
Aarno Toiviainen

Over-the-air firmware update for
mission critical embedded devices

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Bachelor’s Thesis

6 November 2020

Abstract

Author
Title

Number of Pages
Date

Aarno Toiviainen
Over-the-air firmware update for mission critical embedded
devices

29 pages
6.11.2020

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Professional Major Smart Systems

Instructors Jussi Heiskanen, Project Manager
Sami Sainio, Senior Lecturer

Due to lower cost and advancements in technology embedded devices have become
widespread in the recent years. Embedded devices can be used in mission critical
applications with requirements for predictable processing time and reliability. At the same
time, they can also have requirements on power usage and cost. As a result of these
requirements creating software for these devices can be challenging. The firmware on
these devices often needs to be updated to fix bugs or add new features. However, due to
the large number of these devices its often impractical to update them locally. For that
reason remote firmware update systems are needed.

In order to transmit the update data reliably in a firmware update system the data needs to
be validated with checksums. Encryption and authentication are also needed to make sure
the data comes from a trusted source and hasn't been modified. The system also needs to
be able to recover if the device loses power during the update process. This can be done
by using multiple memory banks to store different firmware versions.

The purpose of the thesis was to create a working firmware update system that can be
used in mission critical systems. The devices used for the system were an nRF52480
microcontroller for the device that was updated and a Raspberry Pi for fetching the
firmware package wirelessly. The nRF52480 was used without an operating system and
the Raspberry Pi used the Linux-based Raspbian operating system. The nRF52480 and
the Raspberry Pi communicated through UART to transfer the update package.

As a result of the thesis a working firmware update system was created. A custom protocol
was created to reliably transfer the firmware package through UART. The bootloader from
the nRF software development kit was used to verify and install the update. Two memory
banks were used for updates to make the system more reliable. Testing was conducted to
verify that the system works correctly. The system was able to recover if the update
process was interrupted. The system could not recover if a faulty firmware was sent to the
system. At the end of the thesis improvements to make the system more reliable are
discussed.

Keywords Internet of Things, IoT, Bootloader, Firmware

Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Aarno Toiviainen
Langaton laiteohjelmistopäivitys missiokriittisille sulautetuille
laitteille

29 sivua
6.11.2020

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Älykkäät järjestelmät

Ohjaajat Projektipäällikkö Jussi Heiskanen
Lehtori Sami Sainio

Sulautetut laitteet ovat tulleet yleisiksi matalampien hintojen ja teknologisten
kehitysaskelten johdosta. Sulautettuja laitteita voidaan käyttää kriittisissä systeemeissä,
joissa on vaatimuksia ennustettavissa olevalle prosessointiajalle ja luotettavuudelle. Niillä
voi myös olla samaan aikaan vaatimuksia virrankäytölle ja hinnalle. Tämän johdosta
ohjelmiston luominen näille laitteille voi olla hankalaa. Sulautettujen laitteiden ohjelmisto
tarvitsee usein päivityksiä virheiden korjaamisen tai uusien ominaisuuksien lisäämistä
varten. Laitteiden suuresta määrästä johtuen voi kuitenkin usein olla epäkäytännöllistä
päivittää niitä paikallisesti. Siitä syystä on tarve laiteohjelmiston etäpäivitysjärjestelmälle.

Jotta päivitysdata voidaan siirtää luotettavasti laiteohjelmistopäivitysjärjestelmässä, data
pitää vahvistaa tarkistussummilla. Salausta ja todennusta tarvitaan myös, jotta voidaan
varmistaa, että data tulee luotetusta lähteestä eikä sitä ole muokattu. Systeemin pitää
myös pystyä toipumaan, jos laite menettää virrat päivitysprosessin aikana. Tämä on
mahdollista kun käytetään useaa muistipankkia eri ohjelmistoversioiden säilyttämiseksi.

Lopputyön tarkoituksena oli luoda toimiva laiteohjelmistopäivitysjärjestelmä, jota voidaan
käyttää kriittisissä järjestelmissä. Systeemissä käytettiin nRF52480-mikrokontrolleria
päivitettävänä laitteena ja Raspberry Pi:tä ohjelmistopaketin hakemiseen langattomasti.
nRF52480-mikrokontrolleria käytettiin ilman käyttöjärjestelmää ja Raspberry Pi käytti
Linux-pohjaista Raspbian-käyttöjärjestelmää. nRF52480 ja Raspberry Pi kommunikoivat
UART:in kautta päivityspaketin siirtämistä varten.

Lopputyön tuloksena luotiin toimiva laiteohjelmistopäivitysjärjestelmä. Ohjelmistopaketin
siirtämiseksi luotettavasti UART:in kautta käytettiin itsetehtyä protokollaa. Päivityksen
varmistamiseen ja asentamiseen käytettiin käynnistyslatainta nRF-
ohjelmistokehityspaketista. Järjestelmässä käytettiin kahta muistipankkia, jotta se olisi
luotettavampi. Systeemiä testattiin, jotta sen voitiin varmistaa toimivan oikein. Systeemi
pystyi toipumaan päivitysprosessin keskeyttämisestä. Systeemi ei pystynyt palautumaan,
jos sille lähetettiin viallinen ohjelmisto. Lopputyön lopussa kerrotaan parannuksista, joiden
avulla systeemistä voisi tulla luotettavampi.

Avainsanat Esineiden internet, Käynnistyslatain, Laiteohjelmisto

Contents

List of Abbreviations

1 Introduction...1

1.1 Overview...1

1.2 Company Background...2

1.3 Objectives..2

1.4 Thesis Structure...3

2 Theoretical Background..3

2.1 Prior Literature..3

2.2 Embedded systems..6

2.3 Internet of Things..7

2.4 Device Firmware Updates...8

2.5 Bootloaders..11

2.6 Network Topologies..12

2.7 Protocols..13

2.8 Security...15

2.9 File Formats..15

2.10 nRF SDK...15

3 Implementation..18

3.1 Overview...18

3.2 Hardware...18

3.3 DFU Protocol..19

3.4 DFU Process..22

3.5 Testing...25

3.6 Challenges...26

4 Results...27

5 Conclusions...28

6 Future Development..28

List of Abbreviations

BLE Bluetooth Low Energy. A wireless communication technology.

Bootloader A program that loads other programs when a computer boots.

CoAP Constrained Application Protocol. An internet application protocol for

constrained devices

CRC Cyclic Redundancy Check. Error-detecting code for detecting changes in

data.

DFU Device Firmware Update. The process of updating the firmware on a

device.

DTLS Datagram Transport Layer Security. A communication protocol that allows

secure communication.

Flash memory

A type of non-volatile computer memory.

IoT Internet of Things. Physical objects with unique identifiers that are

connected to the internet.

MBR Master boot record. A program to allow updating the bootloader and the

application on a system.

Microcontroller

A small computer on a single computer chip.

MQTT Message Queuing Telemetry Transport. A network protocol based on the

publish-subscribe paradigm.

OTA Over-the-air

RTOS Real Time Operating System. Operating system that fulfills fixed time

constraints.

SHA Secure Hash Algorithm. A set of cryptographic hash functions.

SoC System on a Chip. A small computer on a single computer chip.

UART Universal Asynchronous Receiver-transmitter. A computer device for

asynchronous serial communication.

1

1 Introduction

1.1 Overview

Embedded devices have become widespread in the last few decades due to reductions

in prices and advancements in technology. One example of this trend is the Intel 4004

which was the first microprocessor and had a 4-bit processor (shown in figure 1.). It

was sold for $60 in 1972 [1], whereas today there are microcontrollers with 32-bit

processors that cost less than $1. These trends have allowed embedded devices to be

used for a wide variety of applications such as cars [2], home appliances [3] and

factories [4]. The devices often need to be updated in order to fix bugs, add new

features, or improve performance. In the past the devices needed to be updated locally

using a programming device. However, the large number of devices makes updating

each one manually impractical. Because of this there is a need for a convenient

method to update the devices. Over-the-air updates are an efficient way to solve this

issue. However, implementing them in a reliable and efficient way can be challenging

due to the limitations of embedded devices.

2

Figure 1: Intel 4004 microprocessor [5]

The aim of this thesis was to create a working prototype system for over-the-air (OTA)

firmware updates for the nRF52480 microcontroller. The thesis also discusses design

decisions that can be made in a device firmware update (DFU) system.

1.2 Company Background

The thesis was conducted for the company Wizense. Wizense creates industrial

Internet of things (IoT) solutions for companies. Their products allow tracking the

location of people or vehicles using wireless protocols, which helps improve safety of

employees. Updating the tracking devices wirelessly allows bug fixes and new features

to be delivered more conveniently. The prototype system developed in this thesis can

be used as a basis to create a production ready system for these devices.

1.3 Objectives

The objective of the thesis was to design and implement a working DFU system. The

system used the nRF52480 microcontroller and the Raspberry Pi single-board

3

computer. The nRF52480 used the nRF software development kit with no operating

system. The Raspberry Pi ran a Linux based operating system. One requirement was

that the system should be able to recover if an update fails or the system crashes. An

additional objective was to explain how remote firmware updates work, what features

they can have and what existing systems there are.

1.4 Thesis Structure

The thesis is divided into five chapters. The first chapter introduces the background of

the project and the need for the project. The second chapter describes existing studies

and background information on the methods and technologies used. The third chapter

describes the design and implementation. The fourth chapter explains the results of the

project and discusses the current implementation. The fifth chapter discusses the

conclusions from the project while the final chapter discusses possibilities for future

development.

2 Theoretical Background

2.1 Prior Literature

As the Internet of things becomes more prevalent the need for reliable and efficient

over-the-air firmware update systems increases. Due to the increased need research is

being done regarding OTA firmware updates. There are multiple areas of research

regarding OTA firmware updates. One area of research is addressing the challenges

posed by the limited resources in typical IoT systems. IoT systems can have limitations

in terms of power usage, processing power, RAM and flash memory capacity. This

creates some challenges for implementing firmware update systems.

Another area of research is delivering the firmware update to devices. Due to the low

power available to Internet of things devices their wireless signal may be strong

enough to reach the update server. Because of this protocols have been designed to

connect the devices as a network where the nodes in the network forward data to each

other. Using this approach all of the devices do not have to be directly connected to the

update server. The study [6] discusses wireless firmware updates in urban scenarios. A

4

system was implemented for the study using a long-range wireless broadcast. The

system uses asymmetric transmission similar to FM radio and digital television. The

system is shown in figure 2. The study addresses reliability and security issues related

to the transmission.

Security is also a big concern regarding OTA firmware updates. If the update system is

not secure there is a risk of a malicious update being pushed to the system. It is also

important that any critical information is not leaked during the update process. The

thesis [7] discusses creating an application for an Atmel microcontroller that sends air

quality data from a sensor and a DFU system for it. The thesis also takes into

consideration security aspects of the update. The thesis talks about encryption,

authentication, and secure ways to transfer a firmware update.

Recovering from errors during the update is also important. If the device can't recover

from a failed update the device will be left in an unusable state and will have to be

reprogrammed manually. The study [8] describes an implementation of a fail-safe OTA

programming system. Methods to detect and recover from errors are described in the

study. The methods include using a hardware watchdog and beacon messages. The

Figure 2: A Scalable Software Update Service for IoT Devices [6, fig. 1.]

5

beacon messages are sent by a server and the bootloader checks that they are

received. The study evaluates the system for scalability and reliability.

There have been surveys that looked at existing research regarding these areas. A

survey [9] looks at research regarding embedded software design, back-end

frameworks and network transport. The study provides an overview of how firmware

updates on constrained IoT devices work. The study also looks at open standards for

firmware updates and cryptographic libraries. A prototype firmware update system that

was implemented for the study is described. Multiple versions of the prototype system

were implemented using different standards and cryptographic libraries. The study

compares the different standards and libraries based on security and resource usage.

Another survey [10] looks at research regarding performing firmware updates in

efficient ways, distributing firmware updates and security. Some techniques such as

differencing algorithms, delta script dissemination are discussed. These techniques aim

to reduce the amount of data transferred during an update and increase the lifetime of

the flash memory in the devices. The study discusses existing protocols focused on

distributing firmware updates and security. It also gives an overview of different

firmware update platforms and their features.

There are some theses and articles that describe implementing OTA firmware update

systems. The thesis [11] discusses using the nRF52840 development kit to create a

proof of concept over-the-air firmware update system using Bluetooth Low Energy. An

OTA DFU system with an example application was implemented using the nRF SDK

and nRF Connect mobile application. The application includes Bluetooth Low Energy

(BLE) services for DFU, a CO2 sensor, and LEDs. The thesis is similar to this one in

that both use the nRF bootloader and similar hardware. However, in this thesis the

transmission of update data was implemented in the application instead of using the

bootloader to transmit data, which made the system more flexible. A firmware update

server was also created in this thesis.

The thesis [12] describes a bootloader program, a DFU protocol and an interface

program on a tablet that were developed for the thesis. The update protocol created

uses the controller are network (CAN) bus. In a CAN bus all data is sent to all of the

devices connected to the bus. The design of the bootloader is explained in the thesis.

6

The article [13] discusses design decisions concerning OTA firmware updates and their

trade-offs. The design decisions discussed are having a second-stage bootloader,

caching, compression and protocols. The article describes implementing a DFU

architecture based on the design decisions discussed. Results, security and

performance of the implementation are discussed at the end.

2.2 Embedded systems

An embedded system is a computer system that does a specific task inside a machine

or a device [14, ch. 1.0]. They are different from general-purpose computers that can

be used for many tasks. Some examples of devices that contain embedded systems

are a microwave oven or a vending machine. The hardware on embedded systems is

typically chosen to minimize cost, size, and power usage. Because of this embedded

systems often have tight constraints on system resources [15]. Some embedded

systems also have specific timing requirements. These kinds of systems are called

real-time systems [16]. An example of a real-time system would be a car that needs to

react to the brake pedal being pressed within a certain time frame.

Programs on embedded systems are usually called firmware instead of software.

Firmware is made for specific hardware whereas software can typically be used on

many hardware configurations. Firmware is stored in flash- or read-only memory [17].

Embedded devices can run on bare-metal without an operating system or have an

operating system. Real-time operating systems that have certain timing guarantees are

also commonly used. Having an operating system requires more system resources, but

also makes multitasking easier.

Most embedded systems run on microcontrollers [14, ch. 1.2.1]. Microcontrollers are a

type of computer that runs on a single computer chip. They are different from

microprocessors in that they contain additional peripheral functions. They are useful

because it makes the system more compact and efficient. Microcontrollers typically

have less processing power than microprocessor-based systems [18, ch. 1].

Microcontrollers contain a processor, program memory, data memory, timers, and

peripherals for input/output. They can also contain other application specific

peripherals. A block diagram of a typical microcontroller is shown in figure 3.

7

Some embedded systems also use systems on a chip (SoC) which are like

microcontrollers but, they integrate even more functions into one chip. They can have

peripherals like graphics processing units, wireless modules like Bluetooth or Wi-Fi,

and coprocessors. Integrating the parts onto one chip makes the system more efficient

and can increase performance [19].

2.3 Internet of Things

Internet of things has become an important concept during the past decade. Figure 4.

illustrates how the interest in IoT has increased using data from Google Trends. The

term means physical objects with unique identifiers that are connected to the internet

[20, p. 72]. The devices can use sensors to collect data and use actuators to affect

their environment. Some examples of Internet of Things devices are a light bulb that

can be turned on or off remotely or a temperature sensor that sends temperature

readings to a mobile device.

CPU

Flash GPIO

RAM

Timer UART

Microcontroller

Figure 3: Block diagram of a typical microcontroller system

8

The benefit of connecting objects to the Internet is that they can be accessed at any

time using their unique identifier. Internet connected devices make it possible to

automate and optimize tasks in factories, homes and cities [21, p. 4-5]. The data

collected by the devices can be sent to cloud servers to be processed. The information

can then be sent to other devices or users. [22, ch. 1.1.] It is estimated that there were

9.5 billion connected Internet of Things devices at the end of 2019 [23]. The large

number of these devices makes updating them manually inconvenient, which is why

OTA firmware updates have become commonplace for IoT devices.

2.4 Device Firmware Updates

Device firmware updates can be used to replace the firmware on a device. This makes

it possible to fix bugs and add new features. In the past devices could only be updated

locally, which made it impractical to update thousands of devices. However, with more

devices having a wireless connection it is now possible to update them over-the-air.

OTA updates allow devices to be deployed before the firmware development is

finished. To update the firmware remotely the devices need to be connected to a server

that sends the firmware data to the devices. In addition to sending the firmware binary

some metadata about the firmware is commonly sent too. The metadata can contain

Figure 4: Search interest in the term "IoT" over time

9

things such as checksums to verify the integrity of the data, hardware version the

firmware is meant for and the firmware version number. This information can help

prevent incorrect firmware from being installed onto the device. After transferring the

firmware binary a program called a bootloader is typically used to verify it and write it to

flash.

There are some existing systems for OTA firmware updates such as UpdateHub [24],

Mender [25] and SWUpdate [26]. These systems support security features such as

encryption and have ways to easily manage updates. Mender and SWUpdate only

support Linux while UpdateHub also supports the Zephyr operating system. Figure 5.

illustrates how the Mender architecture works.

10

MCUboot is a secure bootloader that supports the Zephyr and Apache Mynewt

operating systems. It includes support for cryptographic signatures and encrypted

firmware images. [27.] There is an OTA firmware update framework for the ESP32

microcontroller. The framework includes a Python API to send commands to the

device. The API allows reading, writing, and switching the OTA partition. [28.] The

STM32 microcontroller has a software module called SBSFU which allows secure

firmware updates using secure boot [29]. There are also protocols such as Lightweight

M2M that support OTA firmware updates [30].

Figure 5: Mender architecture [31]

11

2.5 Bootloaders

Bootloaders are typically the first program that runs when a device boots. Their

purpose is to load the operating system or firmware into memory. On embedded

devices they are also used to update the firmware. When the bootloader runs it checks

if an update is needed. This is often done using configuration parameters written by the

application to non-volatile memory. [32, p. 9.] The update can either be loaded from

flash or the bootloader can receive it from the update server. Once the firmware data is

on the device it needs to be validated by the bootloader. The bootloader can check that

the firmware version is correct, validate the data using a cyclic redundancy check

(CRC) and check the cryptographic signature. If the firmware is valid the old firmware

in flash memory is then overwritten with the new one, after which the new firmware is

executed. If the new firmware does not work correctly a way to revert the firmware to a

previous version is needed to get the device to a working state. or this purpose a

previous version of the firmware is often stored in memory in addition to the current

version [9, ch. 2A]. This has the downside of using more memory. An example of this is

shown in figure 6. It is also possible to update the bootloader if multiple bootloader

stages are used [33, ch.: Multiple Boot Stages].

For a program to be able to be updated some modifications are needed. The program

needs some way of knowing when an update is available. It also needs to be able to

signal to the bootloader that an update is needed. Lastly the location of the application

in memory needs to be modified so that it fits into memory along with the bootloader.

Figure 6: Example of a memory map with two application images [34, fig. 2.]

12

Sometimes ways to remotely check the firmware version a device has installed are

added too.

In some cases it is necessary to minimize the amount of data written to flash memory

in order to maximize the lifetime of the device and conserve power. In these cases a

method called delta update can be used to calculate the differences of the new

firmware compared to the old one. This minimizes the data that needs to be transmitted

by only sending the differing parts. [35.] Another way to reduce update sizes is to use

compression algorithms. Lempel–Ziv–Welch (LZW) is a popular compression algorithm

that can be implemented on embedded systems [36].

2.6 Network Topologies

When designing a DFU system the network topology needs to be taken into account. In

some cases the devices are spread out geographically and it is not feasible for all of

them to connect to a central server. In these cases a multi-hop system where the

devices closer to the server forward data to the devices further away is needed [37].

Multi-hop systems allow more devices to be reached but are more complicated. Figure

7. illustrates a partially connected mesh network.

13

There are a number of network topologies such as bus, star and mesh. Each type of

topology has some advantages and disadvantages. In the star topology, for instance,

each node is connected to one central node. This makes the network very simple, but

also leaves the network susceptible to failure if the central node fails. Mesh networks

are a common type of topology used for IoT devices. They can be either fully

connected or partially connected. One benefit of mesh networks is that the network can

keep functioning even if a node fails.

2.7 Protocols

The choice of protocol is important when designing a firmware update system. Different

protocols have different features and properties. In some systems it is important to use

protocols that use less energy or bandwidth. Other systems need low latency or

reliability. Transmission distance can also be affected by the protocol. Multiple protocol

layers can be used on top of each other. Some common protocols for IoT systems are

message queuing telemetry transport (MQTT) and constrained application protocol

(CoAP). Figure 8. compares typical IoT protocols to TCP/IP protocols.

14

MQTT is a publish/subscribe based protocol with low bandwidth usage [40]. Devices

using MQTT can subscribe to different topics. Each message published to that topic is

sent to the devices that subscribe to the topic through a broker. MQTT also supports a

quality of service setting that configures how reliable the data transmission needs to

be.

CoAP is a web transfer protocol for resource constrained devices [41]. Similarly to

HTTP it works in a request/response-based format. There are different methods such

as GET for getting data and PUT for sending data. There are also error codes for

different error conditions. The protocol supports sending data to multiple devices using

multicast and also has extensions such as encryption using datagram transport layer

security (DTLS).

Figure 8: IoT protocols compared to TCP/IP protocols [39, fig. 3.]

15

2.8 Security

There have been cases where vulnerabilities in IoT devices have been used to create

botnets. One example is the Mirai malware that targeted IP cameras and home routers

with weak login credentials [42]. Another example is the Ripple20 vulnerability [43]. It is

important that these vulnerabilities are patched quickly before they can be exploited.

Around 70% of the serious security bugs in the Chromium project were memory safety

bugs [44]. Memory safety bugs can occur in languages with manual memory allocation

such as C and C++ which are commonly used in embedded systems [45]. Static code

analyzers can detect some of these issues.

DFU systems need to be implemented with security in mind or they risk creating

security vulnerabilities in the system. If cryptographic signatures are not used for

authenticating updates there is a risk that a malicious update could be installed by the

device. With cryptographic signatures the device can only install updates from

authorized sources. Using encryption for the firmware update process prevents a man-

in-the-middle attack where the update package is tampered with or sensitive

information is leaked during transmission. Using version checks prevents the firmware

from being reverted to an older version with vulnerabilities.

2.9 File Formats

The firmware file can be in different file formats. Intel HEX and Motorola SREC are file

formats that store binary data as ASCII text [46] [47]. These formats are commonly

used for programming microcontrollers. Both of the formats use record structures

where each record contains a type, a memory address, byte count, data, and a

checksum. The records are represented as hexadecimal numbers. The files need to be

converted to binary before they can be executed by the microcontroller.

2.10 nRF SDK

The nRF SDK contains libraries and example code for nRF devices. There is an

example bootloader project in the SDK [48]. The bootloader handles running the

application when the device boots. It can also download updates using the DFU

16

protocol when it is set to DFU mode by the application. The bootloader can update the

application firmware, the Bluetooth software stack, or itself. It can use one or two

memory banks for updates. There is a secure version of the bootloader that requires

that all updates are signed with a private key.

When building the nRF bootloader example there is an option in the configuration file to

use one or two DFU banks. If one bank is used the previous firmware is overwritten

when an update is performed. If the update validation fails the new firmware can’t be

booted. If two banks are used the new firmware is first written in to the second bank

and then validated. If the validation fails the old firmware is used. If it succeeds the old

firmware is overwritten and the new firmware is booted.

There is also a DFU library in the SDK [49]. The DFU library contains functions for

configuration, validation and DFU transport. There are example transport layers for

Bluetooth and serial. It’s also possible to create a custom transport layer. A protocol is

defined in the SDK for the DFU process. The protocol includes commands for

initializing, transferring data and validating the update. The protocol sends required

information such as the type and size of update. The DFU process requires that a DFU

package is created with the nRF Util tool. The package is a zip file that contains the

firmware binary and the initialization packet. The initialization packet is sent during the

DFU process and contains information about the update. The nRF Connect mobile

application can be used to update the device via Bluetooth [50]. Figure 9. demonstrates

the nRF Connect mobile application.

17

The nRF SDK contains the master boot record (MBR) which is the first thing that runs

when the device is booted. The MBR makes it possible to update the bootloader and to

recover from unexpected resets during the update process [51]. Once the MBR is done

executing it runs the bootloader if one is detected.

Figure 9: nRF Connect for Mobile

18

3 Implementation

3.1 Overview

The goal of the thesis was to implement a working DFU system using the nRF52840

microcontroller and the Raspberry Pi single-board-computer. The nRF52840 used a

custom firmware and a bootloader from the nRF SDK. The Raspberry Pi used the

Raspbian operating system and a Python program for the DFU server. The Raspberry

Pi periodically checks for new firmware versions from a file server and downloads them

through HTTP. The new firmware is transferred through universal asynchronous

receiver-transmitter (UART) from the Raspberry Pi to the nRF52480. It is then written

to flash memory, after which the system resets and the bootloader overwrites the old

firmware if the new one is verified to be correct.

3.2 Hardware

The prototype system used an nRF52840 on a custom board made by Wizense for the

device that is updated. The nRF52840 is an SoC made by Nordic Semiconductor. It

contains 1MB of flash memory, 256 kB of RAM and includes support for Bluetooth 5.

The processor is an ARM Cortex-M4F. [52.] Raspberry Pi was used to send the update

package. Raspberry Pi is a single-board computer which means it works with

peripherals such as a monitor. The Raspberry Pi model is Raspberry Pi 2B, which

contains a 900 Mhz quad-core ARM Cortex-A7 CPU and 1GB RAM [53]. Figure 10.

demonstrates the development setup used for the project.

19

The Raspberry Pi is not suitable for some industrial uses due to a lack of some

connectivity interfaces and not being able to endure harsh conditions [54]. In future

versions of the system another device could be used instead of the Raspberry Pi.

Figure 10. demonstrates the development setup for the system.

3.3 DFU Protocol

The DFU transport layer from the nRF SDK was not used for the system. A custom

protocol was instead designed by the author. The custom protocol makes the system

more flexible and makes it easier to add custom features such as compression,

encoding, and encryption. Table 1. demonstrates the firmware update protocol

commands. When not using the tranport layer from the nRF SDK an initialization

packet needs to be created by the device so that the bootloader can verify the update.

Figure 10: Development setup for the DFU system

20

Table 1: Firmware update protocol commands

Command Description Parameters

0 Get firmware version number None

1 Get number of firmware chunks None

2 Get firmware SHA-256 hash None

3 Get firmware chunk Chunk number (0-255)

The firmware package is sent from the Raspberry Pi to the nRF52480 via a serial

UART connection. The nRF52480 receives an interrupt when it gets the command to

start the DFU. Then it sends a request to fetch the version number of the new firmware.

If there is a new firmware available the client then sends a request to get the new

firmware. The update is sent to the client in parts of 1024 bytes each with a CRC code

for each part to check that it is valid. Sending the firmware in parts has the benefit of

not having to resend the entire file if there is a transmission error. The update process

is illustrated in figure 11.

21

The Raspberry Pi software was implemented using Python. The program first sends a

command to the device to start the update process and then waits for commands from

the serial port. There are commands for getting the version number of the newest

firmware, getting the number of chunks of the firmware file, getting a specific chunk of

the firmware file, getting the 256-bit secure hash algorithm (SHA-256) hash of the

firmware file. Code from the nRF Util program by nRF was used as an example for

calculating the update hash. The firmware chunks and the SHA-256 hash are sent with

a CRC code to make sure they are not corrupted during the transfer. The firmware file

needs to be converted from the Intel HEX format to a binary format before sending it to

the nRF52480. Code for sending an update chunk to the device is shown in listing 1.

DFU ServerDFU Client

Perform update

File Server

Get new firmware file

Get firmware hash

Get newest firmware version number

Check if there is a new firmware file

Get number of firmware chunks

Fetch each firmware chunk

Start Firmware Update

Viewer does not support full SVG 1.1

Figure 11: Diagram of the DFU process

22

The code calculates a CRC code and a length for the data and sends it through the

serial port.

def send_update_chunk(chunk, dfu_data, ser):
 try:
 if chunk < num_chunks:
 data = dfu_data[chunk * chunk_size: (chunk + 1) * chunk_size]
 else:
 data = b''
 crc = crc32(data) & 0xffffffff
 crc = '{0:0>8x}'.format(crc)
 len1 = (len(data) & 0xff00) >> 8
 len2 = len(data) & 0xff
 lenbytes = bytes((len1, len2, len1 ^ 0xff, len2 ^ 0xff))
 crcbytes = bytes(int(crc[n * 2 : n * 2 + 2], 16) for n in range(4))
 ser.write(lenbytes + data + crcbytes)
 except serial.SerialTimeoutException as e:
 print('timed out')

Listing 1. Python code from the server program to send an update chunk to the device

3.4 DFU Process

The existing bootloader from the nRF software development kit was used for booting

and validating the firmware. Using an existing bootloader saves development time and

avoids the risk of creating bugs in the bootloader. The bootloader is programmed onto

the device along with the application, the bootloader settings file and the master boot

record. The memory map of the system is shown in table 2.

Table 2: System memory map

Memory area Purpose

0x00000-0x01000 Master boot record

0x01000-0xDFFFF Application

0xE0000-0xFDFFF Bootloader

0xFE000-0xFEFFF MBR parameters

0xFF000-0xFFFFF Bootloader settings

The settings file needs to be programmed into the flash memory before starting the

application because some of the values in the settings can’t be written from the

application. The settings file is generated using the nRF Util command line program

(Listing 2.).

23

nrfutil settings generate --application application.hex --family NRF52840 --
application-version 0 --bootloader-version 0 --bl-settings-version 2
settings.hex

Listing 2. The command for creating the bootloader settings file

When the application updates it sends commands to the Raspberry Pi through UART. It

checks if there is a new firmware available and then fetches the firmware in chunks.

Each firmware chunk is validated with a CRC code. If one of the CRC checks fails the

application retries 20 times before stopping. Once the firmware binary has been

received the application writes the bootloader settings to the global variable

s_dfu_settings. The bootloader settings have the location and offset of the firmware

binary and an initialization packet. The initialization packet is in the protobuf format and

the structure of the packet is defined in the nRF SDK. Protobuf is a format defined by

Google for serializing structured data [55]. The initialization packet contains information

about the firmware binary, its SHA-256 hash and CRC code. The code for creating the

initialization packet is shown in listing 3. The flash memory has two memory banks for

application images. After writing the bootloader settings the application then writes the

new firmware from RAM into the second memory bank. The system then reboots.

memset(s_dfu_settings.init_command, 0xFF, INIT_COMMAND_MAX_SIZE);

dfu_packet_t packet = DFU_PACKET_INIT_DEFAULT;
packet.has_command = true;
packet.command.has_init = true;
packet.command.init.has_type = true;
packet.command.init.type = DFU_FW_TYPE_APPLICATION;
packet.command.init.has_app_size = true;
packet.command.init.app_size = 0;
packet.command.init.has_is_debug = true;
packet.command.init.is_debug = true;
packet.command.init.has_hash = true;
packet.command.init.hash.hash_type = DFU_HASH_TYPE_SHA256;
packet.command.init.hash.hash.size = 32;
uint8_t hash_bytes[32] = {0};

packet.command.init.app_size = data_received;
memcpy(packet.command.init.hash.hash.bytes, hash_bytes, sizeof(hash_bytes));
uint8_t buffer[DFU_INIT_COMMAND_SIZE] = {0};
pb_ostream_t stream;
stream = pb_ostream_from_buffer(buffer, sizeof(buffer));
bool success = pb_encode(&stream, dfu_packet_fields, &packet);
if (!success) loop_forever();
memcpy(s_dfu_settings.init_command, buffer, stream.bytes_written);

Listing 3. Code for creating the initialization packet

When the device boots the MBR is the first thing that runs. The MBR checks if a

bootloader is present and executes it [56]. When the bootloader runs it checks if there

is a new firmware that can be activated. If a new firmware is found the bootloader then

24

performs post validation. In post validation the bootloader checks that the SHA-256

hash, CRC code and other information in the bootloader settings match the firmware

binary [57]. If the validation succeeds the firmware is then activated. During activation

the bootloader overwrites the old firmware in the first memory bank with the new one

and updates the bootloader settings page [58]. The bootloader then executes the new

firmware. Figure 12. illustrates the system boot procedure.

25

When the application runs it can receive another update from the server. The

application can also be updated to a completely different application. If the update

process is interrupted the system is able to recover to a working state.

3.5 Testing

In order to verify the functionality of the system testing is required. In order to test the

system the correct functionality needed to be defined first. The DFU process needed to

be interruptible in order to be reliable. If the system is not interruptible the system can

be left in a non-working state after an update. The system needed to be able detect if

the firmware is corrupted during transmission. If this feature was not implemented the

corruption could cause errors in the system. The device also needed to be able to

recover if a faulty firmware was sent to the device. These requirements are listed in

table 3.

Table 3: Testing results

Requirement Result

Device can recover if the DFU process is

interrupted during transmission.

Device kept trying to receive transmission

for 20 seconds and then stopped the DFU

process.

Device can recover if the firmware is

corrupted during transmission.

Device recovered after rebooting.

Device can recover if a faulty firmware is

sent to the device.

Device got stuck and didn’t recover.

The system was tested based on the requirements. The first two requirements were

met while the last one was not. Possible ways to meet the last requirement are

discussed in chapter 6. The system was also tested by updating to firmwares with

different file sizes and functionalities.

3.6 Challenges

There were a number of challenges during the implementation. There was a problem

where the system would reboot during the DFU process, but not update to the new

26

firmware. Using a debugger it was noticed that the system didn’t execute the

bootloader. The solution was to add the master boot record to the device’s flash

memory. To do this the memory address for the application needed to be changed

(Figure 13.). After adding the MBR the bootloader executed correctly.

There was an issue with getting the UART transmission to work. The UART connection

worked very unreliably and sometimes sent random data. When the UART connection

was analyzed with a logic analyzer it was noticed that the RX pin on the Raspberry Pi

was stuck on high logic level even when it was not connected. It was also noticed that

there was a warning on the Raspberry Pi console about undervoltage. The issue was

fixed by using a shorter power cable with less resistance. Similar issues could be

27

avoided in the future by testing what happens when the system doesn’t get enough

voltage.

4 Results

The thesis explained how over-the-air firmware updates work and reviewed prior

literature on the subject. A working OTA firmware update system was created for the

thesis. Figure 14. illustrates an overview of the system. DFU client and server

programs were created. The client program runs on the nRF52480 and communicates

with the server program through UART. The server program is written in Python and

runs on a Raspberry Pi. New updates can be deployed by uploading them to the file

server.

A way to transmit firmware updates to the device in application code was developed for

the thesis. A custom protocol that includes CRC codes to validate the data was

designed to transfer the update. The system used a bootloader from the nRF SDK to

validate and apply the update. The system can be easily extended to add new features.

Because the system transfers the update in application code it is easier to modify it to

work with a different bootloader. The system is scalable to multiple devices. The

system was tested to validate its functionality. The system can survive a power-off

during the update process due to the bootloader being power fail-safe [58]. One

potential reliability issue was discovered based on the testing.

UART File serverHTTP

Raspberry Pi

nRF52480

Application

nRF Bootloader

Figure 14: Diagram of the firmware update system

28

5 Conclusions

DFU systems are important for embedded systems that are deployed at large scale. To

update device firmware a program called a bootloader is used. It checks the validity of

the new firmware and overwrites the old one. For DFU systems to be reliable the

update process needs to be interruptible. Multiple application images can be stored so

that the system can revert to an older version if an update fails. There are a number of

ways the update process can be optimized to reduce power usage and increase device

lifetime. Different protocols such as MQTT and CoAP can be used for firmware

updates. The protocols can have different features such as quality of service and

multicast.

A working DFU system was created for the thesis. The basic functionality of the system

works correctly. The system is power fail-safe, which makes it more reliable. The

system can verify that the update file is correct by calculating CRC codes for the data.

It's possible that the system can get into a nonworking state if a faulty firmware update

is installed onto the system. There are possible changes that can be made in the future

to mitigate this problem. Using an existing bootloader made the development process

easier. Using a custom protocol to transfer the update made the system more flexible.

6 Future Development

In the future features such as automating update deployment could be added to make

the update process more convenient. New firmware could be built and deployed

automatically whenever a new version of the source code is checked in to version

control. The system could also monitor the state of the devices. The protocol used for

the system could also be improved to be more flexible. Features that make the update

process more efficient could also be added. Some examples are only sending parts of

the firmware that are different from the previous version and using a compression

algorithm on the data. The system could also be modified to work with a network

module instead of a Raspberry Pi. Support could also be added for new transfer

protocols such as Bluetooth. Other bootloaders could also be supported.

There are a number of improvements that could be made to the reliability of the

firmware update system, for instance a watchdog feature could be added that detects if

29

a new firmware is faulty and reverts to an older version. Errors could be detected using

a flag that needs to be set by new firmware when it’s first booted to tell the bootloader

the firmware is working. Another option could be to modify the bootloader to not

overwrite the old version of the firmware. Exception handlers could also be

implemented to detect errors in the firmware.

Currently the update has some flaws in terms of security. The system does not

currently use cryptographic signatures to authenticate update data, which can make

the system vulnerable if the update server is compromised. The nRF bootloader

supports cryptographic signatures so they could be added with minimal effort. The

system also does not currently encrypt update data, which allows the update data to be

modified by a man-in-the-middle attack. There are existing libraries that could be used

to implement this feature.

30

References

1 Dufresne, Steven. 2018. Inventing The Microprocessor: The Intel 4004. Online
material. <https://hackaday.com/2018/01/29/inventing-the-microprocessor-the-
intel-4004/>. Read 28.8.2020

2 Electronic Control Unit. Online material. Wikipedia. <https://en.wikipedia.org/wiki/
Electronic_control_unit>. Read 28.8.2020

3 What is a Smart Refrigerator?. Online material. Lifewire.
<https://www.lifewire.com/smart-refrigerator-4158327>.

4 Industrial internet of things. Online material. Wikipedia. <https://en.wikipedia.org/
wiki/Industrial_internet_of_things> Read 28.8.2020

5 Intel C4004. Picture. Wikipedia. <https://en.wikipedia.org/wiki/Intel_4004#/media/
File:Intel_C4004.jpg>

6 Toro-Betancur, Verónica; Zamora, José Viquez; Antikainen, Markku; Di
Francesco, Mario. 2019. Article. A Scalable Software Update Service for IoT
Devices in Urban Scenarios. <https://doi.org/10.1145/3365871.3365880>

7 Riissanen, Pasi. 2016. Remote Firmware Updating. Thesis.
<http://urn.fi/URN:NBN:fi:amk-2016113018404>

8 Unterschütz. Stefan; Turau, Volker. 2012. Fail-safe over-the-air programming and
error recovery in wireless networks. Article.

9 Zandberg, Koen; Schleiser, Kaspar; Acosta, Francisco; Tschofenig, Hannes;
Baccelli, Emmanuel. 2019. Secure Firmware Updates for Constrained IoT
Devices Using Open Standards: A Reality Check. Article.
<https://doi.org/10.1109/ACCESS.2019.2919760>

10 Arakadakis, Konstantinos; Charalampidis, Pavlos; Makrogiannakis, Antonis;
Fragkiadakis, Alexandros. 2020. Firmware over-the-air programming techniques
for IoT networks -- A survey. Article. <https://arxiv.org/abs/2009.02260>

11 Nguyen Anh, Tuan. 2019. Over-the-Air Firmware Update for Bluetooth Low
Energy Devices. Thesis. <http://urn.fi/URN:NBN:fi:amk-2019111321136>

12 Korpelin, Kimmo. 2018. Boot loader and firmware update protocol for embedded
devices. Thesis. <http://urn.fi/URN:NBN:fi:amk-2018052410185>

13 Brown, Benjamin Bucklin. 2018. Article.
<https://www.analog.com/media/en/analog-dialogue/volume-52/number-4/over-
the-air-ota-updates-in-embedded-microcontroller-applications.pdf>

14 Canton, Maria P.; Sanchez, Julio. 2017. Embedded Systems Circuits and
Programming. E-book. <https://www.oreilly.com/library/view/embedded-systems-
circuits/9781439879313/>

31

15 Embedded System. Online material. Wikipedia.
<https://en.wikipedia.org/wiki/Embedded_system>. Read 16.9.2020

16 Real-time Computing. Online material. Wikipedia.
<https://en.wikipedia.org/wiki/Real-time_computing>. Read 16.9.2020

17 Firmware. Online material. Wikipedia.<https://en.wikipedia.org/wiki/Firmware>.
Read 16.9.2020

18 Bishop, Owen. 2013. Microelectronics – Systems and Devices. E-book.
<https://learning.oreilly.com/library/view/microelectronics-systems/
9780750647236/>

19 System on a chip. Online material. Wikipedia.
<https://en.wikipedia.org/wiki/System_on_a_chip>. Read 21.9.2020

20 Towards a definition of the Internet of Things (IoT). 2015. Article. IEEE.
<https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_T
hings_Revision1_27MAY15.pdf>

21 Ramgir, Mayur. 2019. Internet of Things. E-book.
<https://learning.oreilly.com/library/view/internet-of-things/9789353941529/>

22 Veltri, Luca; Picone. Marco; Cirani, Simone; Ferrari, Gianluigi. 2018. Internet of
Things. E-book.
<https://learning.oreilly.com/library/view/internet-of-things/9781119359678/>

23 Lueth, Knud. 2020. IoT 2019 in Review: The 10 Most Relevant IoT Developments
of the Year. Online material. <https://iot-analytics.com/iot-2019-in-review/>. Read
17.4.2020.

24 What is UpdateHub?. Online material. UpdateHub.
<https://docs.updatehub.io/what-is-updatehub/>. Read 20.10.2020

25 Mender. Online material. <https://mender.io/>. Read 20.10.2020

26 SWUpdate. Online material. <http://sbabic.github.io/swupdate/swupdate.html>.
Read 20.10.2020

27 mcuboot. Online material. <https://mcuboot.com/>. Read 26.10.2020

28 Over the air updates (OTA). Online material. Espressif Systems.
<https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
system/ota.html>. Read 26.10.2020

29 X-CUBE-SBSFU. Online material. STMicroelectronics.
<https://www.st.com/en/embedded-software/x-cube-sbsfu.html>. Read
26.10.2020

30 OMA LWM2M. Online material. Wikipedia.
<https://en.wikipedia.org/wiki/OMA_LWM2M>. Read 20.10.2020

32

31 Mender architecture. Picture. Mender.
<https://mender.io/user/pages/blog/mender-management-server-test-version-
released/Mender Architecture.JPG>

32 Beningo, Jacob. 2015. Bootloader Design for Microcontrollers in Embedded
Systems. Article. <https://www.beningo.com/insights/white-papers/bootloader-
design-for-microcontrollers-in-embedded-systems/>

33 Lacamera, Daniele. 2018. Embedded Systems Architecture. E-book.
<https://learning.oreilly.com/library/view/embedded-systems-architecture/
9781788832502/>

34 Frisch, Dustin; Reißmann, Sven; Pape, Christian. An Over the Air Update
Mechanism for ESP8266 Microcontrollers. 2017.
<https://www.researchgate.net/figure/The-flash-layout-used-for-two-ROM-
slots_fig2_320335879>

35 Delta updates. Online material. Wikipedia.
<https://en.wikipedia.org/wiki/Delta_update>. Read 25.10.2020

36 Lossless Data Compression for Embedded Systems. Online material. Embedded.
<https://www.embedded.com/lossless-data-compression-for-embedded-systems/
>. Read 5.11.2020

37 Stathopoulos, Thanos; Heidemann, John; Estrin, Deborah. A Remote Code
Update Mechanism for Wireless Sensor Networks. Article.
<https://apps.dtic.mil/sti/citations/ADA482887>

38 Mesh networking. Picture. Wikipedia.
<https://commons.wikimedia.org/wiki/File:NetworkTopology-Mesh.svg>

39 Thantharate, Anurag ; Beard, Cory; Kankariya, Poonam. CoAP and MQTT Based
Models to Deliver Software and Security Updates to IoT Devices over the Air.
2019. Article.
<https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00183>

40 MQTT Version 5.0. 2019. Online material. OASIS.
<https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html>. Read
29.9.2020

41 The Constrained Application Protocol (CoAP). 2014. Online material. IETF.
<https://tools.ietf.org/html/rfc7252>, Read 29.9.2020

42 What is the Mirai Botnet. Online material. Cloudflare Inc.
<https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/>

43 Grey, Mishka. 2020. Zero-Day Ripple20 Vulnerability Puts Millions of IoT Devices
at Risk. Online material. <https://www.hackreports.com/zero-day-ripple20-exploit-
iot-vulnerability/>. Read 14.8.2020

44 Memory safety. 2020. Online material. Chromium.
<https://www.chromium.org/Home/chromium-security/memory-safety>. Read
5.11.2020

33

45 The Top Programming Languages 2020. 2020. Online material. IEEE Spectrum.
<https://spectrum.ieee.org/static/interactive-the-top-programming-languages-
2020>. Read 5.11.2020

46 Intel HEX. Online material. Wikipedia. <https://en.wikipedia.org/wiki/Intel_HEX>.
Read 29.9.2020

47 SREC (File format). Online material. Wikipedia.
<https://en.wikipedia.org/wiki/SREC_(file_format)>. Read 29.9.2020

48 Bootloader. Online material. Nordic Semiconductor Inc.
<https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/lib_bootloader.html>.
Read. 29.9.2020

49 Device Firmware Update Process. Online material. Nordic Semiconductor Inc.
<https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/lib_bootloader_dfu_pro
cess.html>. Read. 29.9.2020

50 nRF Connect for Mobile. Online material. Nordic Semiconductor Inc.
<https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-
Connect-for-mobile>. Read 5.11.2020

51 Master boot record. Online material. Nordic Semiconductor Inc.
<https://infocenter.nordicsemi.com/topic/sds_s140/SDS/s1xx/mbr_bootloader/
mbr.html>. Read 11.8.2020

52 nRF52480 Product Specification. Online material. Nordic Semiconductor Inc.
<https://infocenter.nordicsemi.com/topic/ps_nrf52840/keyfeatures_html5.html>.
Read 29.9.2020

53 Raspberry Pi 2 Model B. Online material. Raspberry Pi Foundation.
<https://www.raspberrypi.org/products/raspberry-pi-2-model-b/>. Read 5.11.2020

54 The Future of Raspberry Pi in IoT-enabled Industrial Applications. 2019. Online
material. Thomasnet. <https://www.thomasnet.com/insights/can-raspberry-pi-be-
used-for-industrial-applications/>. Read. 24.8.2020

55 Protocol Buffers. Online material. Google Inc.
<https://developers.google.com/protocol-buffers>. Read 10.8.2020

56 Master boot record and SoftDevice reset procedure. Online material. Nordic
Semiconductor Inc.
<https://infocenter.nordicsemi.com/topic/sds_s140/SDS/s1xx/mbr_bootloader/
mbr_sd_reset_behavior.html>. Read 10.8.2020.

57 Validation. Online material. Nordic Semiconductor Inc.
<https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/lib_bootloader_dfu_val
idation.html#lib_bootloader_dfu_init_validation>. Read 10.8.2020

58 Firmware activation. Online material. Nordic Semiconductor Inc.
<https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/lib_bootloader.html#lib
_bootloader_firmware_activation>. Read 10.8.2020

	1 Introduction
	1.1 Overview
	1.2 Company Background
	1.3 Objectives
	1.4 Thesis Structure

	2 Theoretical Background
	2.1 Prior Literature
	2.2 Embedded systems
	2.3 Internet of Things
	2.4 Device Firmware Updates
	2.5 Bootloaders
	2.6 Network Topologies
	2.7 Protocols
	2.8 Security
	2.9 File Formats
	2.10 nRF SDK

	3 Implementation
	3.1 Overview
	3.2 Hardware
	3.3 DFU Protocol
	3.4 DFU Process
	3.5 Testing
	3.6 Challenges

	4 Results
	5 Conclusions
	6 Future Development

