia ei käsitellä. Hyötykuormat määritetään rakennusmallin käyttötarkoituksen mukaisesti. Tutkimuksessa tarkastelun kohteena ovat vain profiilimasto ja mastoseinä. Voimajakaumat jäykistäville rakenteille ja jäykistysjärjestelmän kiertymä tarkastellaan rakennusmallin kuudennen kerroksen tasolla. Lisäksi tarkastellaan profiilimaston kiertymä rakennusmallin koko korkeudella ja osittain mastotornin vääntörasitukset sen kiinnityskohdalla.

3 Jäykistysjärjestelmä

Jäykistysjärjestelmän tehtävänä on varmistaa rakennusrungon sekä työaikaisen että lopullisen stabiliteetin säilyminen ja siirtää rakennukseen kohdistuvien vaakakuormitusten aiheuttamat rasitukset perustuksiin ja edelleen maapohjaan. Tässä luvussa selostetaan yleisesti tutkimuskohteessa käytetty jäykistysjärjestelmä ja sen osat.

3.1 Mastoseinäjäykistys

Mastoseinäjäykistys (kuva 2) muodostuu mastoseinistä ja profiilimastoista kuten LVISkuiluista ja hissi- ja porrastorneista. Mastoseinät ja -tornit ovat tehokkaita jäykistyksessä niiden suuren jäykkyyden ja kestävyyden ansiosta, mikä antaa mahdollisuuden pitää niiden määrän jäykistysjärjestelmässä suhteellisen pienenä.

Kuvio 2. Mastoseinäjäykistys [1].

Rakennukseen sopivan jäykistystavan valintaan vaikuttavat monet tekijät, joista rakennuksen muunneltavuus ja käyttötarkoitus ovat usein määrääviä. Toimisto- ja liikerakennusten arkkitehtuurisissa ratkaisuissa halutaan usein minimoida jäykistävien rakenteiden määrä tilankäytön ja muunneltavuuden vuoksi. Lisäksi toimistorakennukset ovat suhteellisen korkeita ja niiden välipohjarakenteet usein toistuvat kerroksittain, mikä sallii jatkuvien jäykistysosien käytön. Näin ollen sellaisissa rakennuksissa mastoseinäjäykistys toimii tehokkaasti sekä arkkitehtonisesti että rakenteellisesti.

Riittävään jäykistykseen vaaditaan vähintään kaksi yhdensuuntaista ja yksi niitä vastaan kohtisuorassa oleva seinä. Jäykistyssysteemin tehokkaan toimivuuden kannalta osamastojen oikea sijoittelu on tärkeää. Systeemi pyritään aina sijoittamaan koko rakennuksen poikkileikkaukseen nähden symmetrisesti, jotta vältettäisiin vaakakuorman aiheuttama rungon kiertymä. Rungon kiertymän hallinnassa on edullista sijoittaa osamastot kauas toisistaan sekä välttää tilanteita, joissa seinien keskilinjat leikkaavat toisensa samassa pisteessä. Kuvassa 3 on esitetty muutama jäykistävien rakenteiden sijoitusratkaisu.

Kuvio 3. Jäykistävien rakenteiden sijoitusratkaisuja: vaihtoehdot a, b ja c ovat suositeltavia, vaihtoehtoja d, e, f tulee välttää. [2, s. 37.]

Jäykistävät pystyrakenteet toimivat perustuksista jäykästi kiinnitetyn ulokepalkin tavoin. Riittävä pystykuormitus varmistaa niiden toimivan kokonaan puristettuina rakenteina kaikissa kuormitustapauksissa. Suunnittelussa tulee välttää vedolle alttiita rakenteita, koska vedosta aiheuttava betonin halkeilu heikentää rakenteen jäykkyyttä merkittävästi. Mikäli rakenteelle kuitenkin tulee vetoa, on huolehdittava vetovoimien siirtämisestä maapohjan asti, käyttäen seinän vetoraudoitusta ja ankkurointia. Jäykkinä levyinä toimivat rakennuksen tasot siirtävät vaakakuormat osamastoille. Jäykistävät rakenteet saavat kultakin tasolta kuormaa omien jäykkyyksiensä suhteessa. Mahdolliset aukot, kuten ovet, ikkunat tai läpiviennit, heikentävät niiden jäykkyyttä sekä aiheuttavat halkeilua.

Jäykistävät rakenteet voidaan toteuttaa paikallavalettuina tai betonielementeistä koostuvina. Esimerkiksi mastotornien valmistus liukuvalutekniikalla on kohtuullisen edullista ja rakenteesta saadaan jäykkä ja yhtenäinen kokonaisuus. Elementtirakentamisessa elementtien saumojen liitosten toiminnalla on tärkeä merkitys seinämaston jäykkyydelle. Saumoihin muodostuu sekä vaaka- että pystysuuntaisia rasituksia. Myös liitostyypin valinta vaikuttaa rasitusten jakautumiseen sauma-alueella. Elementtien saumojen toteutus jäykäksi liitokseksi on usein hankalaa ja kallista.

[1; 2.]

3.2 Mastoseinä

Tason suuntaisen jäykkyyden, eli jäykkyyden poikkileikkauksen vahvempaan suuntaan, ja kestävyyden ansiosta mastoseinä sopii mainiosti korkeiden rakennusten jäykistysjärjestelmään. Jäykistävät seinät on pyrittävä sijoittamaan niin, että ne kantavat riittävän pystykuorman kumoamaan vaakakuorman aiheuttamat vetorasitukset. Silloin seinään tarvitaan vain minimiraudoitus.

Mastoseinät voivat olla suoria tai poikkileikkaukseltaan L-, T- tai U-muotoisia, mitä parantaa niiden taivutusjäykkyyttä. Seinät voivat olla umpinaisia tai aukkorivejä sisältäviä. Aukot voivat sijaita seinän tasolla symmetrisesti riveissä tai mielivaltaisissa kohdissa. Aukolliset mastoseinät vaativat erillisen analyysin ja mitoituksen.

Seinäelementeistä koostuvien seinämastojen vaaka- ja pystyliitossaumat on mitoitettava siirtämään normaalivoima- ja leikkausrasitukset niin, että ne toimivat yhtenäisenä rakenteena. Työmenetelmistä ja käytettävistä materiaaleista riippuen ongelmaksi muodostuu usein elementtisaumojen juotosvalujen kutistumisesta johtuva halkeilu.

Suunniteltaessa pieneen määrän jäykistysseiniä sisältävä jäykistysjärjestelmä, on muistettava, että liian lyhyissä yksittäisissä seinissä vaakavoimat voivat kasvaa suuriksi ja vaatia seinien raudoitteilta merkittäviä kapasiteetteja. Ongelmaksi voi muodostua myös suurten vaakavoimien siirtäminen tasoilta lyhyille jäykistysseinille.

[1; 3.]

3.3 Profiilimasto

Profiilimastot, kuten porras- ja hissitornit, ovat mastojäykistysjärjestelmän pääosia. Suuren pääjäyhyysmomentin ansiosta teräsbetonikuilu pystyy yksinään kantamaan koko rakennukseen kohdistuvan vaakakuorman. Profiilimaston poikkileikkaus voi olla avoin tai osittain suljettu aukonylityspalkeilla tai laattatasoilla, kuten esitetty kuvassa 4. Poikkileikkauksen osittainen sulkeminen nostaa profiilimaston vääntöjäykkyyttä ja estää käyristymistä. Sen sijaan palkille ja laatalle muodostuu leikkaus- ja taivutusrasituksia.

Aukkojen sijainti voi muuttaa poikkileikkauksen muotoa mastotornin pituusakseliin nähden, mikä vaikeuttaa sen analysointia profiilina rakennusrungon jäykistyslaskennassa. Näin ollen hissi- ja porrastornit käsitellään useimmiten useista osapoikkileikkauksista muodostuviksi valmistustavasta riippumatta.

Kuvio 4. Yksiaukkoriviset profiilimastot poikkileikkauksiltaan: (a) avoin, (b) osittain suljettu palkeilla, (c) osittain suljettu tasolaatoilla [3, s. 309].

Vaakakuoman aiheuttamat taipumat ja jännitykset mastotorniin mitoitetaan tavallisesti ulokepalkin tavoin profiilin pääkoordinaatiston suhteen laskettuun jäyhyysmomenttiin pohjautuen. Vääntötoiminnan suhteen profiilimaston dimensioiden, kuten korkeuden, pituuden ja seinämäpaksuuden, suhde sallii sen luokittelemisen ohutseinämäiseksi palkiksi.

Jos rakennus pääsee myös kiertymään vaakavoiman vaikutuksesta, profiilimaston vääntöjäykkyydellä voi olla merkittävä vaikutus koko rakennuksen vääntökestävyyteen. Kun profiilimasto kiertyy, sen poikkileikkaus pyrkii käyristymään. Toisaalta perustuksiin jäykästi kiinnitetty poikkileikkaus ei pysty käyristymään. Silloin käyristymisen esto aiheuttaa osamastolle sen akselin suuntaisia lisärasituksia, kuten leikkaus- ja normaalijännitykset. Profiilimaston kiinnityskohdassa väännöstä syntyvä normaalijännitys voi olla lähes samansuuruinen kuin taivutusjännitys. Vääntörasitukset on huomioitava rakenneosan mitoituksessa. Rakennuksissa, jotka ovat rakenteellisesti riippuvaisia mastotornista, rakennesuunnittelijan pitää osata arvioida, altistuuko kuilu väännölle ja jos altistuu, niin se on otettava mukaan rakennesuunnitteluun ja analyysiin. Profiilimaston kiertymisen analysoinnissa on huomioitava sekä vapaan että estetyn väännön vaikutukset.

[1; 3, s. 309-354.]

4 Ohutseinämäisen avoimen poikkileikkauksen vääntöteoria

Talonrakennuksessa on useimmiten kysymys tasapainottavasta väännöstä. Tasapainottavaksi väännöksi kutsutaan vääntötapausta, jossa vääntömomentti on tarpeen rakenteen tasapainoehtojen saavuttamiseksi. Tässä työssä rajoitutaan käsittelemään vain tätä vääntötapausta ohutseinämäisessä poikkileikkauksessa. Poikkileikkaus oletetaan ohutseinämäiseksi, kun toteutuu seuraava ehto t<<s, missä t on poikkileikkauksen paksuus ja s on poikkileikkauksen pidemmän sivun keskiviivan pituus [4, s. 261].

Tässä työssä vääntöteoria esitetään suhteellisen suppeasti ja vain siinä määrin kun työn aihepiiri vaati. Avoimien ohutseinämäisten sauvojen väännön teoria perustuu otaksumiin, että sauvan poikkileikkaus ei muuta muotoaan eikä leikkausmuodonmuutosta (liukuma) sauvan seinämän keskipinnalla oteta huomioon. [5.]

4.1 Väännön peruskäsitteitä

Väännön ansiosta poikkileikkaus kiertyy jäykkänä levynä vääntökeskiön ympäri. *Vääntökeskiöksi* (S) kutsutaan poikkileikkauspistettä, jonka kautta kulkevat voimat eivät aiheuta sauvan vääntöä. Kaksoissymmetrisen poikkileikkauksen vääntökeskiö yhtyy sen *painopisteeseen* (G). [5.]

Poikkileikkauksen kiertyessä sen symmetria-akselit pysyvät suorina samalla kun poikkileikkauksen pinnassa tapahtuu muodonmuutos, eli poikkileikkaustaso käyristyy kuvan 5 mukaisesti. Tätä ilmiötä kutsutaan *poikkipintapainumaksi* tai *deplanaatioksi*. Kaikki poikkileikkaustyypit, paitsi ympyrä- ja ympyrärengaspoikkileikkaus kokevat deplanaation. [4, s. 239-242.]

Kuvio 5. Poikkipintapainuma [4, s. 239].

Vääntötapaukset jakautuvat kolmeen tyyppiin:

- vapaa vääntö eli Saint Venantin vääntö
- estetty vääntö eli Vlasovin teorian mukainen vääntö
- yhdistetty vääntö eli vapaan ja estetyn väännön yhdistelmä.

Vapaassa väännössä sauvan poikkipintapainuma pääsee vapaasti syntymään ja vääntömomentin kuormittamaan poikkileikkaukseen syntyy vapaan väännön leikkausjännityksiä. Kun sauvan poikkileikkaustasojen käyristyminen on osittain tai kokonaan estetty kyseessä on estetty vääntö. Estetty vääntö aiheuttaa sauvaan estetyn väännön leikkaus- ja normaalijännityksiä. Yhdistetyn väännön tapauksessa syntyy kaikki edellä mainitut jännitykset. [6.]

4.2 Vääntötapaukset

Vääntömomentti siirtyy sauvassa joko vapaan tai estetyn väännön teorian mukaisesti. Tavallisimmin kuitenkin vääntö jakautuu näiden kahden ääritapauksen yhdistelmäksi.

Sauvan poikkileikkausmuodosta, -suureista, pituudesta ja reunaehdoista riippuu, mikä vääntötapaus kyseisessä sauvassa esiintyy. Poikkileikkausmuotoon nähden poikkileik-kaukset voidaan luokitella seuraavasti [6, s. 151]:

- Poikkipintapainumasta vapaat kuten kapeat suorakaide-, T-, L- ja kotelopoikkileikkaukset, joissa vapaa vääntö on hallitseva.
- Poikkipintapainuman kokevat poikkileikkaukset, joissa voi esiintyä vapaa, estetty tai yhdistetty vääntö. Tähän ryhmään kuuluvat yllä mainittuja lukuun ottamatta kaikki poikkileikkaukset.

Parametrin kL avulla voidaan arvioida, kuinka vapaa vääntö ja poikkileikkauksen käyristymisen estämisestä aiheutuva vääntö, eli estetty vääntö, sauvassa suhtautuvat toisiinsa. Parametrin arvo lasketaan seuraavasti [6, s. 151]:

$$kL = L \sqrt{\frac{GI_{\nu}}{EI_{\omega}}}$$
(1)

Glv	on <i>vapaan väännön vääntöjäykkyys, jossa</i>		
	G	on sauvan materiaalin liukukerroin	
	l _v	on <i>vapaan väännön vääntöneliömomentti</i>	
EΙ _ω	on <i>estetyn</i> i	/äännön käyristymisjäykkyys, jossa	
	E	on sauvan materiaalin kimmokerroin	
	l _ω	on <i>käyristymisjäyhyys</i>	
L	on sauvan p	vituus.	

Materiaalin liukukerroin lasketaan kaavalla [7, s. 30-31]:

$$G = \frac{E}{2(1+\nu)}, \tag{2}$$

jossa ν on Poissonin luku ja halkeilemattomalle betonille sen arvo on 0,2.

Vääntöä koskevat tieteelliset teokset antavat kL parametrille seuraavat raja-arvot, joiden pohjalta voidaan tehdä päätelmiä sauvan hallitsevasta vääntötapauksesta [5; 8]:

- kL>10, kyseessä on vapaa vääntö
- kL<0,5, kyseessä on estetty vääntö
- 0,5<kL<10, kyseessä on yhdistetty vääntö.

Nämä ehdot voidaan ottaa käyttöön betonirakenteissa. Kuitenkin on muistettava, että esimerkiksi teräsrakenteiden suunnittelussa kL parametrille asetetaan isompia rajaarvoja [5, s.151]. Siksi rakenteen vääntöanalyysissä on harkittava vääntötapaus tilanteen mukaan.

Vääntöteoriaa käsittelevissä julkaisuissa vääntösauvan pituus merkitetään L-kirjaimella. Tämän työn vääntöteorian osuudesta käytetään samaa merkintätapaa, jotta tarvittaessa olisi helppoa vertailla työssä esitettyjä kaavoja keskenään. Kuitenkin jäykistyslaskennassa vääntösauva käsitellään pystyrakenteena ja sen pituus korkeutena, joka vuorostaan jäykistyslaskennassa merkitään H-kirjaimella.

Poikkileikkauksen vääntötapausten esimerkit on esitetty liitteessä 1. Liitteeseen kerätyt avoimet poikkileikkaukset ovat tässä työssä tehdyn jäykistysjärjestelmien kartoituksen profiilimaston ratkaisuja. Liitteen 1 poikkileikkaus 1 kuvaa mastoseinätapauksen ja poikkileikkaus 10 tutkimukseen valitun profiilimaston avoimen poikkileikkauksen.

4.3 Vääntömomentti

Kuvassa 6 on esitetty perustuksista jäykästi kiinnitetty profiilimasto, jota kuormittaa vääntömomentti (M). Staattisesti määrätyn ulokesauvan tapauksessa *sisäinen vääntö-momentti (T)* on jokaisessa poikkileikkauksessa sama kuin vääntömomenttikuorma, eli T(z)=M. Salmi ja Pajunen [4] määrittelevät sisäinen vääntömomentin seuraavasti:

Vääntömomentti (T) on poikkileikkaukseen syntyvän leikkausjännityskentän yhdistystuloksen momentti, joka estää leikkauksen eri puolilla olevia akselin osia kiertymästä toisiinsa nähden kyseisen leikkauksen kohdalla [4, s. 239].

Kuvio 6. Vääntöä profiilimastossa [3, 5].

Kuvan 6 profiilimaston poikkileikkauksen vääntökulmaa (ϕ) kutsutaan poikkileikkauksen kiertymäksi. Kiertymä on sauvan pituuskoordinaatin z funktio, eli $\phi = \phi$ (z). Poikkileikkauksen muodonmuutosta esittää *vääntymä* (θ), jonka määritellään kaavalla

$$\theta = \frac{d\varphi}{dz} \tag{3}$$

Sauvan minkä tahansa poikkileikkauksen pituusakseliin (z) nähden kokonaisvääntömomentti muodostuu seuraavista komponenteista:

$$T(z) = T_{\nu}(z) + T_{\omega}(z)$$
(4)

Т	on kokonaisvääntömomentti
T _v	on vapaa väännön ilmaiseva Saint Venantin vääntömomentti
T _ω	on estetyn väännön ilmaiseva sektoriaalinen vääntömomentti.

Vapaan väännön momenttia määritetään kaavalla

$$T_{\nu} = GI_{\nu}\theta = GI_{\nu}\frac{d\varphi}{dz} \,, \tag{5}$$

jossa G on sauvan materiaalin liukukerroin ja I_v on poikkileikkauksen vapaan väännön vääntöneliömomentti. Poikkileikkauksen muodonmuutoksen ja vastaavan rasituksen yhteyden ilmaisevaa suuretta GI_v kutsutaan vapaan väännön *vääntöjäykkyydeksi*.

Ulokepalkin jäykässä kiinnityskohdassa kiertymä on nolla, silloin vääntömomentiksi sauvan vapaassa päässä korkeudella L saadaan

$$\Delta \varphi = \frac{T_{\nu L}}{GI_{\nu}} \quad \Longrightarrow \quad T_{\nu} = \Delta \varphi \frac{GI_{\nu}}{L} , \qquad (6)$$

Δφ	on sauvan päiden kiertymäerotus
L	on sauvan pituus.

Estetyn väännön sektoriaalinen vääntömomentti vuorostaan määritellään seuraavasti:

$$T_{\omega} = -EI_{\omega} \frac{d^3 \varphi}{dz^3} = \frac{dB}{dz}$$
(7)

$$B = -EI_{\omega} \frac{d^2 \varphi}{dz^2} \tag{8}$$

B on sauvan tarkisteltavan poikkileikkauksen bimomentti.

Käyttämällä esitettyjä vapaan ja estetyn vääntömomenttikomponentteja voidaan määrittää kokonaisvääntömomentin lauseke tarkemmin. Sauvan päässä vaikuttavan pistemäisen kokonaisvääntömomentin lauseke muodostuu sijoittamalla kaavaan 4 lausekkeet 5 ja 7:

$$-EI_{\omega}\frac{d^{3}\varphi}{dz^{3}} + GI_{\nu}\frac{d\varphi}{dz} = T(z) = M$$
(9)

Sauvaan vaikuttavan tasaisesti jakaantuneen vääntökuormituksen tapauksessa kokonaisvääntömomentin lauseke 9 muuntuu seuraavaan muotoon, jota kutsutaan väännön yleiseksi differentiaaliyhtälöksi:

$$EI_{\omega}\frac{d^{4}\varphi}{dz^{4}} - GI_{\nu}\frac{d^{2}\varphi}{dz^{2}} = m(z)$$
(10)

m on vääntömomenttikuorma sauvan pituusyksikköä kohti.

Määritetään kaavassa 9 esitettyjen jäykkyystermien GI_{ν} (vapaan väännön vääntöjäykkyys) ja EI_{ω} (estetyn väännön käyristymisjäykkyys) suhde parametrin k avulla

$$k = \sqrt{\frac{GI_{\nu}}{EI_{\omega}}} \quad , \tag{11}$$

silloin kaava 10 voidaan ilmastaa seuraavassa muodossa:

$$\frac{d^4\varphi}{dz^4} - k^2 \frac{d^2\varphi}{dz^2} = \frac{m}{EI_{\omega}}$$
(12)

Väännön yleinen differentiaaliyhtälö löytyy asiaa koskevassa kirjallisuudessa useimmin tässä muodossa. Yhtälön 12 ratkaisemiseen tarvitaan kiertymä eli vääntökulma. Vääntökulman differentiaaliyhtälön yleinen ratkaisu on

$$\varphi(z) = C_1 + C_2 z + C_3 \sinh kz + C_4 \cosh kz + \varphi_0$$
(13)

- C₁—C₄ ovat sauvan reunaehtojen määräämiä integroimisvakioita
- k on kaavalla 11 määrätty suure
- ϕ_0 on sauvan kuormitustapauksesta riippuva yksityisratkaisu.

Vääntökulman differentiaaliyhtälön erilaiset yksityisratkaisut ja reunaehtojen vaikutus on selvitetty tarkemmin muun muassa lähteissä 3, 8 ja 9. Tässä esitetään vain kaksi tutkimusaluetta koskevaa tapausta: sauvan pistemäinen ja tasainen vääntökuormitus. Young ja Budynas [9] esittelevät hyvin selkeät taulukot vääntösuureiden laskennan avuksi. Näitä taulukoita käyttäen, pistemäisen vääntömomentin vaikuttaessa avoimeen profiilimastoon korkeudella L vääntökulman lauseke 14 muodostuu seuraavaksi

$$\varphi(L) = \frac{M(kL - \tanh kL)}{E I_{\omega} k^3}$$
(14)

ja avointa profiilimastoa rasitettaessa tasaisella vääntömomentilla koko maston pituudelta vääntökulman lausekkeen 15 muoto on

$$\varphi(L) = \frac{m}{EI_{\omega}k^4} \left[1 + \frac{(kL)^2}{2} - \frac{(kL\sinh kL+1)}{\cosh kL} \right]$$
(15)

[3, s. 309-332; 4, s. 239-263; 5; 8; 9.]

4.4 Vääntörasitukset

Vääntöilmiöitä analysoitaessa käytetään vääntösauvan ja taivutuspalkin analogiaa, mikä antaa mahdollisuuden hyödyntää taivutuspalkille johdetut kaavat. Taulukossa 1 on esitetty analogian keskeiset vertailuperiaatteet. [6, s. 152.]

Vääntösauva	Taivutuspalkki		
Rasitus	Merkintä	Rasitus	Merkintä
pistemäinen ulkoinen koko- naisvääntömomentti	М	pistekuorma	F
tasan jakaantunut ulkoinen kokonaisvääntömomentti	m	tasan jakaantunut kuorma	q
sisäinen vääntömomentti	T_v, T_ω	leikkausvoima	Q
bimomentti	В	taivutusmomentti	М
vääntökulma	φ	taipuma	V

Taulukko 1. Vääntösauvan ja taivutuspalkin analogia [5; 6].

Analogiaa käyttäessä vääntösauvan ja analogisen taivutuspalkin reunaehtojen vastaavuus on keskeinen ehto. Vääntöä koskevista tieto- ja opetuskirjallisuudesta löytyy taulukoituja vääntösuureiden kaavoja yleisimmille erilaisille kuormitustapauksille ja reunaehdoille. Muutama esimerkki löytyy Kylmämuovatut profiilit [6] ja Youngin ja Budynasin [9] kirjoista.

Kuten edellä oli mainittu, vääntö aiheuttaa sauvaan leikkaus- ja normaalirasitukset sen vääntötapausten mukaisesti. Tavallisimmin kuitenkin sauvassa syntyvät samanaikaisesti

vapaan ja estetyn väännön sekä leikkaus- että normaalirasitukset. Estetyn väännön aiheuttama normaalijännitys on kuitenkin leikkausjännitystä merkittävämpi. Kuvassa 7 on esitetty perustuksista jäykästi kiinnitetyn avoimen profiilimaston jännitysjakaumia.

Kuvio 7. Avoimen poikkileikkauksen jännitysten jakaumia [3, 5].

Vapaan väännön tapauksessa leikkausjännityskenttä (τ_v) muuttuu poikkileikkauksen paksuussuunnassa lineaarisesti vastakkaiseen arvoonsa ja ilmentyy seuraavasti [5; 6, s. 152]:

$$\tau_{v}(z) = \frac{T_{v}(z)}{I_{v}}t$$
 (16)

jossa t on poikkileikkauksen seinämän paksuus. Suorakaidepoikkileikkauksen leikkausjännityksen maksimiarvo sijaitsee poikkileikkauksen pitkän reunaviivan keskipisteessä. Estetyn väännön tapauksessa leikkausjännityskenttä (τ_{ω}) on poikkileikkauksen jokaisessa pisteessä vakio ja likimäin keskiviivan suuntainen. Leikkausjännitykset saadaan laskettua kaavalla [5; 6, s. 154]:

$$\tau_{\omega}(z,s) = \frac{T_{\omega}(z)s_{\omega}(s)}{I_{\omega}}t$$
(17)

jossa t on poikkileikkauksen seinämän paksuus ja S_{ω} on *sektoriaalinen staattinen momentti* tarkasteltavassa kohdassa. Leikkausjännityksen maksimiarvo saadaan käyttämällä laskennassa sektoriaalisen staattisen momentin maksimiarvoa. Yhdistetyn väännön tapauksessa leikkausjännitys lasketaan molempien leikkausjännityskomponenttien summana, kuten näkyy kuvasta 7.

Bimomentin aiheuttama normaalijännitys (σ_z) voidaan laskea kaavalla [6]:

$$\sigma_z(z) = \frac{B(z) * \omega(s)}{I_{\omega}}, \qquad (18)$$

jossa $\omega(s)$ on *sektoriaalinen koordinaatti* poikkileikkauksen tarkasteltavassa pisteessä.

Todellisessa tilanteessa rakenneosaa rasittavat useat kuormitukset samanaikaisesti. Jäykistävien mastorakenteiden tapauksessa kyse on samanaikaisesta puristuksesta tai vedosta, taivutuksesta ja mahdollisesta väännöstä. Silloin rakenneosan kokonaisnormaalijännitys ($\sigma_{z,kok}$) lasketaan lueteltujen jännitystapausten summana kaavalla [5]:

$$\sigma_{z,kok}(s,z) = \frac{N(z)}{A} + \frac{M_x(z)}{I_x}x - \frac{M_y(z)}{I_y}y + \frac{B(z)}{I_\omega}\omega(s)$$
(19)

- N on vaikuttava puristus-/vetovoima
- A on poikkileikkauksen pinta-ala
- M_x, M_y on sauvan taivutusmomentti vastaavasti poikkileikkauksen x- ja y-akselin suhteen
- I_x, I_y on poikkileikkauksen jäyhyysmomentti vastaavasti x- ja y-akselin suhteen
- x, y on etäisyys neutraaliakselista tutkittavaan kohtaan.

4.5 Poikkileikkaussuureet

Taivutusta luonnehtivat poikkileikkaussuureet määritetään poikkileikkauksen koordinaattiakseleiden suhteen. Näin ollen on hyvä mainita poikkileikkauksen koordinaatistosysteemi. Varsinkin epäsymmetrisen poikkileikkauksen ollessa kyseessä on otettava huomioon sen eri koordinaatistojen suhteen laskettujen ominaissuureiden vaikutus lopputuloksiin.

Peruskoordinaatisto, eli xyz-koordinaatisto, on yleensä pääkuormituskomponenttien suuntainen. Laskennan kannalta on edullista asettaa kappaleen *painopistekoordinaatis-to* ja *peruskoordinaatisto* samansuuntaisiksi. [4.]

Kappaleen poikkileikkauksen tasoa, johon ei kohdistu lainkaan leikkausjännitystä, kutsutaan jännitystilan päätasoksi ja sen normaalin suuntaa pääsuunnaksi. Päätason akselit muodostavat poikkileikkauksen *pääkoordinaatiston*. Symmetrisen poikkileikkauksen pääkoordinaatisto yhtyy poikkileikkauksen painopistekoordinaatistoon. Epäsymmetrisen poikkileikkauksen pääkoordinaatisto saadaan kiertämällä sitä painopistekoordinaatiston ympäri. [4.]

Sauvan vääntöominaisuudet määritetään sen vääntökeskiön suhteen. Vääntöanalyysiin tarvitaan poikkileikkauksen olennaiset suureet kuten vääntökeskiön koordinaatit, sektoriaalinen koordinaatti, vääntöneliömomentti ja käyristymisjäyhyys. Yleisessä muodossa poikkileikkaussuureet ilmoitetaan pintaintegraalina, mutta suorista elementeistä muodostuvien profiilien poikkileikkausarvot on myös kätevä ilmaista summamuodossa. Kaavoissa 20-23 käytetty suureiden indeksointi i=1...n tarkoittaa elementtien numerointia. [6, s. 90-113.]

Sektoriaalinen koordinaatti pisteessä k [6, s. 93]:

$$\omega = \int h ds \quad \Longrightarrow \quad \omega_k = \sum_{i=1}^k \sum h_i s_i \tag{20}$$

- h on elementin kohtisuoraetäisyys origosta
- s on elementin keskiviivan pituus.

Sektoriaalinen staattinen momentti [6, s. 93]:

$$S_{\omega} = \int \omega dA = \frac{1}{2} \sum_{i=1}^{n} (\omega_a + \omega_1) i * A_i$$
⁽²¹⁾

А	on poikkileikkauksen pinta-ala
ω _a	on elementin alkupään sektoriaalinen koordinaatti
ω ₁	on elementin loppupään sektoriaalinen koordinaatti.

Avoimen poikkileikkauksen Saint Venantin vääntöneliömomentti [3, s. 321; 6, s. 94]:

$$I_{\nu} = \frac{1}{3} \sum_{i=1}^{n} s_i t_i^3$$
(22)

S	on poikkileikkauksen keskiviivan pituus
t	on poikkileikkauksen seinämän paksuus

Käyristymisjäyhyys [6, s. 94]:

$$I_{\omega} = \int \omega^2 dA = \frac{1}{3} \sum_{i=1}^n (\omega_a^2 + \omega_a \omega_1 + \omega_1^2) i * A_i$$
⁽²³⁾

А	on poikkileikkauksen pinta-ala
ω _a	on elementin alkupään sektoriaalinen koordinaatti

 ω_1 on elementin loppupään sektoriaalinen koordinaatti.

Yleisessä muodossa esitetyt kaavat ovat päteviä kaikissa poikkileikkauksen koordinaatistoissa. On vain muistettava merkitä eri koordinaatistoissa lasketut suuret asianmukaisesti. Esimerkki löytyy liitteestä 1. [6, s. 90-113.]

Vääntökeskiön paikan laskentaan tarvitaan poikkileikkauksen jäyhyysmomentti, käyristymisjäyhyys ja mahdollinen pääkoordinaatiston kulma painopistekoordinaatistoon nähden. Kylmämuovatut profiilit [6] teoksessa on hyvin esitetty käsinlaskentaesimerkkejä yksinkertaisille poikkileikkaustapauksille. Tässä työssä poikkileikkaussuureet sekä vääntökeskiön koordinaatit on laskettu Section Editor -ohjelman avulla, joka laskee poikkileikkaussuureet pintaintegraalien pohjalta. [3, s. 315-323.]

5 Suunnittelun lähtökohdat

Työn tutkimusosuus koostuu tutkimusta varten luodun rakennusmallin ja siihen kohdistuvien kuormien selostuksesta sekä tutkimusmenetelmien ja tuloksien esittelystä. Tulosten pohjalle tehdyt johtopäätökset esitetään tämän työn tuloksina.

5.1 Rakennusmalli

Tutkimuskohteena käytetään Finnmap Consulting Oy:n käynnissä olevan projektin pohjalta luotua rakennusmallia. Rakennusmalli poikkeaa prototyypistä jäykistysjärjestelmän ja ulkomittojen osalta. Kantavat rakenteet, julkisivu- ja yläpohjaratkaisut ovat kuitenkin prototyypissä olevien kaltaisia. Rakennusmallin runko muodostuu pilaripalkkijärjestelmästä ja ontelolaatoista kuten esitetty kuvassa 1.

Tässä työssä rakennusmalliksi on valittu seitsemänkerroksinen toimistorakennus, jossa on kahdeksas maanalainen kellarikerros. Jäykistysjärjestelmä muodostuu hissi- ja porraskuilusta ja umpinaisesta mastoseinästä. Kummankin osamaston seinämäpaksuudet ovat 220 mm. Rakennusmallin rakenneosien luettelo on esitetty taulukossa 2.

Taulukko 2.	Rakennusmallin	rakenneosat.

Rakenneosa	Osan paksuus, mm	Osan koko, mm	Betoni
jäykistävät rakenteet	220		C35/45
palkki		380x480	C35/45
pilari (P)		D480	C35/45
ontelolaatta (OL)		P32	C50/60
pintavalu	80		C25/30
lepotaso	200		C35/45

Profiilimasto on valittu tässä työssä tehdystä Finnmap Consulting Oy:n toteutuneiden projektien jäykistysjärjestelmien kartoituksesta. Valinnan peruste on tuotu esille tutkimuksen asettelussa luvussa 2. Työssä käytetyssä profiilimastossa on symmetrinen avoin poikkileikkaus, jonka ulkomitat ovat 4,650 m x 8,645 m. Kuilun keskeinen osa on porrashuone ja sen molemmilla sivuilla sijaitsevat identtiset hissikuilut. Profiilimaston poikkileikkaus mittoineen on esitetty kuvassa 1. Sen poikkileikkaussuureet on laskettu Section Editor -ohjelmalla, joista tutkimuksen kannalta tärkeimmät on esitetty liitteessä 1 (profiili numero 10).

Tutkimusta varten valitaan kolme erilaista mastoseinän pituutta, joiden pohjalle muodostuu kolme erilaista laskentamallia. Mastoseinän pituudeksi oletetaan seitsemän ja kolme metriä. Kolmas laskentamalli sisältää vain profiilimaston.

Rakennusmalli on muodoltaan suorakaide, jonka ulkomitat ovat 33,62 x 18,24 metriä. Kerroksien korkeudet jakautuvat seuraavasti: 7. kerroksen korkeus on 3,72 metriä, 1. -6. kerrokset ovat 3,6 metrisiä ja kellarikerroksen korkeus on 3,48 metriä. Rungon korkeus on H=(3,72+3,6*6+3,48) m=28,8 m. Rakennuksen korkeus maan tasolta sisältää yläpohjan rakenteita ja arvoltaan on 26 metriä. Näin voidaan todeta, että työtä varten luotu rakennusmalli sisältää tutkimuksen kannalta halutut rakenteet ja vastaa asetettuja tutkimusrajauksia.

5.2 Rakenteen kuormat

Rakennuksen kokonaisvakavuutta laskettaessa on huomioitava siihen kohdistuvat sekä pystysuuntaiset kuormat että vaakakuormat. Pystysuuntaisiksi kuormiksi luetaan rakenteiden omat painot, hyötykuormat sekä lumikuorma. Merkittävimmät vaakakuormat ovat tuulikuorma sekä rakenteiden vinoudesta ja epäkeskisyydestä aiheutuvat lisävaa-kavoimat. Vaakakuormiin kuuluvat myös maanpaine-, jarru- sekä nosturi- ja työ-konekuormat. Lisäksi rakenteita voivat rasittaa pakkovoimat. Tässä työssä kuormien jakamista jäykistäville rakenteille laskettaessa huomioidaan vain pystysuuntaiset kuormat sekä edellä luetellut merkittävimmät vaakakuormat. [2, s. 11-12.]

Rakennukseen kohdistuvat kuormat määritetään eurokoodien mukaisesti. Rakennuksen sijaintialueeksi, joka vaikuttaa luonnonkuormien määrittämiseen, valitaan Helsingin seudun tasainen alue, joka voidaan luokitella maastoluokkaan III. Lumikuorma lasketaan eurokoodin SFS-EN 1991-1-3 [10] mukaisesti käyttäen tasokattorakenteille annettuja laskentamääräyksiä. Rakennukseen kohdistuva tuulikuorma määritetään eurokoodin SFS-EN 1991-1-4 mukaan. Tuulikuorma lasketaan koko rakenteeseen vaikuttavana kaavalla 24 [11, s. 44]:

$$F_w = c_s c_d * c_f * q_p (z_e) * A_{ref}$$
⁽²⁴⁾

F _w	on rakenteen tuulikuorma
C _s C _d	on rakennekerroin
C _f	on rakenteen voimakerroin
$q_p(z_e)$	on puuskanopeuspaine nopeuspainekorkeudella $z_{\rm e}$
A _{ref}	on rakenteen tuulenpaineen vaikutusala.

Puuskanopeuspaine määritetään huomioimalla rakennuksen korkeuden ja sivumitan suhteen vaikutus nopeuspainekorkeuteen. Tuulikuorma määritetään kohdistuvan rakennuksen lyhyeen sivuun eli x-suuntaan sekä pitkään sivuun eli y-suuntaan. Luonnon-kuormien laskenta on esitetty liitteessä 2.

Rakenteen pystysuuntaiset kuormat kuten rakenneosien omat painot ja hyötykuormat on määritetty rakennusmallin käyttötarkastuksen pohjalta eurokoodin SFS-EN 1991-1-1 [12] mukaan. Rakennusmalliin kohdistuvat kuormat on esitetty taulukossa 3.

Kuorma	Kuorman ominai- sarvo, kN/m ²	Sijainti
Pysyväkuorma		
yläpohjarakenteet	1,5	7. krs katto
taso	4,0	kaikkien kerrosten katot
pintavalu	2,0	kaikkien kerrosten katot
pilari	4,5 kN/m	kaikissa kerroksissa
palkki	4,56 kN/m	kaikissa kerroksissa
jäykistävät seinät	5,5	kaikissa kerroksissa
lepotaso	5,0	K-6. krs katot
julkisivut	2,25	17. krs
kellariseinät	6,50	kellari
Muuttuvakuorma		
tason hyötykuorma	2,5	kaikkien kerrosten katot
lepotason hyötykuorma	3,0	kaikkien kerrosten katot
väliseinät	0,5	kaikissa kerroksissa
vesikatto	0,4	7. krs katto
lumi	2,0	7. krs katto
tuuli Y-suuntaan	0,92	kaikkien kerrosten katot
tuuli X-suuntaan	0,73	67. krs katot
	0,64	K-5. krs katot

Taulukko 3. Rakennusmallin ominaiskuormat.

Kaikkien kuormien määrittämisessä on otettu huomioon myös edellä mainittujen eurokoodien Suomen kansallisien liitteiden soveltamisohjeet. Rakenteen kuormat on laskettu seitsemän metrin pituiselle mastoseinälle. Niitä arvoja käytetään kaikissa luvussa 5.1 mainituissa laskentamallivaihtoehdoissa. Tämän yksinkertaistuksen perusteena on erimittaisien mastoseinien painoeroavuuksien vähäinen vaikutus tason kokonaiskuormitukseen. Lisäksi käyttämällä mitoituksessa isompaa tasokuorman arvoa ollaan jopa varmalla puolella näissä laskentamallivaihtoehdoissa, joissa mastoseinän paino on pienempi.

Rakennusmallin rasitusten jakauma jäykistäville rakenteille lasketaan murtorajatilan kuormitusyhdistelmällä. Kuormitusyhdistelmä määritetään eurokoodin SFS-EN 1990 ja sen Suomen kansallisen liitteen mukaan kaavalla 25 ottaen huomioon rakennuksen seuraamusluokan määrittämä kuormakerroin K_{FI}, jonka arvo tutkimuksen tapauksessa on 1,0 [13, s. 80].

$$\mathbf{1,15}\sum_{j\geq 1}G_{k,j} + \mathbf{1,5}Q_{k,j} + \mathbf{1,5}\sum_{i>1}\psi_{o,i} * Q_{k,i}$$
(25)

- G_{k,j} on epäedullisen vaikutuksen aiheuttava pysyvä kuorma
- Q_{k,1} on määräävä muuttuva kuorma
- Q_{k,j} on muut muuttuvat kuormat
- 1,15; 1,5 ovat epäedullisen vaikutuksen huomioivat osavarmuuskertoimia vastaavasti pysyville ja muuttuville kuormille, määrätty Suomen kansallisen liitteen mukaan
- $\psi_{o_i i}$ on Suomen kansallisen liitteen mukaan määritetty muuttuvan kuorman yhdistelykerroin.

Rakennuksen vakavuuden tarkastelussa painotetaan vaakavoimien vaikutusta, mistä syystä laskelmissa tuulikuorma otetaan määräävänä muuttuvana kuormana. Tutkimuskohteen muiden muuttuvien kuormien yhdistelykertoimet ovat samanarvoisia, ψ_0 =0,7.

[10; 11; 12; 13.]

5.3 Lisävaakavoimat

Rakennusten geometriset epätarkkuudet otetaan huomioon rakenteen epäedullisena lisärasituksena. Sellaiset lisärasitukset huomioidaan stabiliteettilaskelmissa vain murtoja onnettomuusrajatiloissa. Eurokoodi SFS-EN 1992-1-1 (Eurokoodi 2) määrittelee jäykistysjärjestelmää kuormittavan lisävaakavoiman seuraavasti:

$$H_i = \theta_i (N_b - N_a) \tag{26}$$

H _i	on mittaepätarkkuuksista aiheutuva poikittaisvoima
Na	on pystykuorma tarkasteltavan tason yläpuolella
N _b	on pystykuorma tarkasteltavan tason alapuolella
θι	on rakenteen vinous.

Epätarkkuudet vuorostaan huomioidaan vinouden avulla seuraavasti [7, s. 54-56]:

$$\theta_i = \theta_o * \alpha_h * \alpha_m \text{ , jossa}$$
⁽²⁷⁾

$$\alpha_h = \frac{2}{\sqrt{l}}, \quad ehto \quad \frac{2}{3} \le \alpha_h \le \mathbf{1}$$
$$\alpha_m = \sqrt{\mathbf{0.5(1 + \frac{1}{m})}}$$

α_h on korkeuteen perustuva pienennysker	roin
---	------

 α_m on rakenneosien määrään perustuva pienennyskerroin

- θ_0 on rakenteen vinouden perusarvo, joka Suomessa käytetään 1/200, rad
- I on rakennuksen korkeus, m
- m on jäykistysjärjestelmän vaakavoimaan vaikuttavien pystyrakenteiden määrä.

Jäykistävien mastorakenteiden hoikkuudella on merkitystä kokonaisvakavuuteen. Erityisesti korkeissa rakennuksissa jäykistävät mastoseinät ja profiilimastot ovat hoikkia rakennuksen korkeuteen nähden. Niiden taipuminen vaakakuormista ja epäkeskisyyksistä johtuen aiheuttaa edelleen lisäepäkeskisyyttä ja lisää taipumaa mastorakenteelle. Rakenteen siirtymätilasta aiheutuvaa voimasuureiden lisäystä kutsutaan toisen kertaluvun vaikutukseksi. [1.]

Eurokoodin 2 mukaan toisen kertaluvun vaikutukset on otettava huomioon aina, kun niiden todennäköinen vaikutus rakennuksen stabiliteettiin on merkittävä. Rakennuksen kokonaistarkastelussa toisen kertaluvun vaikutuksen huomioimisen tarvetta voidaan arvioida Eurokoodin 2 liitteessä H esitetyillä menetelmällä [7, s. 211-213]. Tässä työssä rakennusmallin toisen kertaluvun vaikutusten merkitystä tarkastettiin juuri täällä menetelmällä. Laskelmien mukaan toisen kertaluvun vaikutusta ei tarvitse huomioida. Tutkimuskohteen lisävaakavoimien ja toisen kertaluvun vaikutuksen laskennat ovat esitetty liitteessä 3.

6 Tutkimusmenetelmät

Profiilimaston vääntöjäykkyyden vaikutusta rakennukseen kohdistuvien vaakavoimien jakaumaan arvioidaan sekä analyyttisesti että käyttämällä numeerista analyysiä. Tässä luvussa esitetään molempien tutkimusmenetelmien laskentaperiaatteet ja käytetyt oletukset sekä tutkimuksen tulokset muodostavat tekijät.

6.1 Analyyttinen ratkaisu

Mastojäykistysjärjestelmän kokonaisvakavuutta käsinlaskennalla tarkastaessa käytetään seuraavia oletuksia:

- vaakakuormat vaikuttavat tarkasteltavan kerroksen laataston tasossa
- jäykkänä levynä toimiva laatasto siirtää vaakakuormat jäykistäville rakenteille
- pystyrakenneosat kiinnitetään nivelellisesti kerroksen kattoon
- jäykistejärjestelmää tarkastellaan yksi kerros kerrallaan
- jäykistävien rakenteiden jäykkyys on vakio niiden pituusakseliin nähden
- koordinaatistojärjestelmänä käytetään xyz-koordinaatistoa, jossa z on pystyakseli. [14.]

Vaakakuormat jaetaan jäykistäville rakenteille niiden taivutus- ja leikkausjäykkyyksien suhteessa, siten osamastojen jäykkyydet ovat stabiliteettitarkastelun pääasialliset suu-

reet. Kiertymävaikutuksen arvioimiseksi tarvitaan jäykistysjärjestelmän poikkileikkauksen kiertokeskiön koordinaatit sekä osamastojen vääntöjäykkyydet ja vääntökeskiöiden sijainnit. Tämän jälkeen rakennusta kaatavat voimat voidaan jakaa osamastoille käyttäen kuormitusten aiheuttamaa jäykistysjärjestelmän poikkileikkauksen siirtymätilaa ja tasapainoehtoja. [2; 15.]

6.1.1 Laskentakoordinaatistot

Ennen analyyttisen menetelmän laskentakaavojen esittämistä on perehdyttävä tässä työssä käytettävään koordinaatistosysteemiin. Stabiliteettitarkastelun laskelmat tehdään rakennuksen tarkasteltavan tason poikkileikkaukseen nähden ja, kuten luvussa 4.5 on tullut esille, poikkileikkauksen symmetrisyys vaikuttaa hallitsevan koordinaatiston valintaan. Tutkimuksen rakennusmallin sekä sen jäykistävien rakenteiden poikkileikkaukset ovat symmetrisiä, joten niiden pää-, painopiste- ja peruskoordinaatistojen suunnat yhtyvät toisiinsa. Tästä syystä laskentaa varten luotua x₀y₀z₀-koordinaatistoa nimitetään pääkoordinaatistoksi. Tässä työssä käytetyn koordinaatistosysteemin merkintä- ja indeksointiperiaate on esitetty kuvassa 8.

Kuvio 8. Rakennusmallin poikkileikkauksen koordinaatistot, periaatekuva.

Pääkoordinaatisto sijoitetaan rakennuksen vasempaan ulkonurkkaan. Osamastojen kiertokeskiöiden/painopisteiden sijaintikoordinaatit pääkoordinaatiston origon suhteen merkitään x_{0,i} ja y_{0,i}, missä i on osamaston indeksi. Rakennuksen jäykistysjärjestelmän kiertokeskiön koordinaatisto merkitään X,Y -koordinaatistoksi ja sen origon suhteen

määritetyt osamastojen kiertokeskiöiden/painopisteiden koordinaatit vastaavasti X_i ja Y_i , missä i on osamaston indeksi. Poikkileikkausten kiertokeskiöiden sijainnit on merkitty S-kirjaimella ja painopisteiden vuorostaan G-kirjaimella. Kuvassa 8 on myös esitetty tasoon vaikuttavien vaakavoimien (Q_x , Q_y) resultanttipaikat, jotka sijaitsevat rakennuksen kummankin sivun puolivälissä.

Tässä työssä tutkitaan kolme erilaista rakennusmallin vaihtoehtoa, jotka poikkeavat toisistaan yksittäisen mastoseinän pituudella. Kummassakin laskentamallissa käytetään esitettyä koordinaatistosysteemiä yhdenmukaisin merkinnöin ja indeksoinnein.

6.1.2 Osamastojen jäykkyydet

Yksi analyyttisen ratkaisun oletuksista on osamaston nivelellinen kiinnitys kerroksen kattoon. Sen perusteella laskennassa voidaan käsitellä osamastot ulokepalkin tavoin toimivina ja tarkastella niitä kerroksittain kuvassa 9 esitetyn kuormitustapauksen mukaisesti. Ulokepalkin päässä vaikuttava pistekuorma aiheuttaa osamastolle taivutus- ja leikkausmuodonmuutokset. Osamaston kokonaismuodonmuutos ilmentyy siten taivutuksesta ja leikkauksesta johtuvien siirtymien summana.

Kuvio 9. Osamaston siirtymät [15].
Kuvassa 9 esitetyn kuormitustapauksen siirtymät voidaan yleisessä muodossa määrittää seuraavasti:

$$\nu_b = F \frac{H^3}{3EI} = \frac{F}{K_b}, \qquad \text{jossa } K_b = \frac{3EI}{H^3}$$
(28)

$$v_s = F \frac{Hk_s}{GA} = \frac{F}{K_s}$$
, jossa $K_s = \frac{k_s GA}{H}$ (29)

on taivutuksen aiheuttama siirtymä Vb on leikkauksen aiheuttama siirtymä Vs F on osamastoa kuormittava pistekuorma on osamaston taivutusjäykkyys Kb on osamaston leikkausjäykkyys Ks Н on osamaston korkeus А on poikkileikkauksen pinta-ala G on osamaston liukumoduuli on osamaston kimmomoduuli Ε Т on osamaston jäyhyysmomentti tarkasteltavassa suunnassa on leikkausjäykkyyskerroin, joka määräytyy poikkileikkauksen perusteella. ks

Koska osamaston kokonaissiirtymä muodostuu taivutuksen ja leikkauksen siirtymien summasta, voidaan kaavojen 28 ja 29 perusteella johtaa yksittäisen osamaston jäykkyyden (K) yleinen lauseke

$$\frac{1}{K} = \frac{1}{K_b} + \frac{1}{K_s}$$
(30)

Osamaston jäykkyys tietyssä suunnassa määritellään voimaksi, josta se saa yhden yksikön suuruinen siirtymän. Ulkoisten vaakakuormien katsotaan vaikuttavan rakennukseen sen pääakseleiden eli x- ja y-suunnissa. Mielivaltaisessa suunnassa vaikuttava tuulikuorma voidaan jakaa pääakseleiden suuntaisiin komponentteihin. Siten mastoseinän jäykkyydet määritetään vaikuttavan vaakavoiman suunnassa ja merkitetään vastaavalla alaindeksillä. Analyyttisessä ratkaisussa suoran seinän leikkausjäykkyyden osuus kokonaisjäykkyydestä voidaan jättää huomioimatta, jos seinän korkeus-pituussuhde on isompi kuin 4. Lisäksi rakenteen korkeuden kasvaessa leikkausmuodonmuutoksen vaikutus osamaston jäykkyyteen pienenee taivutusmuodonmuutokseen verrattuna. Kaavojen 28 ja 29 mukaan taivutuksen vaikutus kasvaa rakenneosan korkeuden kolmannessa potenssissa ja leikkausvoiman vaikutus vuorostaan lineaarisesti. Siten yksinkertaistuksena voidaan harkinnan mukaan leikkausvoiman muodonmuutosvaikutus jättää huomioimatta. Tässä työssä osamaston jäykkyydeksi määritetään vain sen taivutusjäykkyyden osuus.

Epäsymmetriselle osamaston poikkileikkaukselle on lisäksi määritettävä xy-merkkinen jäykkyystekijä ja huomioitava se stabiliteettilaskennassa. Laskentaperiaatteet sellaiseen tapaukseen löytyvät tarvittaessa Betoniteollisuus ry:n teoksesta [2] ja internetsivustosta [15].

Ulkoinen vaakakuorma aiheuttaa tutkimuskohteeseen myös kiertymän, jolloin osamastojen voimajakaumaan vaikuttaa lisäksi jäykistysjärjestelmän vääntöjäykkyys. Kaava 31 esittelee jäykistysjärjestelmän vääntöjäykkyyden (K_T), jonka määrittämiseen tarvitaan osamastojen taivutus-, leikkaus- sekä vääntöjäykkyydet.

$$K_{T} = \sum K_{x,i} Y_{i}^{2} + \sum K_{y,i} X_{i}^{2} + \sum T_{xy,i}$$
(31)

X _i ,Y _i	ovat osamaston vääntökeskiön/painopisteen koordinaatit jäykistysjärjes-
	telmän kiertokeskiön suhteen
K _{x,i}	on osamaston x-suuntainen jäykkyys
K _{y,i}	on osamastoon y-suuntainen jäykkyys
T _{xy,i}	on osamaston vääntöjäykkyys.

Vääntöteorian luvussa (luku 4) tuli esiin mahdollisuus käyttää vääntö- ja taivutustapausten analogiaa, jonka mukaan vääntösauvan kiertymä vastaa palkin taipumaa. Osamaston vääntöjäykkyys voidaan silloin tulkita momentiksi, joka antaa osamastolle yhden yksikön kiertymän.

Sauvan vääntöjäykkyyden lauseke määritetään kuten taivutus- ja leikkausjäykkyydet (kaavat 28, 29) pohjautuen tässä työssä vääntöteoriaa koskevien lähteiden tietoihin ja ottaen huomioon vääntösauvan kuormitus- ja kiinnitystapaukset. Analyyttisessä ratkai-

sussa käytetyn kuormitusmallin mukaan (kuva 9) tutkittavan profiilimaston vääntöjäykkyyden lauseke johdetaan kaavaa 14 käyttäen

$$T_{xy,\omega} = \frac{EI_{\omega}k^3}{kL - \tanh kL}$$
(32)

ja mastoseinän vääntöjäykkyyden lauseke kaavaa 6 käyttäen

$$T_{xy,\nu} = \frac{GI_{\nu}}{L}$$
(33)

- $T_{xy,\omega}$ on profiilimaston vääntöjäykkyys
- T_{xy,v} on mastoseinän vääntöjäykkyys.

Suorakaidepoikkileikkauksen vääntöjäykkyys on suhteellisen pieni sen taivutusleikkausjäykkyyteen verrattuna, mikä johtuu suorakaidepoikkileikkauksessa hallitsevasta vapaasta väännöstä. Siten yksinkertaistettuna jäykkyysjärjestelmän vääntöjäykkyyttä käsinlaskettaessa yksittäisen mastoseinän vääntöjäykkyyttä ei oteta huomioon. Mikäli analyysissä jäykistävä mastotorni jaetaan useiksi suoriksi mastoseiniksi, joista jokainen voidaan mitoittaa erikseen, niiden vääntöjäykkyydet myös jätetään laskennasta pois.

Tässä työssä selvitetään, minkä verran profiilimaston vääntöjäykkyys vaikuttaa osamastojen voimajakaumaan kun se käsitetään nimenomaan yhtenäisenä rakenteena. Profiilimaston vääntöjäykkyys määritetään Eurokoodin 2 mukaan halkeilemattomassa tilassa. Yksittäisen mastoseinän vääntöjäykkyyttä (T_{xy,v}) tutkimuksen analyyttisissä ratkaisuissa ei huomioida.

[2; 7; 14; 15.]

6.1.3 Kiertokeskiö

Jäykistäville rakenteille jakautuvien vaakavoimien osuuksien selvittämiseksi haetaan mastosysteemin tarkasteltavan tason kiertokeskiö. Sen määrittämiseksi tarvitaan osamastojen vääntökeskiöiden sijainnit. Kaksoissymmetrisen poikkileikkauksen, kuten esimerkiksi suorakaidepoikkileikkauksen vääntökeskiö- ja painopistesijainnit yhtyvät toisiinsa. Symmetrisen ja epäsymmetrisen poikkileikkauksen vääntökeskiön sijainti poikkea painopistesijainnista.

Kun analyyttisessä ratkaisussa osamaston vääntöjäykkyyttä ei huomioida, voidaan olettaa laataston jakaman vaakavoiman vaikuttavan rakenteen painopisteeseen. Profiilimaston vääntöjäykkyyttä huomioidessa jäykistysjärjestelmän kiertokeskiön koordinaatit määritetään profiilimaston vääntökeskiön suhteen.

Jäykistysjärjestelmän poikkileikkauksen kiertokeskiön paikka riippuu myös osamastojen jäykkyyksistä ja siirtyy jäykkyydeltään suuremman osamaston suuntaan. Kiertokeskiön koordinaatit lasketaan kaavoilla

$$X = \frac{\sum K_{y,i} * x_{0,i}}{\sum K_{y,i}}$$
(34)

$$Y = \frac{\sum K_{x,i} * y_{0,i}}{\sum K_{x,i}}$$
(35)

X,Yon tarkasteltavan tason jäykistysjärjestelmän kiertokeskiön koordinaatit $x_{0,i}, y_{0,i}$ ovat osamaston kiertokeskiön/painopisteen koordinaatit pääkoordinaatis-
ton origon suhteen.

Jäykistävien rakenteiden vääntökeskiöiden/painopisteiden koordinaatit mastosysteemin kiertokeskiön koordinaatiston origon suhteen lasketaan seuraavasti:

$$X_i = x_{0,i} - X \tag{36}$$

$$Y_i = y_{0,i} - Y$$
 (37)

[2; 15.]

6.1.4 Voimajakaumat

Analyyttisessä ratkaisussa rakennusta kuormittavan vaakavoiman katsotaan vaikuttavan jokaisen kerroksen laataston tasolla. Sitä tarkastellaan pääakseleiden suuntaisina pistekuormaresultantteina (Q_x, Q_y). Vaakakuorman lisäksi tutkittavaa rakennusta kuormittaa vääntömomentti, joka määritetään kaavalla

$$M = Q_{x}(y_{0}' - Y) - Q_{y}(x_{0}' - X)$$
(38)

 $x'_{0I}y'_{0}$ ovat vaakavoimaresultanttien koordinaatit pääkoordinaatistossa.

Tämän työn analyyttisessä laskennassa oletetaan vääntömomentin ja kiertymän positiiviseksi suunnaksi myötäpäivään. Ulkoisten ja sisäisten voimien tasapainoehdot määritetään seuraavasti:

$$Q_x = v_x \sum K_{x,i} \tag{39}$$

$$Q_{y} = v_{y} \sum K_{y,i} \tag{40}$$

$$M = \varphi \left(\sum T_{xy,\omega} + \sum K_{x,i} * Y_i^2 + \sum K_{y,i} * X_i^2 \right)$$
(41)

Q _x , Q _y	ovat tarkasteltavan tason vaakavoimien resultantit vastaavasti x- ja y-
	suunnassa
Μ	on tarkasteltavan tason vääntömomentti
φ	on tarkasteltavan tason kiertymä.

Jäykistävän rakenteen oletetaan ottavan vastaan vain sen suuntaisen vaakakuorman osuuden. Siten siirtymätilan perusteella voidaan ratkaista voimajakaumat osamastolle

$$Q_{x,i} = K_{x,i} v_x - K_{x,i} Y_i \varphi \tag{42}$$

$$Q_{y,i} = K_{y,i}v_y + K_{y,i}X_i\varphi \tag{43}$$

Profiilimaston vääntömomentti määritetään seuraavasti:

$$M_{xy,\omega} = T_{xy,\omega} * \varphi \tag{44}$$

[2; 15.]

6.2 Numeerinen analyysi

Numeerisen analyysin avulla halutaan todentaa osamastoille analyyttisessä ratkaisussa saatu voimajakauma sekä analysoida eri menetelmällä saatujen tulosten mahdolliset poikkeamat. Numeerinen analyysi tehdään elementtimenetelmällä käyttäen StruSoft FEM–Design 10.0 -ohjelma. Tähän tutkimuksen käytetään 3D Structure -moduulia ohjelman seitsemästä erillisestä moduulista.

3D Structure -modulin avulla rakenteet mallinnetaan kolmiulotteisina. Kolmiulotteinen laskentamalli vastaa kohtuullisen hyvin todellista rakennetta ja antaa muita mallinnustapoja tarkempia tuloksia. Tästä syystä 3D Structure -moduuli sopii parhaiten tämän tutkimuksen numeeriseen analyysiin. Kuitenkin kolmiulotteisen mallin heikkoutena voi olla laskentamallin määrittämiseen sekä tulosten analysointiin kuluva aika. Lisäksi numeerisen analyysin tuloksiin vaikuttavat merkittävästi laskentamallin oikea määrittäminen ja tarkkuus. [14.]

Klassinen vääntöteoria sopii analysoitaessa yksittäisiä profiilimastoja, joiden ominaisuudet ovat yhdenmukaisia koko rakenteessa. Todellisuudessa mastotornit muodostavat kombinaation muiden jäykistävien rakenteiden kanssa ja niiden ominaisuudet vaihtelevat pituuteen nähden. Silloin on avuksi jäykistysmatriisiin pohjautuva tietokoneanalyysi. Vääntötoiminta profiilimastossa on mahdollista analysoida eri mallintamistyyppejä käyttäen. Vaikka väännön numeerinen analyysi ei kuulu tämän työn tutkimuspiiriin, on mainittava, että esimerkiksi Smith ja Coull [3] esittelevät kolme vääntömallinnustyyppiä: elementtimenetelmä-, two-column- ja single-column -mallit, joista elementtimenetelmäanalyysi on suositeltavampi. Profiilimaston mallintaminen väännölle on kuitenkin suhteellisen haastava tehtävä ja vaatii FEM-ohjelman perusteellista osaamista. [3.]

Rakennusmallin pohjalta luodaan kolme erilaista laskentamallia, jotka eroavat toisistaan vain mastoseinän pituuden osalta ja niiden avulla kerätään tietoa jäykistävien rakenteiden voimajakaumista. Voimajakaumat määritetään luvussa 5.2 esitetylle murtorajatilakuormitusyhdistelmälle (kaava 25). Laskentamalleihin otetaan mukaan vain primäärirakenteet eli jäykistävät ja kantavat rakenteet. Muut rakenteet sekä pintavalut määritetään laskentamalleihin kuormina. Mallit (kuva 10) rakennetaan pitäen lähtökohtina seuraavia oletuksia: pilarit ovat kerroskorkuisia, palkit yksiaukkoisia ja kummatkin kiinnitetään nivelellisesti, sekä ontelolaattojen liitokset ovat nivelelliset. Profiilimaston seinät mallinnetaan kerroskorkuisina, jäykästi kiinnitettyinä toisiinsa pystysaumoissa ja nivelellisesti vaakasaumoissa. Mastoseinän vaakasaumat ovat vastaavasti nivelelliset. Jäykistävien seinien vaakaliitosten nivelratkaisu varmistaa sen, etteivät seinät ota vastaan niihin kohtisuorassa suunnassa vaikuttavia kuormia. Näin seinät välittävät perustuksille vain niiden suuntaiset vaakakuormat.

Kuvio 10. Laskentamalli, havainnekuva.

Kuormat, epätarkkuuksista aiheuttava lisävaakavoima mukaan lukien, mallinnetaan pintakuormina. Tuulikuormat asetetaan rakennuksen kummallekin sivulle viivakuormana kerroslaatastojen reunoille.

6.3 Laskenta

Tutkimuksen tarkastelun kohteena on pääasiassa rakennusmallin jäykistysjärjestelmän voimajakauma jäykistäville rakenteille. Sitä varten tehtiin luvussa 6 esitettyjen kaavojen pohjalta Excel-laskentataulukko, joka toimii analyyttisen ratkaisun laskentapohjana

kaikissa kolmessa rakennusmallin tutkimusvaihtoehdossa. Rakenneosien koordinaattien määrittämiseen käytettään apuna AutoCAD 10.0 -ohjelmalla mallinnettua rakennusmallin pohjapiirustusta.

Analyyttisessä laskennassa stabiliteettitarkastelut tehdään kerroksittain. Profiilimaston vääntöjäykkyyden vaikutusta rakennuksen vakavuuteen tutkittaessa riittää laskea voimajakauma osamastoille vain yhdelle kerrostasolle. Tutkimuksen näkökulmasta tarkasteltavaksi tasoksi tulee valita suurimmalla vaakakuormalla kuormitettu taso. Valintaan vaikuttaa myös kerroksen korkeus, koska sillä on vaikutusta osamastojen jäykkyyksiin. Kuormitusten osalta valinta tehtiin rakennusta kuormittavien vaakavoimien laskennan perusteella (liite 3). Kaikkien lueteltujen ehtojen pohjalta tutkimukseen valittiin kuudennen kerroksen katto.

Tutkimuksen keskeinen tarkasteltava vaihtoehto on rakennusmallin jäykistys profiilimastolla ja kolmemetrisellä mastoseinällä (kuva 11). Lisäksi selvitetään kuilun vääntöjäykkyyden vaikutus voimajakaumaan myös seuraavissa ääritapauksissa: jäykistysjärjestelmä on melko tasainen eli mastoseinän pituus on seitsemän metriä ja rakennuksen vääntökestävyys on pelkän kuilun vääntöjäykkyyden varassa. Jälkimmäisessä tapauksessa selvitetään myös kuilun maksimivääntökulma ja bimomentti.

Kuvio 11. Rakennusmallin jäykistysjärjestelmä, havainnekuva.

Voimajakaumat osamastolle lasketaan sekä x- että y-suuntaisille vaakakuormituksille. Tutkimuksessa kuitenkin tarkastellaan vain y-suuntainen kuormitustapaus jäykistysjärjestelmän rakenteen vuoksi. X-suuntainen vaakavoima vaikuttaa vain profiilimastoon ja lisäksi sen suuruus on paljon pienempi y-suuntaisen vaakakuorman verrattuna.

Profiilimasto tarkastellaan käsinlaskennassa yhtenäisenä poikkileikkauksena sekä vertailua varten useista suorista mastoseinistä koostuvana. Jäykistysjärjestelmän osamastoille lasketaan tapausten mukaan voimajakaumat ja tarkasteltavan tason kiertymä. Tapauksiksi luetaan erilaiset profiilimaston käsittelytavat kuten esimerkiksi yhtenäinen poikkileikkaus. Laskennassa tarkasteltavat tapaukset selvitetään tarkemmin tulosten esittelyn yhteydessä.

Rombach [16] vertaillee eri mallinnustapoja rakennuksen mastoseinäjäykisteille. Vertailun kohteeksi hän on ottanut muun muassa profiilimaston vaakavoiman vaikutuspisteen, jonka voidaan olettaa sijaitsevan poikkileikkauksen painopisteessä vääntökeskiön sijaan. Rombach tarkastelee poikkileikkauksen laskenta-akseleiden sijoittamisen vaikutusta jäykistävien rakenteiden voimasuurreisiin. Tuloksista havaitaan, ettei mallinnuksessa vaikutuspisteen sijainti vaikutta suuresti sauvan kiertymään eikä vääntömomenttiin. Tässä työssä päätavoitteiden rinnalla halutaan tehdä Rombach-tyyppinen vertailu analyyttisessa laskennassa. [16.]

Numeerista analyysiä käytetään pelkästään voimajakauman tarkasteluun ja vertailuun vastaavaan analyyttiseen laskennan tuloksiin.

7 Tulokset

Analyyttisen laskennan ja elementtimenetelmän analyysin tulokset esitetään taulukoina kolmelle rakennusmallin vaihtoehdolle. Taulukoissa esitetyt tulokset on ryhmitelty seuraavasti:

- Tapaus 1 (T1) käsittelee jäykistysjärjestelmän koostuvana yksittäisistä mastoseinistä profiilimasto mukaan lukien.
- Tapaus 2 (T2) käsittelee jäykistysjärjestelmän koostuvana profiilimastosta ja mastoseinästä (S1). Profiilimaston poikkileikkauksen vaakavoiman vaikutuspisteeksi oletetaan sen painopiste.

- Tapaus 3 (T3) käsittelee jäykistysjärjestelmän koostuvana profiilimastosta ja mastoseinästä (S1). Profiilimaston poikkileikkauksen vaakavoiman vaikutuspiste sijaitsee sen vääntökeskiössä.
- Tapaus 4 (T4) on muuten samanlainen kun tapaus 3, mutta lisäksi laskennassa huomioidaan profiilimaston vääntöjäykkyys.

Analyyseissa profiilimastoa tarkastellaan sekä yhtenäisenä, että useista seinästä koostuvana rakenteena. Kuvassa 12 annetaan laskentatulosten esittelyssä käytettävä seinien indeksointi.

Kuvio 12. Jäykistävien rakenteiden indeksointi laskennassa.

Profiilimaston vääntöjäykkyys on laskettu Osamastojen jäykkyydet -luvussa (luku 6.1.2) esitetyllä kaavalla (kaava 32). Tutkimuksen rakennusmallin profiilimaston vääntöjäykkyyden ($T_{xy,\omega}$) arvo on 2,84*10⁸ kNm. Vääntöjäykkyyden suuruus on sama kaikille kolmelle laskentamallivaihtoehdolle.

Taulukkoon 4 on kerätty analyyttisen ja numeerisen analyysin tulokset rakennusmallin tutkimusvaihtoehdolle 1 eli tilanteelle, jossa yksittäisen mastoseinän (S1) pituus oletetaan seitsemäksi metriksi.

						Analyytine	n lask	kenta			
		Seinän	Т	apaus 1	Tapaus 2		Tapaus 3		Tapaus 4		Numeerinen
Osamasto		pituus, m	φ, deg	5,79E-06	φ, deg	-5,74E-06	φ, deg	-7,71E-06	φ, deg	-7,42E-06	analyysi
				Q _{y,i} , kN	Q _{y,i} , kN		Q _{y,i} , kN			Q _{y,i} , kN	Q _{y,i} , kN
masto- seinä	S1	7,00	92,016		-7,61		-20,49		-18,97		27,30
							-				
	S2	8,205		96,99							
0	S7	0,87		0,12 0,21							
nast	S8	1,038									
ofiilir	S9	1,038		0,21							
brd	S10	0,87		0,12							
	yht ra	enäinen Ikenne		97,65		197,29		210,17		208,65	-208,11
tason kokonais- vaakavoima, Q _y , kN		nais- Q _y , kN		189,68		189,68		189,68		189,68	-180,81

Taulukko 4. Voimajakaumat osamastoille, tutkimusvaihtoehto 1.

Taulukkoon 5 on kerätty analyyttisen ja numeerisen analyysin tulokset rakennusmallin tutkimusvaihtoehdolle 2 eli tilanteelle, jossa yksittäisen mastoseinän pituus oletetaan kolmeksi metrisiksi.

Osamasto			Analyytinen laskenta								
		Seinän	Т	apaus 1	Tapaus 2		Tapaus 3		Tapaus 4		Numeerinen
		pituus, m	φ, deg	-1,06E-04	φ, deg	-1,09E-04	φ, deg	-1,28E-04	φ, deg	-8,79E-05	analyysi
				Q _{y,i} , kN	Q _{y,i} , kN		Q _{y,i} , kN			Q _{y,i} , kN	Q _{y,i} , kN
mastoseinä S1		3,00	-35,04			-43,07	-55,96		-37,86		4,65
	S2	8,205		224,13							
-	S7	0,87		0,11							
lasto	S8	1,038		0,19							
fillin	S9	1,038		0,19							
pro	S10	0,87		0,11							
	yht ra	enäinen akenne		224,73		232,75		245,64		227,54	-186,70
tason kokonaisvaakav Q _y , kN		ikavoima,		189,68		189,68		189,68		189,68	-182,05

Taulukossa 6 on esitetty tutkimusvaihtoehdon 3 tulokset. Tämä vaihtoehto käsittelee pelkästään profiilimastosta muodostuvan jäykistysjärjestelmän.

			Analy	ytinen la	aske	enta		
Osamasto			Tapaus 1	Tapaus	s 3	Т	apaus 4	Numeerinen
		Seinän pituus, m	φ, deg -4,68E-02	φ, deg	0	φ, deg	-2,88E-04	analyysi
			Q _{y,i} , kN	Q _{y,i} , kN		Q _{y,i} , kN		Q _{y,i} , kN
	S2	8,205	561,86					
to	S7	0,87	-68,96					
mas	S8	1,038	-117,13					
ofiili	S9	1,038	-117,13					
br	S10	0,87	-68,96					
	yhtenäir	nen rakenne	189,68	189,6	68		189,68	-180,62
tason kokonaisvaakavoima, Q _y , kN		189,68	189,6	68		189,68	-180,62	

Analyyttisen ratkaisun jäykistyslaskentojen laskutoimitukset on esitetty liitteessä 4.

Numeerisen analyysin tulokset esitetään tässä luvussa jälkikäsiteltyinä ja taulukoituina. Tulosten keräämiseen käytetty Sections-työkalu ei anna suoraan osamastojen rasitusten arvoja ja siksi tulokset on jälkikäsiteltävä manuaalisesti. Liitteessä 5 esitetään numeerisen analyysin tulosten jälkikäsittelyn tavat.

Numeerisien ja analyyttisen tuloksien ero on 4–5 %, minkä johdosta osamastoihin kohdistuva vaakavoima on pienempi kuin rakennukselle laskettu kokonaisvaakakuorman resultantti (Q_y on 189,68 kN). Ero aiheutuu todennäköisesti ohjelman tavasta tasata tulokset keskiarvoiksi ja jälkikäsittelyn laskennasta. Y-suuntaisesta kuormituksesta profiilimaston kaikille seinille tulee seinän pituista kuormitusta, joka x-suuntaisille seinille syntyy rakennuksen kiertymästä. X-suuntaisten seinien voimat kuitenkin kumoavat toisensa. Siksi taulukkoon 7 on koottu vain ysuuntaisten seinien voimajakaumat.

		Vaihtoehto 1	Vaihtoehto 2	Vaihtoehto 3
Osam	asto	Q _{y,i} , kN	Q _{y,i} , kN	Q _{y,i} , kN
mastoseinä	S1	27,30	4,65	-
profiilimasto	S2	-195,44	-124,06	16,08
	S7	29,26	-8,01	-82,17
	S8	-22,21	-76,67	-158,75
	S9	13,0	75,62	129,85
	S10	-33,58	-53,57	-85,63
	yhtenäinen rakenne	-208,98	-186,70	-180,62
tason kokor voima,	naisvaaka- Q _y , kN	-181,68	-182,05	-180,62

Taulukko 7. Numeerisen analyysin jälkikäsitellyt tulokset.

Elementtimenetelmän analyysi antaa tiedot rakenneosien käyttäytymisestä kuormituksessa. Profiilimaston kohdalla on kiinnostava miten voimat jakautuvat sen seinille ja mitä pitää ottaa huomioon seinän mitoituksessa. Analyyttisen laskennan perustella voidaan arvioida vain koko rakenteelle jakautuva voimaosuus. Taulukosta 7 näkyy, että tutkittavan profiilimaston lyhyisiin oviaukkojen sivuilla sijaitseviin seiniin kohdistuu suuret voimat, varsinkin profiilimaston ollessa ainoa jäykistävä rakenne.

Tutkimusvaihtoehto 3, kun rakennusmallin jäykistää vain profiilimasto, on mielenkiintoinen kuilun sisäisten rasitusten näkökulmasta. Kuitenkin tämän työn puitteissa lasketaan vain profiilimaston huipulla vaikuttavan vääntökulman maksimi arvo ja sen bimomentti profiilimaston juuressa.

Laskennassa mastotorni katsotaan tasaisella vääntömomentilla (m) kuormitetuksi. Vääntömomentti määritetään rakennukseen vaikuttavasta kokonaisvaakavoimasta eli tuulikuormasta ja lisävaakavoimasta (liite 3). Laskenta tehtiin murtorajatilassa. Vääntökulman laskentaan käytetään työssä esitetty kaava 15. Tarkasteltavan kuormitustapauksen bimomentin lauseke muodostuu yleiskaavasta 8 seuraavasti [3, s. 338]:

$$B(z) = -\frac{m}{k^2} \left[\frac{(kL\sinh kL+1)\cosh kz}{\cosh kL} - kL\sinh kz - 1 \right],$$
(45)

jossa profiilimaston juuressa z koordinaatin arvo on 0 ja L on profiilimaston korkeus kiinnityskohdasta. Taulukossa 8 esitetään laskennassa käytetyt suureet ja tulokset.

Kokonaisvaakavoima pituusyksikköä kohti	qy	kN/m	47,27
Profiilimaston korkeus	L	m	28,80
Kimmomoduuli	E	MPa	34000,00
Liukumoduuli	G	MPa	14166,67
Vääntöneliömomentti	I _v	m ⁴ x 10 ⁻²	9,76
Käyristymisjäyhyys	Iω	m ⁶ x 10 ²	1,29
Parametri k	k	1/m	0,017721
Parametri kL	kL	-	0,51
Epäkeskisyys	ex	m	7,52
Tasainen vääntömomentti pituusyksikköä kohti	m	kNm/m	355,47
Profiilimaston maksimikiertymä	φ(L)	deg	0,36
Bimomentti profiilimaston juuressa	B(0)	kNm2	-138700,6
Taivutusmomentti profiilimaston juuressa	M(0)	kNm	-19603,8

Taulukko 8. Profiilimaston rasitukset, vaihtoehto 3.

Vääntö- ja taivutustapausten analogiaa käyttäen voidaan vertailla bimomentin ja taivutusmomentin vaikutuksia. Taivutusmomentti profiilimaston kiinnityskohdalla lasketaan kaavalla

$$M(\mathbf{0}) = -\frac{mL^2}{2} \tag{46}$$

Vääntöteorian yhteydessä esitetystä kaavasta 19 ilmenee, että kumpikin mainituista momentista vaikuttaa lineaarisesti rakenteen normaalijännityksiin (kaavan kaksi jälkimäistä jäsentä). Tulosten perusteella voidaan todeta, että profiilimaston kiinnityskohdalla bimomentin suuruus on paljon taivutusmomenttia suurempi. Tämän perustella voidaan päätellä, että väännön aiheuttamat normaalijännitykset profiilimastoon ovat merkittävämpiä taivutuksen aiheuttamiin verrattuna. Profiilimaston maksimikiertymän suuruus on myös huomattava, 0,36 asteetta. Tason kiertymät ovat suuruusluokaltaan tämän arvon tuhannesosia, kuten havaitaan taulu-koista 4, 5 ja 6. Näistä laskelmista nähdään, että profiilimaston vääntöanalyysillä on merkittävä osuus varsinkin rakenteellisesti mastotornista riippuvaisten rakennusten rakennesuunnittelussa.

8 Tulosten vertailu

8.1 Osamastojen voimajakaumat

Profiilimaston vääntöjäykkyyden vaikutusta vaakavoimien jakaumaan tarkastellaan sekä profiilimaston että mastoseinän osuudesta. Pääasialliseksi vertailukohteeksi otetaan jäykistysjärjestelmät, jotka muodostuvat profiilimastosta ja mastoseinästä ja poikkeavat toisiaan profiilimaston vääntöjäykkyyden käsittelyn osalta eli tapaukset T3 ja T4. Profiilimaston voimajakauman vertailudiagrammi on esitetty kuvassa 13.

Kuvio 13. Profiilimaston voimajakaumat.

Kuvassa esitettyjen tapausten T1, T2 ja T3 profiilimaston voimajakaumia ($Q_{y,i}$) vertaillaan tapauksen T4 profiilimaston voimajakaumaan ($Q_{y,4}$) eri vaihtoehtojen osalta. Samaa esitystapaa käytetään myös mastoseinän ja tason kiertymän vertailudiagrammeissa. Profiilimaston osalta merkittävää voimajakauman eroa ei tullut esiin. Silloin kun vääntöjäykkyys huomioidaan laskennassa, profiilimaston vaakavoimaosuus pienenee. Mastoseinän pituuden ollessa seitsemän metriä (vaihtoehto 1) profiilimaston vaakavoimien pienennys on 0,7 % ja pituuden ollessa kolme metriä (vaihtoehto 2) vaakavoimien pienennys on 7,4 %.

Yksittäisen mastoseinän osalta profiilimaston vääntöjäykkyys vähentää mastoseinän kuormitusta. Seinän vaakarasituksen pienentäminen on eduksi varsinkin lyhyen jäykistävän seinän tapauksessa, johtuen sen altistumisesta vedolle. Kolmemetrisen mastoseinän vaakavoiman osuus pienenee jopa 32 %. Seitsemän metrisen seinän voimajakauma pienenee 8 %. Mastoseinän voimajakaumalaskennan tulosten vertailudiagrammi on esitetty kuvassa 14. Diagrammissa vaaka-akselin alapuolella on esitetty tapauksen T4 vaakavoimajakauman arvot ($Q_{y,4}$).

Kuvio 14. Mastoseinän (S1) voimajakaumat.

Voimajakauman ero on suuri vaihtoehdon 1 tapauksessa, kun vertaillaan irtonaisista seinistä koostuvan (tapaus T1) ja yhtenäisenä rakenteena olevan profiilimaston, jonka vääntöjäykkyys lasketaan mukaan (tapaus T4), rasituksia. Yhtenäisen profiilimaston kuormitus on 114 % isompi kuin sen muodostavien irtonaisten seinien yhteen lasketut kuormitukset. Yksittäisen mastoseinän rasitus tässä tapauksessa pienenee 80 %. Tämä johtuu tarkasteltavan tason vääntökeskiön sijainnista. Kun tarkastellaan jäykistysjärjestelmää useista mastoseinistä koostuvana y-suunnassa, systeemi on suhteellisen symmetrinen seinien S1 ja S2 (kuva 12) ollessa jäykkyydeltään melko samanlaisina. Silloin vääntökeskiö sijaitsee näiden seinien lähes puolivälillä. Voimat jakautuvat seiniin S1 ja

S2 melko tasan. Profiilimasto-mastoseinä-jäykistysjärjestelmässä tason vääntökeskiö sijaitsee lähempänä jäykempää profiilimastoa, mikä vaikutta tässä tapauksessa voima-jakaumaan huomattavasti.

Kun tarkastellaan tutkimusvaihtoehdon 2 vastaavat tapaukset, huomataan, että tapauksessa T4 rasitukset kasvavat profiilimaston osalta vain 1,2 % ja mastoseinän 8 %. Lyhyen mastoseinän tapauksessa (vaihtoehto 2) myös useista mastoseinistä koostuvan jäykistysjärjestelmän vääntökeskiö sijaitsee lähempänä mastotornin seinäryhmää, mikä vaikutta voimajakaumaan.

8.2 Tason kiertymä

Tason kiertymän suureita vertaillaan pääasiallisesti tarkastelemalla samat tapaukset kuten voimajakaumien osalta eli tapaukset T3 ja T4, jotka poikkeavat toisiaan profiilimaston vääntöjäykkyyden käsittelyn osalta. Tulosten vertailudiagrammi on esitetty kuvassa 15. Diagrammissa vaaka-akselin alapuolella esitetyt arvot vastaavat tapauksen T4 tason kiertymiä (ϕ_4).

Kuvio 15. Tason kiertymä.

Tutkimusvaihtoehdot ovat jäykistysjärjestelmän kiertymiseen nähden hyvin erilaisia. Vaihtoehto 1 on melko symmetrinen massiivisen yhtenäisen mastoseinän ansioista. Vaihtoehdot 2 ja 3 vuorostaan ovat kiertymälle aika herkkiä, koska jäykistysjärjestelmän kiertokeskiön paikka siirtyy jäykkyydeltään suuremman rakenteen eli profiilimaston suuntaan. Seitsemänmetrisen mastoseinän tapauksessa profiilimaston vääntöjäykkyydestä aiheutuu tason kiertymän pieneneminen 4 %. Jäykistysjärjestelmän, joka sisältä vääntöjäykän profiilimaston rinnalla kolmemetrisen seinän, kiertymä pienenee 31 %.

Profiilimaston ollessa rakennuksen ainoana jäykistävänä rakenteena (vaihtoehto 3) tason kiertokeskiö sijaitsee profiilimaston vääntökeskiössä. Analyyttisen laskennan mukaan tason kiertymä tässä tilanteessa on nolla, kun mastotornin vääntöjäykistys jätetään pois laskennasta. Kuitenkin ulkoisen kuorman vaikutuksesta tasoon syntyy momentti. Tämän havainnon mukaan laskentakaavat eivät todennäköisesti ole riittävät yhden jäykistävän rakenteen stabiliteettitarkasteluun.

Silloin, kun mastotornin vääntöjäykkyys on mukana, analyyttinen laskenta muuntuu kiertymän osalta profiilimaston sisäisen kiertymän laskennaksi tarkasteltavassa tasossa. Tasoa kuormittava momentti on tässä tapauksessa profiilimaston vääntömomentti. Profiilimaston huipulla vaikuttavan kiertymän maksimiarvo on silloin 0,36 astetta (taulukko 8).

Vertaillaan irtonaisista seinistä koostuvan (tapaus T1) ja yhtenäisenä rakenteena olevan tapauksen T4 profiilimaston kiertymiä. Vaihtoehdon 2 osalta profiilimaston vääntöjäykkyyden ansiosta tason kiertymä pienenee 20 %. Vaihtoehdon 1 osalta tason kiertymä kasvaa 28 %. Tämä johtuu vääntökeskiön sijainnista, kuten oli jo mainittu voimajakaumien vertailun yhteydessä.

Tapausten T1 ja T3 (vaihtoehdot 1 ja 2) vertailun tulokset osoittavat, että analyyttisessa laskennassa profiilimaston käsittely yhtenäisenä rakenteena ilman sen vääntöjäykkyyden huomioimista kasvattaa jonkin verran jäykistysjärjestelmän poikkileikkauksen kiertymää. Vaihtoehdon 3 osalta näkyy, että profiilimaston käsittely yhtenäisenä rakenteena pienentää huomattavasti tason kiertymä.

8.3 Analyyttinen ja numeerinen ratkaisu

Numeerisen analyysin tuloksia verrataan analyyttiseen laskentatapaukseen 4 (T4). Tapauksessa T4 ulkoinen vaakavoima jaetaan osamastoille profiilimaston vääntöjäykkyys huomioiden, mikä vastaa elementtimenetelmän analyysia. Tulosten vertailudiagrammi on esitetty kuvassa 14.

Kuvio 16. Analyyttisen ja numeerisen analyysien tulosten vertailu.

Tutkimusmenetelmien tulosten merkit ovat päinvastaisia, mikä voi johtua siitä, että numeerisen voimajakauman merkki määräytyy tulosten keräämiseen käytetyn Sections -työkalun luontisuunnan perusteella. Toki kummassakin menetelmässä voimajakaumaperiaate pysyy samana. Voimien absoluuttisia arvoja vertaillaan keskenään.

Profiilimaston osalta numeerisen ja analyyttisen ratkaisun tulosten erot eivät ole isoja. Tutkimusvaihtoehtojen 1 ja 3 osalta elementtimenetelmän tulosten arvot ovat maksimissaan 5 % pienempiä analyyttisen laskennan tuloksiin verrattuina. Vaihtoehdon 2 tapauksessa tutkimusmenetelmien voimajakaumien ero on noin 18 %. Sen sijaan mastoseinän rasitusten erot ovat huomattavia. Mastoseinän pituuden ollessa kolme metriä (vaihtoehto 2) laskentamalli jakaa seinälle merkittävästi vähemmän voimaa analyyttiseen tulokseen verrattuna. Vaakavoimien ero on jopa 88 %. Seitsemänmetrisen mastoseinän (vaihtoehto 1) voimaosuus taas kasvaa 44 %.

On kuitenkin huomioitava, että numeerisen analyysin tulokset jäävät analyyttisen laskennan tuloksia pienemmiksi, kuten oli jo mainittu tulosten esittelyn yhteydestä. Siten jäykistävien rakenteiden eri menetelmien tulosten ero todellisuudessa on laskettua pienempi.

Lisäksi seinien osalta tulosten erot voi johtua mallinnustavasta. Analyyttisessä laskennassa profiilimasto on käsitelty avoimena poikkileikkauksena, mallinnettu profiilimasto toimii kuitenkin osittain suljettuna oviaukkojen kohdilla tason laatastolla. Silloin poikkileikkauksen ekvivalentti vääntöneliömomentti on isompi kuin avoimen poikkileikkauksen vääntöneliömomentti, mikä nähdään kaavasta

$$I_{\nu} = \frac{1}{3} \sum bt^3 + \frac{\Omega^2}{\oint \frac{ds}{t}}$$
(47)

jossa ensimmäinen termi vastaa todellisen poikkileikkauksen vääntöneliömomenttia ja toinen kuvailee profiilin osittain suljetun osan [3, s. 329]. Tämä tarkoittaa siitä, että poikkileikkaus sillä kohdalla on jäykempi, mikä vaikuttaa vuorostaan mastoseinän voimajakaumaan.

Tässä luvussa esitetyt tulokset riittävät osoittamaan numeerisen ratkaisun tarkkuuden ja todistamaan molempien laskentamenetelmien kelpoisuuden.

8.4 Profiilimaston vaakavoiman vaikutuspiste

Insinöörityössä pyritään myös tekemään analyyttisen laskennan osalta Rombachtyyppinen vertailu, eli tarkastelemaan profiilimaston poikkileikkauksen laskentaakseleiden sijoittamisen vaikutusta jäykistävien rakenteiden kuormitukseen. Vertailu tehdään tapausten T2 ja T4 sekä T2 ja T3 välillä. Kummassakin tapauksessa profiilimasto käsitellään yhtenäisenä rakenteena. Kuitenkin tapauksessa T2 profiilimaston laskenta-akselit sijoitetaan sen poikkileikkauksen painopisteeseen eikä vääntöjäykkyyttä oteta huomioon. Tapauksissa T3 ja T4 profiilimaston vaakavoiman vaikutuspiste sijaitsee sen vääntökeskiössä. Tapausten eron muodostaa siis vääntöjäykkyys, kuten edellä oli mainittu. Vertailu tehdään kuvissa 13 ja 14 esitettyjä diagrammeja käyttäen.

Profiilimaston osalta laskenta-akseleiden sijoittaminen poikkileikkauksen painopisteeseen vääntökeskiön sijaan ei aiheuttaa suuria eroja kuilun rasituksille. Profiilimaston käsittely yhtenäisenä rakenteena ilman sen vääntöjäykkyyden huomioimista pienentää vaihtoehtojen 1 ja 2 osalta mastotornin vakavoiman osuutta 6–7 %, jos laskentaakselit sijoitetaan poikkileikkauksen painopisteeseen (T2). Sen vuoksi, että profiilimaston vääntöjäykkyys otetaan huomioon ja voiman vaikutuspiste sijaitsee vääntökeskiössä (T4), mastotornin voimasuureet vaihtoehdon 1 osalta kasvavat 6 % ja vaihtoehdon 2 pienenevät noin 2 % tapauksen T2 profiilimastoon verrattuna.

Mastoseinän osalta rasitusten erot ovat huomattavia. Vertailemalla tapausten T2 ja T3 tuloksia huomataan, että laskenta-akseleiden sijoittaminen profiilimaston poikkileikkauksen painopisteeseen vääntökeskiön sijasta pienentää mastoseinän rasituksia. Seitsemänmetrisen mastoseinän (vaihtoehto 1) osalta ero on jopa 169 % ja kolmemetrisen mastoseinän (vaihtoehto 2) osalta on 30 %. Tilanne voi olla vaarallinen, jos seinälle lasketaan pienemmät voimat todellisten sijasta, varsinkin kun kyseessä on lyhyt seinä.

Tulokset osoittavat, että analyyttisessä ratkaisussa profiilimaston poikkileikkauksen laskenta-akseleiden sijoittaminen painopisteeseen ei vaikuta paljonkaan profiilimaston rasitukseen. Sen sijaan se vaikuttaa tason kiertymään ja sen kautta yksittäisen mastoseinän rasitukseen. Näin ollen analyyttisessa laskennassa stabiliteettitarkastelut on tehtävä profiilimaston vääntökeskiön suhteen, silloin ollaan varmalla puolella myös muiden jäykistysjärjestelmän osamastojen suhteen.

8.5 Johtopäätökset

Tuloksista kävi ilmi profiilimaston vääntöjäykkyyden ja jäykistysjärjestelmän rakenteen keskinäinen vaikutus. Rakennuksen jäykistysjärjestelmän ollessa suhteellisen tasapainottava profiilimaston vääntöjäykkyydestä ei tule merkittävää. Tilanne on toinen kun kyse on rakenteellisesti mastotornista riippuvaisista rakennuksista, kuten tämän työn tutkimusvaihtoehto 2. Siinä jäykistysjärjestelmä muodostuu profiilimastosta ja kolmemetrisestä yksittäisestä mastoseinästä. Sekä analyyttisen että numeerisen menetelmien tulokset osoittavat, että sellaisissa jäykistyssysteemissä profiilimaston vääntöjäykkyyden vaikutus vaakarasitusten jakaumaan on merkittävä.

Profiilimaston vääntöjäykkyyden osuutta vaakavoimien jakaumaan tarkasteltiin sekä profiilimaston että mastoseinän osalta. Profiilimaston osalta merkittävää rasitusten eroa ei tullut esiin kummassakaan jäykistysjärjestelmässä. Tutkimuksen yksittäisen mastoseinän pituuden ollessa seitsemän metriä profiilimaston vaakavoimien ero on hyvin pieni ja seinän pituuden ollessa kolme metriä vaakavoimien ero on 7,4 %.

Sen sijan mastoseinän kuormitus vähenee profiilimaston vääntöjäykkyyden ansiosta. Seitsemänmetrisen seinän voimajakauman osuus pienenee 8 % kun taas kolmemetrisen mastoseinän vaakavoiman osuus pienenee jopa 32 %. Näistä tuloksista näkyy profiilimaston vääntöjäykkyyden ja jäykistysjärjestelmän muodon vuorovaikutus. Tutkimusvaihtoehdon 2 osalta myös numeerinen analyysi osoittaa, että profiilimaston vääntöjäykkyyden hyväksi käytöllä voidaan pienentää lyhyen seinän vaakarasituksia.

Numeerisen analyysin tulokset tukevat analyyttisen vastaavia tuloksia jäykistyssysteemien ratkaisujen osalta. Profiilimaston osalta tulosten erot eivät ole isoja. Sen sijaan mastoseinän vaakavoimaosuuksien erot ovat huomattavia. Numeerisen analyysin osalta haasteeksi muodostui laskentamallin tuottamien tulosten jälkikäsittely. Siksi kaikissa kolmessa laskentamallissa numeerisen analyysin ja analyyttisen laskennan tuloksissa on 4–5 % ero.

Elementtimenetelmän analyysin tulosten perusteella huomattiin, että suunnittelussa on kiinnitettävä huomio profiilimaston sisäiseen voimajakaumaan. Profiilimaston seinien rasitukset voivat olla hyvin suuria varsinkin profiilimaston ollessa ainoa rakennuksen jäykistävä rakenne. Lisäksi profiilimaston vääntörasitukset on ehdottomasti otettava mukaan profiilimaston mitoituksiin, koska ne ovat taivutuksen aiheuttamiin verrattuina huomattavasti suurempia. Rakenneosan mitoituksessa on huomioitava sekin, että betonin halkeilu pienentää merkittävästi profiilimaston vääntöjäykkyyttä.

Myös tason kiertymän osalta huomataan profiilimaston vääntöjäykkyyden vaikutuksen ja jäykistysjärjestelmän rakenteen asiayhteys. Seitsemänmetrisen mastoseinän sisältävän jäykistysjärjestelmän tason kiertymä pienenee profiilimaston vääntöjäykkyydestä 4 % ja kolmemetrisen seinän sisältävän järjestelmän jopa 31 %.

Analyyttisen tarkastelun osalta kävi ilmi, että profiilimaston poikkileikkauksen laskentaakseleiden sijoittaminen painopisteeseen vääntökeskiön sijasta vaikuttaa tason kiertymään ja aiheuttaa liian edulliset voimajakaumat mastoseinälle. Näin ollen stabiliteettitarkastelussa on tarkasteltava profiilimastoa sen poikkileikkauksen vääntökeskiön suhteen, varsinkin jos laskennassa ei otetta huomioon profiilimaston vääntöjäykkyyttä. Lisäksi profiilimaston käsittely yhtenäisenä rakenteena antaa analyyttisessä laskennassa lähempänä todellista tilannetta olevat tulokset.

Tutkimuksen tulosten perusteella voidaan päätellä, että profiilimaston vääntöjäykkyyden huomioiminen stabiliteettitarkastelussa riippuu tarkasteltavasta jäykistysjärjestelmästä. Rakennesuunnittelijan on tapauksen mukaisesti harkittava profiilimaston vääntöjäykkyyden mukaan ottamista, koska se vaatii rakenteen erillistä mitoitusta väännölle.

9 Yhteenveto

Insinöörityössä selvitettiin avoimen profiilimaston vääntöjäykkyyden vaikutus rakennusta kaatavien voimien jakaumaan. Tutkimus tehtiin kahdeksankerroksisen rakennusmallin avulla. Tulokset saatiin käyttämällä kahta tutkimusmenetelmää: analyyttinen ja numeerinen analyysi.

Tutkimuksesta tuli esiin, että profiilimaston vääntöjäykkyys pienentää yksittäisen mastoseinän vaakavoimaosuutta, muttei vaikuta paljon profiilimaston vaakarasitukseen. Olennainen havainto on profiilimaston vääntöjäykkyyden ja jäykistysjärjestelmän rakenteen asiayhteydessä. Profiilimaston vääntöjäykkyydestä saadaan etua rakenteellisesti mastotornista riippuvaisissa jäykistysjärjestelmissä. Työssä saatiin myös käsitys vääntötoiminnasta.

Tulokset osoittavat kummankin tutkimusmenetelmän kelpoisuuden ja tarkkuuden. Kuitenkin päätelmät tehtiin pääasiassa analyyttisen menetelmän pohjalta. Elementtimenetelmän ratkaisut ovat luotettavia jos malli määritetään oikein. Kääntöpuolena on mallin herkkyys virheille. Tästä syystä numeerisen laskentamallin tulokset pitäisi todentaa jollakin toisella, esimerkiksi analyyttisella menetelmällä. Toisaalta vaativimmissa kohteissa näiden kahden menetelmän tulosten väliset erot voivat olla hyvinkin suuret, mikä johtuu analyyttisen ratkaisun oletuksista ja yksinkertaistuksista. Silloin on vertailuun parempi käyttää muita mallinnustapoja.

Jäykistävien betonirakenteiden väännön toiminta ja analyysi ovat vielä suhteellisen tuntemattomia, siksi työn tekeminen oli mielenkiintoista ja haastavaa. Sivuun jäi profii-

limaston mallinnus vääntötarkastelua varten. Tämän tyypistä elementtimenetelmän analyysia on hyvin vähän käytetty. Tältä osin työtä olisi hyvä jatkaa ja tutkia väännön aiheuttamien rasitusten jakauma profiilimastossa.

Lähteet

- Elementtisuunnittelu.fi. Jäykistysjärjestelmät. 2012. Verkkosivu.
 <http://www.elementtisuunnittelu.fi/fi/rakennuksenjaykistys/jaykistysjarjestelmat
 >. Päivitetty 15.helmikuutta 2010. Luettu 9.2.2012
- 2 Valmisosarakentaminen II. Osa G. Elementtirakennuksen jäykistys. 1995. Lahti: RTT Rakennusteollisuuden ry., Betoniteollisuusjaosto.
- 3 Smith, Bryan Stafford & Coull, Alex. 1991. Tall building structures: Analysis and design. New York: John Wiley & Sons, Inc.
- 4 Salmi, Tapio, Pajunen, Sami.2010. Lujuusoppi. Tampere: Klingendahl Paino Oy
- 5 Tuomala, Markku. 2011. Sovellettu kimmoteoria. Julkaisematon luentomoniste. Tampereen tekninen yliopisto.
- 6 Rautaruukki Oy. Kylmämuovatut profiilit. Suunnittelu ja käyttö. 1987. Metalliteollisuuden Kustannus Oy.
- 7 SFS-EN 1992-1-1. 2005. Eurokoodi 2: Betonirakenteiden suunnittelu. Osa 1-1: Yleiset säännöt ja rakennuksia koskevat säännöt. Helsinki: Suomen standardisoimisliitto.
- 8 Avointen ohutseinämäisten sauvojen vääntötehtävän ratkaiseminen. Verkkodokumentti. <https://noppa.aalto.fi/noppa/kurssi/rak-54.../Rak-54_3100_ki_2.pdf>. Luettu 24.09.2011.
- 9 Young, W. C., Budynas, R.G. 2002. Roark's formulas for stress and strain. Chapter 10. Torsion. Verkkodokumentti. <ftp://sumin.in.ua/books/DVD-010/Young_W.C.,_Budynas_R.G._Roark%5Bap%5Ds_Formulas_for_Stress_and_ Strain_(2002)(7th_ed.)(en)(851s).pdf>. Luettu 9.2.2012.
- 10 SFS-EN 1991-1-3+AC. 2005. Eurokoodi 1: Rakenteiden kuormat. Osa 1-3: Yleiset kuormat. Lumikuormat. Helsinki: Suomen standardisoimisliitto.
- 11 SFS-EN 1991-1-4+AC+A1. 2005. Eurokoodi 1: Rakenteiden kuormat. Osa 1-1: Yleiset kuormat. Tuulikuormat. Helsinki: Suomen standardisoimisliitto.
- 12 SFS-EN 1991-1-1+AC. 2005. Eurokoodi 1: Rakenteiden kuormat. Osa 1-1: Yleiset kuormat. Tilavuuspainot, oma paino ja rakennusten hyötykuormat. Helsinki: Suomen standardisoimisliitto.
- 13 SFS-EN 1990+A1+AC. 2005. Eurokoodi. Rakenteiden suunnitteluperusteet. Helsinki: Suomen standardisoimisliitto.
- 14 Jaakkola, Tuomas. 2011. Monikerrosrungon jäykistävien elementtirakenteiden numeerisen mallintamisen ohjeistus. Diplomityö. Oulun yliopisto.

- Jäykistysjärjestelmät. Laskentaperiaatteet. Verkkodokumentti. Betoniteollisuus ry. 2010.
 http://www.elementtisuunnittelu.fi/fi/rakennuksenjaykistys/laskentaperiaatteet
 Luettu 9.2.2012.
- 16 Rombach, G. A. 2004. Finite element design of concrete structures. London: Thomas Telford Publishing.

Jäykistävät profiilimastot

Parametrit kL (kaava 1) on laskettu tutkimuksen rakennusmallin profiilimaston arvoilla: maston pituus kiinnityskohdasta (L) on 28,8 metriä, betonin lujuusluokka on C35/45 ja sen vastaava kimmokerroin (E) on 34 GPa, betonin liukukerroin (G) on 14,17 GPa.

Promiumasion poinklieikkaus nimike merkki yksikkö arvo kL tapaus 1 Pinta-ala A mm*x 10⁴ 175 Painopistekoordinaatisto Vääntökeskiö (S) Xs mm Nm*x 10¹⁰ 0,7150 Jäyhyysmomentti Ix mm*x 10¹⁰ 0,00037 Pääkoordinaatisto Vääntökeskiö (S) Xs mm*x 10²⁰ 0,00037 Pääkoordinaatisto Vääntökeskiö (S) Xs mm*x 10²⁰ 0,00037 Pääkoordinaatisto Vääntökeskiö (S) Xs mm*x 10²⁰ 0,00037 Pääkoordinaatisto Vääntökeskiö (S) Xs mm*x 10²¹ 0,9957 1,38 1,38 pinta-ala A mm*x 10²¹ 0,9957 1,38 1,38 1,38 1,38 1,38 1,39 pinta-ala mm*x 10²¹	D		Poikki			Vääntö		
Pinta-ala A mm²x10 ⁴ 175 Painopistekoordinaatisto Vaantokeskio (S) Xs mm 0,0 Ys mm 0,0 Ys mm 0,0 Ys mm 0,0 Ys mm 0,0 Jayhyysmomentti Ix mm²x10 ⁴ 0.7150 18,25 Vaantoneliomomentti Iv mm²x10 ⁴ 0.0037 18,25 Vaantoneliomomentti Iv mm²x10 ⁴ 0.0037 18,25 Vaantoneliomomentti Iv mm²x10 ⁴ 267.50 12 mm²x10 ⁴ 267.50 Pinta-ala A mm²x10 ⁴ 267.50 1.38 1.38 1.38 Vaantokeskio (S) Xs mm -2162,0 1.38 1.38 1.38 Vaantokeskio (S) Xs mm²x10 ⁴ 267.50 1.38 1.38 1.38 Vaantokeskio (S) Xs mm²x10 ⁴ 0.007 2.871 1.38 1.38 Jayhyysmomentti I1 mm²x10 ¹⁰	Pro	ofiliimaston poikkileikkaus	nimike	merkki	yksikkö	arvo	KL	tapaus
1 Image: provide state of the			Pinta-ala	A	mm ² x10 ⁴	175		
1 Image: second se		. 2	Painopistekoordinaatisto	•				
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		* 🖬 🕺	Vääntökeskiö (S)	Xs	mm	0,0		
μ μ μ μ mm ⁴ x 10 ¹³ 0,7150 1y mm ⁴ x 10 ¹⁰ 0,9115 1xy mm ⁴ x 10 ¹⁰ 0,9115 1xy mm ⁴ x 10 ¹⁰ 0,9115 1xy mm ⁴ x 10 ¹⁰ 0,9023 3,5638 Vääntöneliömomentti Käyristymisjäyhyys 1u mm ⁴ x 10 ¹⁰ 0,00037 3,5638 mm ⁴ x 10 ¹⁰ 0,9017 1 mm ⁴ x 10 ¹⁰ 0,00037 1 1 mm ⁴ x 10 ¹⁰ 0,00037 1 1 mm ⁴ x 10 ¹⁰ 0,00037 1	1			Ys	mm	0,0	18,25	
2 μ Iv mm ¹ x 10 ¹⁰ 0.9115 Iv mm ⁴ x 10 ¹⁰ 0.9023 3 μ μ mm ⁴ x 10 ¹⁰ 0.9023 0.00037 Nationellömomentti Iv mm ⁴ x 10 ¹⁰ 0.90037 Nationellömomentti Iv mm ⁴ x 10 ¹⁰ 0.9015 Nationellömomentti Iv mm ⁴ x 10 ¹⁰ 0.9015 Nationellömomentti Iv mm ⁴ x 10 ¹⁰ 0.9071 Nationellömomentti Iv mm ⁴ x 10 ¹⁰ Nationellömomentti Iv mm ⁴ x 10 ¹⁰ Nationellömomentti Iv <td< td=""><td></td><td>1000</td><td>Jäyhyysmomentti</td><td>Ix</td><td>mm⁴x 10¹³</td><td>0,7150</td><td></td><td>:0</td></td<>		1000	Jäyhyysmomentti	Ix	mm ⁴ x 10 ¹³	0,7150		:0
Image: second		G X 1		ly	mm ⁴ x 10 ¹⁰	0,9115		äntö
2 Vääntönellömomentti Käyristymisjäyhyys Iv mm ⁴ x 10 ³⁰ 3,5638 mm ⁶ x 10 ²⁰ 0,00037 Pääkoordinaatisto		s		Ixy	mm⁴	0,0023		la v
kayristymisjäyhyys Iω mm ^k x 10 ³⁰ 0,00037 Paäkoordinaatisto Koord. kulma α rad 0,000 Jäyhyysmomentti I1 mm ^k x 10 ³⁰ 0,00037 1,38 Pinta-ala A mm ^k x 10 ³⁰ 0,9115 1,38 Pinta-ala A mm ^k x 10 ³¹ 0,957 1,38 Jayhyysmomentti Ix mm ⁴ x 10 ³⁰ 0,9597 1,38 Jayhyysmomentti Iv mm ⁴ x 10 ³⁰ 0,2871 1,38 Vääntöneliömomentti Iv mm ⁴ x 10 ³⁰ 0,2871 1,38 Vääntöneliömomentti Iv mm ⁴ x 10 ³⁰ 0,2871 1,38 Vääntöneliömomentti Iv mm ⁴ x 10 ³⁰ 0,2871 1,38 Vääntöneliömomentti Iv mm ⁴ x 10 ³⁰ 0,2871 1,38 Vääntöneliömomentti Iv mm ⁴ x 10 ³⁰ 0,2871 1,19 Pinta-ala A mm ² x 10 ³³ 0,2871 1,19 Jäyhysmomentti Ix mm ⁴ x 10 ³¹ 0,3036 <th< td=""><td></td><td>250</td><td>Vääntöneliömomentti</td><td>Iv</td><td>mm⁴x 10¹⁰</td><td>3,5638</td><td></td><td>apa</td></th<>		250	Vääntöneliömomentti	Iv	mm ⁴ x 10 ¹⁰	3,5638		apa
Pääkoordinaatisto Koord. kulma α rad 0,00 Jäyhyysmomentti 11 mm ^k x 10 ¹³ 0,7150 II mm ^k x 10 ¹⁰ 0,9115 II II mm ^k x 10 ⁴ 26750 Pinta-ala A mm ^k x 10 ¹³ 0,9597 II.38 II.38 II.38 II.38 S ^o Jäyhysmomentti Ix mm ⁴ x 10 ¹³ 0,9597 II.38 II.38 II.38 Jäyhysmomentti Ix mm ⁴ x 10 ¹³ 0,2871 II.38 II.38 II.38 Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,2871 II.38 II.38 Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,2871 II.38 II.38 Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,2871 II.38 II.38 Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,2871 II.38 II.18 Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,2871 II.19 II.19 Vääntöneliömomentti			Käyristymisjäyhyys	lω	mm ⁶ x 10 ²⁰	0,00037		>
$\begin{array}{ c c c c c c } \hline & Koord. kulma & \alpha & rad & 0.00 \\ \hline Jayhyysmomentti & 11 & mm^{4}x 10^{13} & 0.7150 \\ \hline 12 & mm^{4}x 10^{10} & 0.9115 \\ \hline 12 & mm^{4}x 10^{10} & 0.9115 \\ \hline 12 & mm^{4}x 10^{10} & 0.9115 \\ \hline \\ $		Ļ	Pääkoordinaatisto					
$\begin{array}{ c c c c c c } \hline & Jayhyysmomentti & 11 & mm^4x 10^{13} & 0,7150 \\ \hline 12 & mm^4x 10^{10} & 0,9115 \\ \hline 12 & mm^2x 10^4 & 267,50 \\ \hline Painopistekoordinaatisto \\\hline \hline Painopistekoordinaatisto \\\hline \hline Vääntökeskiö (S) & Xs & mm & -2162,0 \\ \hline Ys & mm & 0,0 \\ \hline Jäyhyysmomentti & 1x & mm^4x 10^{13} & 0,9597 \\ \hline 1y & mm^4x 10^{13} & 0,2871 \\\hline \hline Name & Name$		P.	Koord. kulma	α	rad	0,00		
I2 mm ⁴ x 10 ¹⁰ 0,9115 I 2 Pinta-ala A mm ² x 10 ⁴ 267,50 Vääntökeskiö (S) Xs mm -2162,0 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,9597 Jayhyysmomentti Ix mm ⁴ x 10 ¹³ 0,2871 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 5,5526 Käyristymisjäyhyys Iw mm ⁶ x 10 ²⁰ 0,101 Päikoordinaatisto Kord. kulma α rad 0,00 Jäyhyysmomentti I1 mm ⁴ x 10 ¹³ 0,2871 Päikoordinaatisto Koord. kulma α rad 0,00 Jäyhyysmomentti I1 mm ⁴ x 10 ¹³ 0,2871 Pinta-ala A mm ² x 10 ⁴ 387,55 Painopistekoordinaatisto Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,0053 Jäyhysmomentti Ix mm ⁴ x 10 ¹³ 0,0053 1,19 119 Jäyhysmomentti Iv mm ⁴ x 10 ¹³ 0,0053 1,19 11,1			Jäyhyysmomentti	11	mm ⁴ x 10 ¹³	0,7150		
2 Pinta-ala A mm²x 10 ⁴ 267,50 2 Painopistekoordinaatisto Ys mm -2162,0 1,38 3 Jäyhyysmomentti Ix mm4x 10 ¹³ 0,9597 1 1 Ys mm 0,0 1,38 1,38 Vääntöneliömomentti Ix mm4x 10 ¹³ 0,9597 1 1 Ys mm4 3826,00 1 1 Vääntöneliömomentti IV mm4x 10 ¹⁰ 5,5526 1 1 Vääntöneliömomentti IV mm4x 10 ¹⁰ 5,5526 1 1 1 Vääntöneliömomentti IV mm4x 10 ¹⁰ 5,5526 1				12	mm ⁴ x 10 ¹⁰	0,9115		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Pinta-ala	А	mm ² x 10 ⁴	267,50		
2 Vääntökeskiö (S) Xs mm -2162,0 Ys 1,38 3 yyyyyyyöömentti Ix mm ⁴ x 10 ¹³ 0,9597 1 1 yyyyyyöömentti Ix mm ⁴ x 10 ¹³ 0,9597 1 1 yyyyyöömentti Ix mm ⁴ x 10 ¹⁰ 5,5526 1 1 1 yyyyöömentti Iv mm ⁴ x 10 ¹⁰ 5,5526 1		2	Painopistekoordinaatisto					
2 Ys mm 0,0 1,38 1,38 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,9597 0,9597 1,38 1,38 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,2871 0,2871 1,38 1,19		5	Vääntökeskiö (S)	Xs	mm	-2162,0		
3	2			Ys	mm	0,0	1,38	
3 ¹ y mm ⁴ x 10 ¹³ 0,2871 ¹ xy mm ⁴ 3826,00 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 5,5526 Käyristymisjäyhyys Iω mm ⁶ x 10 ²⁰ 0,101 Pääkoordinaatisto Koord. kulma α rad 0,00 Jäyhyysmomentti I1 mm ⁴ x 10 ¹³ 0,9597 I2 mm ⁴ x 10 ¹³ 0,2871 ¹ y mm ⁴ x 10 ¹³ 0,9597 I2 mm ⁴ x 10 ¹³ 0,2871 3 ¹ y mm ⁴ x 10 ¹³ 0,2871 I1 mm ⁴ x 10 ¹³ 0,2871 I,19 3 ¹ y mm ⁴ x 10 ¹³ 0,5036 I,19 I,19 I,19 3 ¹ y mm ⁴ x 10 ¹³ 0,0053 Vääntökeskiö (S) Xs mm -1564,0 I,19 3 ² y mm ⁴ x 10 ¹³ 0,0053 I,19 I,19 I,19 3 ² y mm ⁴ x 10 ¹³ 0,0053 I,19 I,19 I,19		Y.	Jäyhyysmomentti	Ix	mm ⁴ x 10 ¹³	0,9597		ntö
s° Ixy mm ⁴ 3826,00 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 5,5526 Käyristymisjäyhyys Iw mm ⁶ x 10 ²⁰ 0,101 Pääkoordinaatisto Pääkoordinaatisto Nord. kulma α rad 0,000 Jäyhyysmomentti I1 mm ⁴ x 10 ¹³ 0,9597 12 mm ⁴ x 10 ¹³ 0,2871 3 Pinta-ala A mm ² x 10 ⁴ 387,55 Painopistekoordinaatisto 1,19 1,19 Vääntöneliömomentti Ix mm ⁴ x 10 ¹³ 0,5036 1,19 1,19 1,19 3 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,0053 1,19 1,19 3 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,0053 1,19 1,19 3 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,0053 1,19 1,19 Jäyhysmomentti Iv mm ⁴ x 10 ¹³ 0,0053 1,19 11 11 Jäyhysmomentti Iv mm ⁴ x 10 ¹⁰ 0,0053 1,19 11 11 11 11 Biäkoordin				ly	mm ⁴ x 10 ¹³	0,2871		vää
3 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 5,5526 Käyristymisjäyhyys Iω mm ⁴ x 10 ²⁰ 0,101 Pääkoordinaatisto 3 4 4 rad 0,000		s° ⁶⁴		Ixy	mm ⁴	3826,00		etty
δ Käyristymisjäyhyys Iω mm ⁶ x 10 ²⁰ 0,101 Pääkoordinaatisto Köörd. kulma α rad 0,00 Pääkoordinaatisto Nord. kulma α rad 0,00 Nord.		PORRASHUONE	Vääntöneliömomentti	Iv	mm ⁴ x 10 ¹⁰	5,5526		liste
$3 \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $		520	Käyristymisjäyhyys	lω	mm ⁶ x 10 ²⁰	0,101		yhd
$3 \qquad \qquad \begin{matrix} Koord. kulma & \alpha & rad & 0,00 \\ Jäyhyysmomentti & 11 & mm^4x 10^{13} & 0,9597 \\ I2 & mm^4x 10^{13} & 0,2871 \\ \hline 12 & mm^4x 10^{13} & 0,2871 \\ \hline 12 & mm^4x 10^{13} & 0,2871 \\ \hline 12 & mm^2x 10^4 & 387,55 \\ \hline Painopistekoordinaatisto \\ \hline Vääntökeskiö (S) & Xs & mm & -1564,0 \\ \hline Vääntökeskiö (S) & Ys & mm & 31,8 \\ \hline Jäyhyysmomentti & Ix & mm^4x 10^{13} & 1,1340 \\ \hline Iy & mm^4x 10^{13} & 0,5036 \\ \hline Ixy & mm^4x 10^{13} & 0,0053 \\ \hline Vääntöneliömomentti & Iv & mm^4x 10^{10} & 7,7114 \\ \hline Käyristymisjäyhyys & I\omega & mm^6x 10^{20} & 0,1871 \\ \hline Pääkoordinaatisto \\ \hline Koord. kulma & \alpha & rad & -0,0084 \\ \hline Iö uhussmomentti & I1 & mm^4x 10^{13} & 1,1340 \\ \hline Ii uhussmomentti & I1 & mm^4x 10^{13} & 1,1340 \\ \hline Name{Name{Name{Name{Name{Name{Name{Name{$		<u>+</u> <u>3250</u>	Pääkoordinaatisto					
$3 \qquad \qquad$		* *	Koord. kulma	α	rad	0,00		
I2 mm ⁴ x 10 ¹³ 0,2871 β Pinta-ala A mm ² x 10 ⁴ 387,55 Painopistekoordinaatisto Vääntökeskiö (S) Xs mm -1564,0 Vääntökeskiö (S) Ys mm 31,8 1,1340 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,5036 1,19 Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,0053 1,19 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 1,1340 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 1,1340 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 1,1340 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 1,1340 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 1,1340 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 1,1340			Jäyhyysmomentti	11	mm ⁴ x 10 ¹³	0,9597		
β Pinta-ala A mm²x 10 ⁴ 387,55 Painopistekoordinaatisto Vääntökeskiö (S) Xs mm -1564,0 Vääntökeskiö (S) Ys mm 31,8 1,19 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 0,5036 1,19 Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,0053 1,19 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 1,19 Pääkoordinaatisto Köord. kulma α rad -0,0084 I				12	mm ⁴ x 10 ¹³	0,2871		
3 ² ²			Pinta-ala	Α	mm ² x 10 ⁴	387,55		
3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5		.2	Painopistekoordinaatisto	1				
3 Ys mm 31,8 1,19 Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 1,1340 Iy mm ⁴ x 10 ¹³ 0,5036 Ixy mm ⁴ x 10 ¹⁰ 7,7114 Käyristymisjäyhyys Iw mm ⁶ x 10 ²⁰ 0,1871 Pääkoordinaatisto Koord. kulma α rad -0,0084			Vääntökeskiö (S)	Xs	mm	-1564,0		
Jäyhyysmomentti Ix mm ⁴ x 10 ¹³ 1,1340 Iy mm ⁴ x 10 ¹³ 0,5036 Ixy mm ⁴ x 10 ¹³ 0,0053 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 Käyristymisjäyhyys Iw mm ⁶ x 10 ²⁰ 0,1871 Pääkoordinaatisto Koord. kulma α rad -0,0084	3			Ys	mm	31,8	1,19	:0
is is is Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,5036 Ixy mm ⁴ x 10 ¹³ 0,0053 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 Käyristymisjäyhyys Iw mm ⁶ x 10 ²⁰ 0,1871 Pääkoordinaatisto Koord. kulma α rad -0,0084 Iävkussmomentti I1 mm ⁴ x 10 ¹³ 1.1340			Jäyhyysmomentti	Ix	$mm^4x \ 10^{13}$	1,1340		änt
Vääntöneliömomentti Iv mm ⁴ x 10 ¹³ 0,0053 Vääntöneliömomentti Iv mm ⁴ x 10 ¹⁰ 7,7114 Käyristymisjäyhyys Iw mm ⁶ x 10 ²⁰ 0,1871 Pääkoordinaatisto Koord. kulma α rad -0,0084 läyhysmomentti I1 mm ⁴ x 10 ¹³ 1.1340				ly	$mm^4x 10^{13}$	0,5036		/ vä
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				lxy	$mm^4x 10^{13}$	0,0053		etty
καyristymisjaynyys iω mm x 10 0,1871 Pääkoordinaatisto Koord. kulma α rad -0,0084 läyhyysmamentti 11 $mm^4x 10^{13}$ 1.1240			Vaantoneliomomentti	IV	mm ⁻ x 10 ⁻⁰	7,7114		dist
$*$ Paakool dinaalisto Koord. kulma α rad -0,0084 löybussmomentti I1 $mm^4x \ 10^{13}$ 1 1240			Rayristymisjaynyys	Iω		0,1871		ł
α rad -0,0084		* *	Koord kulma	~	rod	0.0004		
			lävbyvemomentti	u 11	$mm^4 y \ 10^{13}$	-0,0084		
$12 \text{ mm}^4 \text{x } 10^{13} \text{ 0 } 5036$			Jaynyysmomentu	12	$mm^4 x \ 10^{13}$	0 5036		

Liite 1 1 (3)

Liite 1

		Poikkileikkaussuureet					Vääntä
Pro	ofiilimaston poikkileikkaus	r UINNI nimika	mortel		0010	kL	vaanto tanaus
		nimike	тегккі	yksikko	arvo		tapaus
		Pinta-ala	A	mm ² x10 ³	763,90		
			Va		12/0.0		
4	*	Vaantokeskio (S)	XS	mm	1269,0	0.44	
4	HESS HESS	läyhyycmomontti	15	$mm^4 \times 10^{13}$	-032,7	0,44	
	d'at	Jaynyysmomentu		$mm^4 x \ 10^{13}$	5,2000		ntö
	2 So		Ty Dov	$mm^{4}x 10^{13}$	0.0241		vää
		Vääntänallämamantti		$mm^{4}x 10^{10}$	0,9341		tty
		Käyristymisiäyhyys		$mm^{6} \times 10^{20}$	2 7 4 7 0		este
	″ <mark>⊮ 8550 ⊀</mark>	Pääkoordinaatisto	ιω		2,7470		Ŭ
		Koord kulma	a	rad	1 8700		
		lävhyvsmomentti	۵ ا	$mm^4 y \ 10^{13}$	6 23/0		
		Jaynyysmomentu	12	$mm^4 x \ 10^{13}$	2 021		
		Dinta ala	12	$mm^2 x \ 10^4$	105 75		
	5°	Pilild-did Daipanistakaardinaatista	A		400,70		
	5	Vääntökeskiö (S)	٧s	mm	-961.6		
5			X3 Vs	mm	6508.0	0 44	
5	*	Jävhyvsmomentti	lx	mm ⁴ x 10 ¹³	2,9380	0,44	
		saj njjemenena	lv	$mm^4 x \ 10^{13}$	1,2910		äntö
	Y		lxv	$mm^4 x \ 10^{13}$	0.1114		vää
	G X 1	Vääntöneliömomentti	lv	$mm^4 x \ 10^{10}$	10,1590		etty
	PORSUSHUONE	Kävristymisiävhyvs	Ιω	$mm^{6}x \ 10^{20}$	1 7890		este
	250	Pääkoordinaatisto			1,7070		
		Koord, kulma	α	rad	-0,6722		
	**	Jävhvvsmomentti	11	mm ⁴ x 10 ¹³	2,9460		
			12	$mm^4 x \ 10^{13}$	1.2840		
		Pinta-ala	А	$mm^{2}x 10^{4}$	378.60		
		Painopistekoordinaatisto					
		Vääntökeskiö (S)	Xs	mm	-219,4		
6	1		Ys	mm	2189,0	0,93	
	s°	Jäyhyysmomentti	Ix	mm ⁴ x 10 ¹³	0,4873		ntö
			ly	mm ⁴ x 10 ¹³	1,7050		/äär
			lxy	mm ⁴ x 10 ¹³	-0,0412		ty v
	↓ L±=±l4==±l	Vääntöneliömomentti	Iv	mm ⁴ x 10 ¹⁰	5,1678		stet
	* 6900 *	Käyristymisjäyhyys	lω	mm ⁶ x 10 ²⁰	0,2052		/hdi
		Pääkoordinaatisto					- ,
		Koord. kulma	α	rad	1,5370		
		Jäyhyysmomentti	I1	mm ⁴ x 10 ¹³	1,7060		
			12	mm ⁴ x 10 ¹³	0,4859		
		Pinta-ala	A	$mm^{2}x 10^{4}$	291,90		
	s°	Painopistekoordinaatisto					
	ر ۲ 3600	Vääntökeskiö (S)	Xs	mm	-72,9		
7	*	18.4	Ys	mm	4415,0	0,56	:0
	PORRASHUONE	Jaynyysmomentti	IX	mm ⁴ x 10 ¹³	0,8436		iänt
	c x 200		IY Ivv	$mm^4 \times 10^{13}$	0,0223		y vä
	2002	Vääntönollämomontti		$mm^{4}x \ 10^{10}$	-0,1725		tetty
		Käyristymisiävhvve	IV Lo	$mm^{6}v \ 10^{20}$	3,079U		ldist
		Pääkoordinaatisto	ιω		0,4307		Y
	↓ U	Koord, kulma	α	rad	0.5000		
		Jäyhyysmomentti	11	mm ⁴ x 10 ¹³	0,9379		
			12	mm ⁴ x 10 ¹³	0,5280		

Liite 1

Dre	afiilimastan naikkilaikkaus	Poikkileikkaussuureet				k1	Vääntö
PI		nimike	merkki	yksikkö	arvo	KL	tapaus
		Pinta-ala	А	mm ² x 10 ⁴	498,43		
		Painopistekoordinaa					
	*	Vääntökeskiö (S)	Xs	mm	4112,0		
8	H		Ys	mm	-2988,0	0,29	
	H Y	Jäyhyysmomentti	Ix	mm ⁴ x 10 ¹³	2,5890		tö
			ly	mm ⁴ x 10 ¹³	1,5460		ään
	63		lxy	mm ⁴ x 10 ¹³	0,0857		ty v
	PORMICHUONE	Vääntöneliömomentti	lv	mm ⁴ x 10 ¹⁰	8,1490		stett
	9	Käyristymisjäyhyys	lω	mm ⁶ x 10 ²⁰	3,4170		Ğ
	* <u>4502</u> *	Pääkoordinaatist	0				
		Koord. kulma	α	rad	-0,0814		
		Jäyhyysmomentti	1	mm ⁴ x 10 ¹³	2,5960		
			12	mm ⁴ x 10 ¹³	1,5390		
		Pinta-ala	А	mm^2x10^4	487,52		
	12	Painopistekoordinaatisto	1				
		Vääntökeskiö (S)	Xs	mm	-3017,0		
9	9 Romonic H		Ys	mm	-656,3	0,62	
		Jäyhyysmomentti	Ix	mm ⁴ x 10 ¹³	3,3790		ntö
			ly	mm ⁴ x 10 ¹³	1,0570		vää
	S ^O несят Н		Ixy	mm ⁴ x 10 ¹³	0,0872		itty
		Vääntöneliömomentti	lv	mm ⁴ x 10 ¹⁰	8,0124		iste
	+ 220 H	Käyristymisjäyhyys	lω	mm ⁶ x 10 ²⁰	0,7231		yhd
	+	Pääkoordinaatisto					
	* *	Koord. kulma	α	rad	-0,0375		
		Jäyhyysmomentti	1	mm ⁴ x 10 ¹³	3,3830		
			12	mm ⁴ x 10 ¹³	1,0540		
		Pinta-ala	А	mm ² x 10 ⁴	591,80		
		Painopistekoordinaatisto					
	несс	Vääntökeskiö (S)	Xs	mm	-2256,0		
10			Ys	mm	0,0	0,51	-0
		Jäyhyysmomentti	Ix	mm ⁴ x 10 ¹³	5,5130		äntö
	Star C X II 1		ly	mm ⁴ x 10 ¹³	1,0610		vää
			lxy	mm ⁴	-0,1831		etty
		Vääntöneliömomentti	lv	mm⁴x 10 ¹⁰	9,7603		diste
	220 HISS H	Käyristymisjäyhyys	lω	mm ⁶ x 10 ²⁰	1,2950		yhc
	↓	Pääkoordinaatisto					
	* 4650 *	Koord. kulma	α	rad	0,0000		
		Jäyhyysmomentti	1	mm ⁴ x 10 ¹³	5,5130		
			12	mm³x 10'³	1,0610		

Rakennusmallin luonnon kuormat

LUMIKUORMA

Sk	2,5	kN/m ²
μ	0,8	
q _{k.lumi}	2,0	kN/m ²

Lumikuorman ominaisarvon laskentakaava: $\mathbf{q}_{k,lumi} = \mu * \mathbf{s}_k$

TUULIKUORMA

Rakennus		
H (kork.maasta)	26,00	m
L (pituus)	33,62	m
B (leveys)	18,24	m

Lähtötiedot

maastoluokka	0	11]
puuskanop.paine, qp(z), 7.krs, 26m	1,30	0,83	0,66	kN/m ²
puuskanop.paine, qp(z), 5.krs, 18m (18,24m)			0,58	kN/m ²

rakennekerroin, c_sc_d (s.138) 1,0

voimakerroin, c _f (15 <h<50 m)<="" th=""><th>Pitkä sivu(L), Y-suunta</th><th>Lyhyt sivu(B), X-suunta</th><th></th></h<50>	Pitkä sivu(L), Y-suunta	Lyhyt sivu(B), X-suunta	
tehollinen hoikkuus, λ, H=14	0,83	1,54	
tehollinen hoikkuus, λ , H=50	2,08	3,84	
tehollinen hoikkuus, λ , H=26m	1,25	2,31	interpoloitu
sivusuhde d/b	0,54	1,84	
voimakerroin, c _f	1,4	1,1	interpoloitu

Liite 2 1 (2) Tuulikuorma tasolle

tuulikuorma, q _{k,tuuli} , 7.krs	0,92	0,73	kN/m ²
tuulikuorma, q _{k,tuuli} , 5.krs		0,64	kN/m ²

Tuulikuorman ominaisarvon laskenta kaavalla 24.

	pitkä sivu, Y-suunta		lyhyt sivu, X-suunta			
	qk, kN/m	Fk,kN	Fd, kN	qk,kN/m	Fk,kN	Fd,kN
7.krs katto	31,06	79,53	119,29	13,24	33,90	50,85
6.krs katto	31,06	113,70	170,55	13,24	48,47	72,70
5.krs katto	31,06	111,83	167,75	11,64	41,89	62,84
4.krs katto	31,06	111,83	167,75	11,64	41,89	62,84
3.krs katto	31,06	111,83	167,75	11,64	41,89	62,84
2.krs katto	31,06	111,83	167,75	11,64	41,89	62,84
1.krs katto	31,06	111,83	167,75	11,64	41,89	62,84
K.krs katto	31,06	55,92	83,88	11,64	20,95	31,42
YHT.	248,52	808,31	1212,46	96,31	312,78	469,17

Tuulikuorman mitoituslaskenta kaavalla 25.

Rakennusmallin kokonaisvaakavoimat

MITTAEPÄTARKKUDET

				TUULIS	UUNTA
		ehto		X-suunta	Y-suunta
θ_0	θ:n perusarvo	1/200		0,005	0,005
\mathbf{a}_{h}	piennenysker.	2/3< a h<1	0,39	0,70	0,70
m	jäyk.pystyrak.määrä			6,00	4,00
a _m	piennenysker.			0,76	0,79
Ι	rak.kork.			26,00	26,00
θ	vinousker.			0,0027	0,0028

Vinouden arvo lasketaan kaavalla 27.

RAKENNUSMALLIN KOKONAISVAAKAVOIMAT

	X-suunta				
	Kerroksen pysty kuor- ma	Lisävaakavoima	Tuuli t	asolle	Kok.vaaka voima
	Nd, kN	Hd, kN	Fk, kN	Fd, kN	Qwd, kN
7.krs katto	6955,85	18,59	33,90	50,85	69,44
6.krs katto	7172,55	19,17	48,47	72,70	91,87
5.krs katto	7172,55	19,17	41,89	62,84	82,01
4.krs katto	7172,55	19,17	41,89	62,84	82,01
3.krs katto	7172,55	19,17	41,89	62,84	82,01
2.krs katto	7172,55	19,17	41,89	62,84	82,01
1.krs katto	7172,55	19,17	41,89	62,84	82,01
K krs katto	7408,62	19,80	20,95	31,42	51,22

	Y-suunta				
	Kerroksen pysty kuor- ma	Lisävaakavoima	Tuuli tasolle		Kok.vaaka voima
	Nd, kN	Hd, kN	Fk, kN	Fd, kN	Qwd, kN
7.krs katto	6689,83	18,51	79,53	119,29	137,80
6.krs katto	6915,10	19,13	113,70	170,55	189,68
5.krs katto	6915,10	19,13	111,83	167,75	186,88
4.krs katto	6915,10	19,13	111,83	167,75	186,88
3.krs katto	6915,10	19,13	111,83	167,75	186,88
2.krs katto	6915,10	19,13	111,83	167,75	186,88
1.krs katto	6915,10	19,13	111,83	167,75	186,88
K krs katto	7104,41	19,66	55,92	83,88	103,53

Lisävaakavoima lasketaan kaavalla 26. Kuormien mitoitusarvot lasketaan kaavalla 25.

TOISEN KERTALUVUN VAIKUTUKSET

Toisen kertaluvun vaikutukset, Y-suunta

Profiilimasto+mastoseinä			_
Kokonaispystykuorma	F _{v,Ed} , kN	55284,85	
Kerrosten lukumäärä	n _s	8	
Rakennuksen kokonaiskorkeus	H, m	29,50	
Betonin kimmokerroin	E _{cm} , kN/m ²	34000000	
Betonin kimmokerroin	E _{cd} , kN/m ²	28333333,33	
Jäykistävät osat		S1	Profiilimasto
Osan jäyhyysmomentti	Ic, m ⁴	0,4950	55,1300
Osan leveys	b, m	0,22	
Osan pituus	h, m	3,00	
Tarkisteltavan suunnan $\Sigma E_{cd}^* I_c$		1576041666,67	
Kerroin	k1	0,31	
Kok.pystykuorman vertailuarvo	0,1*F _{V,BB} , kN	467847,28	EI OLE

toista kertaluvun vaikutusta

Toisen kertaluvun vaikutukset, X-suunta

Profiilimasto+mastoseinä			
Kokonaispystykuorma	F _{V,Ed} , kN	57399,75	
Kerrosten lukumäärä	n _s	8	
Rakennuksen kokonaiskorkeus	H, m	29,50	
Betonin kimmokerroin	E _{cm} , kN/m ²	3400000	
Betonin kimmokerroin	E _{cd} , kN/m ²	28333333,33	
Jäykistävät osat		S1	Profiilimasto
Osan jäyhyysmomentti	Ic, m ⁴	0,4950	10,6100
Osan leveys	b, m	0,22	
Osan pituus	h, m	3,00	
Tarkisteltavan suunnan $\Sigma E_{cd}^* I_c$		314641666,67	
Kerroin	k1	0,31	
Kok.pystykuorman vertailuarvo	0,1*F _{V,BB} , kN	93401,24	EI OLE
			toista kertaluvun

vaikutusta

Toisen kertaluvun vaikutusten laskenta Eurokoodin 2 liitteen H mukaan.

Analyyttisen ratkaisun tulokset

Liitteessä esitetyt laskentataulukot on tehty pohjautuen työssä käytetyn analyyttisen tutkimusmenetelmään (luku 6.1). Taulukoissa esitetyt suureet on laskettu kaavojen 28–44 mukaisesti. Suureiden merkintä vastaa laskentakaavojen merkintä.

Betoni	C35/45		_
Kimmomoduuli	E	34000000	kN/m ²
Liukumoduuli	G	14166667	kN/m ²
Poissonin luku	ν	0,20	

Kokonaisvaakavoiman epäkeskisyys vääntökeskiöstä, laskentaperiaate:

 $e_x = x'_0 - X$ $e_y = y'_0 - Y$

Laskentataulukossa yleisesti tarkasteltavan tason vaakavoiman resultantti on merkitty Q_w , esitetyt arvot vastaavat x- ja y-suuntaisien vaakavoimien resultantteja (Q_x , Q_y).

Laskennassa käytetyn koordinaatistosysteemin merkintä- ja indeksointiperiaate on esitetty kuvassa 8. Alla oleva kuva esittää laskennassa käytetyn irtonaisten seinien indeksoinnin.

)
3,60

VAIHTOEHTO 1: mastoseinän pituus on 7 metriä. Tapaus T1 (ks. luku 7)

																										Osama kuorm	istojen itukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A, m ²	x _{0,i} ,m	y _{o,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y _{0,i} kN	K _{y,i} *x _{0,i} kN	Xi, m	Yi, m	K _{x,i} *Yi ² , kNm	K _{y,i} *Xi ² , kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Υi*φ, kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta																											
S3	0,22	4,43	1,594		0,97	11,34	12,06	3,5E+06	0	4,2E+07	0	-7,84	4,09	5,8E+07	0	91,87	1,00E-05		1,21E+08	105,91	8,78E-07	34,97	0	12,51	0	22,46	0
S4	0,22	3,01	0,500		0,66	12,05	9,54	1,1E+06	0	1,0E+07	0	-7,13	1,57	2,7E+06	0							10,97	0	1,51	0	9,46	0
S5	0,22	3,01	0,500		0,66	12,05	6,15	1,1E+06	0	6,7E+06	0	-7,13	-1,82	3,6E+06	0							10,97	0	-1,74	0	12,71	0
S6	0,22	4,43	1,594		0,97	11,34	3,96	3,5E+06	0	1,4E+07	0	-7,84	-4,01	5,6E+07	0							34,97	0	-12,27	0	47,24	0
Σ								9,2E+06	0	7,3E+07	0			1,2E+08	0											91,87	
Y-suunta																											
S1	0,22	7,000	0	6,288	1,54	33,33	4,30	0	1,4E+07	0	4,6E+08	14,15	-3,67	0	2,8E+09	189,68		5,26E-06	4,45E+09	449,41	1,01E-07	0	72,38	0	19,64	0	92,02
S2	0,22	8,205	0	10,127	1,81	10,43	7,84	0	2,2E+07	0	2,3E+08	-8,75	-0,12	0	1,7E+09							0	116,56	0	-19,56	0	96,99
S7	0,22	0,870	0	0,012	0,19	13,66	11,73	0	2,6E+04	0	3,6E+05	-5,52	3,76	0	8,0E+05							0	0,14	0	-0,01	0	0,12
S8	0,22	1,038	0	0,021	0,23	13,66	9,13	0	4,5E+04	0	6,1E+05	-5,52	1,16	0	1,4E+06							0	0,24	0	-0,02	0	0,21
S9	0,22	1,038	0	0,021	0,23	13,66	6,56	0	4,5E+04	0	6,1E+05	-5,52	-1,41	0	1,4E+06							0	0,24	0	-0,02	0	0,21
S10	0,22	0,870	0	0,012	0,19	13,66	3,96	0	2,6E+04	0	3,6E+05	-5,52	-4,01	0	8,0E+05							0	0,14	0	-0,01	0	0,12
Σ								0	3,6E+07	0	6,9E+08			0	4,4E+09												189,68

Vääntökeskiön sijainti	Х	19,18	m
	Y	7,97	m

Kok.vaakavoiman	X ₀ `	16,81	m
resultantin paikka	y ₀ `	9,12	m
	y 0	7,12	ľ

Kok.vaakavoiman epäkesk	ex	-2,37	m
vääntökeskiosta	ey	1,15	m

φ, deg 5,03E-05 ϕ_{x} 5,79E-06 φ
6. krs katto		
tason korkeus, H	3,60	n

VAIHTOEHTO 1: mastoseinän pituus on 7 metriä. Tapaus T2 (ks. luku 7)

		-4																							Osama kuorm	istojen itukset
Osamasto	b, m	h,m	Ix,m ⁴	Iy,m ⁴	A, m ²	x _{0,i} ,m	y _{o,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	$K_{x,i}^{} y_0^{} k N$	$K_{y,i}^{\star}x_0^{}kN$	Xi, m	Yi, m	K _{y,} i*Xi ² kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Υi*φ kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta																										
Profiilimasto	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	-4,40	0,00	0	91,87	4,0E-06		0	117,23	0	91,87	0	0	0	91,87	0
Σ								2,32E+07	0	1,82E+08	0			0											91,87	
Y-suunta																					_					
S1	0,22	7,0	0	6,29	1,54	33,33	4,30	0	1,37E+07	0	4,58E+08	19,63	-3,54	5,30E+09	189,68		1,4E-06	5,9E+09	-591,18	-1,0E-07	0	19,42	0	-27,03	0	-7,61
Profiilimasto	0,22	0	0	55,13	5,92	11,45	7,84	0	1,21E+08	0	1,38E+09	-2,24	0,00	6,04E+08							0	170,26	0	27,03	0	197,29
Σ								0	1,34E+08	0	1,84E+09			5,90E+09		Ĩ										189,68
						painopis	te																			
								Vääntökeskiö	ön sijainti	X Y	13,69 7,84	m m							фх	φ, deg 0						
								-		I									Фу	-5,74E-06						
								Kok.vaakavo	iman	X ₀ `	16,81	m														
								resultantin p	aikka	y ₀ `	9,12	m														

Kok.vaakavoiman epäkesk.	ex	3,12	m
vääntökeskiosta	ey	1,28	m

Liite 4 3 (12)

6. krs katto		
tason korkeus, H	3,60	m

VAIHTOEHTO 1: mastoseinän pituus on 7 metriä. Tapaus T3 (ks. luku 7)

																									Osama kuorm	astojen iitukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A,m^2	x _{0,i} ,m	y _{0,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	$K_{x,i}^{\star}y_0^{}, kN$	K _{y,i} *x ₀ , kN	Xi, m	Yi, m	K _{x,i} *Yi ² , kNm	K _{y,} i*Xi ² , kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta																	_					_				_
Profiilimast	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	-2,46	0	0	0	91,87	3,96E-06		0	117,23	0	91,87	0	0	91,87	0
								2,32E+07	0	1,82E+08	0			0	0										91,87	
Y-suunta																	_					_				
S	0,22	7,0	0	6,29	1,54	33,33	4,30	0	1,37E+07	0	4,58E+08	21,57	-3,54	0	6,40E+09	189,68		1,41E-06	7,13E+09	-959,28	-1,35E-07	0	19,42	-39,92	0	-20,49
Profiilimast	0,22	0	0	55,13	5,92	9,29	7,84	0	1,21E+08	0	1,12E+09	-2,46	0	0	7,30E+08							0	170,26	39,92	0	210,17
								0	1,34E+08	0	1,58E+09			0	7,13E+09		1									189,68
						vääntök	eskiö																			
								Vääntökeskiö	n sijainti	Х	11,75	m									φ, deg	1				
										Y	7,84	m								фх	0					
												-								фу	-7,71E-06					
								Kok.vaakavoi	man	x ₀ `	16,81	m										-				
								resultantin pa	nikka	y ₀ `	9,12	m														

Kok.vaakavoiman epäkesk.	ex	5,06 m
vääntökeskiosta	ey	1,28 m

6. krs katto		
tason korkeus, H	3,60	m

VAIHTOEHTO 1: mastoseinän pituus on 7 metriä. Tapaus T4 (ks. luku 7)

		-																							Osama kuorm	astojen nitukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A, m^2	x _{0,i} ,m	y _{0,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y ₀ , kN	K _{y,i} *x ₀ , kN	Xi, m	Yi, m	K _{y,i} *Xi ² , kNm	Qw, kN	vx, m	vy, m	Txy, kNm	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{y,i} *Xi*φ kN	Qx,i, kN	Qy,i, kN
X-suunta																_				_		_				
Profiilimasto	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	-2,46	0	0	91,87	3,96E-06		2,84E+08	2,84E+08	117,2	4,13E-07	91,87	0	0	91,87	0
Σ								2,32E+07	0	1,82E+08	0			0											91,87	
Y-suunta																				_		-				
S1	0,22	7,00	0	6,29	1,54	33,33	4,30	0	1,37E+07	0	4,58E+08	21,57	-3,54	6,40E+09	189,68		1,41E-06	2,84E+08	7,41E+09	-959,3	-1,29E-07	0	19,42	-38,39	0	-18,97
Profiilimasto	0,22	0	0	55,13	5,92	9,29	7,84	0	1,21E+08	0	1,12E+09	-2,46	0	7,30E+08						Ĩ		0	170,26	38,39	0	208,65
Σ								0	1,34E+08	0	1,58E+09			7,13E+09												189,68
						vääntöl	keskiö					-								_		_				
			-					Vääntökeski	ön sijainti	Х	11,75	m									φ, deg					
L	mm	3600								Y	7,84	m								фх	2,37E-05					
E	MPa	34000								-	-	-								фу	-7,42E-06					
G	MPa	1,42E+04						Kok.vaakavo	oiman	X0`	16,81	m														
lv	mm ⁴ x 10 ¹⁰	9,7603		_				resultantin p	oaikka	y₀`	9,12	m														
Ιω	mm ⁶ x 10 ²⁰	1,295	,	0	II _v			-			•															
k	1/mm	1,8E-05	ĸ		<u>.</u>			Kok.vaakavoi	man epäkesk.	ex	5,06	m														
kL	-	0,06		N -	ω			vääntökeski	osta	ey	1,28	m														

			EI 13
Тху	kNm	2,84E+08	$T_{rr} \omega = \frac{Lr_{\omega}R}{1}$
My	kNm	-36,7	$kL - \tanh kL$
Mx	kNm	117,2	

Liite 4 5 (12)

6. krs katto		
tason	3 60	_
H	3,00	

VAIHTOEHTO 2: mastoseinän pituus on 3 metriä. Tapaus T1 (ks. luku 7)

																										Osam kuorm	astojen nitukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A, m ²	x _{0,i} ,m	y _{0,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y ₀ , kN	$K_{y,i}^{*}x_{0}^{}, kN$	Xi, m	Yi, m	Kx*y², kNm	Ky*x², kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Υi*φ, kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta																	_					_					_
S3	0,22	4,43	1,594		0,97	11,34	12,06	3,48E+06	0	4,20E+07	0	-0,18	4,09	5,83E+07	0	91,87	1,00E-05		1,21E+08	105,9	8,78E-07	34,97	0	12,51	0	22,46	0
S4	0,22	3,01	0,500		0,66	12,05	9,54	1,09E+06	0	1,04E+07	0	0,53	1,57	2,69E+06	0							10,97	0	1,51	0	9,46	0
S5	0,22	3,01	0,500		0,66	12,05	6,15	1,09E+06	0	6,72E+06	0	0,53	-1,82	3,61E+06	0							10,97	0	-1,74	0	12,71	0
S6	0,22	4,43	1,594		0,97	11,34	3,96	3,48E+06	0	1,38E+07	0	-0,18	-4,01	5,61E+07	0							34,97	0	-12,27	0	47,24	0
Σ								9,16E+06	0	7,29E+07	0			1,21E+08	0											91,87	
Y-suunta																	-										_
S1	0,22	3,00	0	0,50	0,66	33,33	2,30	0	1,08E+06	0	3,61E+07	21,81	-5,67	0	5,15E+08	189,68		8,12E-06	5,41E+08	-1005,1	-1,86E-06	0	8,79	0	-43,82	0	-35,04
S2	0,22	8,21	0	10,13	1,81	10,43	7,84	0	2,21E+07	0	2,31E+08	-1,08	-0,12	0	2,58E+07							0	179,74	0	44,39	0	224,13
S7	0,22	0,87	0	0,01	0,19	13,66	11,73	0	2,64E+04	0	3,61E+05	2,15	3,76	0	1,22E+05							0	0,21	0	-0,11	0	0,11
S8	0,22	1,04	0	0,02	0,23	13,66	9,13	0	4,48E+04	0	6,12E+05	2,15	1,16	0	2,07E+05							0	0,36	0	-0,18	0	0,19
S9	0,22	1,04	0	0,02	0,23	13,66	6,56	0	4,48E+04	0	6,12E+05	2,15	-1,41	0	2,07E+05							0	0,36	0	-0,18	0	0,19
S10	0,22	0,87	0	0,01	0,19	13,66	3,96	0	2,64E+04	0	3,61E+05	2,15	-4,01	0	1,22E+05							0	0,21	0	-0,11	0	0,11
Σ								0	2,34E+07	0	2,69E+08			0	5,41E+08												189,68

Vääntökeskiön sijainti	Х	11,51 m
	Y	7,97 m

Kok.vaakavoiman	X ₀ `	16,81	m
resultantin paikka	y ₀ `	9,12	m

Kok.vaakavoiman epäkesk.	ex	5,30 m
vääntökeskiosta	ey	1,15 m

	φ, deg
фх	5,03E-05
фу	-1,06E-04

VAIHTOEHTO 2: mastoseinän pituus on 3 metriä. Tapaus T2 (ks. luku 7)

																										Osama kuorm	istojen itukset
Osamasto	b, m	h,m	Ix,m4	ly,m ⁴	A, m ²	x _{o,i} ,m	y _{o,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y ₀ , kN	K _{y,i} *x _o , kN	Xi, m	Yi, m	K _{x,i} *Yi ² , kNm	K _{y,} i*Xi ² , kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Υi*φ, kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta																	_					_					
Profiilimasto	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	-2,36	0,00	0	0	91,87	3,96E-06		0	117,23	0	91,87	0	0	0	91,87	0
Σ								2,32E+07	0	1,82E+08	0			0	0											91,87	
Y-suunta																											
S1	0,22	3,00	0	0,50	0,66	33,33	2,30	0	1,08E+06	0	3,61E+07	21,68	-5,54	0	5,08E+08	189,68		1,56E-06	5,13E+08	-979,01	-1,91E-06	0	1,69	0	-44,763	0	-43,07
Profiilimasto	0,22	0,00	0	55,13	5,92	11,45	7,84	0	1,21E+08	0	1,38E+09	-0,19	0,00	0	4,57E+06							0	187,99	0	44,763	0	232,75
Σ								0	1,22E+08	0	1,42E+09			0	5,13E+08]			Ι							189,68
						painopi	ste																				
								1																			

admonobilion bijanni	~	11,65 111
	Y	7,84 m

Kok.vaakavoiman	X ₀ `	16,81	m
resultantin paikka	y₀`	9,12	m
	, ,		

Kok.vaakavoiman epäkesk.	ex	5,16	m
vääntökeskiosta	ey	1,28	m

	φ, deg
фх	0
фу	-1,09E-04

6. krs katto		
tason korkeus, H	3,60	m

VAIHTOEHTO 2: mastoseinän pituus on 3 metriä. Tapaus T3 (ks. luku 7)

																										Osama kuorm	istojen itukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A, m^2	x _{0,i} ,m	y _{0,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y ₀ , kN	$K_{y,i}^{*}x_{0}^{}, kN$	Xi, m	Yi, m	K _{x,i} *Yi ² , kNm	K _{y,} i*Xi ² , kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Υi*φ, kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta																	_					_					_
Profiilimasto	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	-0,21	0,00	0	0	91,87	3,96E-06		0	117,23	0	91,87	0	0	0	91,87	0
Σ								2,32E+07	0	1,82E+08	0			0	0											91,87	
Y-suunta																	_					_					
S1	0,22	3,00	0	0,50	0,66	33,33	2,30	0	1,08E+06	0	3,61E+07	23,82	-5,54	0	6,14E+08	189,68		1,56E-06	6,19E+08	-1385,45	-2,24E-06	0	1,69	0	-57,65	0	-55,96
Profiilimasto	0,22	0	0	55,13	5,92	9,29	7,84	0	1,21E+08	0	1,12E+09	-0,21	0,00	0	5,51E+06							0	187,99	0	57,65	0	245,64
Σ								0	1,22E+08	0	1,16E+09			0	6,19E+08		Ĩ										189,68
						vääntök	eskiö					_															
								Vääntökeskiö	n sijainti	Х	9,51	m									φ, deg						

	Y	7,84	m
Kok.vaakavoiman	x ₀ `	16,81	m
resultantin paikka	y ₀ `	9,12	m

Kok.vaakavoiman epäkesk.	ex	7,30 r
vääntökeskiosta	ey	1,28 r

	φ, deg	
фх	0	
фу	-1,28E-04	

6. krs katto		
tason korkeus, H	3,60	m

VAIHTOEHTO 2: mastoseinän pituus on 3 metriä. Tapaus T4 (ks. luku 7)

																									ļ	Osama kuormi	stojen itukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A, m ²	x _{o,i} ,m	y _{o,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y ₀ , kN	K _{y,i} *x _o , kN	Xi, m	Yi, m	K _{x,i} *Yi ² kNm	K _{y,} i*Xi ² , kNm	Qw, kN	vx, m	vy, m	Txy, kNm	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{y,i} *Xi*φ kN	Qx,i, kN	Qy,i, kN
X-suunta																	-						-				
Profiilimasto	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	-0,21	0	0	0	91,87	3,96E-06		2,84E+08	2,84E+08	117,23	4,13E-07	91,87	0	0	91,87	0
2								2,32E+07	0	1,82E+08	0			0	0											91,87	
Y-suunta						-	-					-									-						
S	0,22	3,00	0	0,50	0,66	33,33	2,30	0	1,08E+06	0	3,61E+07	23,82	-5,54	0	6,14E+08	189,68		1,56E-06	2,84E+08	9,03E+08	-1385,448	-1,53E-06	0	1,69	-39,55	0	-37,86
Profiilimasto	0,22	0,00	0	55,13	5,92	9,29	7,84	0	1,21E+08	0	1,12E+09	-0,21	0,00	0	5,51E+06								0	187,99	39,55	0	227,54
2								0	1,22E+08	0	1,16E+09			0	6,19E+08												189,68
						vääntö	keskiö					-											-				
	-		-					Vääntökeski	on sijainti	Х	9,51	m										φ, deg					
L	mm	3600								Y	7,84	m									фх	2,37E-05					
E	MPa	34000										1									ФУ	-8,79E-05					
G	MPa	1,42E+04						Kok.vaakavo	iman	X ₀ `	16,81	m															
lv	mm ⁴ x 10 ¹⁰	9,76			61			resultantin p	aikka	y ₀ `	9,12	m															
10	mm ^o x 10 ²⁰	1,30		k =	GIp						7.00																
K	1/mm	1,77E-05			EI_{ω}			KOK.Vaakavoir	nan epakesk.	ex	1,30	m															
KL	-	0,06	J					Vadiitukeskit	JSId	ey	1,20																
Туу	kNm	2.84E±08	1		ΕI	ωk^3																					
My	kNm	-435 1	1 ₂₃	,ω = ·	kL - t	tanh i	kL																				
Mx	kNm	117.2	1																								
IVIA	KOITT	117,2	1																								

6. krs kati	0	
tason korkeus, F	3,60	m

VAIHTOEHTO 3: ei ole mastoseinää. Tapaus T1 (ks. luku 7)

																										Osama kuorm	istojen itukset
Osamasto	b, m	h,m	Ix,m4	Iy,m ⁴	A, m^2	x _{0,i} ,m	y _{0,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y ₀ , kN	$K_{y,i}^{*}x_{0}^{}, kN$	Xi, m	Yi, m	Kx*y², kNm	Ky*x², kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Υi*φ, kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta	-	•		•	•	•	•	•									_	•				_					
S3	0,22	4,43	1,59		0,97	11,34	12,06	3,48E+06	0	4,20E+07	0	0,88	4,09	5,83E+07	0	91,87	1,00E-05		1,21E+08	105,91	8,78E-07	34,97	0	12,51	0	22,46	0
S4	0,22	3,01	0,50		0,66	12,05	9,54	1,09E+06	0	1,04E+07	0	1,59	1,57	2,69E+06	0							10,97	0	1,51	0	9,46	0
S5	0,22	3,01	0,50		0,66	12,05	6,15	1,09E+06	0	6,72E+06	0	1,59	-1,82	3,61E+06	0							10,97	0	-1,74	0	12,71	0
S6	0,22	4,43	1,59		0,97	11,34	3,96	3,48E+06	0	1,38E+07	0	0,88	-4,01	5,61E+07	0							34,97	0	-12,27	0	47,24	0
Σ								9,16E+06	0	7,29E+07	0			1,21E+08	0											91,87	
Y-suunta																											
S1	0,22	0	0	0	0	0	0,00	0	0	0	0,00	-10,45	-7,97	0	0	189,68		8,51E-06	1,48E+06	-1206,05	-8,17E-04	0	0	0	0	0	0
S2	0,22	8,21	0	10,13	1,81	10,43	7,84	0	2,21E+07	0	2,31E+08	-0,02	-0,12	0	9,44E+03							0	188,47	0	373,39	0	561,86
S7	0,22	0,87	0	0,01	0,19	13,66	11,73	0	2,64E+04	0	3,61E+05	3,21	3,76	0	2,72E+05							0	0,22	0	-69,19	0	-68,96
S8	0,22	1,04	0	0,02	0,23	13,66	9,13	0	4,48E+04	0	6,12E+05	3,21	1,16	0	4,62E+05							0	0,38	0	-117,51	0	-117,13
S9	0,22	1,04	0	0,02	0,23	13,66	6,56	0	4,48E+04	0	6,12E+05	3,21	-1,41	0	4,62E+05							0	0,38	0	-117,51	0	-117,13
S10	0,22	0,87	0	0,01	0,19	13,66	3,96	0	2,64E+04	0	3,61E+05	3,21	-4,01	0	2,72E+05							0	0,22	0	-69,19	0	-68,96
Σ								0	2,23E+07	0	2,33E+08			0	1,48E+06												189,68

Vääntökeskiön sijainti	Х	10,45 m
	Y	7,97 m

resultantin naikka Vo` 9.12 m	Kok.vaakavoiman	X ₀ `	16,81	m
103uturtiri putku 30 7,12 m	resultantin paikka	y ₀ `	9,12	m

Kok.vaakavoiman epäkesk.	ex	6,36 m
vääntökeskiosta	ey	1,15 m

	φ, deg
фх	5,03E-05
ФУ	-4,68E-02

6. krs katto		
tason korkeus, H	3,60	m

VAIHTOEHTO 3: ei ole mastoseinää. Tapaus T3 (ks. luku 7)

																										Osama kuorm	astojen itukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A, m ²	x _{0,i} ,m	y _{0,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	$K_{x,i}^{}^{}y_0^{}, kN$	$K_{y,i}^{\star}x_0^{}, kN$	Xi, m	Yi, m	K _{x,i} *Yi ² , kNm	K _{y,} i*Xi ² , kNm	Qw, kN	vx, m	vy, m	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Yi*φ, kN	K _{y,i} *Xi*φ, kN	Qx,i, kN	Qy,i, kN
X-suunta																											
Profiilimasto	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	0,00	0,00	0	0	91,87	3,96E-06		0	117,23	0	91,87	0	0	0	91,87	0
Σ								2,32E+07	0	1,82E+08	0			0	0											91,87	
Y-suunta																	-					-					
S1	0	0	0	0	0	0	0	0	0,00	0	0,00	-9,29	-7,84	0	0	189,68		1,57E-06	0	-1426,01	0	0	0	0	0	0	0
Profiilimasto	0,22	0	0	55,13	5,92	9,29	7,84	0	1,21E+08	0	1,12E+09	0,00	0,00	0	0							0	189,68	0	0	0	189,68
Σ								0	1,21E+08	0	1,12E+09			0	0				-								189,68
						vääntöke	eskiö																				
								Vääntäkooki	in cilcinti	V	0.20										a doa						

/ääntökeskiön sijainti	Х	9,29	m
	Y	7,84	m

Kok.vaakavoiman	x ₀ `	16,81	m
resultantin paikka	У ₀ `	9,12	m

Kok.vaakavoiman epäkesk.	ex	7,52	m
vääntökeskiosta	ey	1,28	m

	φ, deg
φх	0
фу	0
фу	0

6. krs katto		
tason korkeus, H	3,60	m

VAIHTOEHTO 3: ei ole mastoseinää. Tapaus T4 (ks. luku 7)

																									Osama kuorm	istojen itukset
Osamasto	b, m	h,m	Ix,m ⁴	ly,m ⁴	A, m ²	x _{0,i} ,m	y _{o,i} ,m	K _{x,i} , kN/m	K _{y,i} , kN/m	K _{x,i} *y ₀ , kN	K _{y,i} *x ₀ , kN	Xi, m	Yi, m	Qw, kN	vx, m	vy, m	Txy, kNm	K _T , kNm	M, kNm	φ, rad	K _{x,i} *vx, kN	K _{y,i} *vy, kN	K _{x,i} *Υi*φ, kN	K _{y,i} *Xi*φ kN	Qx,i, kN	Qy,i, kN
X-suunta															_						_					
Profiilimasto	0,22	0	10,61		5,92	9,29	7,84	2,32E+07	0	1,82E+08	0	0	0	91,87	3,96E-06		2,84E+08	2,84E+08	117,23	4,13E-07	91,87	0	0	0	91,87	0
Σ								2,32E+07	0	1,82E+08	0														91,87	
Y-suunta																										-
S1	0	0	0	0	0	0	0	0	0,00	0	0	-9,29	-7,84	189,68		1,57E-06	2,84E+08	2,84E+08	-1426,014	-5,03E-06	0	0	0	0	0	0
Profiilimasto	0,22	0	0	55,13	5,92	9,29	7,84	0	1,21E+08	0	1,12E+09	0	0								0	189,68	0	0	0	189,68
Σ								0	1,21E+08	0	1,12E+09				I											189,68
			_			vääntök	keskiö	Vääntökeski	iön sijainti	Х	9,29	m								φ, deg]					
L	mm	3600						tuuli X-suun	itaan	Y	7,84	m							фх	2,37E-05						
E	MPa	34000										-							фу	-2,88E-04						
G	MPa	1,42E+04						Kok.vaakavo	oiman	X0`	16,81	m														
lv	mm ⁴ x 10 ¹⁰	9,7603						resultantin p	paikka	y ₀ `	9,12	m														
Ιω	mm ⁶ x 10 ²⁰	1,295	-		GI							7														
k	1/mm	1,77E-05		к =	EL.			Kok.vaakavoi	man epäkesk.	ex	7,52	m														
kL	-	0,06		1	ω	_		vääntökeski	osta	ey	1,28	m														
Txy Mxy	kNm kNm	2,84E+08 -1426,0	T	xy,ω =	$=\frac{l}{kL}$	<i>∃I_wk³</i> -tanh	kL																			

Numeerisen analyysin tulokset

TUTKIMUSVAIHTOEHTO 1: mastoseinän pituus on 7 metriä.

Osamasto		seinän pituus, m	q _{y,i} , kN/m	Q _{y,i} , kN	Qy, kN
mastoseinä	S1	7,00	3,90	27,30	
profiilimasto	S2	8,205	-23,80	-195,28	
	S7	0,87	32,45	28,23	-180,81
	S8	1,038	-21,40	-22,21	
	S9	1,038	12,52	13,00	
	S10	0,87	-36,60	-31,84	
	yhtenä	äinen rakenne		-208,11	

Liite 5 1 (3)

Liite 5 2 (3)

TUTKIMUSVAIHTOEHTO 2: mastoseinän pituus on 3 metriä.

Osamasto		seinän pituus, m	q _{y,i} , kN/m	Q _{y,i} , kN	Qy, kN
mastoseinä	S1	3,00	1,55	4,65	
profiilimasto	S2	8,205	-15,12	-124,06	
	S7	0,87	-9,21	-8,01	-182,05
	S8	1,038	-73,86	-76,67	
	S9	1,038	72,85	75,62	
	S10	0,87	-61,58	-53,57	
	yhtenä	äinen rakenne		-186,70	

Liite 5 3 (3)

TUTKIMUSVAIHTOEHTO 3: ei ole mastoseinää.

Osamasto		seinän pituus, m	q _{y,i} , kN/m	Q _{y,i} , kN
profiilimasto	S2	8,205	1,96	16,08
	S7	S7 0,87 -94,45		-82,17
	S8	1,038	-152,94	-158,75
	S9	1,038	125,10	129,85
	S10	0,87	-98,43	-85,63
	yhtena	äinen rakenne		-180,62