
Bachelor’s thesis

Information and Communication Technology

2020

Joel Juntunen

THE DEVELOPMENT OF AN
ADAPTABLE DATA TRANSFER
INTERFACE

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communication Technology

2020 | 18

Joel Juntunen

THE DEVELOPMENT OF AN ADAPTABLE DATA
TRANSFER INTERFACE

The capacity of data warehousing has grown in due course with the technological development
in the field. Simultaneously, the advancing diversity has created many challenges and
opportunities for the companies in the field. Developers in data warehousing often end up face to
face with seizing those opportunities for the benefit of the company. The best opportunities for
serving customers come from integrating new data and work hours should be dedicated to it
accordingly.

Unfortunately, due to the rigidness of database structures, uniformity between old and new data
is not a given. Luckily for these developers, many data transfer tools are developed for the newest
file formats before their widespread implementation. Nevertheless, the plurality of the formats is
such that learning and using so many tools is no longer a simple task for a large data warehousing
unit.

The thesis aimed to create an application for unifying data transfer protocols under a single
interface. In this way developers could handle a plethora of different data transfer protocols
without needing the knowledge of how to configure filetype specific tools. In other words, the
application acts as an intermediary between the developer and different third-party data transfer
protocols so that setting up configuration and optimising protocols can be carried out at the
application development face rather than at the start of every new solution.

The necessity for this kind of application became apparent when the data warehousing team of
the commissioning company needed to bring in new datatypes at a faster pace than it was efficient
to build individual solutions for each source.

The end product of the thesis is an inhouse data transfer application that currently supports JSON,
CSV, XLS, and XLSX file types and Azure Storage cloud service files. The first implemented
target type is into an SQL database. The source code, which was written in C#, was designed so
that adding new source and target types will be easy when the need arises. This makes the
company data warehousing team much more flexible and adaptable to new needs as the data
pool expands. Notably the ability to add new source types will enable smoother cooperation with
partner organisations as offered data can be implemented into the data lake with less friction. The
application also reduces the technical dept of the organisation, replacing work intensive protocols
from still active old third-party tools.

KEYWORDS:

C#, FTP, data warehousing, data transfer, databases, SQL, software development, interfaces

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja Viestintätekniikan Koulutus

2020 | 18

Joel Juntunen

TIEDONSIIRRON TYÖKALUNRAJAPINNAN
MUKAUTUVA KEHITYS

Tietokantojen koko on teknologian kehittyessä kasvanut suunnattomasti. Koon kasvaessa myös
monimuotoisuus on lisääntynyt luoden haasteita ja mahdollisuuksia. Kehittäjänä tietokantojen
parissa vastaan tulee kysymys yrityksen kehittymisestä. Tehtävää isossa yrityksessä riittää aina
ylläpidon parissa, mutta suurimmat mahdollisuudet tarjota parempia palveluja asiakkaille
nousevat uuden datan toimittamisesta. Kun dataa saadaan uusista lähteistä, sen
yksimuotoisuutta ei voida taata käytössä olevan tietokannan rakenteen kanssa. Usein
tiedonsiirtotyökalut uusille tiedostotyypeille ovat valmiiksi olemassa, mutta kun tietotyyppejä on
paljon, ei niiden kaikkien käyttäminen välttämättä olekaan yksinkertainen tehtävä
tietokantayksikölle.

Opinnäytetyössä kehitettiin tiedonsiirron protokollia yhdistävä sovellus, jonka pääasiallinen
tarkoitus on yhtenäistää protokollat yhden käyttöliittymän taakse. Täten työmäärä, joka tarvitaan
uuden tiedostotyypin tuomiseen tietokantaan, sijoittuu työkalun kehittämiseen, jonka jälkeen se
on saatavilla kaikille kehittäjille.

Sovellus toimii siis rajapintana useille muiden palveluntarjoajien tiedonsiirtoprotokolille. Se luo
automaattisesti kaikki tarvittavat konfiguraatiotiedostot ja toteuttaa tiedonsiirron.

Työn tarve nousi esille, kun uudentyyppistä lähdejärjestelmistä oli tarve tuoda dataa tietokantaan
ripeämmällä tahdilla kuin kehittäjille oli tehokasta tehdä niille yksittäisiä ratkaisuja.

Opinnäytetyön lopputuloksena syntyi yhtiön sisäinen tiedonsiirtosovellus, joka tukee testatusti
lähdetyyppeinä pilvipalvelu Azure Storage tiedostoja sekä json-, csv-, xls-, ja xlsx-tyyppisiä
tiedostoja. Ensimmäiseksi kohdetyypiksi kehitettiin lataus SQL-tietokantaan. Sovelluksen
lähdekoodi toteutettiin siten, että uusia lähde- ja kohdetyyppejä on yksinkertaista lisätä
tarvittaessa. Tämä tekee yhtiön tietokantatiimistä paljon notkeamman ja kykenevämmän
sopeutumaan uusiin tarpeisiin tietokannan laajentuessa. Varsinkin uusien lähdetiedostotyyppien
lisääminen mahdollistaa sujuvamman yhteistyön uusien kumppanien kanssa. Sovellus vähentää
myös yhtiön teknistä velkaa korvaten työläitä protokollia vanhoista vielä käytössä olevista
kolmansien osapuolien työkaluista.

ASIASANAT:

C#, FTP, tietovarastot, tiedonsiirto, tekstitietokannat, SQL, ohjelmistosuunnittelu, käyttöliittymät

CONTENT

1 INTRODUCTION 1

2 THEORY AND BACKGROUND 2

2.1 Databases 2

2.2 Data transfer 3

2.3 An overview of data loading 4

2.4 Examples of Data Load Protocols 5

3 DEVELOPMENT WORK 7

3.1 Development environment 7

3.2 Development process 7

3.2.1 Early stages – CSV Files 7

3.2.2 Post-Deployment - Azure Data Storage 8

3.2.3 Further support – JSON and Excel files 9

3.3 Flow of the application 9

3.3.1 Configuration 11

3.3.2 Interfaces 11

3.3.3 Logging 12

3.4 List of Supported Load Procedures 13

3.5 Handling of User Credentials 14

3.6 End result 14

4 FURTHER DEVELOPMENT PLAN 15

4.1 General roadmap 15

4.2 Initial plan for expanding support 15

4.3 Features 16

5 RESULTS 17

REFERENCES 18

LIST OF ABBREVIATIONS

BOM Byte Order Mark

CSV Comma Separated File

DBMS Database Management System

DWH Data Warehouse

ELT Extract, Load, and Transform

FTP File Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

MSSIS Microsoft SQL Server Integration Services

SQL Structured Query Language Source

TPT Teradata Parallel Transporter

XLS Excel Spreadsheet File

XLSX Excel Microsoft Office Open XML Format Spreadsheet File

1

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

1 INTRODUCTION

There was a request to the data warehousing unit of the commissioning company to

bring in data from a new partner. The main stepping stone was that the partner provided

data in a format that was not already integrated into the existing Extract, Load, Transform

(ELT) workflow. This was not the first time such a request had been made and from

previous experience it was known that creating and upkeeping a separate solution for a

single file format would create work with little return value and could easily end up in

technical dept.

The thesis sets the goal of developing an adaptable data transfer interface to take care

of the data formats that are outside the standard ELT workflow of the commissioning

company. The scope of the thesis was set to cover some of the most common formats,

and it is designed in a way that allows it to be easily expanded in the future. The sole

load target is the database running on Teradata software. Additional load targets are

planned to be added in the future but were left outside the scope of the thesis. Through

this methodology, all requirements for new file types could be integrated under one

software and developed in a structured way.

The benefits for this approach are many. Firstly, it reduces the amount of technical

knowledge the team needs to maintain, as there are not multiple unconnected

applications involved in updating the database. This reduces the amount of information

in both configuring and maintaining said tools. Running all nonconventional data loads

through a single software also makes it easier to schedule the loads in the production

environment. As the software will be adapted for use within the Data Warehouse (DWH)

unit, it will also be able to replace already existing load formats with work intensive

workflows, reducing technical dept. Additionally, as all file loads of predetermined types

will be run through the software, transfer protocols will need to be optimised only once.

Throughout this thesis, the development of the application will be explained, and the

benefits will be described in detail.

2

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

2 THEORY AND BACKGROUND

2.1 Databases

Hugh Darwen defines databases as following: “A database is an organized, machine-

readable collection of symbols, to be interpreted as a true account of some enterprise. A

database is machine-updatable too, and so must also be a collection of variables”

(Darwen 2010, 14).

In order to enable developers to interact with these machine-readable structures,

information is displayed through a logical database using a Database Management

System (DBMS) (Date 2013). These DBMS are usually provided and upkept by the

service provider that supplies the database services in general.

This thesis revolves around creating an application for loading data to a database

Figure 1. Typical life cycle of a database.

3

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

Figure 1 shows the typical life cycle of database (Teorey et al. 2011, 4). The application

serves the loading of data for changing requirements.

2.2 Data transfer

As a database is redundant without data, DMBS often provide ways to load information

from different sources. Offering multiple source types adds flexibility to the end users of

the database.

There are multiple widely used file types suitable for datasets. Table 1 lists only the

formats recommended by the U.S. Congress.

Table 1. Formats recommendation (Library of Congress 2020).

The variety of formats creates the need to know multiple data transfer tools as different

service providers tend to supply their data in different formats.

4

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

Database service providers often offer a set of tools to import data into the database they

provide. These tools often cover the most widely used formats like .csv and .xlsx and do

a good job at optimising the transfers. At a glance the aforementioned tools are similar

to the application developed in this thesis but differ greatly in adaptability and ease-of-

use. The plethora of existing file types and sources in modern data warehousing has

made it challenging for a service provider to enable every type of data transfer protocol

in their native tools and conversions are often required. Furthermore, as those tools

require a different set of configurations, uniformity of use can often be low for the user.

Unifying data transfers under a single interface reduces the need for a full understanding

of multiple tools, saving developer time.

Similar tools are likely to have been developed throughout the industry either in format

specific solutions or under the same premise. However, due to the need of

customisations companies require due to differing DMBS and security practices, these

tools are not universally available for every type of database. It is likely that other

organisations have adapted similar inhouse applications.

2.3 An overview of data loading

Loading data to a DWH is a part of the widely documented Extraction, loading, and

transformation (ELT) process. To summarise the process, data is extracted from an

internal or external source, transformed to fit the structure of the target database, and

loaded into a DWH. In most cases, loading data to a DWH is initially performed as a bulk

load to create the first construction of the table. This is then followed by an incremental

load to upkeep the dataset as a set of changes as new insertions, deletions, and updates

reach the warehouse. (Vassiliadis 2009, 12-13.)

The application developed in the thesis focuses mainly on the loading part of the process

but in the case of some sources also performs rudimentary extraction and

transformation. The transformation process only slightly modifies the data, focusing on

redacting noise that could be unreadable characters for example. In general, to optimise

work, reducing the developing and maintenance cost of the ELT process is important

(Awiti et al. 2020, 1).

5

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

Most commonly data loading is done as an integrated part of the ELT process. Some

major examples of ELT tools are Talend Data Integration and Microsoft SQL Server

Integration Services. (Souibgui et al. 2019, 677-680.)

2.4 Examples of Data Load Protocols

Teradata Parallel Transporter

Teradata Parallel Transporter is an object-oriented client application that provides

scalable, high-speed, parallel data extraction, loading, and updating. The main limitation

of TPT is that it only supports databases, data storage devices, and comma separated

values (CSV). (Teradata, 2020)

The main benefit of TPT is that it is made to support parallel transmission. Parallel

transmission can load several bits simultaneously, increasing the efficiency of data

loading. This is visualised in figure 2.

Figure 2. Teradata Parallel Transmission.

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

Microsoft SQL Server Integration Services

Microsoft SQL Server Integrations Services (MSSIS) is famous for holding the record for

fastest ETL process ever and is developed by Microsoft corporation. Despite being a tool

for automating the ELT process, MSSIS provides many additional functionalities like

automating SQL Server Maintenance Plans. MSSIS has been commended for making it

easy to build ELT solutions for inexperienced users and being generally easy to use with

plenty of first and second-hand documentation. The biggest limitations of MSSIS are lack

of support for non-windows operating systems and different integration styles.

(Katragadda et al. 2015, 1-4.)

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

3 DEVELOPMENT WORK

3.1 Development environment

Programming language of the application was C# with the target framework .NET Core

3.1. This choice was made based on the existing support for a great number of third-

party libraries for the planned data transfers.

The integrated development environment (IDE) used was Microsoft Visual Studio Pro.

3.2 Development process

3.2.1 Early stages – CSV Files

The development of the application started with transferring a .CSV source file to

Teradata. Teradata Parallel Transporter (TPT) was chosen as the Data Transfer Protocol

as it supports the Teradata’s FastLoad functionality which is optimised for large files. The

biggest challenge was automatically creating configuration files for TPT, which was done

using the Text Template Transformation Toolkit (T4 Template) included in the .NET core.

The application fetches column names and data types from target table and uses the

retrieved metadata together with configuration files to create a .txt configuration file for

the TPT transfer. As the nature of the application requires the usage of third-party tools,

a large part of the workload went into implementing the usage of

System.Diagnostics.ProcessStartInfo, which runs the TPT load, and building framework

around it to handle input and errors.

Nearing the testing phase, the need to handle file encodings became apparent as the

test data included a large amount of Nordic special letters. The solution that was agreed

upon was to generate a temporary runtime file into which the application would write the

readable bits in the desired format. The runtime file would then be used as the source

file for the data transfer and deleted after the execution. This was necessary not just for

Nordic letters, but also for other special characters which the transfer protocol was

unable to process. Detecting the encoding was originally done by reading the Byte Order

Mark (BOM) of the source file. Nevertheless, later during the development it became

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

apparent that there was a need to read files without BOM and an optional configuration

setting was added to allow manually setting file encoding.

After the functionality was tested, an executable first version of the application was

created and integrated into the scheduling environment of the company. One job was

scheduled to run weekly.

3.2.2 Post-Deployment - Azure Data Storage

After the application was set up in production for the use of the organisation, the

development work was aimed towards introducing a new source type for the database.

The need to read Azure Data Storage had existed for a while but introducing a new tool

for it had been deemed an unnecessary addition to the already prevalent list of tools the

developers need to know. The need for such transfers is exactly why this unified data

transfer tool was set into development.

In the case of Azure Data Factory, double set of functions was needed as no direct tool

exists for loading from Data Factory to Teradata. The transfer of data is divided into two

separate actions; pulling and pushing. Pulling data from Azure Data Storage has been

made extremely simple via the CloudTable class provided in the Azure.Cosmos.Table

NuGet package. This is show together with authentication in figure 3.

Figure 3. Using Azure Data Storage libraries.

After pulling the data to a list, the application simply iterates through the extracted data

entries and appends them to a Teradata Dataset, paying special care to the formatting

of metadata.

For the transfer to Teradata to work, the presence of a timestamp for record time is

mandatory. Therefore, a method was developed where the application looks for an

inserted timestamp column in the target table and either resumes with records after the

returned date or executes an initial load in case there are no records in the table. Finally,

a Teradata provided library TdDataAdapter was used to load data into the database.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

3.2.3 Further support – JSON and Excel files

The scope of the thesis was expanded to add support for .json, .xls, and .xlsx files. The

development was approached through a limited scope, as adding a new data load

protocol was deemed unnecessary for time being. The TPT loading was performing well

so it was decided as the approach despite the lack of support for the data formats. The

load was enabled by transforming the files to .CSV format using open source libraries.

The transformation was a simple job for .JSON files, whereas Excel formats required

more setting up with the more complicated structures around sheet numbers and

equations.

Later in testing it became apparent that the library used for extracting data from the Excel

files was not performing well in files that were more than half a gigabyte in size. The

replacing extractor was set to be OLEDB Data Provider due to its documented reliability.

3.3 Flow of the application

The application is a .NET core console application that is run with arguments for

execution id and configuration file path. For production purposes, the application is

meant to run via an internal scheduling program, but it is provided in the form of an

executable and can also be run manually in development phases.

The run is started with checking the validity of the arguments and both run specific and

application wide configurations. In general, the tool runs as long as possible to provide

the maximum amount of errors before being unable to continue. Once the local settings

are confirmed to be correct, the application defines the interfaces to be used, performs

the necessary file transformations, and establishes connection to source and target

frameworks where applicable. Once the connection is established, the configuration-

defined interface launches the corresponding transfer protocol. The interface class then

returns the return output value of the protocol, resulting in the end status for the

application. Figure 4 shows a simplified flow of the application.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

Figure 4. Simplified application flow of the thesis application.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

3.3.1 Configuration

Due to ease of usage and reusability throughout the code, it was decided that the

configuration of the application was to be done using local JSON files and the

Newtonsoft.Json library. For security reasons, there was a need for two separate files; a

general file for user identification and another for run specific source and target

definitions. This way the run specific configuration can be saved in file sharing without

the risk of accidentally sharing user credentials. Checks were implemented through the

process to assure the validity of the configuration and to deliver more understandable

error messages. Figure 5 shows an example of a load configuration file for the

application.

Figure 5. Example of a configuration file.

The variables retrieved from the configuration files are then transferred into a

RuntimeContext class that is the general access layer for reusable runtime resources

such as database connections.

3.3.2 Interfaces

After the initial functionality was implemented, the code was refactored to use interfaces.

In C#, interface defines a contract that any implementing class or struct must implement

the members of (Microsoft 2020). Defining the three interfaces of sources, targets, and

movers, we were able to streamline the code execution and reduce processor load.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

Figure 6. Usage of interfaces.

Even without the use of interfaces, the implementation would require classes with similar

functionalities. Using interfaces improves code readability as it eliminates the need for

repeated switch clauses for actions taken throughout the source code. Figure 6 displays

the ease of changing between different interfaces.

3.3.3 Logging

Additionally, to writing the flow of the application and potential error messages to the

console window, the application was designed to write external, more precise logs to the

company database. This decision was made based on the requirement to be able to run

the application as a part of automated scheduling. The database log creates a row in the

log table using an SQL injection after the configuration has successfully been read and

updates it with further information as it becomes available throughout the progression of

the execution. Figure 7 shows the log table structure.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

Figure 7. Log table structure.

3.4 List of Supported Load Procedures

The scope of the thesis limited the application to work with the file formats pictured in

table 2.

Source Target

Azure Storage Tables Teradata SQL Server

.JSON files

.CSV files

.XLS files

.XLSX files

Table 2. Supported Source and Target Types.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

3.5 Handling of User Credentials

As the connections to the transfer protocols need authentication, the application needs

to access user secrets such as usernames, passwords, and connection strings. Since

the run-specific configuration files are stored in production servers, they are at a risk of

being exposed to other users. It was therefore decided that such secrets should be

stored as key-value pairs under a ‘secrets’ titled section under the application

configuration. Storing credentials outside the run configuration also brings a degree of

distributability, as users do not necessarily need to alter the run configuration to run the

load. Run specific configuration would then contain the key based on which the secret

value is retrieved during runtime. This approach is not without security vulnerabilities

such as the possibility of accidentally uploading your secrets to version control or

production server. Therefore, the handling of secrets is planned to be moved to Azure

Key Vault in a future version.

3.6 End result

The result of the thesis work finished a version of the application with the ability to support

five source file types and one target type. The testing on large scale adaptation is

ongoing at the time of the submission and there are several use cases that run the

application on a daily basis. The developers in the data warehouse have been briefed

on the functionality and have been invited to utilise its functionality. The feedback has

been positive and interest for current and future capabilities has been clear. The nature

of the application dictates that future versions be developed as the need to cover more

sources and targets arises. The application development has been expanded from the

author to also include the data warehouse tool development team.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

4 FURTHER DEVELOPMENT PLAN

4.1 General roadmap

The timeline of the application is at its beginning and there are plenty of ideas lined up

for its future. The DWH unit has created a team to upkeep all the inhouse software in the

unit and the development work has been expanded to it.

As one of the focus points of the development was for the structure to be extendible for

further source and target types, this will be an integral part of the development plan.

Nevertheless, initially the application will need to be spread to the DWH unit more widely.

There are six solutions running on a weekly schedule using the application and the goal

is to have this number higher to catch possible issues and bugs before the scope of the

application gets too big to fix them. Furthermore, it will be useful for the developers to be

familiar with using the application before implementing more functionality to not confuse

them with too many options at the start. More users also means a better understanding

of what the needs of the organisation for the application are.

4.2 Initial plan for expanding support

Although the initial focus will be on fixing any issues arising in further distribution of the

application, some ambitions for expanding support have already risen. Most importantly

fixed-width files are likely to be the first added file format support. The possibility of

supporting SQL Server View and Tables is also under discussion.

Adding support for target types will prove more work compared source types since in an

optimal situation every source and target type should work together. Currently there is

only one supported target type so adding a second one would in theory require

supporting it for all five sources. Nevertheless, being able to generate .CSV files as a

target is a planned feature.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

4.3 Features

Currently, an issue has been encountered where in some cases of unsuccessful

execution, TPT Fastload will lock the target database table. Currently this requires

manual release for the table and functionality to automatically resume failed jobs would

reduce manual work.

Secondly, more flexibility in loading protocols would be useful in the long run. TPT

Fastload has some limitations, namely only being able to load into an empty table, which

make it too rigid for all file loads. Loading into already populated tables will make the

application more flexible and TPT Mini-Batch Loading is being investigated for this

purpose. However, some concerns regarding efficiency remain for the load mode.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

5 RESULTS

The result of the thesis is an inhouse file loading application that has gone through proof

of concept and functionally supports the loading of five different source types to a

Teradata database. The application acts as an interface for multiple third-party data load

tools, optimising procedures and simplifying development work on the data warehouse.

This simplification arises from a major reduction on the need for developers in the DWH

unit to know how to operate multiple file load tools. Additionally, building further support

for new source formats will be focused on the application, providing a framework and

reusable functions.

The architecture of the source code, written in C#, was designed in a way that enables

expansion for more source and target types in the future as the needs of the data

warehousing unit grow. Further work on these and other features is ongoing, signalling

the relevance of the application.

At the time of writing, multiple solutions are already running on a weekly schedule using

the application and it is in the process of being adopted more widely within the

commissioning organisation. Numerous solutions are currently being developed using

the application. Additionally, development has started on more inhouse tools that depend

on the application for functionality.

The application has enabled multiple source types to be loaded into the database that

were previously unavailable. Migration of workflows for certain data formats will also be

moved to the application due to a greater ease of use over the current tools. Future

similar migrations are also possible, enabling the reduction of technical dept via

development of the application. Through enabling data load operations for common data

formats, the application has also provided the means for smoother cooperation with other

organisations for solutions that are already under development.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Joel Juntunen

REFERENCES

Awiti, J., Vaisman, A.A. & Zimányi, E. 2020, "Design and implementation of ETL processes using
BPMN and relational algebra", Data & Knowledge Engineering, vol. 129, pp. 101837.

Date, C. 2013, Relational Theory for Computer Professionals.

Hugh Darwen 2010, An Introduction to Relational Database Theory.

Katragadda, R., Tirumala, S. & Nandigam, D. 2015, "ETL tools for data warehousing : an empirical
study of open source Talend Studio versus Microsoft SSIS ".

Library Of Congress , Recommended Formats Statement. Available:
https://www.loc.gov/preservation/resources/rfs/data.html#databases [Accessed 2020, 9.12.].

Microsoft 2020, , Interface (C# Reference) . Available: https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/interface [Accessed 2020, 12.12.].

Souibgui, M., Atigui, F., Zammali, S., Cherfi, S. & Yahia, S.B. 2019, "Data quality in ETL process:
A preliminary study", Procedia Computer Science, vol. 159, pp. 676-687.

Teorey, T.J., Lightstone, S.S., Nadeau, T. & Jagadish, H.V. 2011, Database Modeling and Design
: Logical Design, Elsevier Science & Technology, San Francisco.

Vassiliadis, P. 2009, "A Survey of Extract–Transform–Load Technology".

	1 Introduction
	2 theory and background
	2.1 Databases
	2.2 Data transfer
	2.3 An overview of data loading
	2.4 Examples of Data Load Protocols

	3 development work
	3.1 Development environment
	3.2 Development process
	3.2.1 Early stages – CSV Files
	3.2.2 Post-Deployment - Azure Data Storage
	3.2.3 Further support – JSON and Excel files

	3.3 Flow of the application
	3.3.1 Configuration
	3.3.2 Interfaces
	3.3.3 Logging

	3.4 List of Supported Load Procedures
	3.5 Handling of User Credentials
	3.6 End result

	4 further development plan
	4.1 General roadmap
	4.2 Initial plan for expanding support
	4.3 Features

	5 results
	references

