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Due to lower cost and advancements in technology embedded devices have become 
widespread in the recent years. Embedded devices can be used in mission critical 
applications with requirements for predictable processing time and reliability. At the same 
time, they can also have requirements on power usage and cost. As a result of these 
requirements creating software for these devices can be challenging. The firmware on 
these devices often needs to be updated to fix bugs or add new features. However, due to 
the large number of these devices its often impractical to update them locally. For that 
reason remote firmware update systems are needed.

In order to transmit the update data reliably in a firmware update system the data needs to 
be validated with checksums. Encryption and authentication are also needed to make sure 
the data comes from a trusted source and hasn't been modified. The system also needs to 
be able to recover if the device loses power during the update process. This can be done 
by using multiple memory banks to store different firmware versions.

The purpose of the thesis was to create a working firmware update system that can be 
used in mission critical systems. The devices used for the system were an nRF52480 
microcontroller for the device that was updated and a Raspberry Pi for fetching the 
firmware package wirelessly. The nRF52480 was used without an operating system and 
the Raspberry Pi used the Linux-based Raspbian operating system. The nRF52480 and 
the Raspberry Pi communicated through UART to transfer the update package.

As a result of the thesis a working firmware update system was created. A custom protocol 
was created to reliably transfer the firmware package through UART. The bootloader from 
the nRF software development kit was used to verify and install the update. Two memory 
banks were used for updates to make the system more reliable. Testing was conducted to 
verify that the system works correctly. The system was able to recover if the update 
process was interrupted. The system could not recover if a faulty firmware was sent to the 
system. At the end of the thesis improvements to make the system more reliable are 
discussed.
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Sulautetut laitteet ovat tulleet yleisiksi matalampien hintojen ja teknologisten 
kehitysaskelten johdosta. Sulautettuja laitteita voidaan käyttää kriittisissä systeemeissä, 
joissa on vaatimuksia ennustettavissa olevalle prosessointiajalle ja luotettavuudelle. Niillä 
voi myös olla samaan aikaan vaatimuksia virrankäytölle ja hinnalle. Tämän johdosta 
ohjelmiston luominen näille laitteille voi olla hankalaa. Sulautettujen laitteiden ohjelmisto 
tarvitsee usein päivityksiä virheiden korjaamisen tai uusien ominaisuuksien lisäämistä 
varten. Laitteiden suuresta määrästä johtuen voi kuitenkin usein olla epäkäytännöllistä 
päivittää niitä paikallisesti. Siitä syystä on tarve laiteohjelmiston etäpäivitysjärjestelmälle.

Jotta päivitysdata voidaan siirtää luotettavasti laiteohjelmistopäivitysjärjestelmässä, data 
pitää vahvistaa tarkistussummilla. Salausta ja todennusta tarvitaan myös, jotta voidaan 
varmistaa, että data tulee luotetusta lähteestä eikä sitä ole muokattu. Systeemin pitää 
myös pystyä toipumaan, jos laite menettää virrat päivitysprosessin aikana. Tämä on 
mahdollista kun käytetään useaa muistipankkia eri ohjelmistoversioiden säilyttämiseksi.

Lopputyön tarkoituksena oli luoda toimiva laiteohjelmistopäivitysjärjestelmä, jota voidaan 
käyttää kriittisissä järjestelmissä. Systeemissä käytettiin nRF52480-mikrokontrolleria 
päivitettävänä laitteena ja Raspberry Pi:tä ohjelmistopaketin hakemiseen langattomasti. 
nRF52480-mikrokontrolleria käytettiin ilman käyttöjärjestelmää ja Raspberry Pi käytti 
Linux-pohjaista Raspbian-käyttöjärjestelmää. nRF52480 ja Raspberry Pi kommunikoivat 
UART:in kautta päivityspaketin siirtämistä varten.

Lopputyön tuloksena luotiin toimiva laiteohjelmistopäivitysjärjestelmä. Ohjelmistopaketin 
siirtämiseksi luotettavasti UART:in kautta käytettiin itsetehtyä protokollaa. Päivityksen 
varmistamiseen ja asentamiseen käytettiin käynnistyslatainta nRF-
ohjelmistokehityspaketista. Järjestelmässä käytettiin kahta muistipankkia, jotta se olisi 
luotettavampi. Systeemiä testattiin, jotta sen voitiin varmistaa toimivan oikein. Systeemi 
pystyi toipumaan päivitysprosessin keskeyttämisestä. Systeemi ei pystynyt palautumaan, 
jos sille lähetettiin viallinen ohjelmisto. Lopputyön lopussa kerrotaan parannuksista, joiden 
avulla systeemistä voisi tulla luotettavampi.

Avainsanat Esineiden internet, Käynnistyslatain, Laiteohjelmisto
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List of Abbreviations

BLE Bluetooth Low Energy. A wireless communication technology.

Bootloader A program that loads other programs when a computer boots.

CoAP Constrained  Application  Protocol.  An  internet  application  protocol  for  

constrained devices

CRC Cyclic Redundancy Check. Error-detecting code for detecting changes in 

data.

DFU Device Firmware Update. The process of updating the firmware on a  

device.

DTLS Datagram Transport Layer Security. A communication protocol that allows 

secure communication.

Flash memory

A type of non-volatile computer memory.

IoT Internet  of  Things.  Physical  objects  with  unique  identifiers  that  are 

connected to the internet.

MBR Master boot record. A program to allow updating the bootloader and the 

application on a system.

Microcontroller

A small computer on a single computer chip.

MQTT Message Queuing Telemetry Transport. A network protocol based on the 

publish-subscribe paradigm.

OTA Over-the-air



RTOS Real Time Operating System. Operating system that  fulfills  fixed time  

constraints.

SHA Secure Hash Algorithm. A set of cryptographic hash functions.

SoC System on a Chip. A small computer on a single computer chip.

UART Universal  Asynchronous  Receiver-transmitter.  A  computer  device  for 

asynchronous serial communication.
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1 Introduction

1.1 Overview

Embedded devices have become widespread in the last few decades due to reductions 

in prices and advancements in technology. One example of this trend is the Intel 4004 

which was the first microprocessor and had a 4-bit processor (shown in figure 1.). It 

was sold for  $60 in  1972 [1],  whereas today there  are  microcontrollers  with  32-bit 

processors that cost less than $1. These trends have allowed embedded devices to be 

used for  a  wide variety  of  applications  such as cars [2],  home appliances [3]  and 

factories  [4].  The devices  often need to be updated in  order  to  fix  bugs,  add new 

features, or improve performance. In the past the devices needed to be updated locally 

using a programming device. However, the large number of devices makes updating 

each  one  manually  impractical.  Because  of  this  there  is  a  need  for  a  convenient 

method to update the devices. Over-the-air updates are an efficient way to solve this 

issue. However, implementing  them in a reliable and efficient way can be challenging 

due to the limitations of embedded devices.
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Figure 1: Intel 4004 microprocessor [5]

The aim of this thesis was to create a working prototype system for over-the-air (OTA) 

firmware updates for the nRF52480 microcontroller. The thesis also discusses design 

decisions that can be made in a device firmware update (DFU) system.

1.2 Company Background

The  thesis  was  conducted  for  the  company  Wizense.  Wizense  creates  industrial 

Internet  of  things  (IoT)  solutions  for  companies.  Their  products  allow  tracking  the 

location of people or vehicles using wireless protocols, which helps improve safety of 

employees. Updating the tracking devices wirelessly allows bug fixes and new features 

to be delivered more conveniently. The prototype system developed in this thesis can 

be used as a basis to create a production ready system for these devices.

1.3 Objectives

The objective of the thesis was to design and implement a working DFU system. The 

system  used  the  nRF52480  microcontroller  and  the  Raspberry  Pi  single-board 
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computer. The nRF52480 used the nRF software development kit with no operating 

system. The Raspberry Pi ran a Linux based  operating system. One requirement was 

that the system should be able to recover if an update fails or the system crashes. An 

additional objective was to explain how remote firmware updates work, what features 

they can have and what existing systems there are.

1.4 Thesis Structure

The thesis is divided into five chapters. The first chapter introduces the background of 

the project and the need for the project. The second chapter describes existing studies 

and background information on the methods and technologies used. The third chapter 

describes the design and implementation. The fourth chapter explains the results of the 

project  and  discusses  the  current  implementation.  The  fifth  chapter  discusses  the 

conclusions from the project while the final chapter discusses possibilities for future 

development.

2 Theoretical Background

2.1 Prior Literature

As the Internet of things becomes more prevalent the need for reliable and efficient 

over-the-air firmware update systems increases. Due to the increased need research is 

being done regarding OTA firmware updates.  There are multiple areas of  research 

regarding OTA firmware updates. One area of research is addressing the challenges 

posed by the limited resources in typical IoT systems. IoT systems can have limitations 

in terms of  power usage,  processing power, RAM and flash memory capacity.  This 

creates some challenges for implementing firmware update systems.

Another area of research is delivering the firmware update to devices. Due to the low 

power  available  to  Internet  of  things  devices  their  wireless  signal  may  be  strong 

enough to reach the update server. Because of this protocols have been designed to 

connect the devices as a network where the nodes in the network forward data to each 

other. Using this approach all of the devices do not have to be directly connected to the 

update server. The study [6] discusses wireless firmware updates in urban scenarios. A 
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system was implemented for  the study using a long-range wireless broadcast.  The 

system uses asymmetric transmission similar to FM radio and digital television. The 

system is shown in figure 2. The study addresses reliability and security issues related 

to the transmission.

Security is also a big concern regarding OTA firmware updates. If the update system is 

not secure there is a risk of a malicious update being pushed to the system. It is also 

important  that  any critical  information is not leaked during the update process. The 

thesis [7] discusses creating an application for an Atmel microcontroller that sends air 

quality  data  from  a  sensor  and  a  DFU  system  for  it.  The  thesis  also  takes  into 

consideration  security  aspects  of  the  update.  The  thesis  talks  about  encryption, 

authentication, and secure ways to transfer a firmware update.

Recovering from errors during the update is also important. If the device can't recover 

from a failed update the device will be left in an unusable state and will have to be 

reprogrammed manually. The study [8] describes an implementation of a fail-safe OTA 

programming system. Methods to detect and recover from errors are described in the 

study. The methods include using a hardware watchdog and beacon messages. The 

Figure 2: A Scalable Software Update Service for IoT Devices [6, fig. 1.]
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beacon  messages  are  sent  by  a  server  and  the  bootloader  checks  that  they  are 

received. The study evaluates the system for scalability and reliability.

There have been surveys that looked at existing research regarding these areas. A 

survey  [9]  looks  at  research  regarding  embedded  software  design,  back-end 

frameworks and network transport. The study provides an overview of how firmware 

updates on constrained IoT devices work. The study also looks at open standards for 

firmware updates and cryptographic libraries. A prototype firmware update system that 

was implemented for the study is described. Multiple versions of the prototype system 

were  implemented  using  different  standards  and  cryptographic  libraries.  The  study 

compares the different standards and libraries based on security and resource usage.

Another  survey  [10]  looks  at  research  regarding  performing  firmware  updates  in 

efficient ways, distributing firmware updates and security. Some techniques such as 

differencing algorithms, delta script dissemination are discussed. These techniques aim 

to reduce the amount of data transferred during an update and increase the lifetime of 

the flash memory in the devices. The study discusses existing protocols focused on 

distributing  firmware  updates  and  security.  It  also  gives  an  overview  of  different 

firmware update platforms and their features.

There are some theses and articles that describe implementing OTA firmware update 

systems. The thesis [11] discusses using the nRF52840 development kit to create a 

proof of concept over-the-air firmware update system using Bluetooth Low Energy. An 

OTA DFU system with an example application was implemented using the nRF SDK 

and nRF Connect mobile application. The application includes Bluetooth Low Energy 

(BLE) services for DFU, a CO2 sensor, and LEDs. The thesis is similar to this one in 

that both use the nRF bootloader and similar hardware. However, in this thesis the 

transmission of update data was implemented in the application instead of using the 

bootloader to transmit data, which made the system more flexible. A firmware update 

server was also created in this thesis.

The  thesis  [12]  describes  a  bootloader  program,  a  DFU protocol  and  an interface 

program on a tablet that were developed for the thesis. The update protocol created 

uses the controller are network (CAN) bus. In a CAN bus all data is sent to all of the 

devices connected to the bus. The design of the bootloader is explained in the thesis.
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The article [13] discusses design decisions concerning OTA firmware updates and their 

trade-offs.  The  design  decisions  discussed  are  having  a  second-stage  bootloader, 

caching,  compression  and  protocols.  The  article  describes  implementing  a  DFU 

architecture  based  on  the  design  decisions  discussed.  Results,  security  and 

performance of the implementation are discussed at the end.

2.2 Embedded systems

An embedded system is a computer system that does a specific task inside a machine 

or a device [14, ch. 1.0]. They are different from general-purpose computers that can 

be used for many tasks. Some examples of devices that contain embedded systems 

are a microwave oven or a vending machine. The hardware on embedded systems is 

typically chosen to minimize cost, size, and power usage. Because of this embedded 

systems  often  have  tight  constraints  on  system  resources  [15].  Some  embedded 

systems also have specific timing requirements. These kinds of  systems are called 

real-time systems [16]. An example of a real-time system would be a car that needs to 

react to the brake pedal being pressed within a certain time frame.

Programs  on  embedded  systems  are  usually  called  firmware  instead  of  software. 

Firmware is made for specific hardware whereas software can typically be used on 

many hardware configurations. Firmware is stored in flash- or read-only memory [17]. 

Embedded devices can run on bare-metal without  an operating system or have an 

operating system. Real-time operating systems that have certain timing guarantees are 

also commonly used. Having an operating system requires more system resources, but 

also makes multitasking easier.

Most embedded systems run on microcontrollers [14, ch. 1.2.1]. Microcontrollers are a 

type  of  computer  that  runs  on  a  single  computer  chip.  They  are  different  from 

microprocessors in that they contain additional peripheral functions. They are useful 

because it  makes the system more compact  and efficient.  Microcontrollers  typically 

have  less  processing  power  than  microprocessor-based  systems  [18,  ch.  1]. 

Microcontrollers  contain  a  processor,  program  memory,  data  memory,  timers,  and 

peripherals  for  input/output.  They  can  also  contain  other  application  specific 

peripherals. A block diagram of a typical microcontroller is  shown in figure 3.
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Some  embedded  systems  also  use  systems  on  a  chip  (SoC)  which  are  like 

microcontrollers but, they integrate even more functions into one chip. They can have 

peripherals like graphics processing units, wireless modules like Bluetooth or Wi-Fi, 

and coprocessors. Integrating the parts onto one chip makes the system more efficient 

and can increase performance [19].

2.3 Internet of Things

Internet of things has become an important concept during the past decade. Figure 4. 

illustrates how the interest in IoT has increased using data from Google Trends. The 

term means physical objects with unique identifiers that are connected to the internet 

[20, p. 72]. The devices can use sensors to collect data and use actuators to affect 

their environment. Some examples of Internet of Things devices are a light bulb that 

can be turned on or  off  remotely  or  a  temperature  sensor  that  sends temperature 

readings to a mobile device.

CPU

Flash GPIO

RAM

Timer UART

Microcontroller

Figure 3: Block diagram of a typical microcontroller system
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The benefit of connecting objects to the Internet is that they can be accessed at any 

time  using  their  unique  identifier.  Internet  connected  devices  make  it  possible  to 

automate  and  optimize  tasks  in  factories,  homes and  cities  [21,  p.  4-5].  The  data 

collected by the devices can be sent to cloud servers to be processed. The information 

can then be sent to other devices or users. [22, ch. 1.1.] It is estimated that there were 

9.5 billion connected Internet of Things devices at the end of  2019 [23].  The large 

number of these devices makes updating them manually inconvenient, which is why 

OTA firmware updates have become commonplace for IoT devices.

2.4 Device Firmware Updates

Device firmware updates can be used to replace the firmware on a device. This makes 

it possible to fix bugs and add new features. In the past devices could only be updated 

locally, which made it impractical to update thousands of devices. However, with more 

devices having a wireless connection it is now possible to update them over-the-air. 

OTA updates  allow  devices  to  be  deployed  before  the  firmware  development  is 

finished. To update the firmware remotely the devices need to be connected to a server 

that sends the firmware data to the devices. In addition to sending the firmware binary 

some metadata about the firmware is commonly sent too. The metadata can contain 

Figure 4: Search interest in the term "IoT" over time
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things such as checksums to verify  the integrity  of  the  data,  hardware version the 

firmware is  meant  for  and the firmware version number.  This  information can help 

prevent incorrect firmware from being installed onto the device. After transferring the 

firmware binary a program called a bootloader is typically used to verify it and write it to 

flash.

There are some existing systems for OTA firmware updates such as UpdateHub [24], 

Mender [25] and SWUpdate [26].  These systems support security features such as 

encryption and have ways to easily  manage updates.  Mender and SWUpdate only 

support Linux while UpdateHub also supports the Zephyr operating system. Figure 5. 

illustrates how the Mender architecture works.
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MCUboot  is  a  secure  bootloader  that  supports  the  Zephyr  and  Apache  Mynewt 

operating  systems.  It  includes  support  for  cryptographic  signatures  and  encrypted 

firmware images.  [27.]  There is  an OTA firmware update framework for  the ESP32 

microcontroller.  The  framework  includes  a  Python  API  to  send  commands  to  the 

device.  The API  allows reading,  writing,  and switching the OTA partition.  [28.]  The 

STM32 microcontroller  has  a  software  module  called  SBSFU which  allows  secure 

firmware updates using secure boot [29]. There are also protocols such as Lightweight 

M2M that support OTA firmware updates [30].

Figure 5: Mender architecture [31]
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2.5 Bootloaders

Bootloaders  are  typically  the  first  program  that  runs  when  a  device  boots.  Their 

purpose  is  to  load  the  operating  system  or  firmware  into  memory.  On  embedded 

devices they are also used to update the firmware. When the bootloader runs it checks 

if an update is needed. This is often done using configuration parameters written by the 

application to non-volatile memory. [32, p. 9.] The update can either be loaded from 

flash or the bootloader can receive it from the update server. Once the firmware data is 

on the device it needs to be validated by the bootloader. The bootloader can check that 

the firmware version is  correct,  validate the data using a  cyclic  redundancy check 

(CRC) and check the cryptographic signature. If the firmware is valid the old firmware 

in flash memory is then overwritten with the new one, after which the new firmware is 

executed. If the new firmware does not work correctly a way to revert the firmware to a 

previous version is  needed to get  the device to a working state.  or  this  purpose a 

previous version of the firmware is often stored in memory in addition to the current 

version [9, ch. 2A]. This has the downside of using more memory. An example of this is  

shown in figure 6. It  is also possible to update the bootloader if  multiple bootloader 

stages are used [33, ch.: Multiple Boot Stages].

For a program to be able to be updated some modifications are needed. The program 

needs some way of knowing when an update is available. It also needs to be able to 

signal to the bootloader that an update is needed. Lastly the location of the application 

in memory needs to be modified so that it fits into memory along with the bootloader.  

Figure 6: Example of a memory map with two application images [34, fig. 2.]
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Sometimes ways to remotely check the firmware version a device has installed are 

added too.

In some cases it is necessary to minimize the amount of data written to flash memory 

in order to maximize the lifetime of the device and conserve power. In these cases a 

method  called  delta  update  can  be  used  to  calculate  the  differences  of  the  new 

firmware compared to the old one. This minimizes the data that needs to be transmitted 

by only sending the differing parts. [35.] Another way to reduce update sizes is to use 

compression algorithms. Lempel–Ziv–Welch (LZW) is a popular compression algorithm 

that can be implemented on embedded systems [36].

2.6 Network Topologies

When designing a DFU system the network topology needs to be taken into account. In 

some cases the devices are spread out geographically and it is not feasible for all of 

them to connect  to a central  server.  In  these cases a multi-hop system where the 

devices closer to the server forward data to the devices further away is needed [37].  

Multi-hop systems allow more devices to be reached but are more complicated. Figure 

7. illustrates a partially connected mesh network.
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There are a number of network topologies such as bus, star and mesh. Each type of 

topology has some advantages and disadvantages. In the star topology, for instance, 

each node is connected to one central node. This makes the network very simple, but 

also leaves the network susceptible to failure if the central node fails. Mesh networks 

are  a  common  type  of  topology  used  for  IoT  devices.  They  can  be  either  fully 

connected or partially connected. One benefit of mesh networks is that the network can 

keep functioning even if a node fails.

2.7 Protocols

The choice of protocol is important when designing a firmware update system. Different 

protocols have different features and properties. In some systems it is important to use 

protocols  that  use  less  energy  or  bandwidth.  Other  systems  need  low  latency  or 

reliability. Transmission distance can also be affected by the protocol. Multiple protocol 

layers can be used on top of each other. Some common protocols for IoT systems are 

message  queuing  telemetry  transport  (MQTT)  and  constrained  application  protocol 

(CoAP). Figure 8. compares typical IoT protocols to TCP/IP protocols.
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MQTT is a publish/subscribe based protocol with low bandwidth usage [40]. Devices 

using MQTT can subscribe to different topics. Each message published to that topic is 

sent to the devices that subscribe to the topic through a broker. MQTT also supports a 

quality of service setting that configures how reliable the data transmission needs to 

be.

CoAP is  a web transfer  protocol for  resource constrained devices [41].  Similarly to 

HTTP it works in a request/response-based format. There are different methods such 

as GET for getting data and PUT for sending data. There are also error codes for 

different error conditions. The protocol supports sending data to multiple devices using 

multicast and also has extensions such as encryption using datagram transport layer 

security (DTLS).

Figure 8: IoT protocols compared to TCP/IP protocols [39, fig. 3.]
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2.8 Security

There have been cases where vulnerabilities in IoT devices have been used to create 

botnets. One example is the Mirai malware that targeted IP cameras and home routers 

with weak login credentials [42]. Another example is the Ripple20 vulnerability [43]. It is 

important that these vulnerabilities are patched quickly before they can be exploited. 

Around 70% of the serious security bugs in the Chromium project were memory safety 

bugs [44]. Memory safety bugs can occur in languages with manual memory allocation 

such as C and C++ which are commonly used in embedded systems [45]. Static code 

analyzers can detect some of these issues.

DFU systems need  to  be  implemented  with  security  in  mind  or  they  risk  creating 

security  vulnerabilities  in  the  system.  If  cryptographic  signatures  are  not  used  for 

authenticating updates there is a risk that a malicious update could be installed by the 

device.  With  cryptographic  signatures  the  device  can  only  install  updates  from 

authorized sources. Using encryption for the firmware update process prevents a man-

in-the-middle  attack  where  the  update  package  is  tampered  with  or  sensitive 

information is leaked during transmission. Using version checks prevents the firmware 

from being reverted to an older version with vulnerabilities.

2.9 File Formats

The firmware file can be in different file formats. Intel HEX and Motorola SREC are file 

formats that store binary data as ASCII text [46] [47]. These formats are commonly 

used  for  programming  microcontrollers.  Both  of  the  formats  use  record  structures 

where  each  record  contains  a  type,  a  memory  address,  byte  count,  data,  and  a 

checksum. The records are represented as hexadecimal numbers. The files need to be 

converted to binary before they can be executed by the microcontroller.

2.10 nRF SDK

The nRF SDK contains  libraries  and  example  code  for  nRF  devices.  There  is  an 

example  bootloader  project  in  the  SDK  [48].  The  bootloader  handles  running  the 

application  when  the  device  boots.  It  can  also  download  updates  using  the  DFU 



16

protocol when it is set to DFU mode by the application. The bootloader can update the 

application  firmware,  the  Bluetooth software stack,  or  itself.  It  can use one or  two 

memory banks for updates. There is a secure version of the bootloader that requires 

that all updates are signed with a private key.

When building the nRF bootloader example there is an option in the configuration file to 

use one or two DFU banks. If one bank is used the previous firmware is overwritten 

when an update is performed. If the update validation fails the new firmware can’t be 

booted. If two banks are used the new firmware is first written in to the second bank 

and then validated. If the validation fails the old firmware is used. If it succeeds the old 

firmware is overwritten and the new firmware is booted.

There is also a DFU library in the SDK [49]. The DFU library contains functions for  

configuration,  validation and DFU transport.  There are example transport  layers for 

Bluetooth and serial. It’s also possible to create a custom transport layer. A protocol is 

defined  in  the  SDK  for  the  DFU  process.  The  protocol  includes  commands  for 

initializing,  transferring data and validating the update.  The protocol sends required 

information such as the type and size of update. The DFU process requires that a DFU 

package is created with the nRF Util tool. The package is a zip file that contains the 

firmware binary and the initialization packet. The initialization packet is sent during the 

DFU process and contains information about  the update.  The nRF Connect  mobile 

application can be used to update the device via Bluetooth [50]. Figure 9. demonstrates 

the nRF Connect mobile application.
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The nRF SDK contains the master boot record (MBR) which is the first thing that runs 

when the device is booted. The MBR makes it possible to update the bootloader and to 

recover from unexpected resets during the update process [51]. Once the MBR is done 

executing it runs the bootloader if one is detected. 

Figure 9: nRF Connect for Mobile
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3 Implementation

3.1 Overview

The goal of the thesis was to implement a working DFU system using the nRF52840 

microcontroller and the Raspberry Pi single-board-computer.  The nRF52840 used a 

custom firmware and a bootloader from the nRF SDK. The Raspberry Pi  used the 

Raspbian operating system and a Python program for the DFU server. The Raspberry 

Pi periodically checks for new firmware versions from a file server and downloads them 

through  HTTP.  The  new  firmware  is  transferred  through  universal  asynchronous 

receiver-transmitter (UART) from the Raspberry Pi to the nRF52480. It is then written 

to flash memory, after which the system resets and the bootloader overwrites the old 

firmware if the new one is verified to be correct.

3.2 Hardware

The prototype system used an nRF52840 on a custom board made by Wizense for the 

device that is updated. The nRF52840 is an SoC made by Nordic Semiconductor. It 

contains 1MB of flash memory, 256 kB of RAM and includes support for Bluetooth 5. 

The processor is an ARM Cortex-M4F. [52.] Raspberry Pi was used to send the update 

package.  Raspberry  Pi  is  a  single-board  computer  which  means  it  works  with 

peripherals  such as a monitor.  The Raspberry Pi  model  is  Raspberry Pi 2B,  which 

contains a 900 Mhz quad-core ARM Cortex-A7 CPU and 1GB RAM [53]. Figure 10. 

demonstrates the development setup used for the project.
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The Raspberry  Pi  is  not  suitable  for  some industrial  uses  due  to  a  lack  of  some 

connectivity interfaces and not being able to endure harsh conditions [54].  In future 

versions of  the system another device could be used instead of  the Raspberry Pi. 

Figure 10. demonstrates the development setup for the system.

3.3 DFU Protocol

The DFU transport layer from the nRF SDK was not used for the system. A custom 

protocol was instead designed by the author. The custom protocol makes the system 

more  flexible  and  makes  it  easier  to  add  custom  features  such  as  compression, 

encoding,  and  encryption.  Table  1.  demonstrates  the  firmware  update  protocol 

commands.  When  not  using  the  tranport  layer  from the  nRF  SDK an  initialization 

packet needs to be created by the device so that the bootloader can verify the update.

Figure 10: Development setup for the DFU system
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Table 1: Firmware update protocol commands

Command Description Parameters

0 Get firmware version number None

1 Get number of firmware chunks None

2 Get firmware SHA-256 hash None

3 Get firmware chunk Chunk number (0-255)

The firmware package is sent  from the Raspberry Pi to the nRF52480 via a serial 

UART connection. The nRF52480 receives an interrupt when it gets the command to 

start the DFU. Then it sends a request to fetch the version number of the new firmware. 

If  there is a new firmware available the client then sends a request to get the new 

firmware. The update is sent to the client in parts of 1024 bytes each with a CRC code 

for each part to check that it is valid. Sending the firmware in parts has the benefit of 

not having to resend the entire file if there is a transmission error. The update process 

is illustrated in figure 11.
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The Raspberry Pi software was implemented using Python. The program first sends a 

command to the device to start the update process and then waits for commands from 

the serial  port.  There are commands for  getting the version number  of  the newest 

firmware, getting the number of chunks of the firmware file, getting a specific chunk of 

the firmware file,  getting the 256-bit  secure hash algorithm (SHA-256)  hash of  the 

firmware file. Code from the nRF Util program by nRF was used as an example for 

calculating the update hash. The firmware chunks and the SHA-256 hash are sent with 

a CRC code to make sure they are not corrupted during the transfer. The firmware file 

needs to be converted from the Intel HEX format to a binary format before sending it to 

the nRF52480. Code for sending an update chunk to the device is shown in listing 1.  

DFU ServerDFU Client

Perform update

File Server

Get new firmware file

Get firmware hash

Get newest firmware version number

Check if there is a new firmware file

Get number of firmware chunks

Fetch each firmware chunk

Start Firmware Update

Viewer does not support full SVG 1.1

Figure 11: Diagram of the DFU process
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The code calculates a CRC code and a length for the data and sends it through the 

serial port.

def send_update_chunk(chunk, dfu_data, ser):
    try:
        if chunk < num_chunks:
            data = dfu_data[chunk * chunk_size: (chunk + 1) * chunk_size]
        else:
            data = b''
        crc = crc32(data) & 0xffffffff
        crc = '{0:0>8x}'.format(crc)
        len1 = (len(data) & 0xff00) >> 8
        len2 = len(data) & 0xff
        lenbytes = bytes((len1, len2, len1 ^ 0xff, len2 ^ 0xff))
        crcbytes = bytes(int(crc[n * 2 : n * 2 + 2], 16) for n in range(4))
        ser.write(lenbytes + data + crcbytes)
    except serial.SerialTimeoutException as e:
        print('timed out')

Listing 1. Python code from the server program to send an update chunk to the device

3.4 DFU Process

The existing bootloader from the nRF software development kit was used for booting 

and validating the firmware. Using an existing bootloader saves development time and 

avoids the risk of creating bugs in the bootloader. The bootloader is programmed onto 

the device along with the application, the bootloader settings file and the master boot 

record. The memory map of the system is shown in table 2.

Table 2: System memory map

Memory area Purpose

0x00000-0x01000 Master boot record

0x01000-0xDFFFF Application

0xE0000-0xFDFFF Bootloader

0xFE000-0xFEFFF MBR parameters

0xFF000-0xFFFFF Bootloader settings

The settings file needs to be programmed into the flash memory before starting the 

application  because  some  of  the  values  in  the  settings  can’t  be  written  from  the 

application. The settings file is generated using the nRF Util command line program 

(Listing 2.).
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nrfutil settings generate --application application.hex --family NRF52840 --
application-version 0 --bootloader-version 0 --bl-settings-version 2 
settings.hex

Listing 2. The command for creating the bootloader settings file

When the application updates it sends commands to the Raspberry Pi through UART. It 

checks if there is a new firmware available and then fetches the firmware in chunks. 

Each firmware chunk is validated with a CRC code. If one of the CRC checks fails the 

application  retries  20  times  before  stopping.  Once  the  firmware  binary  has  been 

received  the  application  writes  the  bootloader  settings  to  the  global  variable 

s_dfu_settings. The bootloader settings have the location and offset of the firmware 

binary and an initialization packet. The initialization packet is in the protobuf format and 

the structure of the packet is defined in the nRF SDK. Protobuf is a format defined by 

Google for serializing structured data [55]. The initialization packet contains information 

about the firmware binary, its SHA-256 hash and CRC code. The code for creating the 

initialization packet is shown in listing 3. The flash memory has two memory banks for 

application images. After writing the bootloader settings the application then writes the 

new firmware from RAM into the second memory bank. The system then reboots.

memset(s_dfu_settings.init_command, 0xFF, INIT_COMMAND_MAX_SIZE);

dfu_packet_t packet = DFU_PACKET_INIT_DEFAULT;
packet.has_command = true;
packet.command.has_init = true;
packet.command.init.has_type = true;
packet.command.init.type = DFU_FW_TYPE_APPLICATION;
packet.command.init.has_app_size = true;
packet.command.init.app_size = 0;
packet.command.init.has_is_debug = true;
packet.command.init.is_debug = true;
packet.command.init.has_hash = true;
packet.command.init.hash.hash_type = DFU_HASH_TYPE_SHA256;
packet.command.init.hash.hash.size = 32;
uint8_t hash_bytes[32] = {0};

packet.command.init.app_size = data_received;
memcpy(packet.command.init.hash.hash.bytes, hash_bytes, sizeof(hash_bytes));
uint8_t buffer[DFU_INIT_COMMAND_SIZE] = {0};
pb_ostream_t stream;
stream = pb_ostream_from_buffer(buffer, sizeof(buffer));
bool success = pb_encode(&stream, dfu_packet_fields, &packet);
if (!success) loop_forever();
memcpy(s_dfu_settings.init_command, buffer, stream.bytes_written);

Listing 3. Code for creating the initialization packet

When the device boots the MBR is  the first  thing that  runs.  The MBR checks if  a 

bootloader is present and executes it [56]. When the bootloader runs it checks if there 

is a new firmware that can be activated. If a new firmware is found the bootloader then 
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performs post validation. In post validation the bootloader checks that the SHA-256 

hash, CRC code and other information in the bootloader settings match the firmware 

binary [57]. If the validation succeeds the firmware is then activated. During activation 

the bootloader overwrites the old firmware in the first memory bank with the new one 

and updates the bootloader settings page [58]. The bootloader then executes the new 

firmware. Figure 12. illustrates the system boot procedure.
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When  the  application  runs  it  can  receive  another  update  from  the  server.  The 

application can also be updated to a completely  different  application.  If  the update 

process is interrupted the system is able to recover to a working state.

3.5 Testing

In order to verify the functionality of the system testing is required. In order to test the 

system the correct functionality needed to be defined first. The DFU process needed to 

be interruptible in order to be reliable. If the system is not interruptible the system can 

be left in a non-working state after an update. The system needed to be able detect if 

the firmware is corrupted during transmission. If this feature was not implemented the 

corruption could cause errors in the system. The device also needed to be able to 

recover if a faulty firmware was sent to the device. These requirements are listed in 

table 3.

Table 3: Testing results

Requirement Result

Device can recover if the DFU process is 

interrupted during transmission.

Device kept trying to receive transmission 

for 20 seconds and then stopped the DFU 

process.

Device can recover if the firmware is 

corrupted during transmission.

Device recovered after rebooting.

Device can recover if a faulty firmware is 

sent to the device.

Device got stuck and didn’t recover.

The system was tested based on the requirements. The first two requirements were 

met  while  the  last  one  was  not.  Possible  ways  to  meet  the  last  requirement  are 

discussed in chapter 6.  The system was also tested by updating to firmwares with 

different file sizes and functionalities.

3.6 Challenges

There were a number of challenges during the implementation. There was a problem 

where the system would reboot during the DFU process, but not update to the new 
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firmware.  Using  a  debugger  it  was  noticed  that  the  system  didn’t  execute  the 

bootloader.  The  solution  was  to  add  the  master  boot  record  to  the  device’s  flash 

memory. To do this the memory address for  the application needed to be changed 

(Figure 13.). After adding the MBR the bootloader executed correctly.

There was an issue with getting the UART transmission to work. The UART connection 

worked very unreliably and sometimes sent random data. When the UART connection 

was analyzed with a logic analyzer it was noticed that the RX pin on the Raspberry Pi 

was stuck on high logic level even when it was not connected. It was also noticed that 

there was a warning on the Raspberry Pi console about undervoltage. The issue was 

fixed by using a  shorter  power  cable  with less resistance.  Similar  issues could be 
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avoided in the future by testing what happens when the system doesn’t get enough 

voltage.

4 Results

The  thesis  explained  how  over-the-air  firmware  updates  work  and  reviewed  prior 

literature on the subject. A working OTA firmware update system was created for the 

thesis.  Figure  14.  illustrates  an  overview  of  the  system.  DFU  client  and  server 

programs were created. The client program runs on the nRF52480 and communicates 

with the server program through UART. The server program is written in Python and 

runs on a Raspberry Pi. New updates can be deployed by uploading them to the file 

server.

A way to transmit firmware updates to the device in application code was developed for 

the  thesis.  A custom  protocol  that  includes  CRC  codes  to  validate  the  data  was 

designed to transfer the update. The system used a bootloader from the nRF SDK to 

validate and apply the update. The system can be easily extended to add new features. 

Because the system transfers the update in application code it is easier to modify it to 

work  with  a  different  bootloader.   The  system is  scalable  to  multiple  devices.  The 

system was tested to validate its  functionality.  The system can survive a power-off 

during  the  update  process  due  to  the  bootloader  being  power  fail-safe  [58].  One 

potential reliability issue was discovered based on the testing. 

UART File serverHTTP

Raspberry Pi

nRF52480

Application

nRF Bootloader

Figure 14: Diagram of the firmware update system
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5 Conclusions

DFU systems are important for embedded systems that are deployed at large scale. To 

update device firmware a program called a bootloader is used. It checks the validity of 

the new firmware and overwrites the old one.  For  DFU systems to be reliable the 

update process needs to be interruptible. Multiple application images can be stored so 

that the system can revert to an older version if an update fails. There are a number of 

ways the update process can be optimized to reduce power usage and increase device 

lifetime.  Different  protocols  such  as  MQTT  and  CoAP  can  be  used  for  firmware 

updates.  The  protocols  can  have  different  features  such  as  quality  of  service  and 

multicast.

A working DFU system was created for the thesis. The basic functionality of the system 

works  correctly.  The  system is  power  fail-safe,  which  makes  it  more  reliable.  The 

system can verify that the update file is correct by calculating CRC codes for the data. 

It's possible that the system can get into a nonworking state if a faulty firmware update 

is installed onto the system. There are possible changes that can be made in the future 

to mitigate this problem. Using an existing bootloader made the development process 

easier. Using a custom protocol to transfer the update made the system more flexible. 

6 Future Development

In the future features such as automating update deployment could be added to make 

the  update  process  more  convenient.  New  firmware  could  be  built  and  deployed 

automatically whenever a new version of  the source code is checked in to version 

control. The system could also monitor the state of the devices. The protocol used for 

the system could also be improved to be more flexible. Features that make the update 

process more efficient could also be added. Some examples are only sending parts of 

the firmware that  are different  from the previous version and using a compression 

algorithm on the data.  The system could also be modified  to work with a  network 

module  instead  of  a  Raspberry  Pi.  Support  could  also  be  added  for  new transfer 

protocols such as Bluetooth. Other bootloaders could also be supported.

There  are  a  number  of  improvements  that  could  be  made  to  the  reliability  of  the 

firmware update system, for instance a watchdog feature could be added that detects if 
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a new firmware is faulty and reverts to an older version. Errors could be detected using 

a flag that needs to be set by new firmware when it’s first booted to tell the bootloader 

the  firmware  is  working.  Another  option  could  be  to  modify  the  bootloader  to  not 

overwrite  the  old  version  of  the  firmware.  Exception  handlers  could  also  be 

implemented to detect errors in the firmware. 

Currently  the  update  has  some  flaws  in  terms  of  security.  The  system  does  not 

currently use cryptographic signatures to authenticate update data, which can make 

the  system  vulnerable  if  the  update  server  is  compromised.  The  nRF  bootloader 

supports  cryptographic  signatures so they could  be added with minimal  effort.  The 

system also does not currently encrypt update data, which allows the update data to be 

modified by a man-in-the-middle attack. There are existing libraries that could be used 

to implement this feature. 
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