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Abstract 
Detecting anomalies in time series data is a critical task in areas such as cloud health mon-
itoring. This Thesis proposes a proof of concept for forecasting and detecting anomalies in 
time series data. The proposed approach is based on Facebook Prophet model which is an 
open source library built on decomposable (trend+seasonality+holidays) models. It gives the 
user the power to perform time series predictions using simple intuitive parameters with ac-
ceptable prediction result. Moreover, the architecture helps the concerned team to detect 
outliers and understand what kind of problems that they may have. The results on Cloud 
Functional Testing data show the ability of the proposed model to detect anomalous patterns 
in time series from different fields of application. 
This study presents the capability of accurately forecasting future cloud health with expected 
level of reliability in our forecast.  

Keywords Time series, forecasting, data science, machine learning,  
Facebook Prophet, anomaly detection 
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1 Introduction 

1.1 Research context and scope 

 

Nowadays, cloud services are the dynamic choice of companies to run their business 

processes on. Clouds allow business owners to improve their productivity by accessing, 

developing, and deploying their services from anywhere anytime. Data is always availa-

ble across the cloud(s), the cutting-edge technologies are applied easily.   

 Large amount of data will be produced and collected within a cloud. Collected data might 

be facts, numbers, or pictures that will be analysed and interpreted into useful infor-

mation.  

Data analysis is to discover meaningful information from the collected data in such a way 

that might innovate the running business and to eliminate unnecessary services that 

cause abnormal behaviors. Cloud architects and engineers are welling to keep the cloud 

in best shape, they will create or adapt technologies to utilize extracted information 

properly to improve their products quality, a simple defect can lead to services failure, or 

cause a huge transfer of data. As result, keeping the cloud up and running is the main 

concern of the cloud monitoring team. Estimating future performance will help the team 

to capture cloud problems well in advance.  

Companies are interested in predicting performance by using forecast processes to 

make important business decisions. Both past data log and trends in cloud behavior 

could be a base of the forecast. 

 Predictive performance and cloud health are critical for getting more high-quality ser-

vices in any business. Improvement and crucial decisions might increase the revenues 

and stabilized the business. Several studies have been presented in the literature with 

variety of methods. These models are designed to model selected metrics to predict 

future performance and detecting anomalies, however, if anomalies are not well-timed 

detected and handled, it would lead to bad performance consequences which effect busi-

ness and cloud efficiency. 

Cloud platforms is hosting running applications, collecting data operation logs, metrics 

therefore apply anomaly detection method. 

This thesis aims to utilize 6 month of user’s experience test result logs to investigate the 

possible occurring anomalies and forecast the future process execution time. Forecast-

ing and anomaly detecting results will contribute positively to improve cloud health and 

performance. 
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Figure1 shows real data logs coming from company’s data source, they simulate user’s 

behavior in a cloud, denoted as ‘TestX’ for confidentiality reasons, at Nokia. By looking 

closely at time series in figure 1, it displays TestX execution time against time, TestX 

data set for 6 months, execution time might be longer, and this abnormal behaviour could 

be an anomaly.  

 

 

 

 

 

 

 

 

 

Figure 1   Timeseries shows execution time of a test over time t. 

 

Mostly anomalies differ from application to application, it becomes difficult to generalize 

normal and abnormal behavior that covers different data types and domains.  

It is difficult to come up with a definition of an anomaly that accounts for every deviation 

from a normal or standard behavior.  

This study’s aim is to enhance cloud services quality with the help of early detection of 

anomalies. 

1.2 Problem Statement  

 

Nokia is one of the biggest private cloud in the world that has billions of transactions 

(CGIFinland, 2019). Enormous amount of data has been gathered from these clouds in 

daily basis. Monitoring team is responsible of cloud performance, they ensure the cloud 

is always healthy and deliver to the customer best experience ever, as a result monitoring 

team should analyze all the collected logs and trigger the needed alerts to keep the cloud 

up and running properly. 

This study considers the collected monitoring event logs that are produced from the pro-

cess of simulating user experience in the cloud. 

User experience simulator generate large range of data logs that helps to monitor cloud’s 

performance and health. Log files contain collection of measured cloud features.  



 

7 (43) 

 

 

Features are usually collected every 3-5 seconds and over time (Time series). Monitoring 

team experts write alerting rules to keep an eye on cloud performance, however, it is not 

the optimal method as it relies on every “abnormal” action that’s happened in the cloud, 

this will lead to trigger new trend in the cloud or annoyable alerts. As a result, critical 

alerts are left untracked due to the not ended stream of alerts. 

Figure 2 shows how the process flow that produce data logs. 

Figure 2 Framework Architecture 

1.3 Objective and Result 

 

This thesis objective is to forecast test’s execution time features and develop an anomaly 

detection model. 

This study is a proof of concept which helps monitoring team in future to build their own 

machine learning tool, the results will be a list of predicted values of test’s execution time 

for the next 3 days in addition to detected anomalies points in the historical data.  

These Results are presents as table and chart. 

1.4 Real Data 

 

This study has been applied to real data coming from production process of cloud mon-

itoring logs – denoted as ‘CloudX’ for confidentiality reasons – at Nokia. The data set 

consists of X number of tests results metrics. Each test is related to certain category 

denoted as ‘CategoryX’.  Here anomaly detection is applied over only one of monitored 

cloud logs, however the experiment could be applied across all clouds. Out of the X test 

metrics we have selected 2 training sets, both of sets are consisting of approximately 

2000000 data point. 

1.5 Thesis Outline 

 

This thesis contains the following chapters.  
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Chapter 2: Methods: Introduce forecasting and anomaly detection methods that this 

study is used. 

Chapter 3: Data: an overview of data statistical features. Inspect how data looks like and 

extract useful information about data properties   

Chapter 4: Experiment: Reporting how this thesis has been applied over a real data set, 

experiments, and results.  

Chapter 5: Conclusion: The chapter concludes the results and observation regarding to 

the applied methods in this study, in addition to improvement suggestions for future work.    
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2 Methods  

 

Time series data is a sequential flow of data point observations collected as result of a 

certain process. Time series forecasting is to predict data values and behaviour overtime 

to enhance process performance. Forecasting method relies on identification the under-

lying trends, measure patterns that exist in the past. The results assume the future po-

tential patterns and trend in data.  There are several techniques to perform time series 

forecasting, however, it is impossible to know in advance which model will fit into data 

well.     

Along with time series forecasting anomaly detection is a trend nowadays. Anomaly de-

tection (also known as outlier detection) is the search for items or events which do not 

conform to an expected pattern. 

 

This chapter purposes to give an overview of the concepts and methods that are used in 

this thesis. 

2.1 Facebook Prophet Forecasting Model 

 

This model has been developed in the last few years. Developers describe the model as 

following: “Prophet is an open source software that is available in python and R for fore-

casting time-series data, Implements a procedure for forecasting time series data based 

on an additive model where non-linear trends are fit with yearly, weekly, and daily sea-

sonality, plus holiday effects”. (Facebook, 2020). 

Prophet was produced by Facebook’s Core Data Science team and it is using Python.  

Prophet works the best where data has of hourly, daily, or weekly trends with at least a 

couple months (preferably a year) of historical data.  

The Prophet procedure related to Generalized Additive Model (GAM) family (Taylor, S. 

and Letham, B, 2018). Generalized additive model (GAM) (Hastie, T. & Tibshirani, R. , 

1987) , is a regression models with non-linear smoothers applied to the model variables. 

Prophet is using time predictor. The GAM formulation is suitable to be adapted in this 

model because it is decomposing easily and accommodating new components as nec-

essary, for example when new seasonality is detected. GAMs highly fits by applying 

back-fitting or L-BFGS (Byrd, R. H., Lu, P. & Nocedal, J., 1995) so it gives the user high 

flexibility to be interactive and change the model parameter as needed. So by using 

Prophet, user does need to have a strong math background.  
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 Prophet is customized flexibly, essential extensions can be handled to apply time series 

data modeling easily. All these features are wrap up inside the Prophet model with high 

simplicity. 

The strength of Prophet model shows up when the fitted data has strong variant season-

ality such as: day of week, business days, national/important holidays, a number of miss-

ing observations, epidemic trend changes like we are experiencing right now, and non-

linear growth of trend. All the previous examples might cause data irregularity and it 

would be considered an outlier. 

Facebook prophet is used in this study as forecasting model because it supports the user 

with the advantages of the Bayesian approach. 

Bayesian approach is a mathematical method to solve statistical statements that requires 

solutions by using probabilities, it unites the input information and sources of uncertainty 

into a predictive distribution for the future values to produce the forecasted interval. 

Prophet use the advantages of Bayesian algorithms as following: 

1. It makes Prophet model to be handy to use and easy to explain periodic structure.  

2. Prophet prediction output supports the confidence interval derived from the com-

plete posterior distribution, in addition to risk estimate. 

 

Prophet strives to provide a simple to use model that is sophisticated enough to provide 

meaningful insights and results. The modeling solution provides numerous parameters 

that analysts and data scientists alike can alter easily to suit their modelling require-

ments. Our implementation is on Ubuntu and using PyPI which is the Python Package 

Index and known as the official third-party software repository for Python. (Facebook, 

2020) 

Prophet is expecting columns to have specific names, ds for the temporal part and y for 

the value part, so we adhere to that. It is a powerful model, there is no need to interpolate 

missing values. Prophet is defined in terms of regression-like model (Taylor, S. and 

Letham, B, 2018) 

Analyst-in-the-Loop is the framework that Prophet Method uses as shown in figure 3 

below (Taylor, S. and Letham, B, 2018) 

http://blog.fastforwardlabs.com/2017/01/30/the-algorithms-behind-probabilistic-programming.html
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Figure 3 Analyst-in-the-Loop 

The “Analyst-in-the-Loop” framework has two sides where on first side is to automate the 

model  by supposing that the user has no prior knowledge of statistics, while on second 

side this framework qualify this same user to interact with model in such an easy way to 

feed the model with input data taking into consideration user’s domain/industry 

knowledge.  

Prophet is an additive regression method which contains of the following components 

and functional form: 

   

(1) 

 

 Equation (1) the component is proposed as following: b(t) represents  trend changes in 

time series, s(t) represents seasonality in timeseries, f(t) represents holidays and 𝜀t is a 

the normal distributed noise factor that is often used when modelling with Bayesian ap-

proach, this noise term clarifies abnormal changes that are not accommodated by the 

model. Unlike other model terms, 𝜀t is always present in any instance of Prophet Model, 

remaining terms may not always be presented, as the user decides what the needed 

terms for his model instance are. 
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2.2 Anomaly 

 

The Most common asked question we would like to know when we talk about the outlies 

is: "What are Anomaly?”.  

Anomaly is introduced as an action that differ from usual or expected behavior. As an 

example, suppose an e-Shop has a sudden drop in their selling rates while their appli-

cation is still up and running normally, statistical charts shows that they usually have 

higher selling rate and no abnormal action happened before. This is irregular activity for 

sales rate is an anomaly for the e-shop. The anomaly is sort of incompatible observation 

in the usual known data behavior.  

It is important to know how an outlier is described for the purpose of this research.  

The outlier is described as a Statistical data which is extremely different from the others 

in the same sample, as a result the keyword here is "different". An outlier is a point that 

is significantly different from other data points in the set. In figure 4 an example of outli-

ers, red dots represent an example of abnormal behavior in a time series, TestX does a 

certain task, usually task’s execution time takes 0.3-1.2 seconds, and for certain circum-

stances testX takes more than 1.5 sec to execute the assigned task. After anomalies is 

detected, the monitoring team managed to understand the cause problem and take the 

proper action. 

For this research an outlier is defined as an observation that is out of the ordinary. In 

general, there are several reasons why outliers may occur in a time series. The first 

explanation would be data errors. Secondly, the data point that is an outlier could be 

generated by a different population and thus be generated by a different distribution than 

the rest of the data. This could be related to changes in behavior of people or a system. 

A third explanation would be that there are unusually high residuals, (Greene, 2012), 

Residuals are is the difference between the observed value and the mean value that the 

model predicts for that observation and adjust accordingly. 

Outlies might also be caused by human mistakes or tool error. 

 

 

Figure 4 Possible Outliers in TestX time series 
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2.2.1 Anomaly Analysis 

 

This section aims to clarify the different types of anomalies, since the type of data and 

anomaly has considerable effects on the quality of anomaly detection methods. 

Anomaly indicates the data points that could be of interest due to the strong deviation 

from other data points, it could be considered as a special type of outlier. The present 

task of anomaly detection consists of making a distinction between noise and anomalies.  

Anomalies could be categorized as following: point anomalies, contextual anomalies, 

and collective anomalies. These types are defined as following: 

-  Normal anomaly is an isolated data point that considered as odds comparing to 

the rest of data.  

- Contextual anomaly is a data point that inside the normal known distribution 

range but are anomalous in comparison with the seasonal common pattern. 

- Collective anomaly a collection of data shows different shape compared with the 

regular and usual patterns that appear in time series. 

Anomaly detection has several approaches, it falls into the following approaches: 

- Supervised learning model:  an algorithm that is provided with labelled dataset to 

learn from, these labels is used by the algorithm to evaluate its accuracy on train-

ing data. 

- Unsupervised learning model: This model is the opposite model of supervised 

learning. It is an algorithm that is provided with unlabeled data. The algorithm will 

extract the existing features and on its own. 

- Semi-supervised learning: It is a hybrid model that is a mix between supervised and 

unsupervised algorithm. It combines a smaller group of labelled with large group of 

unlabelled data, the algorithm will the smaller labelled dataset as training set to learn 

the features of data, the test set will be the large unlabelled data, the result will be 

two data samples: unknown samples which are considered as outliers and known or 

normal samples that are classified according to the known labels from training set. 

Unknown samples are considered as anomalies because of their irrelevant behavior 

is a way from that of the known normal samples. 

2.2.2 Outline 

 

It is difficult to define a known data point as anomaly in practice because of either lack 

of information or technique. Therefore, in reality it will be more applicable to perform 
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unsupervised methods, and this study will only handle unsupervised method with collec-

tive anomaly. 

2.2.3  Z-Score for finding outliers 

 

Z-Score is a functional method to be applied as a benchmark in the unsupervised ma-

chine learning which groups varied algorithms for the ultimate anomaly scores (J. 

Gustafsson, F. Sandin, 2016). 

This algorithm needs a time series as input. Furthermore, it needs three user inputs: a 

lag values (hereafter called lag), a threshold and an influence. The lag indicate the num-

ber of previous observations that are taken into account to smooth the data, the thresh-

old, τ , is used to dene what is an outlier and what is not, and the influence tells the 

influence that an outlier has on the smoothed standard deviation and average. The al-

gorithm itself works as follows: the difference between a real data point, x, and the 

smoothed average from the last lag observations, µ, is calculated and compared to τ 

times the standard deviation from the last lag observations, σ. If the difference is higher, 

then the new data point is considered an outlier and it will be saved as an outlier. After, 

the new smoothed average and standard deviation are calculated, with the influence 

value if the real data point is considered an outlier (P.,Kiselev., R., 2020).  

In other words, The Z-score method leans on mean and standard deviation of set of data 

to calculate central tendency and dispersion, it will test if the number places outside the 

three standard deviations,  this is the base rule, if the value is outlier, the method will 

return true, if not, return false. 
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Z-Score fits well with Facebook prophet that’s because prophet has uncertainty intervals 

feature which is given upper yhat and lower yhat, it captures the un-modeled variance of 

the time series and not producing false positives in settings where the model just doesn't 

have a clear fit for what's happening (Prophet, 2020).  Width of them the uncertainty 

intervals can be configurable however default width had given a good result.  

 

  

Figure 5 Z-score Algorithm 
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3 Data 

 

Time series is an important instrument to model, analyze and predict data collected over 

time. 

This study suggested a successful performance forecasting model built on real live data 

as suggested in Figure3. 

 

Figure 6 Process Workflow. 

3.1 Data source 

 

In this study, our data source provides us a cleaned dataset that helps to spend the time 

on actual analysis and not sorting out typical problems of bad data. 

In this chapter the experiment will applied across one cloud instance. 

3.2 Data Preparation  

 

Python is used as programming language, it is essential for data analysis because of the 

statistic libraries that python offers, it is easy to learn, an open source and Python is well 

supported. 

The test’s time series data is extracted from the related data source (database), dates 

are clean and in right format, but still different pre-processing procedures are needed to 

be applied to data right before starting analysis study is done. The aim of data pre-pro-

cessing is to achieve a combination of an aggregated timestamp and execution time at 

same time frequency. 
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3.2.1 Choosing Features 

 

Data feature assessing is very important, it contributes in model prediction performance. 

In order to pick the meaningful features, it is needed to understand deeply each field in 

the data source, for data confidentiality it would not be possible to mention the steps of 

this section in details.     

In the beginning in this study it has been chosen 3 different features that team believed 

it might add meaning to the model, eventually we nominated 1 feature to be predicted 

and drop the others. 

The used model in this study applied on single observation (test execution time) that 

occurs sequentially over time (test duration) and this is called univariate time series.  

Univariate time series term means a time series that contains one single variable varies 

over time, this variable is recorder in sequential order over time. 

The predicted value is the future execution time for the test and detecting anomalies in 

historical data. 

3.2.2 Dataset Indices 

 

Dataset’s timestamp is used as an index. Execution time order is important in this study 

case, it remarks the order of running test cases in the cloud. 

Notice that: 

1. This case is not numeric indexing, For instance, if we index a list as df[:4] then it 

would return the values at indices – [0,1,2,3], but here the index ‘2020-06-01’ was 

included in the output. 

2. The indices must be sorted associated with it in ascending order. Here workflow 

is sequential, so ordering the indices will allow us to identify the out-of-se-

quence data point and indicate possible irregularities.  If randomly the indices are 

shuffled it will definitely give wrong results. 

Facebook prophet has a feature that the output of m.predict will always be sorted 

(Facebook/Prophet., GitHub., 2020). 

Prophet requests data with YYYY-MM-DD format, as input for the model instance, data 

frame should always has two columns: ds and y, our index is timestamp in the required 

date format YYYY-MM-DD HH:MM:SS. 

The y column has to be numeric and represents the execution time we wish to forecast. 
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3.2.3 Timeseries Extraction 

 

The used data is presented in the form of tables, each table row is presenting the value 

of a specific execution time for a specific test at a specific timestamp. In this phase, all 

data values that are related to the same test and it will be extracted to a separate data 

set. The following tables describe how data looks like before and after pre-processing. 

Table1 shows the main Test results log where comes directly from the main data source, 

it has all executes tests over a cloud. In order to get each test time series separately 

(Test1 timeseries, Test2 timeseries, etc.), the main log is introduced in Table1 will be 

processed in the python code, as a result the univariate time series will be ready to be 

predicted.  

 

Timestamp Test Elapsedseconds 

Timestamp1 Test1 0.19980033 

Timestamp1 Test2 2.16232874 

Timestamp2 Test1 0.81007643 

Timestamp2 Test2 0.23498004 

Timestamp2 Test3 0.33432324 

Timestamp3 Test1 1.03132135 

Timestamp3 Test2 2.09763213 

Timestamp3 Test3 0.72332434 

Table 1  data source before pre-processing 

 

Test1 

Timestamp ElapsedSeconds  

Timestamp1 1.71279312 

Timestamp2 0.567776545 

Timestamp3 0.915279332 

Table 2 Timeseries for Test1 on cloudX 
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Test 2 

Timestamp ElapsedSeconds  

Timestamp1 0.01279312 

Timestamp2 1.56700015 

Timestamp3 0.01279312 

Table 3 Timeseries for test2 on CloudX 

 

 

Test 3 

Timestamp ElapsedSeconds 

Timestamp2 5.32620331 

Timestamp3 0.05404146 

Table 4 Timeseries for Test3 on CloudX 

Additionally, unneeded fields have been removed from the data. 
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3.2.4 Time Aggregation 

 

Timeseries aggregation is done to merge a set of periods into similar groups. The exe-

cution time data could be saved and collected every x number of seconds, it is required 

to unify data frequency to perform aggregation over our extracted data set. The aggre-

gation unit for this data set is one-hour frequency.  When test’s execution time field has 

several values in an hour, then the statistical methods that are applied in our case will 

be either the median or mean of the values is used for that hour, these statistical ag-

gregation function with depends on the type of data distribution whether it is normal 

data distribution or not. The following tables describe how timeseries data looks like be-

fore and after aggregation step: 

 

TIMESTAMP ELAPSEDSECONDS 

2020-06-16 01:59:56 0.554521 

2020-06-16 01:59:57 2.606284 

2020-06-16 01:59:58 0.939185 

2020-06-16 02:00:03 0.358077 

2020-06-16 02:03:00 1.022024 

2020-06-16 02:03:04 0.358077 

2020-06-16 02:03:05 6.565416 

2020-06-16 02:05:08 0.244675 

Table 5 Timeseries before aggregation 

 

TIMESTAMP ELAPSEDSECONDS 

2020-06-01 01:00:00 Median() = 0.208773 

2020-06-01 02:00:00 Median() = 0.289091 

Table 6 Timeseries after aggregation 

 

In addition, prophet assumes a continuous y with normal noise, which can work poorly 

for small count data, so time aggregation will be ideal to our case. 

3.2.5 Missing Data 

Handling missing values in data set is common. The applied model in this study is a 

regression model on continuous times. So, the time set consist of times time1, ..., timeN, 

and observed values are y Value1, ..., yValueN at those times, y values is estimated by 

y = f(t) function. Since the applied model is continuous time, there's no problem with 

having a day missing and data set may not have value at every possible value of t. Our 
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missing data has been filled by using .fillna(method='ffill')  functionality that pandas library 

offers. 

3.2.6 Change in variance 

 

In this section the aim is to find out the most fluctuated and non-steady, this information 

will help the monitoring team to understand test performing. 

Variance is the statistical property that determine the fluctuation within a time series. 

Suppose initial data value is Xi, then defineYi = ( Xi − µ)2, where μ is the mean.  

Then the change in mean of Yi   will be a change of variance in Xi. 

   
∑ Yi

𝑛

𝑖=0

n
=  

∑ ( Xi−µ)2  
𝑛

𝑖=0

n
= Var(Xn) (2) 

Change of values evaluates tests with in same category by calculating each metric’s 

variance value and compare it with each other, then highest top 3 variance value will be 

picked to be monitored, these values could be measured every 3-4 month. The results 

has been verified a cross x number of clouds. 

 

In Figure 8, testX1 and testX3 have the highest variance value across all examined X 

clouds, third nominated test varies from cloud to another.  As conclusion, almost all may 

behave in same way. 

3.2.7 Structural Breaks 

 

Time series data in some cases show an unexpected behavior change at one point in 

time. As an example, Figure 10 shows that the execution time changed sharply in ‘2020-

06-01’ after the start of certain action known for the team. These unexpected changes 

are often represented as structural breaks or non-linearities. 

Figure 7 Top3 test with highest variance values 
for categoryX in cloudX 

Figure 8 Top3 test with highest variance values for 
categoryY in cloudX 

https://www.aptech.com/structural-breaks/


 

22 (43) 

 

 

 

Figure 9 Structural break in test’s elapsed seconds over time. 

Instability in the parameters is created by these structural breaks of a model. This, at a 

time, can diminish model validity and reliability. 

Structural breaks in the median of time series data will show in graph as sudden unex-

pected shifts in the level of the data at certain breakpoints. For example, in the time 

series plot above there is a clear jump in the median of the data which around the start 

of June-2020. We also noticed drops in time series instead of jumps in other different 

cases. 

3.2.8 Stationary in Timeseries 

 

Exploring the state of time series stationary is important to build a model that fits the time 

series. Time series can be described as stationarity if its statistical properties does not 

change over time. The mean (average), standard deviation and auto-covariance are the 

statistical properties that usually been checked (Kraft, C. H., 1967). For a time, series to 

be stationary, it should have a covariance that is not time dependent (analyticsvidhya, 

2015). Below are examples of stationary and non-stationary time series (analyticsvidhya, 

2015): 

https://www.aptech.com/structural-breaks/
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Figure 10 Stationary and non-stationary time series 

 

Time series is called as non-stationary when the mean does not stay constant over time 

so the time series will show a certain type of behavior that called as trend. The trend 

might be upward, downward, negative or positive depending if the values of the time 

series increase or decrease over time. 

Facebook prophet can deal with non-stationary data depending on what type of non-

stationarity it is. Trend is non-stationary, so if a piecewise linear trend is enough to cap-

ture the non-stationarity then Facebook prophet will work well. Otherwise (including if the 

non-stationarity is in seasonality), the model may not fit the time series as expected 

(Facebook/Prophet, 2017). 

The prophet model handles baseline trend changes so there's no stationary assumption. 

Used data set contains cases with stationary data and data with upward trend (non-

stationary), most of tests’ data set are stationary so the median of the metrics value does 

not change over the chosen observation time. 

3.2.9 Correlation in time series 

 

Timeseries features might be have a relation between each other, one variable might be 

a result to another variables, or just be of the variables are relevant, this relationship is 

called time series correlation.  

To check the correlation within time series we took the numeric feature (execution_time 

and fail) for one of the tests(testX). We found out that there are no strong correlations 

between the testX’s features. 

 Execution_time Fail 

Execution_time 1.00000 0.00783 

Fail 0.00783 1.00000 

Table 7 Correlation between test’s 2 features 
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3.2.10 Data seasonality 

 

Another attribute of time series is seasonality, According to Aarshay it is defined as “reg-

ular changes that occur in time series at specific frequency of time. For example, the 

values of a time series could peak around the mid of the day and dip into low values 

around the mid of the night. The seasonality could have different frequency like hourly, 

daily, weekly, monthly, …, etc (AarshayJ.,analyticsvidhya, 2016). 

Figure12 shows that data has no cycles neither yearly nor monthly seasonality. Upward 

trend was found in some test. 

 

Figure 11 TestX elapsed seconds over time  

As Figure 13 shows us there is no captured seasonality or correlation between tests 

within same category. 

 

Figure 12 Calendar Heatmap for Tests in ComponentX 

Daily seasonality was found for some test. 

3.2.11 Data Distribution 

 

Data distribution is a method or a way to list the existing values of the data variables, it 

is also useful and easy way is to represent data graphically so it would be easy to know 

how data looks like. 

3.2.12 Normal Data Distribution 

 

Normal distribution also called Gaussian distribution which means statically the data is 

distributed near the mean, the far values from the mean are less occurring and this dis-

tribution is symmetric about the mean (Walck, 1996). Normal distribution plot in Figure 

14 shows the distribution have one peak looks like a bell curve. 
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Majority of study cases have normal execution time distribution and since Prophet uses 

a normal noise model, so the model can fit the data successfully. 

 

 

Figure 13 Normal Data Distribution for TestX 

3.2.13 Bimodal Data Distribution   

 

Bimodal distribution means statically the data can have two or more peaks 

Bimodal data is a common situation; this distribution called a bimodal/mixture model. 

 We can notice from this use case example that generally execution time value falls into 

two categories: 

 

Figure 14 Bimodal Data Distribution for TestX 

Figure 15 shows range of 2.8-3.5 sec (or very close to 3) or somewhere in the range of 

7-9 sec. There are a couple of entries somewhere in the middle of 3-9, but the majority 

fall into one of these two categories, we can’t consider these data points as outliers be-

cause they are the distribution is always between two range and the outlies is an extraor-

dinary behavior in data which is not in our case. 

Part of this study was to explore what are the right avenues to deal with this type of data 

distribution, we have tried two approaches:  

1. Classify each data point into one of the two groups then run two separate prophet 

models on each of these groups this solution would be impossible in our case, 

that’s because we are dealing with univariant time series not having any extra 

information or label that help us to classify and mark each data point is related to 

which right group. Figure15 shows data points distribute between two separate 

groups without an extra regressor that explains the difference between the two 

data groups.  
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2. Second approach would be to take the sample mean of values by considering 

Central Limit Theorem (CLT) probability theory. 

3.2.13.1 Central Limit Theorem probability theory 

This theory assumes that the sample mean will have approximately a normal distribution 

across large sample sizes, regardless of the distribution from which we are sampling. 

 

Figure 15 Central Limit Theorem 

In the used data, it has been found a bimodal/mixture distribution of TestX timeseries  

(figuer15) which considered as population with an unknown density distribution function, 

it select a random sample of N observations and calculate their mean. By Repeating this 

procedure many times, data will be resembled as normal distribution then the time series 

can be applying our forecasting model pretty easily (statistics4u, 2010). 

This approach is one of the possible solutions to reform the data distribution of time 

series from bimodal into normal distribution. After applying this approach over bimodal 

tests, this solution was successful and acceptable for part of tests but not for others.  

3.2.14 Data Resampling 

 

Data resampling is used in forecasting to rebalance the data, it contributes in the process 

of learning about data. (Moniz, N., Branco, P. & Torgo, L., 2017). 

In this study, the data set interval is in second. Variance in the history should be reduced 

by aggregating hourly across days, as a result, forecasting model is expected to show a 

better forecast with lower uncertainty. In this study, median will be used over mean. 

 Mean and median are often described as descriptive statistics, in the table below we 

have been collected the characteristics of both statistic methods: 

http://www.statistics4u.info/fundstat_eng/cc_population.html
http://www.statistics4u.info/fundstat_eng/cc_meanval.html
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Median Mean 

1. The median is the middle score for a 

set of data that has been arranged in 

order of magnitude. 

2. The median is less affected by outli-

ers and skewed data.  

 

1. The Mean is the result of a probability 

model over errors. 

2. it is particularly susceptible to the in-

fluence of outliers. 

Table 8 Median vs. Mean 

Therefore, we'd use the median over the data.  

3.2.15 Data Scaling 

 

This type of processing is handled by prophet itself, prophet scale Y by its maximum 

(absolute) value.  
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4 Experiment 

 

After a thorough investigation of the properties of the available dataset in chapter 3 and 

the explanation of the theory behind the Facebook prophet forecasting technique in 

chapter 2, this chapter represents the implementation of these techniques in the dataset. 

As with most datasets, there are mainly two types of problems: the missing values and 

the outliers. 

In this chapter, a certain amount of noise was added for the result in order to keep the 

confidentiality of the original data  

The result of the experiments will be into 2 parts: 

1. Forecasting Test’s execution duration over time for next 3 hours. 

2. Detecting the anomalies in the historical data. 

The following step must be done before applying the forecasting model: 

1. Every time series is univariate and aggregated hourly. 

2. Data continuity is ensured by recovering any missing values in the metrics.  

3. Calculating the median or mean of time series depending on time series distribu-

tion as we discussed in chapter 3.  

Let’s make the following brief work break down: 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Forecasting with prophet 

 

Our goal is to calculate an effective forecasting with acceptable accuracy, so we build a 

model using historical data to forecast test’s execution time, actual data would have pre-

dicted by using the following model:  

y(t) = trend(t) + weekly_seasonality(t) + noise (3) 

Figure 16  Proposed forecasting model process 
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By consider that during data analyzing we have not detected any yearly or monthly sea-

sonality, which was the main reason to limit the minimum length of observation horizon 

to 2-3 months. When prediction is made on the history as is done by default within the 

prophet model, the model forecasted values on historical data points and these data 

were used to fit the model. They thus do not provide an accurate assessment of the 

model's ability to forecast. That's because the model can do a much better job at pre-

dicting values for which it already knows the true values. The model is applied over 6-

month data, prediction result will be test’s execution time for next 3 days. 

In both below examples, Prophet catches the trends and most of the time gets future 

values right. 

Prophet prediction is a data frame, where target prediction sits in 'yhat' column, prediction 

interval bounded by 'yhat_lower' and 'yhat_upper', the rest columns contain predictions 

of trend, additive and multiplicative terms and copy of features that were argument in the 

prediction method. The black dots show the actual y values that we gave as the input 

data, the dark blue line is yhat. The light blue at the top is yhat_upper, and the light blue 

at the bottom is yhat_lower, we can notice outliers will exist outside prediction bounda-

ries. 

Tested data has an hourly frequency, Prophet will model the structure of trend, daily and 

weekly seasonality, yearly seasonality has been turned off. Prophet provides us with 

helpful feature is model component visualization.  

Let’s have a look forecast and component visualization looks like: 

4.1.1 Example 1 

 

Figure 17 TestX timeseries 
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By looking closely at time series in figure 18, it displays TestX execution time against 

time, TestX data set for 6 months, execution time might take longer duration sometimes, 

and this abnormal behaviour could be an anomaly.  

Below are examples of prophet forecasting result for TestX.  

 

 

 

 

 

 

 
 

 

 

 

 

Figure19 shows forecasting results, dark blue line is forecasting spend numbers, black 

dots are actual execution time values. The light blue shade is 95% confidence interval 

around the forecast. TestX has an increase in execution time between May and first June 

otherwise TestX seems to be stable. Prophet fits the model to data well.  

Figure 18  Prophet to forecast elapsed seconds of TestX for the next 3 hours. 
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Figure 20 shows that there are a few clear takeaways such as higher activity during is 

on Tuesdays or less activity on Wednesday & Thursday, usually morning hours TestX 

have higher execution time. Additionally, it appears to have bigger jumps in execution 

duration towards morning period of the day. 

 

4.1.2 Example 2  

 

Figure 20 TestX2 time series 

By looking closely at time series in figure 21, it displays TestX2 execution time against 

time, TestX2 data set for 6 months, execution time might take longer duration sometimes, 

and this abnormal behaviour could be an anomaly.  

Figure 19 Prophet component plot of TestX 
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Below is an example of prophet forecasting result for TestX2: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure22 shows forecasting results, dark blue line is forecasting test’s elapsed seconds, 

black dots are actual execution time values. The light blue shade is 95% confidence 

interval around the forecast. TestX2 has 2 slight peaks in May and July, otherwise 

TestX2 seems to be stable. Prophet catch data trend very nicely and fits the model to 

data well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Prophet to forecast elapsed seconds of testX2 for next 3 hours 

Figure 22 Prophet component plot 
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Figure 23 shows that the execution time starts to increase from Sunday to Wednesday, 

it reaches the peak on Monday. Tuesday morning test execution time starts to decrease 

again.  TestX2 has big fall offs on Thursday. 

4.2 Cross Validation 

 

Cross validation is mainly applied in machine learning to give an estimation about 

model’s performance and skill on unseen data. It simulates how the model will predict on 

data that’s not used before in making prediction. Model results should be verified in order 

to be used, so we should find a way we can check how accurate the model is, it could 

be either by eye or with error metrics such as Mean Absolute Error (MAE) measures the 

distance of predicted values from the observed value, MAPE (Mean Absolute Per-

cent Error)  calculates the average value of the percentage error, Root Mean Square 

Error (RMSE) is the value of standard deviation residuals value (errors of the prediction), 

it shows how residual values are expanded. Residuals are is the difference between the 

observed value and the mean value that the model predicts for that observation and 

adjust accordingly. Cross validation automates the previous steps. 

Cross validation function for timeseries has included in Prophet to calculate forecast er-

ror using historical data.  

 The first parameter of the function is our trained model not the observation data, the 

next parameter is the prediction horizon which means how frequently we want to predict, 

then an optional parameter: initial, which express how long to train before starting the 

tests, and finally  period parameter which means how frequently to stop and do a predic-

tion. In case of not feeding the function with the initial, Prophet will assign defaults of 

initial = 3 * horizon, and cutoffs every half a horizon, that will lead to have a long running 

series of validations, each time predicting forward and calculating the error using perfor-

mance_metrics, so Basically we just need to run this method in a loop for a range of 

values of horizon, and then compute the MAPE for all of the results for each value of 

horizon. 

After looking at the output of cross_validation data frame (df_cv), ds column  is the 

timestamp of the point being predicted, true values y, the out-of-sample forecast val-

ues yhat, and cutoff that is the cutoff with which that prediction was made.  

In the following example, cross validation is used to assess prediction performance on a 

horizon of 3 days, starting with 10 days of training data in the first cut-off and then the 

predictions is made every 4 days. Blow figure shows part df_cv data frame. 
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Figure 23 Cross validation dataframe 

 

In particular, cross validation is used for computing error metrics using perfor-

mance_metrics function (FacebookProphet, 2020) and its data frame can be used to 

compute error measures of yhat vs. y, as we will explain in the next section.  

4.3 MAPE diagnostic  

 

In this case study performance_metrics is used as utility to compute the Mean Squared 

Error, Root Mean Squared Error,Mean Absolute Error, Mean Absolute Percentage Er-

ror(MAPE) and the estimation coverage of the yhat_lower and yhat_upper values.  

MAPE method calculates the outputs accuracy of individual forecasting for each hour 

which is produced by the Prophet forecast model, the mean absolute percentage error 

(MAPE) is calculated as following: 

  (4) 

When Prophet is computing the performance metrics (like MAPE here in particular), it 

computes the APE for every row in df_cv, and then computes MAPE by averaging over 

a rolling window based on the horizon (df_cv['ds'] - df_cv['cutoff']).  

 
Figure 24 Performance metrics for TestX1 



 

35 (43) 

 

 

Forecasting results are excellent in this case, because that the MAPE value is less than 

10%. 

The performance metrics is visualized as it shows in the following plot, performance met-

rics that we are generating is computing the metrics with moving averages with a window 

size of 10%, and this is what is plotted in the blue line. The maximum of the blue line is 

the 0.83 that is the max in the table as shown in Figure 26, gray dots come from doing 

the same calculation with a rolling window of 0 which is no averaging at all, so each 

represents the absolute percent error (no mean involved) for each pair ( predicted value 

y_hat, observation value y) that was forecasted during the cross validation 

(FacebookProphet, 2020) 

 

 

Figure 25  Performance Metrics Visualization for TextX1 
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4.4 Changepoints 

  

Changepoints is method to detect the trend when data is changing. Facebook prophet 

can automatically detect changepoint, by default prophet can produce grid of potential 

changepoints as it is shown in figure 27. 

 

Figure 26 Change points in TestX1 captured by Prophet 

All the measured changepoints in data are included in the model whether these changes 

are significant or not. Prophet will fit into the model only the changepoint that have sig-

nificant values, and this is called automatic changepoint selection. 

Facebook prophet has a nice feature which allow the user to list custom changepoints. 

Custom changepoints are treated in the same way as before: All of the changepoint 

whether are customed or detected by Prophet are included in the model, but the actual 

change at any of them will be fitted. 

 In this study there isn’t any specified any custom change points, in order to specify a 

custom change point all you need to pass all of these into Prophet with the change-

points argument, it will do the automatic selection on that grid as usual, plus our added 

point. Monitoring team can easily do change points analysis to understand how data 

interact with changes in clouds. 
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4.5 Anomaly 

 

Data point has been plotted against time to find outliers, and as we can see in the plot 

below, the anomaly is colored with red. 

Any value between yhat_upper and yhat_lower boundaries is considered as a normal 

behavior. The Anomaly will be any value(y) is greater than yhat_upper and less than yhat 

lower. 

 

 

Figure 27 Detected Anomalies in TestX1 

 

Figure 28 Detected Anomalies in TestX2 
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4.6 Failing Scenario 

 

Figure 29 Prophet forecast underfit 

 

As it was mentioned previously, our data has an hourly frequency, Prophet will model 

the structure of trend, seasonality, and any specified.  The chart in figure 27 shows that 

data trend is the only thing that has been captured now; there's an obvious weakness in 

seasonality effect modeling, so basically, it is non seasonal data, Since there is no clear 

seasonality that we can see in this test’s time series, The light blue shade outlines the 

confidence interval around the forecast 95%. As the Figure 28 shows, the model tries to 

fit all data point smoothly, but it fails to catch any seasonality.   
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5 Conclusion and future improvements  

5.1 Conclusion 

 

What has been done in this study can be considered as first step toward building fore-

casting and anomaly detection framework, data was analyzed in such a way that helps 

the monitoring team look to the dataset from another aspect. 

In this study, and particularly with huge our data set, it is concluded that anomalies might 

happen in test’s time series, however it does not necessarily mean that this anomaly 

reflects a problem in test execution. The key focus in this case is the following: 

1. Understand each test’s nature and know what the aim of running the test case is. 

2. Understand all the circumstances led to cause the abnormal observation that caught 

by the anomaly detector, then it will be decided case by case whether this behavior 

is really an anomaly or not.  

3. Abnormal behavior is not necessarily considered an anomaly, cloud upgrade is a 

regular task and it may cause a fluctuation execution time. 

As a result, understanding where the anomalies happened might be a good indicator to 

the team to detect and analyze all the actions that are happing in the cloud. Data varia-

bles should be studied in depth in order to help in identifying anomalies and that happens 

simply by using visualizing methods, it helps to provide the user with information about 

abnormal data points. Finding anomalies could be challenging by using Z-score, it as-

sumes that data follows normal distribution, however, this simple method has been used 

to show abnormal values as a lead values need further investigation. It’s just the first 

step to deal with anomalies. Prophet has done good job in forecasting for most of test 

cases, but in other hand, there are some tests that Prophet failed to fit the model using 

their data. However, prediction results are represented with a confidence interval around 

the forecast, which can often be more helpful than the forecasted data values itself when 

the team make decisions about how the test may perform for near future. Prophet sup-

posed that the seasonality independent of each other. That is, the daily seasonality (sea-

sonality within one day) is the same every day, the hourly/daily seasonality is stronger 

on some days than on others for some tests. Having interactions, there is a solution 

there, but it is still needed to do more studies to find the perfect model tuning for some 

test cases. Facebook prophet is an acceptable model for part of our test’s data, but it did 

not fit well for other challenging metrics that it did not fit with the current model. 
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5.2 Future improvement 

 

All research questions asked in chapter 1 have been answered in this thesis. However, 

the models presented can possibly be improved.  

Suggestions for possible improvement would be: 

• Including cloud upgrade log data to tune Facebook prophet with extra regressor 

and adjusting trend flexibility.  

• Predict different feature other than test’s execution time  

• Forecast multivariant time series. 

• For Z-score could use a different lag value for. 
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