

CREATING A GAME SCENE IN UNITY

Bachelor’s thesis

Hämeenlinna University Centre
 Degree Programme in Business Information Technology

Autumn 2020

Saku Eräniitty

TIIVISTELMÄ

Tietojenkäsittelyn koulutusohjelma
Hämeenlinnan korkeakoulukeskus

Tekijä Saku Eräniitty Vuosi 2020

Työn nimi Creating a game scene in Unity

Työn ohjaaja Lasse Seppänen

TIIVISTELMÄ

Tämän opinnäytetyön tarkoituksena oli luoda yksinkertainen peliskene ilman

pelattavuutta. Peliskenellä oli tarkoitus esitellä lukijalle peliskenen luonnin eri vaiheita

ja aiheita, sekä auttaa lukijaa valitsemaan mitkä aihealueet pelinkehityksessä ovat

hänelle mieluisimpia. Tarkoituksena oli myös auttaa lukiaa pääsemään hyvään alkuun

oman peliskenen luonnissa.

Pelinkehitys kattaa valtavan määrän aihealueita. Tässä opinnäytetyössä kerrotaan miten

Unityssä luodaan uusi projekti ja asennetaan siihen tarvittavat liitännäiset parhaan

grafiikan mahdollistamiseksi. Sen lisäksi selviää miten hahmon veistäminen, animointi ja

luurakenteen luominen Blenderissä toimii. Lopuksi vielä näytetään, kuinka

partikkelisysteemiä voi käyttää vaikkapa tulen tekemiseen ja kuinka taivas tehdään peli

skeneen.

Työ ei ollu minkään yrityksen tilaama, vaan kirjoittajan täysin itse valitsema aihe ja se

soveltuu parhaiten alotteleville pelinkehittäjille.

Avainsanat 3D Modeli, Animaatio, Rigging, Partikkeli Systeemi, Skybox

Sivut 41 sivua, joista liitteitä 2 sivua

ABSTRACT

Degree Programme in Business Information Technology
Hämeenlinna, University Centre

Author Saku Eräniitty Year 2020

Subject Creating a game in Unity

Supervisor(s) Lasse Seppänen

ABSTRACT

The purpose of this thesis was to create a simple game scene without playability. The

game scene was meant to introduce the reader to the different stages and topics of

creating a game scene and to help the reader choose which topics in game development

are the most interesting. The purpose was also to help the reader get off to a good start

in creating their own game scene.

Game development covers a huge number of subjects. This thesis explains how to create

a new project in Unity and install the necessary plugins to enable the best graphics. It

also explains how character sculpting, animation, and rigging work in Blender. Finally, it

shows how a particle system can be used to create for example fire, and how the sky is

made for a game scene.

The work was not commissioned by any company, but a topic entirely chosen by the

author himself and is best suited for beginning game developers.

Keywords 3D Model, Animation, Rigging, Particle system, Skybox

Pages 41 pages including appendices 2 pages

CONTENTS

1 INTRODUCTION ... 1

2 UNITY ... 3

2.1 Creating a new scene .. 4

2.2 Setting up High Definition Render Pipeline and Post Processing 5

2.3 Terrain ... 6

2.4 Creating Fire .. 7

3 BLENDER .. 14

3.1 Sculpting .. 14

3.1.1 Preparing a sculpt .. 14

3.1.2 Tools .. 16

3.1.3 Starting the Sculpting .. 17

3.2 Fangs and Hair ... 18

3.3 Rigging and Animating .. 20

3.3.1 Rigging ... 20

3.3.2 Animation .. 21

4 SKYBOX .. 24

4.1 Krita ... 24

4.2 Painting the texture in Krita .. 24

4.3 Matching the texture to a sphere in Blender .. 26

4.4 Adding a skybox in Unity ... 28

5 FINAL RESULT ... 30

5.1 Characters ... 30

5.2 Fires and Waterfalls .. 32

5.3 Terrain and Skybox .. 34

6 SUMMARY ... 35

REFERENCES .. 36

1

1 INTRODUCTION

The game industry is a huge and constantly growing industry. The competition is hard

on all of the numerous fields of game development. However, sometimes it can be hard

for a game developer to identify which field of game development is the most tempting.

That is what is the core purpose of this thesis, to help out the reader by briefly going

over most of the fields of game development.

The author has been fascinated by video games his whole life and got recently

introduced to game development in an exciting study of half a year abroad. In the study,

he created an open-world game together with 23 other students. He took part in the

programming department but got to closely follow the work of the other departments

as well.

Other departments in the game development project were game design, art, and sound.

The game design team designed the levels and added some effects and functionalities

that did not require programming. The art team created all the art for the game except

for the music. This art included, for example, 3D characters, other 3D models, textures,

concept art, and logos. The sound team created all of the sounds and music for the

game.

These fields and departments of game development may vary based on the game and

especially based on the size of the development team.

Despite being part of the programming department, the author shortly after returning

home from this journey installed the tools required and began practicing 3D modeling.

2

The thesis was not ordered by a client but was created for the author himself. The

subject of the thesis was selected solely due to the interest and passion to learn more

about game development.

Research questions:

- How are 3D models created for games?

- How is it possible to create a simple animation for a game with Blender?

- How is it possible to use C# code in a game scene?

- What is it possible to use particle systems for a game scene?

3

2 UNITY

A game engine is software created for building video games. It usually

offers the basic features used in most games such as physics, rendering,

and handling inputs. All this allows the developers to focus on creating

their own unique features for their game instead.

Unity is the most popular game engine and game development platform

excelling more specifically at mobile, low-end PC, augmented reality, and

virtual reality (VR) games while its biggest rival, Unreal Engine is leading

the market in more high-end games. Unreal Engine is also known for

making their own games, such as Fortnite, which Unity does not do at all.

Unity is a cross-platform game engine, which means that it can be used to

create games for multiple platforms. In Unity’s case, this covers 25

different platforms including all the most popular ones in the market. It is

also used to create both, 2D and 3D games. (Takahashi, 2018)

In 2005 Unity was released by a company called Unity Technologies in

Denmark. By 2006 Unity already received an award at Apple’s 2006

Worldwide Developer’s Conference as it was presented as the first-ever

fully powered game engine for iPhone. (Smykil, 2006)

Past few years Unity has also been used increasingly in film production for

making movies and cut scenes. 2017 added the Cinemachine feature gave

the developers a nice variety of different camera types to choose from.

These cameras were also great for creating films and require no code

whatsoever.

In 2019 Unity did $542M in revenue up 42% from the year before.

(Motschwiller, 2020) The same year more than half of the top 1 000 mobile

games were powered by Unity and on average all mobile games powered

4

by Unity combined were being downloaded 3 billion times every month.

(Unity Technologies, 2020e)

2.1 Creating a new scene

To create a new project in Unity, first, the Unity Hub must be opened. In

Unity Hub at the Projects tab, “New” must be selected to start a new

project. Next to the “New” button is an arrow, where the version of Unity

can be chosen for the project. For this project version, 2019.3.2f1 was

used. When working in groups, it is good not to keep upgrading the Unity

version constantly to avoid merge conflicts.

In the next window Unity asks for the name- and the location of the

project. Here the template for the project is also defined. This project is

going to be a 3D scene with High Definition Render Pipeline (HDRP), so the

High Definition RP template could be chosen, which has the HDRP and Post

Processing stack pre-installed, but for educational purposes, the 3D

template was chosen for this thesis and then the HDRP and Post Processing

stack was installed from Unity’s Package Manager.

HDRP is a scriptable render pipeline for more compatible platforms such

as PC. It enhances the lights and helps the user create a project matching

to a high graphical standard. (Unity Technologies, no date a)

Post Processing stack improves the visuals and helps in achieving the

desired look for the game. It affects the camera’s image buffer before the

image is shown on the screen. It is good to think of Post Processing as a

special lens added to the virtual camera that offers different visual tuning

to the footage. (Unity Technologies, no date b)

Package Manager is a window inside Unity where the user can manage the

installed packages and install new ones. It is located in the top menu bar

under Window and Package Manager.

5

2.2 Setting up High Definition Render Pipeline and Post Processing

A new project should now be created. The next step is to click on the

Window tab at the top left corner and then click on the Package Manager.

From Package Manager should be searched and installed the High

Definition Render Pipeline (HDRP). When the installation is complete, next

an HDRP Asset should be created to the Assets folder by right-clicking the

Asset folder, then choosing Create, Rendering, and finally High Definition

Render Pipeline Asset. Now the asset must be assigned to the project. To

do this, the Edit menu must be opened from the top left corner of the

screen. From Edit Project Settings should be chosen. In the Graphics tab of

the Project Settings the HDRP asset can be dragged to the Rendering

Pipeline Asset slot. It is also recommended to go to the Player tab and to

Other Settings to switch Color Space to Linear. (Brackeys, 2019)

Color Space stands for the mathematical method used by Unity to

calculate the lighting. The Linear option should give more fidelity to the

lighting in most cases, but once there are some lights and textures in the

scene, it is good to switch this around to see the difference, but at this

point, it makes next to no difference to our scene. (Unity Technologies,

2020a)

HDRP uses its own purpose-built implementation for the Post Processing

tool so it should not be installed separately when using HDRP since it would

not be compatible with HDRP either. If however HDRP is not used, Post

Processing can be installed from Package Manage just like HDRP was just

installed above. This installation would install Post Processing Version 2.

(Unity Technologies, no date b) (Unity Technologies, 2020b)

The game is now using the High Definition Render Pipeline and Post

Processing tool. Since there are no visuals whatsoever in the scene right

now, there is no point in tweaking any settings yet.

6

2.3 Terrain

In this section, a terrain is going to be created for the scene. The shaping

of the terrain happens completely in Unity, but for creating the texture

Krita and Blender will be used.

To shape a terrain, first, a terrain is needed. The terrain can be found by

clicking the plus icon in the hierarchy. From this menu, any game object

can be added to the game. The option to create a terrain is under the 3D

Object selection.

When working with Unity it’s good to keep in mind that one unit in Unity

indicates one meter. By default, Unity creates a 1 000m x 1000m terrain.

One of the four corners of the terrain located in the zero position of the

global axis. For some people, it might feel nicer to work on the terrain

when the middle of the terrain is in the zero point instead. For this reason,

in the Transform options in the Inspector of the new terrain game object,

the X and Z positions can be set to -500. However, this is totally optional

and comes down to personal preference.

One default sized terrain is usually plenty of room to work with, but if

another terrain is wanted next to the first one, it is better to do it from the

Inspector of the first terrain. In the Terrain tab, a Create Neighbor Terrains

option can be found. In that option, the side where the new terrain is

wanted just must be selected to create a new terrain. This option is great

and easy to use even later in the game developing process since it takes

into account the shapes and the textures of the original terrain. It smooths

out the shapes and copies the base texture unlike a manually added whole

new terrain would.

7

2.4 Creating Fire

There are several ways to create fire in either Blender or Unity. This

chapter is going to explain how to do it in Unity by using the particle

system. Creating fire with particles is one of the lighter options when it

comes to performance. The particle system is also very easy to set up by

just a few clicks. All that is needed really is just some kind of an image of

fire to show as the particles.

To begin with, a Particle System object should be created by clicking on

GameObject, Effects, and then selecting the Particle System. Next, a

material for the particles is needed. Firstly, a location where the material

is wanted to be saved must be defined anywhere inside the Assets folder.

Once at the desired folder location, new material is created by right-

clicking anywhere on the empty space in the folder, then selecting Create,

and then Material. At this point, a fire asset is needed. Any picture of fire

with a black background will do for now since it can easily be changed later.

The fire asset must be saved somewhere in the Assets folder again. In

general, it is good to create a separate folder for the materials, textures,

etc. to keep everything nice and organized. Once the fire asset is in Unity,

it must be dragged to the Base Map slot in the new material. The Base Map

slot is located in the Inspector of a material under the Surface Inputs tab.

When the fire asset is placed in the material, can the material simply be

dragged to the particle system object. The particles are going to look awful,

but no reason to worry since that will be fixed soon. (Vegas, 2015)

At this point, the particles should just look like the image of the fire added

earlier. This problem is fixed by opening the Inspector window of the

material and from the top, the Shader must be changed by selecting Legacy

Shaders, Particles, and either Additive or Additive (soft). As the name

suggests, Additive (soft) should give a softer result. (Vegas, 2015)

8

There are almost countless options when it comes to the particle system.

The following is a list of important options for creating a fire. In the list can

also be found suggestions for the values. It’s good to keep in mind that in

this project these values were used to create a fire for a fireplace, so for

different purposes, the values will surely vary and it’s good to play around

with the values to find the perfect fit. These following options can be found

in the Inspector of the object under the Particle System tab:

 Table 1. Settings of a particle system in Unity

Setting Description

Looping Looping should always be turned on. This option keeps the

particles coming indefinitely.

Start

Lifetime

Start Lifetime defines how long each particle is going to show

before disappearing. This is one of the options that can be

used to adjust how long the flames grow. Around 5 should

be a good value for this setting.

Start Speed Start Speed defines the speed the particles travel in. Leaving

this option low but Start Lifetime high can result in richer and

fuller flames. 1.5 is a fine value for this.

Start Size Start Size defines the size of the particles. Can be left at 1.

Start

Rotation

Start Rotation defines the rotation of the particle when it first

appears.

Flip

Rotation

Flip Rotation makes some particles to appear with a different

rotation. Setting Start Rotation to for example 60 (depends

on what looks best with the fire asset being used) and Flip

Rotation at around 0.5 should create nice randomness in the

flames making the flames more realistic looking.

Start Color Start Color basically defines the color of the flame. It is good

to set this to a nice orange color again based on the flame

texture. A good example is around hex: F38500. This setting

can also be used to create different colored flames such as

blue or green if needed.

9

Play On

Awake

Play On Awake should be checked to automatically start the

particle system when the scene is played.

Gravity

Modifier

Gravity Modifier is a good option if the particles are wanted

to slow down towards the end of their lifespan. It is good to

be careful with this option since just 0.01 or 0.02 should be

enough. This can also be used to speed up the particles but

for this reason, it is usually better to use the Start Speed

option.

Rate over

Time

The emission tab must be checked to edit the value of Rate

over Time, which defines the number of particles appearing

each second. Around 20 is usually good for this option.

Shape The shape tab also must be enabled to define the shape

where the particles move in. For creating a fire usually to box

or a cone is used. For creating this fireplace, the box shape

was used. From the Scale settings of the shape, the size can

be scaled to match exactly the size of the object that is on

fire.

Size over

Lifetime

Size over Lifetime lets the user assign the size progression of

the particles over the lifespan of the particles. Assuming the

particles are wanted to start big and then slowly fade away

as they fly higher, the settings for this are easy. In figure 1.

the left indicator (which indicates the start of the lifespan)

should be dragged to the top left corner of the chart. The

right indicator (which indicates the end of the lifespan) on

the other hand should be dragged to the bottom right corner

of the chart.

Rotation

over

Lifetime

Rotation over Lifetime simply rotates the particles over the

lifespan. This should always be checked to create a more

randomized and realistic look. Around 60 should be a

suitable value for most fires.

10

Figure 1. A graph that shows the size over a lifetime of a particle

Table 1 covers the most important options for the particle system while

creating a fire. With these options, one should be able to create a great

looking fire, but all the options are surely worth checking out.

To finish the fire, one last thing should be added. A point light adds a nice

final touch and makes it looks like the fire is lighting up the area around it

with warm orange light. A point light is added as a child object to the

particle system by right-clicking on the particle system and then selecting

Point Light under the Light tab.

To set up the light correctly for this purpose, it is best to make sure that

the X and Z positions are at 0 and then to lift the light on the Y-axis just

slightly. Next under the Emission tab, it is important to change the color of

the light to warm orange to match the fire. The range is also an important

option to adjust to fit the use.

Since fire never remains exactly the same and flames keep bursting out in

different sizes, it is only logical to have the point light also pulse in

intensity. This can be created in a few simple lines of code.

11

Adding code to an object is done by clicking on the object (point light) and

by scrolling down to the bottom in the Inspector of the object. At the

bottom by clicking Add Component and New Script, the user gets to name

the new script and then to add it by clicking Create and Add. The new script

should now be found in the assets folder.

Next, the script must be opened in Visual Studio or any other integrated

development environment (IDE) and the coding is ready to begin.

Figure 2. Maximum and minimum intensity values for the point light

(Statement, 2011)

The First two float values in figure 2 are needed to define the maximum

and minimum intensity of the light. (Statement, 2011)

Figure 3. Random modifier for the point light (Statement, 2011)

Next, it is good to create a random float value that is being calculated

inside the void Start. This random value is used to calculate each light its

slightly unique pulse so if there is more than one light with the same script

in the scene, they do not pulse in sync. When the random value is

calculated inside the void Start, as shown in figure 3, it means that the

value is only calculated once at the start of running the script and so the

random value remains the same. (Statement, 2011)

Figure 4. Void Update of the pulsing light function using PerlinNoise

(Statement, 2011)

12

One more float value, float noise is needed to define the final intensity.

Figure 4 shows how the value for noise is calculated by using

Mathf.PerlinNoise, the random value calculated earlier, and Time.time

value, which is basically just a value that comes from a running real-time

timer that starts running when starting the scene. (Statement, 2011)

Figure 5. 2D noise map used in PerlinNoise function.

PerlinNoise returns a value based on a 2D plane such as figure 5 and the X

and Y values (in this case the random and Time.time values) given to it. The

white areas on the plane represent 0 value and the darker areas return a

value all the way up to 1. The X and Y values define where on the 2D plane

the value for the PerlinNoise is picked from. (Unity Technologies, 2020c)

Finally, the last line gets the light component’s intensity value and gives it

the Lerp value calculated from the minimum intensity, maximum

intensity, and noise values. How the Lerp works are that it calculates a

value using the third value (in this case noise) to interpolate a value

between the first and the second values (in this case the minimum

intensity and the maximum intensity). (Unity Technologies, 2020d)

13

Figure 6. Result of the particle system created above.

The final fire should at this point be ready. With these options, it should

look something like in figure 6 and have a pulsing light to it. The same

technique can be used to create fire for a lot of different purposes by just

adjusting the values.

14

3 BLENDER

Blender is one of the leading 3D modeling software. It is a community-

driven tool where everyone can develop it or even help by writing

documentation. Also, it is completely free. Blender supports 3D pipeline-

modeling, rigging, animations, simulation, rendering, compositing, motion

tracking video editing, game creation and it works on Linux, Windows, and

Macintosh platforms. (Blender, no date)

In October 2018, Blender just released a major update, Blender 2.8. This

update really took Blender to a whole new level with numerous new

features and a whole new user interface. For this project, Blender 2.8 is

used for making 3D models, sculpting, and animations.

3.1 Sculpting

Modeling is perhaps what Blender is the most known for. Sculpting is also

an essential part of modeling. Sculpting is mainly used for modeling

characters like humans, animals, or other living creatures. This section is

going to explain how to create models and sculpt characters. Later in the

project animations will be created for the sculpted models.

3.1.1 Preparing a sculpt

To start on a new sculpt, once Blender is open, a new project is created by

pressing File, then New, and then General in the top left corner of the

screen. This opens an empty screen with just a cube in the middle. Now in

the modeling tab, if the cube’s all vertices are selected and the project is

in Edit Mode, by pressing key combination Alt and M and then from the

pop-up menu selecting At Center, all the vertices should be merged to the

middle. Now from the merged vertex in the middle can a base shape for

the character be extruded by using the hotkey E. (Abbitt, 2018)

15

A good thing to do at this point is to add a reference picture to the

background so it will be easier to make the base shape and later to sculpt

up against the reference picture. To do this, while in the Layout tab, by

pressing the key combination Shift and A, a pop-up menu will open again

with the option to add an image. Under the Image option, it is better to

choose a reference and then pick the wanted image from the PC. (Rios,

2020)

Figure 7. What first steps of preparing a sculpt looks like

Once the base shape of the character is ready, some volume can be added

again from Modifier Properties. From Add Modifier -menu choosing Skin is

going to give some volume to the shape and Subdivision Surface is going

to make the shapes nice and round so they are going to be easier to work

on right from the start. In the Subdivision Surface modifier, the settings

can be adjusted if more or less detail is required. (Abbitt, 2018)

Now the thickness of the mesh can be scaled by selecting a vertex in Layout

-tab’s Edit Mode and then pressing key combination Ctrl and A. For this

make sure Wireframe from Viewport Shading is activated. The Viewport

Shadings can be accessed by pressing Z -key or from the top right corner

of the screen. Scaling the mesh can help you get closer to the final shape

quicker. More vertices can also be added by selecting two vertices and

then right-clicking on them and then selecting subdivide from the pop-up

16

menu. When the scaling is done, the modifiers can be applied by pressing

Apply on each modifier while in Object Mode. It is also good to apply the

modifiers from top-down to avoid any errors. (Abbitt, 2018)

Lastly, if both sides of the mesh need to be identical, a new handy tool

called Auto Mirror can be used for that. Auto Mirror can be activated from

the Add-ons tab in Preferences, which is located in the Edit tab in the top

left corner of the screen. Once it is activated, the Auto Mirror tool can be

found in the side bar’s edit tab. When mirroring the mesh, the mesh needs

to be chosen and the settings must be set depending on which side of the

mesh is wanted to be copied and on what axes. When all this is done, the

mirroring happens by pressing AutoMirror –button and then by applying

the modifier from Modifier Properties. Figure 7 describes these three steps

of preparing a sculpt. (Lapineige, no date)

After these steps, the model should look like the one on the right-hand

side.

3.1.2 Tools

Blender has a lot of tools for sculpting, but for this project, only the most

important ones will be used. Those tools include the following sculpting

brushes in table 2:

Table 2. Most important sculpting brushes in Blender

Grab By holding and dragging from anywhere in the mesh pulls

out or pushes in a part of the mesh. Depending on the

Radius -setting can pull anything from a very sharp spike

(low Radius -setting) to a wide area of the mesh (high

Radius -setting).

Pose A great brush for adjusting the posture of the model. For

example, to move a whole arm or just to bend a little finger.

17

Flatten Rubbing this brush to a surface quickly begins to flatten the

surface.

Smooth Rubbing this brush to a surface smooths out the surface.

This brush is extremely handy and one of the most

important brushes.

Crease This brush creates a slit, which is great for the final touches

on the model. Used for example to create bends on limbs,

outline muscles, or add depth to the fine details of a face.

Blob Inflates a round shape out of the mesh.

Inflate Inflates any area of the mesh to create basic or more

detailed shapes. This is hands down the most important

and used brush in sculpting.

Most of the brushes can be adjusted in radius and strength. The opposite

effect of a brush can be created by switching around the Direction -

setting.

Outside the brushes, one of the most important tools for sculpting in

Blender is Dyantopo. Dyantopo defines the amount of detail printed on

the mesh when sculpting. In Detailing -setting the most popular options

are Relative Detail, which changes the detail size based on brush size.

Relative Detail is a great setting if the model needs more detail on some

parts such as the face, and less on the others, like a leg. Constant detail is

another popular option. With Constant detail, the user knows exactly

how much detail is being added to the surface at all times.

3.1.3 Starting the Sculpting

When the preparation is done, begins the hardest and most time-

consuming part of making a character model, sculpting. When going into

sculpting, it is good to keep in mind what the model will be for and so to a

suitable amount of detail in the mesh. If for example, the model will be for

18

a game, too detailed of a mesh will punish the performance of the model

and the game.

Possibly the best way to begin sculpting is to start dragging parts of the

mesh in place with the Grab tool. Especially at the beginning of the

sculpting, it is good to keep a reference image as a background to get the

basic shapes of your character done. If the sculpture is getting too angular,

the Smooth or Inflate tool with Dyntopo turned on smooths out the edges

nicely and adds more resolution.

When basic shapes have been dragged in place, it is good to start using

other tools. Inflate tool is often the next logical step. With inflate tools, the

biggest muscles in the body can be created. After inflating the muscles, the

Crease tool is great for outlining the muscles and other shapes in the body.

3.2 Fangs and Hair

There are many ways to create hair in Blender, but for this more cartoonish

than realistic style in this project, the following method was used. This

method is great and simple. It is easy to rotate and move separate batches

of hair when using this method. This method is also very flexible and so

can be used to create for example fangs.

19

Figure 8. Path Curve and a Circle Curve

Firstly, two different curves are needed, a Path Curve and a Circle Curve.

In figure 8 the curve on the top is a Path Curve and the one on the bottom

is a Circle Curve. These can be created by pressing key combination Shit +

A and selecting the wanted curves under the Curve option. The Path

Curve’s geometry must be linked to the Circle Curve by going to the Object

Data Properties tab of the Path Curve. This can be done in Object Data

Properties under Geometry and Bevel tabs by using the color picker tool.

(YanSculpts, 2020)

The Path Curve should now be mimicking the shape from the Circle Curve.

The shape can be changed by selecting the Circle Curve and by going to

Edit Mode. In edit mode, the vertices of the curve can be moved or more

vertices can be added by selecting multiple vertices, right-clicking on them,

and then clicking Subdivide. (YanSculpts, 2020)

Next, it is good to close the ends of the hair to give it a more natural look.

This can be done by now selecting the Path Curve instead and again going

20

to the Edit Mode. In Edit Mode select each of the ends of the curve and

scale them down with Alt + S key combination. When creating for example

a fang, the other end of the curve might be better to leave open. Again, all

the vertices on the curve can be scaled or moved and more vertices can be

added by subdividing. (YanSculpts, 2020)

When the curve begins to look like an acceptable shape for an average hair,

can the curve be moved in place and then be copied to make more hair

with the key combination Shift + D. Since no hair is exactly like another nor

positioned the same as another, it is good to remember to edit separate

hairs to break any form of continuation in order to add a more natural look.

(YanSculpts, 2020)

3.3 Rigging and Animating

To make a character animate, it must be rigged. Rigging is the action of

creating a bone structure for a character. Blender has ready bone

structures for the most popular models like a human and for a punch of

animals too. These bone structures can be found under Armature in the

Add menu. However, this segment will go over how to rig a character from

the start.

3.3.1 Rigging

Rigging is started by first creating the bone structure. A bone can be

created by my pressing the key combination Shift + A and then choosing

Armature and Single Bone. Generally, it’s a good idea to place the fist bone

as the spine and begin extruding the bones from there. To extrude a bone,

the bone needs to be selected and Edit Mode must be activated. Once in

Edit Mode, the end that is wanted to be extruded must be selected and

then the bone can finally be extruded by pressing the E key. Bones can also

be subdivided by right-clicking and selecting subdivide. (Gu, 2019)

21

When the Bone Structure is ready, it is time to parent the structure to the

character by selecting the whole character and the bone structure and

right-clicking to open the Object Context Menu. From Object Context

Menu must the Parent and With Automatic Weights be selected. The bone

structure should now be linked to the character. This can be tested by

selecting the bone structure and then by going to Pose Mode from the top

left corner of the screen. While in pose mode, if the bones are moved or

rotated, the character should move and rotate with the bones. If the

character or the clothes are not moving the desired way, that means

Blender did not automatically set the weights right, so those must be

edited manually.

Weight Paint defines how much of an impact a bone has on the painted

mesh when the bone is being moved. Weight Painting can be done in the

Weight Pain mode when first selecting the wanted mesh. Once in Weight

Paint mode, in the Object Data Properties tab of the Properties window

can be found the bones. Selecting each bone by just clicking on one will

then display the weight painting of that particular bone on the mesh. In

Weight Painting, a dark blue color stands for no effect at all from the

selected bone and red color stands for the maximum amount of effect.

Weight Painting does not have nor need a lot of different fancy tools. The

painting is done just by selecting the right bone and picking the suitable

Brush Setting for the job. The rest is just painting as one would paint with

any brush. One thing to note is that it is always good to fade out the

weights and not just go straight from red to dark blue. If the weights are

not faded out smoothly, the movement of the mesh is not going to be

smooth and realistic either.

3.3.2 Animation

Once rigging is complete and the weights are right, can the animating be

started. To start creating an animation, the bone structure must be

22

selected, and the Animation tab has to be opened. In the Animation tab,

an Auto Keying is good to be turned on in the Timeline window. Auto

Keying automatically saves the movement done to the bones at a given

frame. Once Auto Keying is on, can the bones be moved to create a pose

for the chosen frame. The most logical and so the easiest way to start

creating an animation is usually to start from the first frame. To start from

the first frame, the timeline must be dragged to zero before making any

changes.

Once the position for the first frame is finished, it will be automatically

saved to that frame and the indicator on the timeline can be moved to the

next frame where the next position is wanted to be defined. Blender will

automatically move the pose from the first pose to the next. This means

that not every frame has to be animated individually.

When looping an animation, the end of the animation just must be

cropped to the final pose of the animation. If making for example a walking

animation, the first and last poses should be the same and the end of the

animation should be cropped to one frame before the last pose. So, if the

last pose is at frame 30, the animation should be cropped to frame 29. This

way the animation does not play the same pose for two frames in a row

(the very first and the very last).

When creating an animation loop for just one object, an even easier way

of doing so is as follows: first, the animation is created similarly as

mentioned above. When the animation is ready to be turned into a loop,

a Graph Editor window must be opened. In the Graph Editor window all

the locations, rotations, and scales must be selected that are meant to be

looped. At this point, by pressing N on the keyboard a small window for

additional tools will open at the edge of the Graph Editor window. From

the new window at the Modifiers tab, new modifiers can be added. To loop

an animation, the Cycles modifier, such as the one shown in figure 9, must

23

be selected. With Cycles modifier added, the animation loop should be

complete.(rely, 2019)

Figure 9. Cycles modifier to loop the animation

24

4 SKYBOX

This segment is going to explain in detail how to make a skybox for a game

scene. In this process, three different programs are going to be used. First

a program for painting the texture, then a program to make the texture sit

nicely on a sphere shape as the skybox is. Finally, the texture will be taken

to Unity and put to use.

A lot of time can be saved by downloading a ready sky texture not to

mention a ready skybox material from for example unity Asset Store.

However, for education purposes in this project, the skybox was created

from scratch. To paint the texture, a painting program, such as Krita or

Photoshop, is needed. For this project, Krita was the program of choice.

4.1 Krita

Krita is a free drawing and painting program. It is much like Photoshop and

has all the basic image processing tool, but Krita is more painting oriented.

Much like Blender, it is open-source and claims to be created by the artists

for the artists.

The first version of Krita was released in 2004. At first, it tried to be more

of a generic image manipulation application like Photoshop or GIMP, but

in 2009 the focus shifted more into making Krita the best painting

application. More specifically for concept art, cartoonists and illustrators.

(Krita, no date)

4.2 Painting the texture in Krita

When creating a skybox texture, it is good to create a big image due to the

stretching the image is going to go true. For this project, the texture was

8 192 x 6 144 px. If an image of this size is too big for the use for any reason,

25

can it be divided by two to keep the suitable measurements. This leaves

the image with a size of 4 096 x 3 072 px. (Andrews, 2017)

When the picture is created, can any background layers be deleted, since

only one layer is needed to create this texture. However, more layers can

of course be used if needed for the wanted result.

Figure 10. Demonstration of which parts of the skybox texture will be

used in Unity

The goal is to paint a sky much like in the picture. It is also good to keep in

mind that when the image is being used in Unity, it will be split into 12

parts (4x3) and only 6 of it will be used. In figure 10 the 4 squares in the

middle row will be the sides of the skybox, the second from left on the top

row will be the top of the sky and the second from left on the bottom row

will be the very bottom of the skybox. It is still good to paint a little over

the lines or even the whole picture to avoid any seams when stretching the

picture.(Andrews, 2017)

The most simple and easy way is just to make an ombre of blue colors

progressing from dark blue to lighter. It is good to tap some of the blue

colors in between with a brush to break the continual. Lastly, add some

26

clouds by setting white color and low opacity to a brush and tapping that

the desired way.

4.3 Matching the texture to a sphere in Blender

The texture is good to be previewed on a sphere skybox like shape. This

can be done in Blender by following a few easy steps. As previewing the

texture on the sphere, it can also be edited to add final details and fix any

seams that might be wrong.

To do this, a new blender project must be created. In the project, there

should be a cube by default, but if not, a new cube must be created.

On the new cube, the sky texture can be added right away. This can be

done in the Shading tab by pressing the key combination shift + A to add a

component. From the add component menu by selecting the first Texture

and then Image Texture, a texture for the cube can be added. Next by

clicking Open, can the right texture be searched for on the computer. Once

the texture is in place, only one more component must be added. The

texture must be shadeless and for that, an Emission component is needed.

Emission component can be found again by clicking shift + A key

combination and then by choosing Shader and then Emission. Once

Emission is added, all components needed are in place and just need to be

connected right. The connections go as follows: Color from the Image

texture goes to Color of Emission. Emission from Emission goes to Surface

of Material Output. If the Principled BSDF component was ever added by

default, it can be deleted. The result should look like the one in figure 11.

27

Figure 11. Shading nodes of the skybox texture in Blender

At this point, it is good to make sure the cube is unwrapped right. UV

Unwrapping happens at the UV Editing tab. The texture and the

unwrapped cube can be viewed in the UV Editor window that should be

opened by default on the right side of the screen when entering the UV

Editing tab. However, to see the unwrapping over the texture, the whole

cube must be selected in edit mode. Now the goal is to place the unwrap

as planned in the earlier chapter ”Painting the Texture in Krita”. This can

be done simply by manually selecting and then rotating and moving the

unwrap on the UV Editor window. It is good to remember that if in Blender

anything is wanted to be scaled one axis at a time, that can be done by first

selecting the object, then pressing the S key for the scale tool, and then

pressing X, Z, or Y depending on the axis wanted to be scaled.

For the next step, it is good to return to the Layout tab and make sure the

Viewport Shading from the top right corner of the screen is set to Rendered

to see the result closest to what it is going to look like in Unity. Next, while

the cube selected in edit mode, the Normals of the faces must be turned

inside out from Mesh, Normals, and then selecting Flip. To check if the

Normals are facing inside, the Display Normals setting must be turned on

from the Viewport Overlays menu at the top right corner of the screen. By

default, the Display Normals setting shows the direction the Normals are

28

facing with a short blue line. This line is easier to see in the Viewport

Shading: Wireframe mode.

Now for the last step, a modifier must be added to the cube in the Modifier

Properties tab called Subdivision Surface. On Subdivision Surface, the

Viewport Setting should be increased to 6 to give it a nice and round shape.

Now the texture is all set for final fixing and preview. This can be done by

opening the Texture Paint tab and scrolling the view to inside the object.

Painting tools and the smear tool can be used to make final touches. When

the texture is ready, it can be saved normally and taken to Unity for use.

4.4 Adding a skybox in Unity

Adding a skybox to a scene in Unity is easy. Possibly even a little easier

when not using HDRP but in this project, HDRP is used and that also makes

adding a skybox a little different. However, rendering pipelines allow some

additional settings for a skybox.

Adding the skybox can be started by first adding the texture to the wanted

location in the Assets folder. In the textures Inspector window, the setting

Texture Shape should be set to Cube. Always when adjusting texture

settings, the Apply must be clicked to execute the changes. (Singh, 2018)

Next, a new empty object is needed. This object can be named SkyBox for

clarity. In the object, a component and some overrides are required. First,

add a Volume component by just clicking Add Component in the object’s

Inspector and by writing Volume in the search. Once the volume is added,

can a new profile also be added by pressing New at the Profile part of the

Volume. Unity will automatically name that profile SkyBox Profile if the

object was named SkyBox.(Singh, 2018)

29

Next, some Overrides are needed to achieve the wanted result for the

skybox. At this point, it is good to add the most important override, the

HDRI Sky. On the override, all the settings can be enabled by checking all

the boxes. At this point, the texture is finally required. The texture can be

added simply by dragging and dropping it to the HDRI Sky slot. From this

Override, the Rotation and Exposure of the skybox can also be adjusted,

but those are better to fix soon when the skybox is visible. Usually, around

0.5 Exposure is good to start with. (Singh, 2018)

Now finally to make the skybox visible, a Visual Environment Override

must be added. In Visual Environment Override, check the Type box and

select the HDRI Sky option. Now the volume should finally use the HDRI

Sky with the sky texture as a skybox.(Singh, 2018)

Additional nice overrides to add are for example the Fog Override. As the

name suggests, fog can be created with this override. Fog can also be used

to fade out the sharp edges of the terrain if that is needed.

30

5 FINAL RESULT

This chapter showcases the outcome of the methods explained in this

thesis. Some of the methods were used in multiple locations to create

different results.

5.1 Characters

With the methods described in the sculpting chapter, two characters were

sculpted for the scene. First, sculpt was the main character, the gnome

shown in figure 12. When the character was brought to Unity, a green

point light was added to its goggle to add a nice glow effect.

Figure 12. The final gnome character model in Unity with an added point

light added to the goggle.

This character’s hair and beard turned out great as well using the path and

circle curve method. Figure 13 shows all the hairs used on the character.

The singular hair on the right-hand side was used to create the whole hair

for the character by just copying and scaling it to different shapes and sizes

over and over again. The clothes were sculpted as separate objects by

31

copying the part of the model where the cloth is going to be, scaling it

slightly bigger, and then sculpting it to give it the final shape.

Figure 13. Gnome model’s path and circle curves.

Overall, the character turned out great. The head ended up with far more

detail and for that reason does not really match the rest of the body as well

as it could.

The sheep in figure 14 was the second sculpt for the scene. Both the

characters were created with the same sculpting methods despite how

different the models are.

 Figure 14. The sculpted sheep model.

32

The sheep only had the wool texture painted to it, so no special methods

were used for that. However, the wool part of the sheep could look better

if it were not so smooth. Blender has a couple of ways to make a surface

rugged which could be used for this purpose.

Both of the characters received a bone structure and were animated a

walking animation. The great thing about rigging in Blender is that there

are ready bone structures for a human and a few different kinds of animals.

For the gnome, the bone structure was created manually by just extruding

bone after bone. For the sheep actually, a bone structure of a horse was

used. The ready bone structures in Blender are fairly complicated and have

a lot of bones, so for this simple sheep, all the excessive bones were

deleted to simplify the structure.

5.2 Fires and Waterfalls

The particle system was greatly utilized in the project. As in the chapter

before the particle system was used for creating a fire for multiple

locations such as the one in figure 15.

Figure 15. Fire in a fireplace created with the Particle System.

33

Besides the fires, the Particle System was also created to create some

waterfalls. The method between the fire and waterfalls is very similar. Just

using a different texture for the particles and adjusting some settings such

as the direction the particles move, made all the difference.

Figure 16. Waterfall made with the Particle System.

For creating the waterfalls, three different particle systems were used for

each waterfall. The part where the water is falling has a darker layer of

blue particles but also an almost white one to represent foam forming

from the water. Additionally, at the very bottom, there is another near

white particle system to blend the waterfall to the water more seamlessly

with some more foam or fog looking particles. This particle system also

rotates differently from the others. It only rotates the particles around and

moves them slightly outwards from the middle of the particle system.

Figure 16 shows the final result of these waterfalls.

34

5.3 Terrain and Skybox

As shown in figure 17, the result of the skybox and the terrain also turned

out great and was a great base to build a game scene on. The skybox was

created exactly as described in the thesis. Adding some fog from skybox

settings definitely blended the skybox and the terrain together nicely.

Figure 17. Skybox and the terrain of the scene.

In this case for the terrain, it was found best to first go over the terrain

with a large brush to shape out where the mountains were going to stand

and roughly what size they were going to be. After that, some smaller hills

were added with a smaller brush, and finally, the platforms were evened

out with a smooth brush for the cabin house and water areas.

A total of three textures were created in Krita and then were moved over

to Unity for painting the terrain.

35

6 SUMMARY

The goal of the thesis was to have a simple Unity 3D game scene with some

effects and functions but no playability. The main purpose was to show the

reader how different fields of game development work to help the reader

identify the field closest to their own interest.

The final scene has a shaped and textured terrain and a skybox. Plenty of

3D models were made including two character models with some

animations. Due to lack of time, the character models never received an AI

for the movement to showcase the walking animations, but that is surely

a subject for later development. Additionally, fire and waterfalls were

created with particle systems. The scene is now also using High Definition

Render Pipeline, which did not really have much use past just installing it

in this thesis, but it can be later used for some high visual fidelity.

Overall, the thesis turned out great even though a lot of functionalities did

not quite make it to the final scene. At the end of the day there are an

endless number of fascinating functionalities so even if the author had

twice the time to work on the thesis, there would still be plenty of more

left to show. This thesis was but a touch on the surface of game

development. However, hopefully, it gave the reader an idea of what game

development can be like and most of all encouraged the reader to find out

more and move forward in the arts of game development.

36

REFERENCES

Abbitt, G. (2018) Quickly Create Base Meshes for Sculpting | Skin modifier | Blender 2.8
- YouTube, Abbitt, Grant. Available at:
https://www.youtube.com/watch?v=wCI8ZbTBP1w&t=263s (Accessed: 9 August 2020).

Andrews, K. (2017) How To Make a Unity Skybox with Photoshop - YouTube, Kyle
Andrews. Available at: https://www.youtube.com/watch?v=-ZutidNYVRE (Accessed: 9
August 2020).

Blender (no date) About — blender.org, Blender. Available at:
https://www.blender.org/about/ (Accessed: 9 August 2020).

Brackeys (2019) How to get GOOD GRAPHICS - Upgrading to HDRP - YouTube, Brackeys.
Available at: https://www.youtube.com/watch?v=12gkcdLc77s&t=715s (Accessed: 9
August 2020).

Gu, D. (2019) (1) Armatures - Blender 2.80 Fundamentals - YouTube, Blender. Available
at: https://www.youtube.com/watch?v=cZ3o5tjO51s (Accessed: 9 August 2020).

Krita (no date) History | Krita, krita.org. Available at: https://krita.org/en/about/history/
(Accessed: 15 October 2020).

Lapineige (no date) Auto Mirror — Blender Manual, docs.blender.org. Available at:
https://docs.blender.org/manual/en/latest/addons/mesh/auto_mirror.html (Accessed:
9 August 2020).

Motschwiller, M. (2020) Unity Software IPO | S-1 Breakdown, Meritech Capital. Available
at: https://www.meritechcapital.com/blog/unity-software-ipo-s-1-breakdown
(Accessed: 13 October 2020).

rely (2019) (1) HOW TO EASILY LOOP ANIMATIONS BASIC TUTORIAL | BLENDER 2.8 -
YouTube, rely. Available at: https://www.youtube.com/watch?v=QMrqtgZRWco
(Accessed: 9 August 2020).

Rios, J. (2020) Blender 2.8: Background Image – Simply Explained | All3DP, all3dp.com.
Available at: https://all3dp.com/2/blender-background-image-simply-explained/
(Accessed: 9 August 2020).

Singh, R. (2018) How To Apply A Skybox In Unity 2018 (HDRP & LWRP) - YouTube, Rohit
Singh. Available at: https://www.youtube.com/watch?v=nlIIVPWD13I (Accessed: 9
August 2020).

Smykil, J. (2006) Apple Design Award winners announced, Ars Technica. Available at:
https://arstechnica.com/gadgets/2006/08/4937/ (Accessed: 13 October 2020).

Statement (2011) How to Randomly Change the Intensity of a Point Light with a Script -
Unity Answers, answers.unity.com. Available at:
https://answers.unity.com/questions/41931/how-to-randomly-change-the-intensity-
of-a-point-li.html (Accessed: 9 August 2020).

37

Takahashi, D. (2018) John Riccitiello Q&A: How Unity CEO views Epic’s Fortnite success |
VentureBeat, Venturebeat. Available at: https://venturebeat.com/2018/09/15/john-
riccitiello-interview-how-unity-ceo-views-epics-fortnite-success/ (Accessed: 20 October
2020).

Unity Technologies (2020a) Unity - Manual: Linear or gamma workflow,
docs.unity3d.com. Available at: https://docs.unity3d.com/Manual/LinearRendering-
LinearOrGammaWorkflow.html (Accessed: 9 August 2020).

Unity Technologies (2020b) Unity - Manual: Post-processing, https://docs.unity3d.com/.
Available at: https://docs.unity3d.com/Manual/PostProcessingOverview.html
(Accessed: 9 August 2020).

Unity Technologies (2020c) Unity - Scripting API: Mathf.PerlinNoise, docs.unity3d.com.
Available at: https://docs.unity3d.com/ScriptReference/Mathf.PerlinNoise.html
(Accessed: 9 August 2020).

Unity Technologies (2020d) Unity - Scripting API: Vector3.Lerp, docs.unity3d.com.
Available at: https://docs.unity3d.com/ScriptReference/Vector3.Lerp.html (Accessed: 9
August 2020).

Unity Technologies (2020e) Welcome to Unity | Who are we, Unity.com. Available at:
https://unity.com/our-company (Accessed: 13 October 2020).

Unity Technologies (no date a) High Definition Render Pipeline overview | High Definition
RP | 7.1.8, docs.unity3d.com. Available at:
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-
definition@7.1/manual/index.html (Accessed: 9 August 2020).

Unity Technologies (no date b) Post-processing in the High Definition Render Pipeline |
High Definition RP | 7.2.1, https://docs.unity3d.com/. Available at:
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-
definition@7.2/manual/Post-Processing-Main.html (Accessed: 9 August 2020).

Vegas, J. (2015) Mini Unity Tutorial - How To Create Fire - Beginner - YouTube, Jimmy
Vegas. Available at: https://www.youtube.com/watch?v=qShjsxopbfQ (Accessed: 9
August 2020).

YanSculpts (2020) Easiest Way To Create Hair in Blender - 5 Minute Tutorial - YouTube,
YanSculpts. Available at: https://www.youtube.com/watch?v=BqWYgrXw7Jk (Accessed:
9 August 2020).

