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Job search market is highly competitive even in a small country such as Finland. Oikotie 
Työpaikat is a platform, where recruiters post jobs, candidates search and apply for open 
positions. In order to stay among the leaders in this race, Oikotie Työpaikat desires to put 
personalization features on the next level. Therefore, it was important for the platform to 
obtain a tool that allows to extract skills from job postings. In order to build in the future 
applications for better user experience. 
 
The main objective of this master thesis was to develop framework that extracts skills from 
unstructured text such as job description. In the initial phase, the study explored the variety 
of currently used skills extraction systems and compared the possible options for 
implementing the framework. The next was to investigate different NLP techniques that 
take into account the context of words. These techniques include Self-Attention 
mechanism, RNN, LSTM, Transformer and BERT algorithms. Since the extraction system 
must be able to process words in Finnish, it was decided to leverage Google's open-
source BERT model for the Finnish language (FinBERT) developed by Turku University. 
This version of BERT outperformed a previous multilingual model in a wide range of tasks, 
especially in classification problems. One of this task is NER, which can be easily applied 
to extract entities such as skills from unstructured texts, and it is utilized in this study. 
 
The implementation process started with data cleaning and pre-processing an input for 
BERT model. The dataset provided by Oikotie Työpaikat contained about 300 000 job 
advertisements. 100 JDs were randomly selected from the pre-processed data. This 
dataset was labeled utilizing the web-based tool for NLP text annotation called TagTog. 
The architecture of the developed model contains the main block based on FinBERT and 
the additional layer was chosen as a simple Dense layer with a softmax activation function. 
This Dense layer was fine-tuned for the NER task. The developed model was trained and 
validated. The model performance was evaluating using confusion matrix and its based 
different evaluation metrics such as accuracy, precision, recall, and F1-score.  
 
The developed skill extraction framework achieves noticeable results. Extracted skill 
phrases included soft skills, hard skill and different qualification certificates. Moreover, the 
developed framework has a potential to become a basis for various user and business 
applications, examples of which are also presented in this master thesis.  
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1 Introduction 

Nowadays job search services contain a huge number of open positions and not fewer 

job seekers. However, the unemployment rate is not getting lower. Recent research from 

McKinsey [1] demonstrated that European employers are facing a growing crisis of not 

finding people with indispensable skills to fill even entry-level positions. At the same time, 

the European Union has 5.6 million young people without jobs. One of the main reasons 

for this is a mismatch between the skills required in the Job Description (JD) and the 

skills listed in the CV. A general step in reducing the gap is accurate skills extraction and 

their comparison in the СV and job advertisement. 

Job skills extraction is a big challenge and often solved by traditional techniques such as 

matching against a taxonomy skills dictionary [2]. However, this approach does not 

extend to new and emerging skills. The dictionary updating can be manual and tedious, 

and also requires plenty of time of domain experts to identify correct skills that map to a 

particular field. In addition to that skill extraction needs serious consideration, for 

instance, the term «Java» can be an island in Indonesia or an object-oriented 

programming language. Moreover, CVs and JDs usually contain unstructured text that 

also may include tables, bulleted lists, etc. 

Although general-purpose search engines have made an immense progress, job search 

services have experienced rather modest development. Considering all of these, and 

also other factors, automated job search engines require research investment to make 

them reliable and improve their performance. Therefore, to analyze and reduce the skills 

mismatch for job search service it is crucial to have an automated framework that can 

extract skills from JDs and CVs. The resulting data can be leveraged as the foundation 

for labor market analysis and can also be used in job matching and recommendation 

systems to better match candidates to jobs and reduce unemployment. 

1.1 Research Goals and Attendant Company 

The main objective of this research is to propose an algorithm to extract skills from 

unstructured texts in order to overcome some of the above-mentioned challenges. The 

fundamental premise this research builds upon is that skills are one of the most important 
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aspects while matching CVs to JDs, and play a major role in recommending JDs which 

are the best match for a certain CV.  

This research aims to archive the following goals: 

- identify trends in the industry based on current state analysis, 

- study several natural language processing (NLP) techniques such as 

Transformer, Bidirectional Encoder Representations from Transformers (BERT), 

and etc.,  

- develop an algorithm for robust skills extraction from unstructured texts, 

- pre-process data and implement the idea.  

The topic of this thesis attracted attention of Oikotie Työpaikat. It is a job search service, 

that is one of the key players on the market in Finland. On this platform, recruiters post 

jobs, candidates search and apply for open positions. In addition, the service also 

aggregates jobs from external sources. There are about 5 thousand active jobs at a time 

on the platform. The service is quite popular and it is visited over 2 million times in a 

month. However, Oikotie Työpaikat has at least 10 competitors in Finland. That is why it 

is constantly looking for ways to stand out in the market.  

1.2 Method and Material 

A qualitative method was used to gather the information to define the scope of the 

research question. Requirements for the solution came from observations from the 

current job search process and system, interviews and feedback from potential 

customers and business owners of Oikotie Työpaikat.   

 

The solution was created and evaluated using the quantitative method. The model 

performance was evaluated by traditional metrics such as confusion metrics, precision, 

etc. For this research Oikotie Työpaikat provided two datasets, that included CVs and 

JDs. The obtained dataset was preprocessed and labeled for further model training. 

1.3 Thesis Structure  

The rest of the master thesis is organized as follows: In Section 2, related work from the 

area of skills extraction and its analysis are briefly described. The theoretical background 

used in this work and the proposed approach are explained in Sections 3 and 4, 
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respectively. The result of the proposed method is presented in Section 5 followed by 

conclusions.  
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2 Current State Analysis  

This Section presents the core techniques used nowadays to extract entities such as 

skills from JDs and CVs. It explores various industry-standard practices and strategies 

in fetching entities, including previous common research that focuses on the taxonomy 

dictionary. This section also detects the key weaknesses regarding the existing solutions. 

Moreover, to come up with answers to the research questions, information is analyzed 

and compared from publications, journals, websites, and books. The knowledge 

presented here lays the ground for understanding, scoping, and designing the new model 

of extracting skills that this thesis aims to implement. NLP techniques mentioned in this 

section and essential for the current research are described are rigorously explained in 

Section 3. 

2.1 Skills Folksonomy/Taxonomy and Graph-Based Approaches 

One of the common approaches for skills extraction offers methods that rely on the 

construction of folksonomy or taxonomy of entities [5]. Both terms are types of controlled 

dictionaries, but they contain several key differences presented in Table 1. 

Table 1. The comparison of taxonomy and folksonomy. 

Taxonomy Folksonomy 

Hierarchical 
- Parent/child & sibling relationship 

Flat  
- No levels, no order, no explicit 
relationship 

Exclusive 
- The same item cannot be in few 
distinct categories 

Not Exclusive 
- An item can be associated with many 
tags 

Top-down 
- Established by experts 

Bottom-up 
- Created by users 

One of the extraction systems based on skills taxonomy is ESCO [4]. It is the multilingual 

classification of European Skills, Competences, Qualifications and Occupations. It works 

as a dictionary and aspires to provide semantic interoperability between labor markets, 

education and training programs. Unfortunately, there is no available information on what 

techniques and methodologies were used to build the ESCO taxonomies. However, this 

dictionary is public and can be useful for building taxonomy in this research. 
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Nowadays the world leader among job search systems is LinkedIn. In 2014, the team at 

LinkedIn built a massive skills extraction framework. The framework was developed on 

top of a constructed folksonomy of skills and expertise and provided an inference for a 

recommender system [2]. The folksonomy-building system consisted of discovery, 

disambiguation, and deduplication steps. The first discovery step was based on the 

observation that most of the users create a list of comma-separated skills in the specialty 

section of their profile. This feature was used for fetching entities as potential skills. The 

second step of disambiguation aimed to remove uncertainty in skill phrases that had 

multiple meanings depending on their context. The clustering based on the co-occurring 

phrases was used to solve the disambiguating skills issue. Some skills were tagged with 

many senses belonging to different clusters with an industry label. The last step was to 

eliminate semantic duplicates such as “Python development” and “Python 

programming”. To solve this problem, researchers applied crowdsourcing approach that 

involved LinkedIn users. The users were asked to tag a skill phrase with the most 

relevant Wikipedia page from a suggested list. This skills extraction system also 

contained a skills inference component, which leveraged profile attributes such as 

company, title, and industry as features. The Naıve Bayes classifier was trained on the 

constructed feature set. However, the following researches demonstrated the superiority 

of graph-based model over Naïve Bayes classifier. 

The approach for automated skills extraction from free written text documents suggested 

in Kivimäki et al. [3]. The main idea of this system was based on the hyperlink graph of 

Wikipedia and skills folksonomy obtained from LinkedIn. At first, the system computed 

similarities between an input document and the texts in Wikipedia pages and then 

applied the Spreading Activation algorithm on the Wikipedia graph to associate the input 

document with skills. This system was able to extract both inferred and explicitly stated 

skills from the text. 

An approach similar to Kivimäki et al. was presented by Wang et al. [6]. The system also 

applied skills folksonomy from LinkedIn and graph-based model using textual data 

resided in the skills and expertise sections, personal profile connections (shared majors, 

titles, companies, and universities), and skills connections (skills that co-occur together). 

While the approach constructed on skills connections outperformed the one that used 

only profile connections, the mutual system that utilized both connection types 

demonstrated the best results [6]. 
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In a recent research Phuong et al. [7] revealed a new approach to skill taxonomy 

generation. As in LinkedIn [2], this work included the discovery, disambiguation, and 

deduplication steps, but with different approaches to implementation. In order to build 

taxonomy system, they collected skill-related content from candidate resumes and job 

descriptions available at the Career Builder web-site. The collected text data was split 

by punctuation marks and cleaned from noise, such as stop words, additional adverbs 

and other predefined terms by domain expertise. Essentially, the cleaning phase 

excluded words that bring no or very little semantic value to a constructed skill taxonomy. 

For normalization and deduplication researchers applied Wikipedia API [12]. Another 

important step in building a taxonomy of skills was validation, which used the Standard 

Occupational Classification (SOC) system to ratify the returned Wikipedia category tags. 

In this research, the issue of the word sense disambiguation (WSD) was addressed using 

the Google Search API. For example, if the skill term had multiple senses, the system 

chose the one with the highest Google Search relevancy ranking. Nevertheless, this 

approach demonstrated the explicit weakness in not considering semantic context. As a 

result, the researchers developed the Skill Tagging system, which is presented in more 

details in Figure 1. This skill taxonomy included 39,000 raw terms mapped to 26,000 

normalized skill entities. 

 

Figure 1 Architecture of the SKILL System [7]. 
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2.2 Machine Learning Approaches 

This section presents the most advanced approaches for extracting skills using Machine 

Learning (ML) techniques, such as natural language processing (NLP), deep learning 

networks etc. 

In 2018 Nikita Sharma compared different approaches [8] based on unsupervised and 

self-supervised learning techniques to extract the relevant skills from free written text. 

The models were trained on small dataset of job advertisements in Data science 

category and then extended to other cross categories. The first two models were based 

on the following techniques:  

• Topic Modelling is unsupervised technique to fetch abstract topics. This approach 

showed solid understanding of the context. However, the extracted key words 

mismatched with the relevant set of skills identified in problem statement. 

• Word2Vec is a self-supervised neural network that is able to identify words used 

in similar contexts. This approach was applied to extend on the top of Topic 

modeling. Extracted key words by top modeling method were used for training 

Word2Vec model. Word2Vec demonstrated good results at recognizing skills. 

However, Word2Vec extracted a lot of noise and separating valuable skills from 

noise was a quit tedious work. 

The other two models described in the research apply supervised learning. The training 

dataset was labeled manually and basically included only noun phrases as skills. Bellow 

a comparison in more details of those two approaches: 

• The first was a simple word embedding based classifier, which contained a 

convolutional layer and was trained on the labeled dataset. This approach 

extracted a lot of useful skills from the job descriptions. Test accuracy was 

0.6803. 

• The second was the combination of word embedding and Long short-term 

memory (LSTM) that improved the accuracy of the skills classifier and also 

extracted a lot more keywords. This approach showed the best results with test 

accuracy 0.7658. The presence of noise was also reduced as compared to other 

models. 
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The LSTM and Word embedding model was able to provide decent results by training 

on a very small dataset. However, only noun phrases were used for model training, but 

a lot of job postings explain required skills in the form of verb phrases and other 

grammatical structures. Therefore, the initial dataset needs to be extended with the richer 

set of labeled examples, and only then a new model trained. 

In 2020 Akshay Gugnani and Hemant Misra [9] presented a skills extractions framework, 

that was based on several natural language processing (NLP) techniques. The skills 

extraction framework was composed of four main submodules:  

• Named Entity Recognition (NER) is usually used to identify keywords and 

concepts, extract entities, such as names of persons, organizations, locations, 

expressions of times, quantities, monetary values, percentages, etc. 

Researchers leveraged NER to extract skills from JDs and had noticed great 

results. They applied Watson NLU 3 services [13] to extract skills as entities. After 

that the extracted list of skills was classified as a set of “Probable Skills”. On the 

step the processed skills got assigned relevance scores by means of Word2Vec. 

• Part of Speech (PoS) Tagger is the process of labeling of each word in a text as 

a corresponding part of speech. Five domain experts manually processed few 

hundreds of JDs and labeled words or phrases as skills. They noticed that skills 

vary depending on not only a job industry, but a subjective opinion of a person 

labeling it. The set of JDs data was also processed through the Stanford Core 

NLP Parser and PoS Tagging to identify part of speech. Based on the 

observations they defined rules and patterns for identifying potential or new skill-

terms, that were not presented in skill dictionary or taxonomy. For instance, if 

there was a comma separated list of nouns in a sentence, and few nouns are 

skills, then the other nouns should probably be skills. Similar rules were 

programmed in the system to identify skill-terms. 

• Word2Vec (W2V) [10] in a nutshell is used to represent word as a vector. The 

input data is usually a large corpus of text, which is used by W2V to create a 

vector space, typically, of several hundred dimensions. Each unique word is 

mapped to a corresponding vector in the vector space. Typically words from 

common contexts are located close to each other in the vector space. The W2V 

model tokenizes text using white spaces, therefore a single-word skill is easy to 

extract in most cases. However, the difficulty arises when the skill is a phrase 

such as “Hard Working”, “Web Development”, etc. To solve this issue, 
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researchers suggested to represent a skill phrase by a vector, which is an 

average of individual vectors composing the skill phase. Moreover, there was a 

skill dictionary, that was used to compared every potential skill-term in the 

embedded W2V space. The researchers also leveraged users’ feedback 

mechanism to learn new skills and improve performance. The presented model 

was trained on the text corpus of 1.1 Million JDs from over 50 different categories. 

• Skill Dictionary was needed to identify a word or phrase as a skill. In order to 

create this skill dictionary researches applied the same approach as proposed by 

Gugnani et al [11]. Skills were mined from public resources, such as Onet, Hope, 

and Wikipedia. Then the team of three experts validated these terms. The created 

skill dictionary contained 53,293 soft and hard-skills in different categories.  

 

Figure 2. Skill Identification Flow Diagram [9]. 

Described above modules of skill extraction system is shown in Figure 2. The input data 

is a raw text, from which the first three modules extract a set of phrases and assign them 

a module-specific “score”. Further, the combination of scores specifies how likely an 

identified phrase is a skill. 

2.3 Limitations 

There are many approaches to extract skills from a free written text and but this thesis 

concentrates only the most advanced and successful ones above. This thesis continues 

the development of this topic towards the defined focus taking into account the 

requirements and limitations of Oikotie Työpaikat. 
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First of all, Oikotie Työpaikat is a platform where most of the CVs and JDs are posted in 

Finnish language. As a result, the final solution should be able to work with texts in 

Finnish language. 

Secondly, building skills folksonomy/taxonomy requires the involvement of a team of 

experts and users to solve deduplication and disambiguation issues. Unfortunately, in 

this thesis it was not possible to involve additional people to this work.  

In addition, the considered ML approaches are based on supervised learning and the 

dataset for the training model must be labeled which requires time and extra resources. 

Therefore, the developed model should be trained on a relatively small dataset and show 

satisfactory results. 

On top everything else the available computational resources are of high importance as 

well. In fact, the analysis of huge textual data and advanced ML methods such as BERT 

often demand powerful GPUs or advanced multicore CPU machines. As a result, the 

performance of one laptop may not be enough to train and test the developed skills 

extraction model. 

2.4 Summary  

Based on the described limitations, this section includes an analysis of different 

approaches for skills extraction and make conclusions whether or not they can be used 

for this work and why. The results are presented in a Table 2. Analysis of different 

approaches to skill extraction. 

Table 2. Analysis of different approaches to skill extraction. 

Approach name Conclusion  

Skills folksonomy/taxonomy and Graph-Based Approaches 

Bastian et al. LinkedIn, 

LinkedIn Skills: Large-

Scale Topic Extraction 

and Inference [2] 

Firstly, the dataset provided by the Oikotie is free written 

texts of CVs and JDs, where it is not possible to build a 

template for extracting entity. Secondly, the model used a 

crowd assisted approach to eliminate semantic duplicates. 

It is also impossible in this study, because Oikotie does 



11 

 

not have an interface for such user interaction. Thirdly, this 

model used a Bayesian classifier, which is an obsolete 

approach. 

Kivimäki et al. A Graph-

Based Approach to Skill 

Extraction from Text [3] 

This approach is based on skills folksonomy obtained from 

the LinkedIn. Unfortunately, the folksonomy is built in 

English and is not suitable for this research. However, the 

Wikipedia graph based model, that is used to associate 

the input document with skills, may be applied to this work. 

Wang et al. Skill Inference 

with Personal and Skill 

Connections [6] 

This system is similar to Kivimäki et al [3], but it applies 

user profile data to improve performance. This study did 

not have access to the user data of the Oikotie and this 

approach cannot be used in this research. 

Phuong et al. Large-Scale 

Occupational Skills 

Normalization for Online 

Recruitment [7] 

This approach demonstrates an explicit weakness, 

because of ignoring a semantic context. Moreover, this 

approach is difficult to implement, and it takes a lot of 

human resources to create such a taxonomy. 

ML approaches 

Sharma. Job Skills 

extraction with LSTM and 

Word Embeddings [8] 

The approach, that is a combination of word embedding 

and LSTM technics, showed the best result in extraction 

skills from unstructured texts. Also this method is relatively 

easy to implement and could be used in this study. 

However, LSTM part is better to change to newer NLP 

method such as BERT.  

Gugnani et al. Implicit 

Skills Extraction Using 

Document Embedding 

One of the modules is based on NER to identify keywords 

and extract entities as skills. This approach can be useful 

in this master thesis work. 
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and Its Use in Job 

Recommendation [9] 

The building of a skill folksonomy or taxonomy is a complex and laborious work and is 

out of focus of this research. In addition, previously created dictionaries contain skills 

only in English, but the main goal of this work is to develop a skills extraction system for 

Finnish language.  

The most appropriate approach for this research is the model developed by Nikita  

Sharma [8], where Word embedding and LSTM are combined together. The proposed 

model allows to train a neural network on a small dataset and perform excellent results. 

In this master thesis a similar approach was developed, but the NLP part exploits a more 

modern language processing technique called BERT. Also, the problem of skills 

extraction from unstructured text can be considered as a NER problem. This paradigm 

was used in the work of Gugnani et al. [9]. 
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3 Theoretical Background 

The goal of this chapter is to explore the most common techniques of Natural Language 

Processing that have been developed to understand human language by computers. 

The narration continues with the concise introduction of state-of-the-art methods such 

as Bidirectional Encoder Representations from Transformers (BERT), its operation 

principle and Named Entity Recognition problem which is solved in the current thesis. 

3.1 Natural Language Processing 

Nowadays a wide range of tasks for text processing in a natural language is in high 

demand in different spheres. However, teaching machines to understand natural human 

language is quite tedious work. The field of computer science where machine learning 

and text analysis overlap is known as Natural Language Processing (NLP). 

There is a set of common NLP tasks such as language translation, text classification, 

named entity recognition and others. In contrast to the image processing field, regular 

NLP tasks have been solved using classic machine learning algorithms such as Bag of 

words or Stemming, and showed results that were not too inferior to state-of-the-art 

solutions. Classic solutions required thorough consideration of architecture and manual 

collection and processing of features. Nevertheless, a while ago neural networks began 

to defeat classic models and formed a general approach for solving NLP problems.  

The implementation of a complex NLP task usually requires building a pipeline consisting 

of multiple steps. In most of the cases the feature set and processing steps are almost 

the same. Only the last steps are different and involve a neural network. Thus, it forms 

a uniform pipeline, that includes the following processes: 

• Text cleaning is the removing of unnecessary signs and symbols such as line breaks, 
html tags and etc. 

• The next two steps of the pipeline are segmentation and tokenization that is the 
process of splitting text into sentences or individual words (tokens) respectively. 

• The step of calculating the representation of each token usually occurs in either of 
the following forms:  

– The first one is to calculate context-independent representations of tokens, which 

include different word embedding models, Part of Speech tagging etc.  
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– The second one is context-sensitive tokens representations that contain 
information not only about the token, but also about its neighbors. These 
representations are usually defined utilizing RNN, LSTM, GRU etc. 

• The last step is fine-tuning a model depending on the goal. For example, a model for 
classifying or generating new texts. 

The given example of a pipeline is not the only one possible. To solve a specific task, 

some steps can be excluded or new ones added such as stop words removal or parsing 

dependencies. However, this pipeline contains the most general steps and approaches 

that allow to derive practical value from given data with the help of NLP. 

Natural human language presents an abundance of polysemy and complex semantics. 

Depending on the context a word may have completely different meanings. For instance, 

the word "organ" may be understood as part of a human’s body or as a large musical 

instrument. Thus, the same word may be assigned different representations in various 

contexts. In this case, context-sensitive representations have obvious advantages, 

especially for the skills extraction task that this thesis aims to implement. Therefore, this 

section continues with the exploration of models that take context into account. The 

original contextual models such as RNN and LSTM are investigated and their drawbacks 

are exposed. Afterwards, BERT, its building blocks and strengths over previous models 

are explained.  

3.1.1 Sequential Models and Problem of Long-Term Dependencies 

Models that perform sequence transduction [14] are called Sequence-to-sequence 

(seq2seq). Sequence transduction is a process that transforms input sequences to 

output sequences. Seq2seq models are rather versatile and utilized in a variety of NLP 

tasks, such as machine translation, speech recognition, question-answering system, and 

others. 

For seq2seq models, it is important to have some kind of a memory, that allows 

information about dependencies and connections in a sentence to persist. For that 

purpose, a Recurrent Neural Network (RNN) utilizes loops. The part of RNN is presented 

on the in Figure 3. On the left hand side, the network A is processing the input 𝑥𝑡 and 

output ℎ𝑡. At the same time the loop may be represented in an unrolled form as a set of 

multiple copies of the same network, each passing a message to a successor. This 

approach allows an RNN to transfer the information of previous word to the next network, 

which can utilize and process this data about context. 
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Figure 3. An unrolled recurrent neural network [15]. 

The Figure 4 demonstrates the basic architecture of a seq2seq model that is based on 

two RNNs. The top row of the blocks corresponds to an encoder and the bottom one is 

a decoder. Let us consider this model using a machine translation task as an example. 

The encoder receives a sentence in language A as an input, that contains words 𝑥𝑖, and 

compresses it into a hidden state vector ℎ𝑖 . The hidden state is known as the context 

vector, that contains information about the input sequence. The decoder receives the 

last hidden state of the encoder and generates words 𝑦𝑖 in language B as output. 

 

Figure 4. Example of basic seq2seq model. 

In the situation when the distance between a word and relevant text around it is not too 

long, RNN is able to memorize the context. However, in cases that require more context, 

this gap becomes much bigger and RNN is very ineffective. This is due to the fact that 

the longer the input sequence, the more likely context information will be lost at one step 

in the sequence. In theory, RNNs could learn this long-term dependencies, but in 

practice, it is quite difficult task [16].  
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Long-Short Term Memory (LSTM) is a particular type of RNN that attempts to solve the 

problem of long-term dependencies. LSTM has a mechanism that is able to selectively 

remember or forget significant and insignificant context. This mechanism is called cell 

states and presented in the Figure 5 as a horizontal line running through the top of the 

cells. In our case each cell receives a word as input 𝑥𝑡, the state and the output of the 

previous cell. The cell processes these inputs and then based on them, it generates a 

new cell state and output. Due to the gates mechanism an LSTM is able to remove or 

add information to the cell state. Gates consist of a sigmoid neural network layer and a 

pointwise multiplication operation. The outputs of sigmoid layer are values from 0 to 1, 

that describe how much of each component should be let through. A value of zero means 

“let nothing through,” while a value of one means “let everything through”. An LSTM has 

three of these gates to protect and control the cell state. Because of this cell state 

mechanism, the context that is important can be transmited from one word to another 

during the processing of a text or a sentence. 

 

Figure 5. Long-Sort Term Memory network [15]. 

Despite the cell state mechanism, when a sentence is too long LSTM faces the same 

problem as RNN. Moreover, the probability of preserving the context for a word that is 

far from the current word being processed decreases exponentially with a distance from 

it. 

Seq2seq models also meet another problem, that rises from the sequential nature of the 

model architecture. The model processes a sentence word by word, which prohibits 

parallelization. In addition to that, there is no explicit modeling of long and short range 

dependencies. 
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3.1.2 Attention and Self-Attention 

The Attention mechanism was developed to solve problems of seq2seq models 

described above. In broad terms, the main idea of this technique is to allow the model to 

focus on certain elements of the input and output sequences when processing the data.  

There are two different types of attention mechanism:  

• General Attention takes into account the dependences between the elements of 

input and output. 

• Self-Attention constructs interdependences between only the input elements. 

The General Attention easily solves the problem of long-term dependencies that occurs 

in consequence that the last hidden state of the encoder is used as the context vector 

for the decoder. The attention mechanism allows the decoder to use information obtained 

not only from the last hidden state, but also from any hidden state of any element of the 

sequence. In this case the decoder is able to selectively distinguish certain elements 

from input sequence to produce the output. 

The diagram in Figure 6 shows an attention mechanism added between the RNN 

Encoder and Decoder. The attention mechanism is an ordinary single-layer neural 

network that uses hidden states ℎ𝑡 , 𝑡 = 1 … 𝑚, as input, as well as a vector 𝑑 that contains 

a certain context that depends on a specific task. In the case of seq2seq models, the 

vector 𝑑 will be the hidden state 𝑑𝑖−1 of the previous decoder iteration. The output of 

attention layer will be the score vector 𝑠 that is estimated based on the hidden state ℎ𝑖  

which acquired the most "attention". The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [18] is used to normalize 𝑠 values and 

has the following properties: ∀𝑠: ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠)𝑖  𝑛
𝑖=1 = 1, ∀𝑠, 𝑖: 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠)𝑖 >= 0. The 

result of the attention layer is с = ∑ 𝑒𝑖ℎ𝑖
𝑚
𝑖=1 , which contains information about all hidden 

states of ℎ𝑖  in proportion to the 𝑒𝑖 score. 
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Figure 6. General attention mechanism in RNN. 

Using the attention mechanism, the decoder is focused on certain hidden states. In cases 

of machine translation this feature helps a decoder to pay attention to a correct context 

of a given word while translating the text from language A to language B. 

The main difference of Self-Attention from General Attention is that the former one draws 

conclusions about dependencies solely between input data. This approach is more 

effective in machine translation tasks. Self-Attention made it possible to abandon the use 

of RNNs and replace them with conventional neural networks in combination with the 

Self-Attention mechanism in the transformer architecture. As an example, let us consider 

the following sentence: "The animal didn't cross the street because it was too tired". The 

result of the Self-Attention algorithm for the word "it" is shown in Figure 7. The resulting 

vector corresponds to the relationship of the word "it" with all other words in the sentence. 

It can be easily seen that the Self-Attention mechanism found the strongest relationship 

between the words "it" and "animal". This conclusion can be intuitively explained from a 

human point of view, which allows machine learning algorithms using this approach to 

better solve the problem taking into account contextual relationships. 
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Figure 7. Self-Attention example. 

Self-Attention improves performance because the model is able to remember a position 

of each word in the input sentence. In addition, self-attention allows the model to look at 

the context for clues that can help to improve the encoding of words. This technique is 

able to achieve even greater results as part of the Transformer architecture. 

3.1.3 Transformer 

Self-Attention mechanism perfectly solves the problem of long and short dependencies. 

However, the issue of processing inputs (words) in parallel remains unresolved. For a 

large corpus of text, this issue increases the time spent processing the text. In its turn, 

Convolutional Neural Network (CNN) allows each word in the input to be processed 

simultaneously. The same idea was implemented in the Transformer architecture. 

Transformer architecture is based on encoder-decoder components and self-attention 

mechanisms, dispensing with recurrence and convolutions entirely. Transformer typically 

consists of six encoders and six decoders. Architecture of all encoders and decoders are 

similar and presented in Figure 8. 
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Figure 8. Transformer architecture [17]. 

Each encoder encompasses of two layers: Self-attention and a Feed-forward Neural 

Network as shown in Figure 9. The first encoder accepts input data as vectors. Usually 

words are encoded into vectors by an embedding algorithm. Also a first encoder takes 

positional information. It is necessary for the Transformer to be aware of the order of the 

sequence, because no other part of the Transformer makes use of this [17]. 

The self-attention mechanism adopts a set of input encodings from the previous encoder 

and weighs their relevance to each other to generate a set of output encodings. In other 

words, the self-attention helps the encoder look at other words in the input sentence as 

it encodes a specific word. Then the Feed-forward Neural Network processes each 

output encoding separately. 

 

Figure 9. Transformer encoder-decoder architecture [17]. 
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The decoder features similar architecture to the encoder, but there is an additional layer. 

This layer is essentially an attention mechanism over the encodings (Encoder-Decoder 

Attention), which draws relevant information from the encodings generated by the 

encoders. The Encoder-Decoder Attention helps the decoder to focus on relevant parts 

of the input sentence. 

Although, there are some obvious advantages of Transformers over seq2seq models, 

but Transformers still feature the following limitations: 

– The Attention mechanism is able to work with only a fixed-length input, divided 
into segments or chunks in advance.  

– The chunking of input leads to a partial loss of context. 

3.2 Bidirectional Encoder Representations from Transformers (BERT) 

BERT is a bidirectional state-of-the-art language model with a transformer architecture, 

replacing sequential RNNs, with a faster approach based on the Attention mechanism. 

The model is also pre-trained on two unsupervised tasks: modeling language masks and 

predicting the next sentence. This allows utilizing the pre-trained BERT model, fine-

tuning it for specific tasks, such as text classification, question-and-answer systems, and 

many others. 

The initial version of BERT published by Google AI Language [18] presents two main 

models shown in Table 3. The comparison of two main BERT models.. This model is 

multilingual and supports 104 languages, including Finnish. 

Table 3. The comparison of two main BERT models. 

Model name BERT BASE BERT LARGE 

Number of transformer 
blocks (L) 

12 24 

Hidden layer size (H) 768 1024 

Attention heads (A) 12 16 

Both BERT models are built on the basis of stacks of encoders as shown in Figure 10. 

Each encoder block represents a more complex model architecture. Unlike directional 

models, BERT utilizes pre-trained Transformer encoders that allow it to read the entire 

text at once, rather than a sequence of words. Moreover, BERT has more attention 
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heads, larger feedforward-networks, than the default configuration in the implementation 

of the Transformer (6 encoder layers, 512 hidden units, and 8 attention heads). 

 

Figure 10. BERT encoder stacks [19]. 

One of the advantages of BERT is a bidirectional model, which allows it to train in the 

left and right directions or utilize a context in all layers as shown in Figure 11. 

 

Figure 11. Bidirectional model [19]. 

Pre-training 

BERT uses a specific format for the input to pre-train the model. As an input the model 

receives the set of tokens. These tokens are the sum of three different embeddings, that 

are needed to transform textual data into vectors. For this task BERT utilizes the 
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WordPiece tokenizer [20]. The tokenizer includes vocabulary of the most common words 

and letters of the alphabet. If some word does not belong to vocabulary, the tokenizer 

splits the word into pieces until they are found in the vocabulary. The tokenizer utilizes 

## (double hash) sign to remember which tokens are pieces of a word. For instance, it 

divides token “playing” to “play” and “##ing”. The number of tokens in the sequence 

cannot exceed 512. 

To each sentence (sequence) BERT applies the following set of tokens: 

• [CLS] : A classification token at the beginning that is usually used in conjunction 

with the softmax layer for classification tasks. Otherwise, it can be safely ignored.  

• [SEP]: A sequence delimiter token which is used at pre-training for next sentence 

prediction task. This token must be used when sequence pair tasks are required. 

In case of a single sequence, this token is appended at the end. 

• [MASK]: Token utilized to predict masked word based only on its context. Only 

used for pre-training. 

The input for BERT consists of three embedding layers, see Figure 12. The layer of token 

embeddings contains the vocabulary IDs for each of the tokens. Sentence Embeddings 

is a numeric class to distinguish between the first and the last part of a sequence. 

Transformer positional embeddings provide a position of each word in the sequence. 

 

Figure 12. Three embedding layers for BERT input. [18]. 

The configuration of the BERT model for a specific task usually consists of two steps: 

pre-training and fine-tuning. The BERT is pre-trained utilizing two unsupervised tasks as 

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). 

Masked Language Modelling (MLM) 
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There is the restriction of unidirectionality in the basic form of the Transformer. Therefore, 

to eliminate this issue the BERT is pre-trained with an MLM task, that enables the 

Transformer to unite left and right context. In this task, 15 % of words [15] are randomly 

replaced with a special token in each input sequence. Among these tokens in 80% of 

times words are swapped with a [MASK], 10% – with random words [22], and the rest 

are left unchanged as shown in Figure 13. The main goal of this task is to predict the 

vocabulary IDs of masked words, based on its context. 

 

Figure 13. Masked Language Modelling task. 

The Softmax activation function [23] generates the output. This function gives the 

probability of each word in the sentence (sequence). 

Next Sentence Prediction (NSP) 

BERT utilizes an NSP task to pre-train text-pair representation. The model receives two 

sentences and aims to predict whether the second sentence in the pair is the next 

sentence. For 50 % of pairs [21], the second sentence is the next to the first one. In the 

other 50 % of pairs, the second sentence is replaced by a random sentence from the 

text. A label for the first case is “IsNext” and “NotNext” is for the second situation [22]. 

The example of this task is presented in Figure 14. 

Moreover, BERT utilize Transformer to make prediction for the next sentence.  After that 

outputs from tokens are provided to the classification layer. The next sentence is 

predicted applying the probability of every word by means of Softmax activation function 

[23]. 
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Figure 14. Next Sentence Prediction task. 

Fine-tuning 

BERT can be applied for a wide range of language tasks such as text classification, 

question answering task, named entity recognition and others. The fine-tuning of BERT 

for a specific task usually involves adding a one layer to the core model as shown in 

Figure 15. For instance, in the case of a classification task, an additional layer is added 

on the top of the Transformer output. In the fine-tuning process, BERT layers remain 

unchanged, while the weights of the extra layer are trained. 

 

Figure 15. Fine-tuning BERT [23]. 

3.3 Named Entity Recognition (NER) with FinBERT 

One of common NLP problems and underlying subtasks of information extraction is 

Named Entity Recognition (NER) [26]. There are many studies on this topic, but most of 

them are focused on English language. One of the last works related to NER in Finnish 

was published by Ruokolainen at el [27] and based on BiLSTM-CNN-CRF model [28]. 

This study applies a BERT model to solve a NER task for extracting information from an 

unstructured Finnish text. 

The main purpose of NER task is to recognize different types of entities from the input 

corpuses of texts. Entities can include a person's name, organization, date, soft and hard 
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skills etc. NER task belongs to a supervised machine learning, which requires labeled 

training dataset. For that purpose, words in a sentence are labeled with a predefined list 

of tags, such as: 

• [O] - no meaning, 

• [B-PER]/[C-PER] - person name,  

• [B-ORG]/[C-ORG] - organization name. 

A trained NER model labels each word of a given sentence. For example, “Leonardo[B-

PER] DiCaprio[C-PER] will[O] launch[O] his[O] new[O] TV-show[O] in[O] Netflix[B-ORG] 

Shows[C-ORG].[O]” 

BERT is state-of-the-art NLP method, which enables to solve information extraction tasks 

such as NER. In this case, an additional layer is attached on top of the BERT model 

output. This extra layer is a regular densely connected neural network layer. The model 

training is executed only for the extra layer and parameters of BERT remain unchanged. 

Moreover, there is Google’s open source BERT model for Finnish language (FinBERT) 

developed by Turku University. This model outperforms the previously released version 

of multilingual BERT [25]. The comparison of the FinBERT model with previous ones for 

the Document classification problem is presented in Figure 16. The figure demonstrates 

the growth of models’ accuracies as a function of the training dataset size. 

 

Figure 16. Text classification accuracy with different training datasets: Yle News (left diagram) 
and Ylilauta online discussion (right diagram). 

In addition, Figure 16 presents cased and uncased types of FinBERT models. The former 

one is trained on a regular text, i.e. capital and lowercase letters, and the later one is 

trained on a text, which was lower cased. Usually, cased models are utilized when the 

letter casing is useful for the task. As it turned out document classification problem was 
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not very sensitive to either of the FinBERT model types. In opposite to that, NER task is 

more dependent on letter cases, since the extracted terms often contain capital letters. 

The comparison of the results of BERT models for the NER problem is presented in the 

Table 4. The FinBERT cased model outperformed other models in the NER task. 

Table 4. NER results [25]. 

Model Accuracy 

FinBERT cased 92.40% 

FinBERT uncased 91.50% 

Multilingual BERT cased 90.29 % 

Multilingual M-BERT 
uncased 

89.06% 

The advantage of FinBERT models in the Finnish language domain is mainly caused by 

the larger amount of training text corpuses obtained from Yle. Cased and uncase 

FinBERT models contains around 50,000 words. It enables the model to have a rich 

understanding of a Finnish text. From the examples shown in Table 5. Examples of 

tokenization with different vocabularies [25]. [25], it can be seen that FinBERT is superior 

to multilingual BERT model in splitting a sentence into tokens.  

Table 5. Examples of tokenization with different vocabularies [25]. 

Vocabulary Example 

FinBERT cased Suomessa vaihtuu kesän aikana sekä pääministeri että valtiovarain 
##ministeri. 

FinBERT uncased suomessa vaihtuu kesän aikana sekä pääministeri että valtiovarain 
##ministeri. 

Multilingual BERT 
cased 

Suomessa vai ##htuu kesä ##n aikana sekä p ##ää ##minister ##i että 
valt ##io ##vara ##in ##minister ##i. 

Multilingual BERT 
uncased 

suomessa vai ##htuu kesän aikana sekä pää ##minister ##i että valt ##io 
##vara ##in ##minister ##i. 

In addition to that, the FinBERT cased model demonstrates superior results for all 

downstream tasks. Therefore, the FinBERT model with cased vocabulary is utilized in 

this research.  

  



28 

 

4 Implementation Details 

This chapter presents a solution for skills extraction from an unstructured text based on 

approaches and methods described in the theoretical background and current state of 

analysis sections. The narration goes through an implementation pipeline, namely, data 

preprocessing, model architecture, performance evaluation and other aspects of 

machine learning cycle. 

4.1 Data Pre-processing 

This section describes the process of how raw dataset is prepared for the purpose of a 

data extraction task. The process includes data cleaning and filtering, which removes 

erroneous or corrupted data. Then the section discusses manual annotation process and 

annotation guidelines. 

4.1.1 Cleaning and Filtering Data 

Oikotie Työpaikat provided a dataset of job advertisements published on 

tyopaikat.oikotie.fi since March of 2014 till November of 2018. The dataset contains 

about 300 000 job advertisements in a tabular format. The example of raw data is 

presented in Figure 17. Each job advertisement is defined by a unique identifier – “ID”, 

job name – “NAME”, job description – “JOBDESCRIPTION” and creation date – 

“CREATEDATE_ORA”. Job descriptions are mostly in a single language and the majority 

of them is in Finnish. In addition, there is an amount of job descriptions in two languages. 

 

Figure 17. Example of row data. 
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Job advertisements are imported and published to Oikotie Työpaikat through different 

channels. This brings on one hand flexibility for customers, but on the other hand an 

issues of different data formats. Some of the job descriptions are in plain text, while the 

others contain various special symbols or given in an html format. It is also worth 

mentioning that the fraction of data is a pour noise, because some descriptions are 

suspiciously short and contain nonsense text. Therefore, the data preprocessing and 

cleaning are essentially important. 

The first step is to remove html tags and special symbols from textual data. Jupyter 

Notebook and Python libraries were utilized to build a data cleaning process. Python 

BeautifulSoup library is a common way to convert an html text into a human readable 

text. Regular expressions allowed to add dots to the ends of sentences or remove special 

symbols, which constitute a noticeable part of noise in textual data. Such symbols are 

soft hyphens, multiple line breaks and others. The example of cleaned data is presented 

in the Figure 18. 

 

Figure 18. Example of cleaned data. 

After cleaning the next step of preprocessing is data filtering. First of all, empty or 

suspiciously short JDs are ruled out. Specifically, if JDs text length is less than 100 

characters. Secondly, there is a number of JDs present in two languages, 

Finnish/Swedish or Finnish/English. For the sake of simplicity and the goal to develop a 

model for Finnish language, JDs posted in multiple languages or any other language 

except Finnish were excluded from the consideration. 

After cleaning and filtering, there are 225 865 job descriptions left in the dataset. This 

amount is more than enough to train a model to extract skills. 

Finally, the JDs were saved as separate files. This was a requirement for a word labeling 

tool. In addition, the developed neural network model processed each JD separately.  
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4.1.2 Data Labelling and Skill Definition 

For the NER task, each word in the text must be marked with a label that tells the model 

the specific value of the token. This approach allows a model to analyze each token in a 

sequence and extract necessary information. In our case, extract skills from JDs. 

In this research, skills required in JDs were manually labeled to create a training dataset. 

For that purpose, 100 JDs were randomly selected from the cleaned and filtered dataset. 

Then, these JDs were labeled utilizing TagTog [24], which is a web-based tool for NLP 

text annotation. It is worth noting, that a job skill is often not a single word, but rather a 

group of words or a phrase. That is why two different labels were chosen to tag skills in 

a text. The first label – B-skill – indicates the first word of a skill name. If the skill name 

is a single word, then B-skill label is the only required annotation. On the other hand, if a 

skill name is a phrase, then the first word is labeled as B-skill and the rest of the skill 

name words are marked with C-skill labels. Figure 19 presents the example of labeled 

JD, where: 

[B-skill] - beginning skill. 

[C-skill] - continuation skill.  

It turned out that the manual data labelling is quite a challenging task. There are multiple 

reasons for that. Firstly, it was often hard to distinguish skills required for a job from job 

daily tasks or even a job title. Secondly, JD is rather a free style text. Thirdly, it was 

difficult to preserve the same labelling logic over time. Therefore, a team of experts in 

this field would improve the quality of the annotation process. 

What about the “skill” term itself in this domain of research? Skill is commonly defined 

as an ability to do a work or action. Usually, skills are directly mentioned in JDs. Then 

such skills are called explicit. However, it is not always the case. Often enough, there is 

the description of a required ability for a task without the factual skill name. Such skills 

are called implicit, and the extraction of implicit skills is a separate field of study. The 

current thesis considers the extraction of explicit skills. 

Based on the knowledge obtained in Section 2, the ML model should be able to extract 

Soft and Hard skills. Soft skills include communication skills, collaborative mindset, 

curiosity, and others. Hard skills are more related to a specific work industry, for example, 

Python programming, Keras, TensorFlow, PyTotch, Deep learning etc. In addition, the 
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skill term is extended with various certificates, passports and diplomas, own car and 

different important tools that a job description requires. 

 

Figure 19. Example of labeled data. 

4.1.3 Parsing Annotation Files and Preparing Input for BERT 

After the completion of the text annotation phase, skill labels are available in the form of 

a json document. The example of this data is presented in Figure 20. As it may be seen 

from the picture, json files contain lots of excessive and irrelevant fields for the NER task. 

Only ‘classId’ and ‘text’ fields were extracted and converted to a csv format. 

The example of converted csv file is presented in Figure 21. These files contain the 

following columns: 

• jid – Job description ID is required to identify the corpus of text from which entities 

are extracted. 
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• sentensce_id –  Sentence ID is used to determine the sequence in the text. 

• word – This is a column containing tokens that are assigned to labels. 

• label – Tags that are assigned to each token. 

Tokens that are not related to skills are marked with the [O] tag. This tag also labels 

punctuation marks, such as a dot, comma, dash etc. 

 

Figure 20. Example of json document. 

 

Figure 21. Example of output file converted to CSV. 
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Another important point in the preparation of the input data is the fact that BERT is 

capable of processing an input sequence of no more than 512 tokens. It means that a 

sentence in a JD cannot be longer than 512 words. Figure 22 shows the distribution of 

the number of words in JD sentences. As illustrated on the diagram above, the maximum 

number of words in a sentence does not exceed 40 words, which definitely complies the 

limitations of the BERT model. Furthermore, there is a peak at the beginning of the 

diagram, which indicates the presence of sentences of 1-5 words. In most cases, such 

short sentences are headings. 

 

Figure 22. Number of words in a sentence. 

4.2 Frameworks and Libraries 

As it was presented in Section 3, a version of Google’s BERT model for Finnish language 

demonstrates outstanding results. Therefore, this research is based on FinBERT model. 

However, the BERT model does not directly support NER. Therefore, this research 

utilizes NER approach for FinBER described by Devlin et al. [26] and implemented using 

Keras. 

Keras is a high-level API (Application Programming Interface) that can use TensorFlow 

functions. Keras was designed with convenience and modularity as guidelines. As a 

practical matter, Keras makes it as easy as possible to create many powerful yet complex 

TensorFlow functions, and is configured to work with Python without any major changes 

or settings. This functional API suggests a fast way to create prototypes of modern deep 

learning models. Moreover, Keras was used to create and train the BERT model and is 

therefore an important tool that is utilized in this thesis.  
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TensorFlow is an open source library built for Python by the Google Brain team. 

TensorFlow compiles many different algorithms and models, allowing the user to 

implement deep neural networks for use in tasks such as image recognition, 

classification, and natural language processing. 

4.3 Model Architecture and Parameters 

The main building block of the machine learning model developed in this study is recently 

introduced FinBERT with cased vocabulary. Similar to the original version of BERT, the 

Finnish language model consists of a multi-layer transformer that receives a sequence 

of tokens as input. The output of FinBERT is a sequence of context-based embeddings 

of these input tokens. An additional layer for the NER task is a Dense layer that is utilized 

for fine-tuning developed model. The additional layer produces a probability distribution 

over output labels as shown in Figure 23. 

 

Figure 23. Model architecture. 

The NN model was trained on 85 labeled job descriptions. The training process took 

three hours and was performed on MacBook Pro with 2,8 GHz of Processor Speed and 

16 GB of RAM memory. The maximum length of the input sequences was 128 tokens. 

The developed NN model includes the following set of parameters: 

• Batch size: 8 

• Top layer learning rate: 5e-5 
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• Optimizer: AdamOptimizer 

The trained model was evaluated based on traditional performance evaluation metrics. 

Finally, the whole unlabeled dataset containing roughly 200 000 JDs was fed to the NER 

model. The inferences are presented in the form of cloud of words and job skills demand 

over time.  

4.4 Model Training and Validation 

The labeled dataset of 85 job descriptions was randomly split into training and validation 

sets: 15% of data constitutes validation dataset, the rest is training. 

In order to avoid overfitting and at the same time enable good generalization level for the 

model, learning curves [29] were built and presented in Figure 24 and Figure 25. 

Learning curves calculated on the metric by which the parameters of the model are being 

optimized. In our case this metric is a loss and the parameter is the number of epochs. 

The exploration of the loss was conducted for fifteen epochs. 

As Figure 24 and Figure 25 demonstrate the training loss decreases with the increase of 

the number of epochs. This is a good sign which tells that the model actually trains. 

However, while training the model starts to memories data samples. This is called 

overfitting and leads to a significant decrease in model prediction quality on unseen data. 

In order to avoid overfitting, the model is supplied with a validation dataset. 

The validation loss enables to choose the optimum number of epochs for model training. 

On the same Figure 24, the validation loss gradually goes down and starts to increase 

after reaching its minimum. While the loss decreases the model still learns hidden 

patterns in the text. After reaching the minimum the overfitting starts. Therefore, the 

optimum number of epoch is seven. 
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Figure 24. Train and Validation Learning Curves Showing an Overfitting Model. 

 

Figure 25. Train and Validation Learning Curves (Log Scale). 

As Figure 24 and Figure 25 demonstrate the training and validation curves are located 

far from each other. Moreover, training curve is close to x axis. Both of these 

observations emphasize that the model was trained with too soft regularization. 

Regularization allows a model to avoid overfitting and achieve higher performance. 

However, the choice of optimal regularization methods and its parameters is a matter of 

a follow-up research. 

4.5 Model Evaluation 

The validation dataset was utilized during model training to recognize and avoid the 

model overfitting. Furthermore, an additional test dataset was deliberately postponed to 

evaluate the model performance. This test dataset contains 15 JDs, which is about 1541 

words. These job descriptions are unfamiliar to the model and are being applied for the 

first time.  
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Named Entity Recognition is a type of a classification task. For this kind of task, the main 

approach for a model performance evaluation is a confusion matrix. The confusion matrix 

is computed on a set of test data for which true values are known. In the case of binary 

classification, the confusion matrix is a table with four different combinations of predicted 

and actual values [30]. 

On the test dataset, the model recognized 134 phrases as skills. Among these phrases, 

91 were correctly identified by the model (TP), 43 – misclassified as skills (FP), and 

missed 28 phrases (FN). These results are presented in Table 6. 

Table 6. Confusion Matrix (Phrase) for the developed model. 

 Predicted Value  

Negative Positive 

Actual 
Value 

Negative X (TN) 43 (FP) X 

Positive 28 (FN) 91 (TP) 119 

 X 134  

As it may be noticed from the Table 6, the value of true negatives is empty. This is due 

to the fact that the concept of a phrase was not introduced in this study and our model 

was not trained to count the number of phrases in each JD.  

Additionally, there is a list of general metrics that are commonly used to evaluate model 

performance. These metrics are basically calculated from a confusion matrix and include 

the accuracy, precision, recall and F1-score [30].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
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Based on these metrics, it is possible to conclude how well the developed model is able 

to recognize phrases as skills in unstructured text. The calculated metrics are presented 

in Table 7. 

Table 7. Evaluation metrics (Phrase) for the developed model on test dataset. 

Accuracy Precision Recall F1-score 

93,64 67,91 76,47 71,94 

Moreover, it may seem that values are not quite high. However, it is worth noting that 

labeling data as skills is a complex and painstaking process that requires a lot of time. 

According to Section 2, a group of linguistic experts is usually involved in such kind of 

annotation processes. In the current research, the data labeling was performed by one 

person with no linguistic education. Therefore, the dataset used in this work theoretically 

may contain labeling mistakes and ambiguities. 

Furthermore, it was decided to do model evaluation on the level of individual words rather 

than phrases. This is a legit idea, because finding the edges of skill phrases is a quite 

cumbersome process and depends a lot on the qualification of a person preparing 

training and testing datasets. As a consequence, the model learned training data might 

not be able to fully capture deviated patterns in test data. The confusion matrix 

representing the quality of predictions on the level of words is show in Table 8. The model 

predicted labels for 1541 words in the testing dataset and 210 out of 238 skill words were 

correctly assigned to the positive class. Key performance metrics are listed in Table 9. 

Table 8. Confusion Matrix (Words) for the developed model. 

 Predicted Value  

Negative Positive 

Actual 

Value 
Negati
ve 

1245 
(TN) 

58 (FP) 1303 

Positiv
e 

28 (FN) 210 (TP) 238 

 1273 268  
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Table 9. Evaluation metrics (Words) for the developed model on test dataset. 

Accuracy Precision Recall F1-score 

94,42 78,35 88,24 83,00 

As it was expected the model performance on the level of words is higher than on the 

level of phrases. For instance, Precision grew by over 10% and reached 78%. Other 

metrics showed higher values as well. 

The extraction of individual words makes a lot of sense, since skill phrases explaining 

the same skill cannot be easily matched for further analysis. This happens because of 

even a slight difference in the text or an extra descriptive word. 

4.6 Results 

This section presents examples of analytical and statistical results that can be performed 

based on the extracted skills from JDs.  All analytical results are based on data obtained 

from JDs published on tyopaikat.oikotie.fi since March of 2014 till November of 2018. As 

discussed in Section 4.1.2 the developed model allows to extract two types of skills 

namely soft and hard skills. The model was also trained to fetch entities such as 

diplomas, certificates, and other necessary documents confirming qualifications. 

As a post-processing of the output data, the extracted skills represented by a single word 

were converted to dictionary form. Synonymous skills were combined together and their 

results were summarized. For example, words asiakaspalveluhenkinen, 

asiakaspalveluasenne, asiakaslähtöinen, asiakaspalveluhenkisyys and others are 

synonyms and were combined into asiakaspalvelulähtöinen (customer service oriented). 

4.6.1 Cloud of Words 

First of all, it was decided to build a cloud of words for a few professions as the example 

of possible service built on the extracted skills. A cloud of words is a combination of tags 

that together have the shape of a cloud. The size of each word in the cloud is different 

and usually depends on its importance and how often a word appears in the text. In our 

case, the most popular skills have a larger size, and the less popular ones have a smaller 

size, respectively. Siivooja (Cleaner) is a profession for which the most JDs were 
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published on Oikotie Työpaikat in the given period of time. The example of cloud of words 

for Cleaner is shown in Figure 26. 

 

Figure 26. Cloud of words for the profession Siivooja (Cleaner). 

As shown in Figure 26, the most popular skill is suomenkieli (finnish language), as well 

as reipas (brisk), itsenäinen (independent) etc. Besides, according to the results, it is 

important for Cleaner to have a driving license and an own car. The less popular skills 

are luotettava (reliable), oma-aloitteisuus (self-initiative), fyysinen (physical) and 

laitoshuoltaja (plant maintainer). 

For the better clarity, the distribution of skills by popularity for the Cleaner occupation is 

presented in Figure 27. The count represents the number of JDs where a skill appears. 

Since Сleaner is usually a profession that does not require high qualifications, almost all 

of described skills are soft skills. Only such skills as työturvallisuuskortti (Occupational 

Safety Card) and ajokortti (driving license) can be attributed to hard skills. 
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Results also demonstrate that the main skill is kokemus (work experience) for Cleaner 

and other professions. This skill is present in almost all JDs and will be excluded from 

statistics in the future to make it suitable for analysis and viewing. 

 

Figure 27. The most popular skills for the profession Siivooja (Cleaner). 

Similar to the Cleaner profession, a cloud of words and the distribution of the most 

popular skills were built for Ohjelmistokehittäjä (Software Developer). These analytical 

results are presented in Figure 28 and Figure 29. Unlike the previous example, a 

Software Developer is a highly qualified profession that requires hard skills. In this case, 

skills include programming languages such as C, JavaScript, SQL, Java, CSS, HTML 

etc. Furthermore, it is important to know both suomenkieli (Finnish) and englantinkieli 

(English). According to the analysis, soft skills that are important for a Software 

Developer include itsenäinen (independent) and oma-aloitteinen (self-initiative). 

A similar cloud of words can be easily drawn for any profession or job posting. This is a 

powerful tool that can merely improve user experience. For example, the user does not 

need to read a long job description, all the necessary skills will be visible in the cloud of 

words. 



42 

 

 

Figure 28. Cloud of words for the profession Ohjelmistokehittäjä (Software Developer). 

 

Figure 29. The most popular skills for the profession Ohjelmistokehittäjä (Software Developer). 
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4.6.2 Skill Demand 

The next step was to evaluate skills demand for soft and hard skills separately. In 

addition, it was also decided that it is useful for Oikotie Työpaikat users to evaluate 

demand for the most commonly required languages, as well as education and 

certificates. These diagrams are presented at the end of this section. 

Soft skill demand 

Soft skills characterize non-specialized qualities of a person. However, these skills are 

quite important for a career and often play a key role for successful participation in the 

work process and high productivity. Since soft skills are not related to a specific 

professional field, this type of skills is the most popular and represented in almost every 

JD. The number of soft skills is quite high, as a consequence it was decided to consider 

their statistics separately. The diagram of twenty most popular soft skills is presented in 

Figure 30. 

 

Figure 30. Top 20 the most popular soft skills. 

As demonstrated in the figure above, the most demanded soft skills are itsenäinen 

(independent), reipas (brisk), asiakaspalvelulähtöinen (customer service oriented), oma-

aloitteinen (self-initiative), positiivinen (positive) etc. 
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Hard-skill demand 

Hard skills are professional competencies that need to be learned and can be measured. 

This type of skills usually characterizes a specific professional area. In the example of 

Software Developer profession, in the most case hard skills are programming languages. 

Therefore, it was decided to look at how the demand of the most popular programming 

languages changed over time. Figure 31 presents the diagram of common programming 

languages, where the x-axis is the number of JDs that mention this language, and the y-

axis is the date (YYYY.MM) when job postings were published on the Oikotie web-site. 

 

Figure 31. The most popular programming languages. 

As demonstrated in the figure above, the local minimums of programming languages 

demands are in Julies for the considered time interval of more than four years. 

Apparently, this is due to the fact that midsummer is a vacation time in Finland and the 

demand for any labor force is falling. The maximum demand for programming languages 

is observed in the beginning and end of the year. According to the diagram, the most 

popular programming languages are SQL, C, Java and JavaScript. In general, there is 

an increase in demand for all programming languages. 

Languages 

Often enough one of the important requirements for candidates in JDs is knowledge of 

local and foreign languages. Language skills demand is presented in Figure 32. As 

shown in the pie chart below, English and Finnish occupy the first position with a 
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difference of only 6 %. The third position of the rating is held by the Swedish language 

and is 12 %. The remaining 2% is made up of other languages. 

 

Figure 32. Language skills demand. Other languages include Venäjänkieli (Russian), Saksankieli 
(German), Vironkieli (Estonian), Ranskankieli (French), Espanjankieli (Spanish), Italiankieli 
(Italian). 

According to the Figure 33, the language demand on the Finnish job market is growing 

during the considered time interval of over four years. However, the most increase of the 

demand is experienced by Finnish and English languages. The seasonal minimums and 

maximums are also well observed on the figure.  

 

Figure 33. Language skills demand over time. 
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Education and certificates 

Finally, the demand for education and certificates was constructed separately and 

presented in Figure 34. 

 

Figure 34. Education and certificates demand. 

The most required certificates are Työturvallisuuskortti (Occupational Safety Card) and 

Hygieniapassi (Hygiene pass). In addition, Korkeakoulututkinto (University degree) is 

important for many recruiters. 

These sections presented few examples of applying the developed skill extraction 

framework. The results exhibit that this framework has a chance to pave a fundament for 

a lot of useful applications and improve the Oikotie Työpaikat job market service. 
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5 Conclusion 

The objective of this master thesis was to develop a skills extraction framework for job 

advertisements for job service Oikotie Työpaikat. Further, based on this framework 

Oikotie can easily build a recommendation system for better user experience, evaluate 

job market demand or create other useful services. 

5.1 Summary  

The first step of this master thesis was to explore a variety of currently used skills 

extraction systems from a free written text such as job descriptions. Apparently, the 

diversity of skills extraction systems is huge, namely, from diving into technologies based 

on a skills taxonomy to developing a machine learning model. According to the research 

carried out in Section 2, systems based on the skills taxonomy combined with the graph-

based approach have obvious disadvantages. These include the time-consuming 

building of a skills library that requires the involvement of a team of experts or users, the 

difficulty in updating the skills dictionaries, and other obstacles. Modern machine learning 

technologies have clear advantages and allow to achieve impressive results. However, 

ML approaches mentioned in Section 2 do not utilize the state-of-the-art NLP algorithms 

and might be significantly improved. 

The main goal of Section 3 was to study different NLP techniques that take into account 

the context of words. The investigation was started with general seq2seq models such 

as RNN and LSTM that demonstrated obvious shortcomings in the modeling of long and 

short-range dependencies. Moreover, the sequential nature of RNN and LSTM model 

architectures prohibit parallel processing of words, which is important for handling large 

corpuses of texts. A newer model called Transformer in combination with the Self-

attention mechanism eliminates the disadvantages mentioned above. However, there is 

another state-of-the-art algorithm that surpasses the previous approaches and its name 

is BERT. Unlike directional models, BERT utilizes pre-trained Transformer encoders that 

allow it to read the entire text at once, rather than a sequence of words. The fine-tuning 

of BERT for a specific task usually involves adding just one layer to the core model. Due 

to this fact, the creation of a skills extraction system is reduced to configuring only one 

layer of the neural network, which requires a relatively small amount of training data.  

Since the extraction system must be able to process words in Finnish, it was decided to 

leverage Google's open-source BERT model for the Finnish language (FinBERT) 
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developed by Turku University. This version of BERT outperformed the previous 

multilingual model in a wide range of tasks, especially in classification problems. One of 

the classification subtasks is NER, which can be easily applied to extract entities such 

as skills from unstructured texts, and it is utilized in this study. 

A detailed process of implementing the model for extracting skills was presented in 

Section 4. The dataset provided by Oikotie Työpaikat contains about 300 000 job 

advertisements. The raw data were cleaned and pre-processed as input for BERT model. 

Moreover, 100 JDs were randomly selected from the pre-processed data. This dataset 

was labeled utilizing the web-based tool for NLP text annotation called TagTog. In order 

to facilitate data labeling and eliminate inaccuracies, the definition of the skill concept 

was described in details in Section 4. However, during the annotation process, there 

were a huge amount of edge cases that required involving linguistic experts and further 

improvement of the skill concept. The architecture of the developed model contains the 

main block based on FinBERT and the additional layer was chosen as a simple Dense 

layer with a softmax activation function. This Dense layer was fine-tuned for the NER 

task. The whole model was trained on 85 labeled job descriptions, that were randomly 

split into training and validation datasets. According to the learning curves, the sufficient 

number of epochs was 7, otherwise, the model overfitting starts. Furthermore, for 

evaluating model performance the additional test dataset was deliberately postponed 

and contained 15 JDs, which was about 1541 words. For classification tasks such as 

NER, the main approach for model performance evaluation is a confusion matrix and its 

based different evaluation metrics as accuracy, precision, recall, and F1-score. These 

metrics were calculated firstly for skill phrases and then for every single word. 

5.2 Model Performance and Evaluation  

In the case of phrases, model evaluation metrics were not quite high. This is due to the 

fact that the dataset used in this thesis theoretically may contain labeling mistakes and 

ambiguities for above mentioned reasons. Furthermore, it was decided to do a model 

evaluation on the level of individual words rather than phrases. This is a legit idea 

because finding the edges of skill phrases is a quite cumbersome process and depends 

a lot on the qualification of a person preparing training and testing datasets. As a 

consequence, the model learned training data might not be able to fully capture deviated 

patterns in test data. In the case of single words, the model performance is higher than 

on the level of phrase. For instance, Precision grew by over 10% and reached 78%. 
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Other metrics showed higher values as well. The extraction of individual words makes a 

lot of sense since skill phrases explaining the same skill cannot be easily matched for 

further analysis. This happens because even a slight difference in the text or an extra 

descriptive word leads to the mismatch of skill phrases. 

5.3 Results Highlights 

The developed skill extraction framework achieves noticeable results. Extracted skill 

phrases include soft skills, hard skill and different qualification certificates. Although, a 

noise is present in the model output, there are ways for improvements. However, already 

the current model enables to make valuable inferences and draw descriptive statistics in 

the job market domain. 

The skill extraction framework may become a fundamental tool for a number of potential 

services oriented for actual customers and businesses. Such services are limited by only 

one’s imagination or creativity. For example, there could be a service to facilitate CV 

writing or pointing an applicant to missing skills for a better look on a job market. This 

feature may lead to a beneficial integration with universities or online learning platforms. 

Also, HR departments of big companies or governmental organizations might need a 

skill demand map over time to better plan their strategies in industry. 

5.4 Future Work 

First of all, it is planned to improve the architecture of the model by replacing a simple 

Dense layer with a more advanced one. For instance, the Conditional Random Field 

(CRF) layer is used for NER in the research proposed by Arkhipov et al [31]. In addition, 

the optimal regularization method allows a model to avoid overfitting and achieve higher 

performance. 

Secondly, the developed model can be applied not only to extracting skills from JDs, but 

also from CVs. In this case, new training data should be prepared and labeled based on 

users' CVs. After training the model, it will be possible to normalize the obtained output 

data and build a recommendation system for users similar to the paper Gugnani, A [9]. 
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