

Metropolia University of Applied Sciences

Master of Engineering

Information Technology

Master’s Thesis

27 October 2020

Ahmed Fahady

Development of an IoT-based Student At-
tendance System

PREFACE

Being in Finland as a new comer from a third world country where everything there is

delayed, made me amazed about Finland when I saw almost everything is computerized

and automated. However, this vision didn’t stay a long until I encountered with the way

how students’ attendance is taken. I got the passion to do something for this issue cer-

tainly, but the challenge was to know where to start from. With days and when I started

to for my master in the program of engineering information technology. There, I met the

head of the master program (Ville Jääskeläinen) who supported my idea and opened all

doors since the first day I met him to accomplish this project.

Some challenges were also faced during this study. Perhaps the biggest challenge was the

study and work at the same time and COVID-19 period when I had to postpone the testing

of the project. However, everything was settled at the end. Now I’m in a phase of submit-

ting this thesis and go forward in my life and have more challenges.

In truth, I could not have achieved my current level of success without a strong

support group. First of all, my parents, who supported me with love and understanding.

And secondly, my peer group who has provided patient advice and guidance throughout

the research process. And thirdly, my better half who supported me with everything pos-

sible emotionally and mentally. Thank you all for your unwavering support.

Helsinki 31st August 2020

Ahmed Fahady

 Abstract

Author

Title

Number of Pages

Date

Ahmed Fahady

Development of IoT-based Student Attendance System

28 pages

15 Sep 2020

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)
Ville Jääskeläinen, The head of Master of Eng. IT program in

Metropolia University of Applied Science.

This thesis was carried out to study the ability to create students’ attendance system by using
the available technologies in the frontend, backend, and IoT technologies to substitute the
current way of manually taking the attendance in Metropolia University of Applied Sciences.

A comprehensive analysis of the topic was conducted. Such technologies, as React JS, Fire-
base, Linux and NoSQL databases were examined in detail. Their pros and cons were iden-
tified and compared to other technologies that are used in cloud-based development. After a
long research, a working IoT-based application prototype for student’s attendance was de-
veloped. The prototype consists of the IoT kit component which is put in the classroom to
get the attendance using a raspberry pi, RFID reader, and 7” touchable screen. user-friendly
interface, a possibility to easily check in and out without contact with the IoT kit, monitor
the attendance by the lecturer and access real-time information anywhere via the Internet.
The prototype also includes an interface for the administrator of the system to manage data-
bases, storage, hosting, and authentication of the system.

The application was built based on the studied technologies and uses the IoT, cloud compu-
ting, big data as well single page application frame work (React JS) as an infrastructure to
have a better control and flexibility. The project also suggested a future development after it
was used and started to collect data. Machine learning analysis could be used to study the
behavior of students’ attendance individually.

The thesis concludes with the thoughts about the technologies used in the development and
the future plan to integrate the system with the organization system to document the attend-
ance automatically in students page.

Keywords student attendance system, Internet of Things (IoT), cloud

computing, machine learning, JavaScript, Firebase, Raspberry

Pi, single page application, Near Field Communication (NFC),

Software engineering.

Contents

Preface
Abstract
List of Figures (Tables)
List of Abbreviations
1 Introduction 1
2 Current State Analysis / Project Specifications 3

2.1 Security and GDPR 3
2.2 Cost 4
2.3 Human Interaction with System 4

3 Available Technologies 6
3.1 Cloud-Based Web Applications 6
3.2 Frontend 8
3.3 Backend 10
3.4 IoT (Internet of Things) 12

3.4.1 Raspberry Pi 4 B 12
3.4.2 Input devices 14

4 Implementation 17
4.1 Project description 17
4.2 Environment setup 18
4.3 Frontend implementation 21

4.3.1 Students’ interface 21
4.3.2 Administrator interface (Dashboard) 25
4.3.3 Admin’s interface 26

4.4 Backend (Firebase) 27
5 Results and Analysis 33
6 Discussions and Conclusions 35
7 References 36

Appendices:
Appendix 1. Survey for lecturers
Appendix 2. Survey for students
Appendix 3. Responses and analysis.

List of Figures

Figure 1. Types of clouds: private, public, and hybrid (CloudFlare, 2020)7
Figure 2. Percentages of websites using various server-side programming languages.
(W3Techs, 2020) ... 11
Figure 3 Raspberry Pi 4 Model B (RaspberryPi, 2020) ... 13
Figure. 4 RFID Reader (tomtop.com, 2020) ... 15
Figure 5 Dependencies were used at the frontend development 20
Figure 6 Code which executes the function of posting the input (Student’s ID) to
backend. .. 22
Figure 7 Students frontend layout when input irrelevant UID. 23
Figure 8 Code to fetch data from database ... 24
Figure 9 students’ interface .. 25
Figure 10 Administrator's dashboard ... 26
Figure 11 Admin’s general interface layout (Backend) .. 27
Figure 12 the snippet of firebase SDK integrated in the frontend 28
Figure 13 the available authentication methods supported by Firebase. 29
Figure 14 The built-in authentication templates of Firebase. .. 29
Figure 15 the function which is responsible to authenticate users of the app 30

List of Abbreviations

NFC Near-field communication

RFID Radio-frequency identification

GDPR General Data Protection Regulation

IoT Internet of Things

Metropolia Metropolia University of Applied Science

HTML Hyper Text Markup Language

CSS Cascading Style Sheets

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

FaaS Functions-as-a-Service

IaaS Infrastructure-as-a-Service

UI User Interface

UX User Experience

iOS iPhone Operating System

AWS Amazon Web Services

GPU Graphics Processing Unit

RFID Radio Frequency Identification

NPM Node Package Manager

CLI Command-line interface

API Application Programming Interface

SDK Software Development Kit

1

1 Introduction

While we are in 2020 and almost everything has become automated, still the student at-

tendance systems are as they were 100 years ago. Currently, Metropolia marks the attend-

ance on paper and later it’s moved to the system. Through the last few years, the cloud

computing technology have developed a lot, which makes it possible to create an electri-

cal system to track and mark all students’ attendance easily and with low cost.

The current way of getting the attendance is time-consuming, as the attendance is part of

the lecture time and students need to do it while the time is supposed to be for learning.

On the other hand, it’s time-consuming for teachers/lecturers to transfer the attendance

from paper to their system. Papers have only one information that the student attended

today, without more detailed information about whether the student came late or left early.

This thesis tried to find an efficient IoT based solution to automate the attendance taking

process. Creating an independent system to follow the attendance with low cost will help

a lot to eliminate many downsides which exist in the traditional way such as saving time

and effort for both sides (students, teachers/lecturers), and to make useful analytics out of

the data obtained from the system.

In addition, this system is supposed to be connected with an Android/IOS app to enable

the students to view their attendance status, to use their phone to behave as a Near Field

Communication (NFC) identification tag.

The system is able to check students’ attendance (in and out) with no more than one click.

This software keeps track of tardiness, letting teachers know if specific students are fre-

quently late to class. Students can be tracked from the moment they enter the school, even

before the class has officially begun. This is especially useful in case of emergency to

know exactly who are in the school premises.

This thesis studied the present attendance in Metropolia and proposed an IoT-based sys-

tem connected to the cloud that uses the NFC/RFID technology, using Firebase platform

as a backend and storage service. The physical device which is put at the class room is a

2

Raspberry Pi 4 model B. The needed data of the students was encrypted by giving each

student a User Identity (UID) and decrypted later when data was transferred to the school

or the university official system. In this way, the privacy of the students will stay protected

and the system will not be threatened with the possible General Data Protection Regula-

tion (GDPR) in EU.

The project started by defining the research problem. The researcher’s own experience in

everyday interaction with contact attendance and the deliberate observations about the

current way of doing the attendance contributed to defining the problem. The next step

was to find the most suitable research design and empirical method for the thesis. The

thesis continues with search of the available technologies which serve to create attendance

system based on IoT and cloud computing solutions. The implementation started by cod-

ing such a cloud-based system which works with IoT solutions with taking into consider-

ation the requirements of system and limitations. The testing and the feedback that came

later from students and lecturers were both documented in the chapters of this thesis.

Finally, the results and their discussion were written to make conclusions about the sig-

nificance of the IOT-based attendance system and its implications.

The thesis has been divided into 6 sections. The first section introduces the problem of

the thesis, including a short description of the project and the guidelines that were used

to create the project. The second section continues with current state analysis and the

project specifications. The main motivation for this is that the current technology has to

be studied from an engineering perspective to allow for informed and well-grounded de-

cision for what kind of system is needed and what are the limitations applied on the pro-

ject such as the legal, security, and financial limitations. The third section dives into the

available technologies in 2020 which can serve the goal of the thesis to be accomplished.

The section studied the available programming languages and backend management

methods as well as the cloud providers and IoT hardware. The fourth section describes

the implementation of the project divided into three sub-sections which include frontend,

backend, and the hardware (IoT) implementation. The fifth section talks about the results

and analysis, discussing briefly what has been done in the project development. The sixth

section includes the discussion and the conclusions of the thesis.

3

2 Current State Analysis / Project Specifications

Metropolia as a university has thousands of students divided between Bachelor, Masters,

and Open University Students, and has a huge number of lectures everyday taking place

in the 4 campuses (Arabia, Myyrmäki, Karamalmi, and Myllypuro). This has created a

need to have a centralized system to get the attendance information of all these students

in an efficient way. Currently, teachers and students consume time and effort from both

sides when first doing the paper attendance and later moving it to the system. The need

to get more data than just Attended/Absent students is growing many times especially for

the analytics and studying the behavior of students’ attendance. The new system should

be able to provide a detailed information about each student.

Because of the current situation of COVID-19 and the need to have as less as possible of

shared physical contact between students to avoid transferring viruses, this system should

have the ability to be hygienic and work without a physical touching.

2.1 Security and GDPR

One of the first things that should be considered when creating a system which involves

human data is the protection of the data and keeping people’s privacy away from unau-

thorized people to view it. GDPR (General Data Protection Regulation) is the newest

regulation in EU that became applicable May 2018. All systems and companies in the EU

and non-EU companies who deal with people’s data in the EU should follow this regula-

tion.

The attendance system which was created needs to follow the GDPR requirements. The

system must have high encryption that makes hacking impossible or at least very difficult.

Only the most needed information of clients’ privacy should be collected, for example

the social security number of students should be changed with another code that only

system workers know how this code is linked to the certain students (gdpr-info.eu, 2016).

4

2.2 Cost

It is known that the first thing all stake holders are thinking about is “How much will the

new system cost”. The benefits that comes from this system must be compatible with the

cost of building, maintaining and training personnel on this system. It should be easy to

learn and simple so the maintenance would be as easy as possible.

The attendance system comparing with other web applications such as Facebook,

YouTube, Wolt, Foodora, and other big applications is too small from the aspect of tech-

nical and hardware requirements. There are many cloud services’ providers such as

Google which provides a comprehensive tool to the application management and the abil-

ity to scale up with just one click. These service providers are using the pricing type “Pay

as you go” which means they will bill only the time when the system is used

(GoogleCloud, 2020). This type of pricing could reduce the cost to the minimum as the

average use of the system will be 8 hours/day. When the system starts to work in the

actual environment and start to collect data. It will need minimum requirements to work

sufficiently. Later, after the system scales up and the size of data starts to exceed, normal

backend servers will need to be replaced with a bigger capacity hardware, but with the

case of using Google Cloud or Amazon Web Services (AWS) that will not take more than

one click to upgrade the backend hardware and it will be billed from the time was up-

graded. At the same time, if the system is not working in case of summer or spring holi-

days, it will not be charged anything.

2.3 Human Interaction with System

Successful systems are more independent than the ones who need manual interaction from

human each time. Because of that, this system should minimize the administrators’ rules

in operating it. In other words, this system should be serving administrators, not vice

versa.

The system would switch on and off automatically and during the times of lectures only.

Students also should not need to choose that they are checking in or out, as the system

should recognize that by itself. In this way, two goals will be reached. The first goal is

5

that less effort is done by users of the system. The second goal is less bugs and less prob-

lems for the system itself. For example, letting students press each time one of the two

buttons (the first button is for check in and the other one is for check out) would make the

depreciation faster and would also include the possibility of making a mistake by students

to press the check-out button when they want to make check in and vice versa. These

features are highly needed for a sufficient and smooth work of the system.

However, the idea of this project is to find a working prototype, which can be taken into

pilot use and to collect feedback for further improvement. For this reason, the project

specifications at this point of time were quite generic.

6

3 Available Technologies

This part discusses the available technologies in 2020 which could serve to get the best

practices to solve the research problem. Section 3.1 provides an overview of what are

cloud-based applications , their history, the most common hosting providers, types of

cloud-based applications, and how they work. Section 3.2 provides a brief introduction

of what is frontend and how does the frontend design could determine the success or

failing of the whole system, this section also discusses the available tools for designing

and building frontends including up-to-date statistics of what is the trend currently in

2020. Section 3.3 outlines the backend side of every system, showing the methods which

could be used to build a solid and secure backend that could support all the needs of the

system. It reviews the available technologies of building backend and determines the dif-

ference between server and serverless. This section also covers what kind of program-

ming languages are used in the backend and what is the trend in 2020.

3.1 Cloud-Based Web Applications

A cloud application is a software placed in the cloud, usually on third-party servers such

as AWS or Google hosting services accessed on the internet, system owners could have

their own servers also if they want. Providing data access from anywhere is the top reason

for cloud adoption. General trend is to use the cloud for creating new systems nowadays

(Rouse & Shore, 2012).

Tim Berners-Lee wrote a proposal paper ”Information Management” in March 1989

which led to develop later the first website ever (http://info.cern.ch/hyper-

text/WWW/TheProject.html) by Tim himself. Tim’s intention was to automate infor-

mation-sharing between scientists in universities and institutes around the world. Since

that time and the internet development is updating in each moment of the time. Although

it was not Tim’s intention to create nowadays’ internet, his idea changed the world as the

internet started to be used in everything in our life (Ryan, 2010).

 Cloud-Based Web Applications could be put on Public, Private, or hybrid cloud. A public

cloud is a cloud service offered to multiple customers by a cloud provider. The public

cloud" is used to differentiate between the original cloud model of services accessed over

7

the Internet and the private cloud model. Public clouds include Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) services.

In a nutshell, software as a service (SaaS) provides a single, common infrastructure and

code base that is centrally maintained for users, with no need to worry about anyone ac-

cessing their personal information without authorization, a clear example of SaaS appli-

cations is the online Photoshop software (Turner, 2020). From the other side, infrastruc-

ture as a service (IaaS) provides virtual machines or storage from a provider on demand

with elastic scalability and platform as a service (PaaS) provides a platform allowing cus-

tomers to develop, run, and manage applications without the complexity of building and

maintaining the infrastructure typically associated with developing and launching an app

(CloudFlare, 2020).

In contrast, Private Cloud could refer to cloud service offered to only one organization

without sharing the same cloud with others. Each one of these types has pros and cons

sides for example Public cloud has lower cost, less time spent to manage servers by the

company itself. From the other side, a private cloud has more privileges on the public

cloud by less leakage of data because of the data management, avoid to vendor lock-in

with the cloud providers who could get indirect authority on the organization who at one

point should accept all the cloud providers rules and policies.

Figure 1. Types of clouds: private, public, and hybrid (CloudFlare, 2020)

From that came the term of a hybrid cloud to mix two or more of the cloud types (Public,

Private or on-premises). Hybrid clouds are used if an organization want to use their pri-

vate cloud for some services and their public cloud for others, or they may use the public

8

cloud as backup for their private cloud. They can also use the public cloud to handle

periods of high traffic on their private cloud, while keeping most operations within their

private cloud (Rountree & Castrillo, 2014).

Statistics show that since the launch of the internet in 1990, almost all businesses have

started to rely partly or completely on the cloud services, about 80% of businesses around

world have a website on the internet in 2018 statistics and it has been growing rapidly.

As many as 90% of companies are on the cloud and 84% of these companies run on a

multi-cloud strategy (451Research, 2018). In 2020 The global public cloud computing

market is set to exceed $330 billion in 2020 (Hostingtrybunal, 2020).

From the statistics above, we can feel the importance and the rapid growth of Cloud Ser-

vices for enterprises and could also conclude that companies who don’t adopt the cloud

services partly or completely will not survive for a long time in the market.

The cloud, as much as it is useful by globalizing the services, it also has some risks of

hacking the company’s systems to get their private information. That is why companies

could choose between Public and Private Cloud according to the risk if they publish their

information to everyone. Some companies could choose the two types of Cloud Compu-

ting to balance the need of the security and privacy with the benefits of Public cloud.

3.2 Frontend

A Frontend term refers to the client-side layout and the visual aspects of the web app that

a user can see and experience. System layout must be well-constructed with impressive

visuals, meaning that the design of the frontend must be compatible with the user experi-

ence. To design a layout of a system, the developer needs to know at least one or more of

the programming languages such as HTML, CSS, and JavaScript.

Web applications used to be static and simple text sites with a humble formatting. That

was thanks to CSS and HTML. But during the last 10 to 15 years, frontend development

has changed considerably with the dramatic growth of JavaScript programming language,

which was not as universal on the frontend as it is currently.

9

Some of the most important technologies used in frontend web development include the

following:

HTML: The base on which every site on the web is built, it is a crucial technology in

frontend development. HTML5 is the most recent HTML specification.

CSS: The Cascading Style Sheet (CSS) enables developers to add effects and styling to

the web applications. Styles can be added globally, then masked on without changing that

original styling that is applied to the entire site. CSS and the related scripts are always

developing. The newest and latest version of CSS is CSS3.

CSS frontend frameworks like Bootstrap or Foundation can help to create refined web

applications instantly. Several frontend developers use a CSS pre-processor to make cod-

ing much faster and to avoid repeating. User experience (UX) and user interface (UI)

Design should be used carefully to bring the frontend to life. It would be careless to talk

about frontend development and not mention the design aspect: these two things are

closely connected in application development and websites. Many frontend developers

take different roles, with UX/UI and web design skills in their sleeve. If the designer

knows which things are possible with frontend code, they can design user interfaces that

are more interactive and intuitive.

Nowadays, after the wide spread of mobile phones and tablets, Frontend technology was

expanded to have more branches to accommodate these two new platforms and this kind

of development, in turn, is divided into many sub-categories such as iOS, Android, and

Windows systems development. Generally, the same languages were used in the web de-

velopment. Native app developers use Swift or Objective-C for iOS applications, Java or

C++ for Android applications and C# for Windows Phone applications.

JavaScript: It was once a supplementary tool to make web pages more interactive is now

the most ubiquitous client-side technology. JavaScript is more than just a language — it’s

an entire ecosystem that spans frameworks, task runners, server-side development, and

more.

10

Many Frontend open source tools were created to help with design and create web appli-

cations such as WordPress, Wix and other Joomla. Statistics show that 59% of the internet

websites are made by WordPress, in the second place comes Joomla with 6.6% of the

market share. Coded websites are less than 21.3% of the total amount of the websites on

the internet in 2020 and the rest of the web applications are made by open source tools

(Sawyer, 2018).

3.3 Backend

Every web app has a frontend and Backend. In the last section we talked about the

frontend that is basically what the clients see when they interact with applications. Now

backend or Server-side refers to all operations functionality that happens under the hood

where the clients will not see. Clients can never access or see what is happening in the

backend, all that the clients see is the front end.

Backend involves the programming of a computer placed mostly on the off shore and

responsible for responding to what users request when interacting with the frontend side

of the web application. Backend could be described basically as this example. A person

enters one restaurant and ask for their menu, the customer chooses what he/she likes and

gives his/her order to the waiter, after a while the customer gets his/her meal ready in

front of him/her. The client did not see how this meal was prepared in the kitchen, all

what they saw was the menu. This is exactly what happens in every web app, the menu is

the frontend and the kitchen and chefs are the backend of the web app and the waiter who

takes the orders from the client to the kitchen functions as a server in web applications.

A Server-side is written by one of the programming languages such as PHP, Python, Ruby

on Rails, Java, and Net to get the backend job done. According to W3Techs (Web Tech-

nology Surveys) the most popular backend programming language is PHP with 79% of

websites backend. That probably comes because the most popular open source website

builder (WordPress) uses PHP as a backend. Although Python and JavaScript are growing

rapidly among the coded cloud applications (W3Techs, 2020).

11

Figure 2. Percentages of websites using various server-side programming languages.

(W3Techs, 2020)

Nevertheless, a new technology of managing Cloud-Based applications’ backend is called

Serverless technology that started to be popular since 2015. Mike Roberts, the co-founder

of Symphonia which is consultancy focusing in cloud architecture explains about Server-

less technology by saying “Serverless architectures are application designs that incorpo-

rate third-party “Backend as a Service” (BaaS) services, and/or that include custom code

run in managed, ephemeral containers on a “Functions as a Service” (FaaS) platform.”

This means that foundations do not need to care about the backend infrastructure and the

hardware management anymore, as it is going to be managed by a third party who pro-

vides the backend support and bill by 'pay-as-you-go' basis, meaning that developers only

have to pay for the services they use. Another privilege of Serverless is that it scalable in

anytime, Serverless also more productive than traditional server managed applications by

simplifying the backend software development (Reberts, 2018).

The most popular serverless providers currently are Microsoft Azure, Amazon Web Ser-

vices (AWS), Apache Open Whisk, Google Cloud Platform (GCP), and Cloudflare Work-

ers. One of the new growing mobile application development platforms called “Firebase”

is owned by Google is growing since 2015. Serverless is the most rapidly growing cloud

service model at the moment, with an annual growth rate of 75% in 2018 (Flexera, 2020).

12

3.4 IoT (Internet of Things)

This section introduces what is IoT, how it is used in our daily life, and a few samples of

devices used in the IoT projects. The Internet of Things (IoT) is inspiring our contempo-

rary ways of life from the way we react to the way we behave. From light bulbs that the

person can control with their mobile phones to smart vehicles that guide to the shortest

route or the smart watch that can track the daily activities. Internet of Things (IoT) is an

enormous network with connected devices collecting and sharing data about the way they

are used and the environment in which they are operating. It is done by using sensors

which are embedded in each physical device. It can be a smart phone, traffic lights, bar-

code sensors, electrical appliances, and almost any device in our daily lives. These sensors

are constantly producing and sending data about the working state of the devices, but one

of the main points is how do they share this enormous amount of data, and how to do get

benefits out of this data.

Internet of Things (IoT) offers a shared platform for all these devices to store and process

their data and a common language for all the devices to link with each other. Data is

produced from various sensors and sent to IoT platform. The secure IoT platform inte-

grates the collected data from various sources. Further analytics are performed on the data

and valuable information is obtained as per requirement. The output is shared with other

devices for automation, improving efficiencies and better user experience.

3.4.1 Raspberry Pi 4 B

The best way to describe what is Raspberry Pi is from the official source of the Raspberry

Pi producer (RaspberryPi, 2020) “The Raspberry Pi is a low cost, credit-card sized com-

puter that plugs into a computer monitor or TV, and uses a standard keyboard and mouse.

It is a capable little device that enables people of all ages to explore computing, and to

learn how to program in languages like Scratch and Python. It’s capable of doing every-

thing you would expect a desktop computer to do, from browsing the internet and playing

high-definition video, to making spreadsheets, word-processing, and playing games.”

In IoT projects, Raspberry Pi plays extremely important role to create a centralized unit

to input and process data. Raspberry Pi as a single circuit board computer is used widely

13

nowadays for many reasons. These reasons are the productivity that these devices can do

comparing with their cost and size. The organization which produces this product pro-

duced in charity based in the United Kingdom that works to give the power of digital

making and computing to the people around the world in low cost. Their goal is to get the

opportunity to solve problems that matters to them by using the Raspberry Pi products.

Since 2012, when Raspberry Pi foundation launched their first product to the market with

modest capacity, their product used a 512MB RAM, Video Core IV graphics processing

unit (GPU), and had a Broadcom BCM2835 SoC which includes a 700 MHz

ARM1176JZF-S processor. This was then complemented with the launch of a lower cost

Model A which had less memory and USB ports.

The foundation launched their latest product with a surprise of the new features and a

cheap price from 35 USD/computer. This product was given the name “Raspberry Pi 4

Model B” and has the following highlights: A 1GB, 2GB, or 4GB of LPDDR4 SDRAM,

1.5GHz quad-core 64-bit ARM Cortex-A72 CPU (~3× performance), Dual-band

802.11ac wireless networking, Full-throughput Gigabit Ethernet, Two USB 3.0 and two

USB 2.0 ports, Bluetooth 5.0, Dual monitor support, supporting OpenGL ES 3.x, at res-

olutions up to 4K, Video Core VI graphics, 4Kp60 hardware decode of HEVC video, and

a full compatibility with previous Raspberry Pi products (Upton, 2019).

Figure 3 Raspberry Pi 4 Model B (RaspberryPi, 2020)

14

The foundation of Raspberry Pi has sold by the end of 2019 more than 30 million product

all around the world since the launch of the foundation (Upton, 2019)

3.4.2 Input devices

In the IoT field, input device refers to all sensors and reading data devices such as ther-

mometers, temperature sensors, humidity sensors, motion sensors, cameras, and many

other special kinds of sensors and input devices. A sensor is a device that measures phys-

ical input from its environment and converts it into data that can be interpreted by either

a human or a machine. Input devices are the major components in IoT projects as they

are the first step of any IoT device (Bhatt, 2011).

Sensors are often designed to have a small effect on what it is made for, making the sensor

as small as possible frequently improves this feature and may also provide other ad-

vantages. A good sensor complies with the three guidelines. First, it should be insensitive

to any other property likely to be encountered in its application. Second, sensitive to the

measured property. Third, it does not influence the measured property (Dincer, et al.,

2019).

Barcode, NFC, and RFID sensors are widely used in IoT projects. Radio-frequency iden-

tification (RIFD) mainly uses radio waves and protocols to read and write data on elec-

tromagnetic fields cards and tags in a certain frequency band. RFID is used in many in-

dustries to read, authenticate, write, and track products. The RFID system consists of two

main parts: RFID reader or interrogator and RFID tags or cards. The way it works is by

continuously sending radio waves of a certain frequency. If the object on which this RFID

tag is attached is within the range (0-10 CM) of this radio waves, it sends the feedback

back to this RFID reader and based on this feedback, RFID reader identifies the object.

Currently, there are three different types of RFID tags commercially available: active

tags, passive tags, and semi-passive tags. The active tags have a power source for their

internal circuitries. They also use their own power supply for sending the response to the

reader, while passive tags do not have any power supply. They used to get their power

from the incoming radio waves from the readers. Semi-passive tags on the other hand do

15

have a power supply for internal circuitries, but they rely on the radio waves received

from the reader for sending the response.

Figure. 4 RFID Reader (tomtop.com, 2020)

RFID systems are operated in three frequency bands: High-Frequency band (HF), Low-

Frequency band (LF), and Ultra High-Frequency band (UHF).

High-Frequency band (HF):

HF systems provide reading distances of 10 cm to 1 m and operate in the 3 MHz to 30

MHz range. Typical applications contain electronic payment and ticketing and data trans-

fer. Near Field Communication (NFC) technology is based on the high frequency (HF)

RFID. It has been used for instance in hotel key card applications and payment cards.

Other types of smart card and proximity card payment and security systems also use HF

technology. Standards include, ECMA-340, ISO 15693, , ISO/IEC 14443A, ISO/IEC

18092 (for NFC) and ISO/IEC 14443 (for smart card solutions such as MIFARE)

(Myerson , 2006, p. 59).

16

Low-Frequency band (LF):

RFID systems have a read range of up to 10 cm, and operate in the range 30-300 KHz.

Although they have a slower data read rate and shorter read range than other technologies,

they do perform better in the presence of liquids or metal that can interfere with other

kinds of RFID tags. ISO/IEC and ISO 14223 18000-2 are among the typical standards for

low frequency RFID. Real-life examples of low frequency tags can be found in livestock

tracking, access control, and other applications where a short-read range is applicable

(Myerson , 2006, p. 58).

Ultra-High-Frequency band (UHF):

These systems offer read ranges up to 12 m and have a frequency range operate between

300 MHz and 3 GHz. They also have faster data transfer rates. In addition, they are more

sensitive to interference from electromagnetic signals, metals and liquids. However, some

of these problems have been alleviated by new design innovations. UHF tags are com-

monly used in pharmaceutical anti-counterfeiting, retail inventory tracking and other ap-

plications where significant amounts of tags are needed because they are much cheaper

to manufacture. The EPC global Gen2/ISO 18000-6C standard is a well-known global

standard for item-level tracking applications (Myerson , 2006, p. 192).

As a conclusion, for a student attendance system, HF 13.56MHZ would be the most suit-

able RFID type to be used in reading students’ cards.

17

4 Implementation

This part of the thesis discusses the implementation of the system. Section 4.1 outlines

the project description and the overall structure of the system prototype. Section 4.2 pro-

vides the technology about the frontend of the system and why these technologies were

chosen, including the system frontend programming language and the layout of the client

side together with the dashboards. Providing screenshots of the frontend of system proto-

type. Section 4.3 outlines the structure of the backend, showing the method that was used

to administrate the backend. It reviews whether the researcher used server or serverless

technology and why this was chosen. This section also covers what kind of databases

were used for the system and how is the structure of the database, providing screenshots

of the frontend of system prototype. Section 4.4 provides an overview of the environment

setup. It explains the various elements of the environment in which the system will work,

including the physical and virtual environment.

4.1 Project description

The project is a cloud-based IoT application that was developed to automate the attend-

ance taking process of students in Metropolia. After taking the attendance, many opera-

tions works under the hood to create a real-time informative dashboard that could be

maintained by a personnel or lecturer. The developed platform provides a part of all re-

quired features which are mentioned in the theoretical part of this thesis. Nevertheless,

more functionality can be easily added to the application. At the moment of writing this

paper, the following interfaces were implemented:

• A dashboard to monitor the attendance of a class and to download the attendance of the

day to CSV or .Json format. Including:

a) A set of real-time updated graphical information to show the total

number of attendees, absents, and total number of students who

signed in the course.

b) A bar chart shows in the real-time the total attendance of each day

for the last month.

18

c) A data table to present the attendance of the day (check in and out).

This table featured with a button to download the attendance to CSV

or Json format.

• Students’ interface to do the check in and out. This interface includes:

a) Input field for students to do their check in and out. This input field

is contactless, students do the attendance via the RFID technology.

Shows each student’s ID with his/her check in and out time and has

the ability to input each student’s attendance to the backend (data-

base).

b) A table to present students’ check in and out status of the day. Stu-

dents’ names and other details are not included in this table to follow

the GDPR. Instead, used an UID for each student.

• An IoT kit including (programmed Raspberry Pi, RFID reader, and 7” screen) to work

as a portable device that could register the attendance using Radio Frequency Identifica-

tion (RFID) cards. This kit will be fixed in the classroom.

• An organization interface to represent the features of the system and how it works.

• A system admin interface to manage the databases, authentication, rules, users, analyt-

ics, and many other rules.

4.2 Environment setup

The Cloud-based application was developed on a Mac running macOS Catalina version

10.15.5 operating system. Apart from the Mac and OS, the implementation required a

development environment to be setup. The development environment consists of different

software programs and tools to work with them. Thus, the following were installed:

19

ReactJS

ReactJS is the essential part for the development process of this project as it provides

JavaScript library for building user interfaces and runtime environment for JavaScript

code execution. It can be installed from the NPM tool (Node package manager) via this

line (npx create-react-app app-name). After executing the command line, the easiest way

to check if it is working properly, is to run (npm start) command in the terminal or the

created folder. The command launches an internet tab works on default server http://lo-

calhost:3000 and prints a simple website that has only the React logo. The 16.9.0 version

was used during the development (ReactJS.org, 2020).

Node JS

Node.js was installed as another essential part for the development process of this project

as it provides the runtime environment for JavaScript code execution. Node JS package

can be downloaded from the official website (https://nodejs.org/en/download/). After the

installation, the easiest way to check if it is working properly, is to run node -v command

in the terminal. The command prints the installed version of Node.js. The 12.18.3 version

was used during the development which is recommended by most users in September

2020.

React-based dependencies

The following dependencies were installed to develop the frontend of the application:

Material UI, React Bootstrap, Axios, React Chart, Firebase, Moment, History, React Date

Time, React Router, and many other dependencies which come with the default react

package.

20

Figure 5 Dependencies were used at the frontend development

Visual Studio Code

Visual Studio Code was used as a code editor to develop the frontend of the project. It is

a powerful and lightweight source code editor which runs on desktop and is available for

all kinds of operating systems including macOS, Linux, and Windows. It comes with a

great built-in support for TypeScript, Node.js, and JavaScript and has a rich package of

extensions and addons which are mostly free of charge for other languages (such as Py-

thon, PHP, Go, C++, C#, Java) and runtimes (such as Unity. and NET). This code editor

made the development environment much easier and provided a comfortable tool to help

with coding the project from scratch. The 1.40.0 version was used during the development

(visualstudio.com, 2020).

21

Firebase platform

Firebase is a platform owned currently by Google for creating mobile and web applica-

tions. Firebase helps with building apps fast, without managing infrastructure as the

backend will be managed by Google. Firebase is not only a hosting platform, it has much

more features to increase the functionality such as analytics, databases, messaging and

crash reporting. Firebase was tied with the frontend project by running (npm i firebase-

tools) command in the terminal of the project (Firebase.google.com, 2020).

4.3 Frontend implementation

Frontend is where the user will land up or see the first time. Having a simple to navigate

and to understand UI helps the user find what they are looking for quickly. Because of

that, it was important to design and implement the frontend carefully. The implementation

started when the researcher started to look for the available technologies to build the

frontend, navigating through them and try each was will be chosen in the end. The

frontend of the project was divided into three parts Students, Administrator (Lecturer),

and admin interfaces. The challenge was the huge amount of available ways to create

such interfaces.

At the end, coding development via JavaScript library called React and its dependencies.

The reason of choosing coding the project was because the ready frontend designing tools

such as Wix or WordPress were not able to fulfil the requirements. React library is one

of the most common libraries to create interfaces and Single Page Applications.

4.3.1 Students’ interface

The requirements which were set in the chapter two of this thesis, were taken into con-

sideration. Cost effective, secure platform, easy to use and to maintain the project – these

qualities made React JS to be chosen. The current situation of CODIV-19 enhanced the

need to have a hygienic physical part of the attendance system. Because of that, a touch-

less attendance process had to be done. Below is the code which executes the function of

posting the input (Student’s ID) to the backend and get the response without any touch

22

from the user as it shows below, if the input was 7 digits long then executing the function

to post data.

Figure 6 Code which executes the function of posting the input (Student’s ID) to

backend.

A validation step has been added to the function as a first step when executing by calling

the backend to check if the UID was input is existing in the database or not. If the UID

does not exist in the database, the following message will appear on the frontend, such as

the below example. This step is important also to filter out the unregistered students to

make a check-in to the system.

23

Figure 7 Students frontend layout when input irrelevant UID.

And to reduce the traffic between frontend and backend, the students’ table will be up-

dated only when there is change in the database which is called Database snapshot. This

feature gives a brilliant solution to reduce the traffic between database and frontend as it

is basically instead of the traditional way of calling the backend each certain time to check

if there’s update or not, instead, the role will be the other way around by putting the

responsibility on the backend to inform the frontend by any changes happen in backend

in real time.

24

Figure 8 Code to fetch data from database

This is how students’ interface looks. As it could be recognized, students’ names or any

private information will not be shown for security and legal reasons. Instead, a UID which

represents a certain student will be shown.

25

Figure 9 students’ interface

The real time update and the ability to work offline when the internet connection is inter-

mittent. With offline persistence feature enabled, the Cloud Firestore (Database) client

library automatically manages offline and online data access and synchronizes local data

when the device is back online. So, the system can listen to, write, read, and query the

cached data. When the device comes back online, Cloud Firestore synchronizes any local

changes made by the app to the Cloud Firestore backend. In case of many devices were

offline and all have access to the same database collection. In this case, Firebase has a

system to priories the update were made earlier by any device.

4.3.2 Administrator interface (Dashboard)

The attendance taker regardless whether it is the lecturer or the administrator whose work

is monitoring the attendance statuses in real-time are provided with a dashboard interface

which need to be authenticated to display and download the information about attendance.

Material UI library and React chart were used to create the below dashboard.

26

Figure 10 Administrator's dashboard

As it can be seen, the dashboard includes the total number of students in the course beside

how many attendees and how many absents for the day. It has also a bar chart to represent

the number of the attendants and absents of each day for a month. It has also a table to

display all checked-in and checked-out students at the moment. Through the dashboard,

the administrator has access to historical data and analysis which can be downloaded eas-

ily or integrated with other systems.

4.3.3 Admin’s interface

Admin’s interface was built on top of Firebase platform. When creating a project in Fire-

base console, the admin will be provided with a comprehensive monitoring dashboard to

manage the project.

27

Figure 11 Admin’s general interface layout (Backend)

Through the above dashboard, admins can access, create, edit, and delete databases. APIs

can be created from the admin’s interface or from the Command-line interface (CLI).

Admins also have access to a specific information such as the number of reads writes,

deletes, and snapshots of the database. This information gives clear insights about the

usage.

4.4 Backend (Firebase)

Backend is the part of the application that is not directly accessed by the user. Instead, the

backend’s job is to provide the frontend with the functionality needed for working effi-

ciently. A solid backend should be built to fulfil the purpose. To choose what kind of

backend is needed, it must answer the following questions: What kind of backend could

be used? Would it be server or serverless backend? What kind of databases would be the

best? How the authentication will be? And considering the requirements, it ended with

choosing a serverless backend on top of Firebase platform.

Firebase uses a software development kit (SDK) which supports programming in JavaS-

cript, Angular, JavaScript/Node.js, C++, Swift, Objective-C, and Java. Backbone, Ember

and React are supported through bindings to the database. The SDK was integrated in the

frontend project by the following snippet:

28

Figure 12 the snippet of firebase SDK integrated in the frontend

Authentication

After integrating, it became the time to develop the authentication part of the project.

Firebase makes authentication easy for end users and developers. Knowing the identity

of a user is needed so the application can provide a customized experience and keep the

data secure. Firebase supports lots of different ways for users to authenticate. The admin

has the ability to allow or block one or more of the available authentication methods such

users authenticate with their email address, Facebook, Twitter, GitHub, and Google. The

user information contains a unique ID which is guaranteed to be individual across all

providers, and never changing for a specific authenticated user. This UID is used to detect

users and what parts of the backend system they are authorized to read, write, or delete.

Firebase will also manage the user session so that users will remain logged in after the

browser or application restarts.

29

Figure 13 the available authentication methods supported by Firebase.

It also has a built-in authentication-related templates to make it easy for users to reset,

change, and verify their emails and password.

Figure 14 The built-in authentication templates of Firebase.

30

The application used authentication to access both the students’ interface and the admin-

istrator dashboard for more secure application. Below is the code to redirect visitors if

they are known or unknown by the system.

Figure 15 the function which is responsible to authenticate users of the app

Database

Firebase also provided the project with a suitable database. A NoSQL database type was

used by the project and was used to store all attendance, students, courses information

each in a separate collection (i.e. table). The structure of the database was designed care-

fully to provide fully customized requests of data, the idea is to fetch only the needed

information by the frontend, that results to reduce to minimum calls between frontend

and backend which at the end make the application faster and cost effective. Although

NoSQL databases are schemaless, still such a structure was needed to organize data inside

the database. Below is how the data is stored in the database;

31

Metropolia {
 Attendance_date { Student_ID: {

Student_ID (string),
Check-in (Date and time),
Check-out(Date and time)},

 Students: [{courseEnrollment:
[courses_name (string)],
Student_ID (string),
Student_name (string)}],

Courses: [{course_name (string),

start (Date and Time),
end (Date and Time),
lecturer (String)}] }

Security Rules to secure data in Cloud Firestore were set to limit the access to only au-

thorized persons to display and modify. The following code line was used to fill the pur-

pose;

 service cloud.firestore {
 match /databases/{database}/documents {
 match /metropolia/{metropoli} {
 allow read, write: if request.auth.uid != null; } } }

Hosting

As the application needs to be accessed at anytime from anywhere, it had to be put on the

cloud. Firebase provides a smooth fast and secure hosting for the web applications, static

and dynamic content, and microservices. The attendance system was deployed to the fire-

base hosting space via the firebase CLI by running (firebase deploy) command at the

terminal of the project folder (Firebase-Hosting, 2020).

When deploying the project to firebase hosting, many features will be provided. The first

time the project is deployed, it is provided with a domain name which could be later

changed to the desired domain name. Admins have the ability to deploy many versions

of the project and switch between them easily without losing any file. When the attend-

ance system was deployed, it got this domain (https://attendancesystem-4fa64.fire-

baseapp.com/metropolia) and filled 41.6 Mega Byte (MB) of 10GB available.

32

Cost

Firebase has two different pricing plans, one of them is “Spark plan” (the chosen one) is

free of charge if the usage does not exceed the following numbers;

• Authentication; 10K/month,

• Database storage (Firestore); 1 GB,

• Cloud functions; 125K/month,

• Hosting; 10 GB,

• Storage; 5 GB.

From what it was stated above, the project will work for many years and scale up several

times more and will cost zero euros according to the pricing plan of Firebase (Firebase-

Pricing, 2020). By doing so, the cost-effective goal with keeping the efficiency was

reached.

33

5 Results and Analysis

The application was developed using React JS and Firebase. Serverless rendering with

Material UI and Bootstrap were used to create single page application user interfaces and

Raspberry Pi, RFID reader, and 7” screen was used in the IoT part of the project. The

code was separated into different modules, such as views, assets, components, and config.

Therefore, leaving the code clean and clear and very easy to maintain and scale up in the

future.

However, the developed application is not ideal. The application lacks integration with

the organization system where students’ data are stored. Because of the limited time, an

android/IOS app for students to view their attendance status and enabling them to do the

attendance via their phone NFC feature without the need to carry the student card with

them was not developed.

As the project is described in the paper, the single page application (SPA) method was

used in the project development as SPA is a very popular approach nowadays and it has

many advantages. Therefore, the routing and backend calls are in the frontend part. This

way made it is very easy to modularize the components with the help of React JS and

Firebase admin SDK.

On the 7th of September 2020, this system was tested with the students of Tends in ICT

course in Metropolia. The 29 participants used their own RFID-based travel cards as a

UID. Immediately after that, they answered a few questions in a survey form. Participants

provided their feedback about the system. Although the survey was not my main focus, it

still gave a lot of useful information about the attendance system and the participants’

thoughts for the future improvement. The survey and answers are attached in the appen-

dix.

This survey was designed carefully in a cooperation between the researcher and four of

his classmates to form up clear and fruitful questions and how they could be asked was

taken into deep consideration, ending up with six questions for students and seven ques-

tions for lecturers. At the end, the system got a high review from the samples of Metropo-

lia students. However, some unexpected errors or behavior might occur while using the

34

application. Notwithstanding the fact that the project resulted in the clean, organized and

functional prototype, there are always multiple different technologies and approaches that

could be used, as well as space for improvements.

35

6 Discussions and Conclusions

The core target of this thesis was to study the technologies involved in the serverless full

stack JavaScript development project and to create a working IoT-and cloud based appli-

cation to monitor electrically students attendance in the courses. The research took a long

time, but as a result, all the required technologies, such as React JS, Firebase, Linux, and

IoT sensors were thoroughly analyzed.

After a detailed research of a theoretical side of the project, the practical part was carried

out. Careful architecture design was completed first and then the actual implementation

of the application was done. This work resulted in a working prototype of a platform for

Metropolia students’ attendance system. The purpose of the development was to find the

best way to get students’ attendance to different courses and though improve the tradi-

tional way of collecting signatures. The project can be further improved with a number

of features such as integrating this system with Metropolia’s own students management

system and adding the ability to be used in the online lectures to transform it into a pro-

duction ready system.

After a deep study and an actual implementation of the project using React Js and Firebase

tools, it is possible to make several conclusions. First of all, it requires the knowledge of

only one programming language, which can be used to develop the frontend and leave

the backend to be managed by a trusted foundation such Google. Secondly, agile devel-

opment is the master of the market among all other ways of development, as the con-

stantly changing environment always needs continuous optimizations of the applications.

Thirdly, when thinking about developing a new application, it is mandatory to think if the

used technologies are scalable or not, as the environment is changing fast. However, mak-

ing a use of the services that Firebase is offering currently will bring a big benefit to the

project from many aspects such as being easy to scale up, cost-effective, and secure en-

vironment for the project.

36

7 References

451Research, 2018. 451Research. [Online] Available at:
https://451research.com/images/Marketing/press_releases/Pre_Re-
Invent_2018_press_release_final_11_22.pdf [Accessed 31 08 2020].

Bhatt, A., 2011. Engineers Garage. [Online]
Available at: https://www.engineersgarage.com/article_page/sensors-different-types-of-
sensors [Accessed 31 08 2020].

Bourg, D. M. & Seemann, G., 2004. AI for Game Developers. Sebastopol(California):
O'Reilly Media.

CloudFlare, 2020. The difference between a public cloud, a private cloud and a hybrid
cloud, s.l.: s.n.

CloudFlare, 2020. What Is Platform-as-a-Service (PaaS)?. [Online]
Available at: https://rb.gy/fer8rc [Accessed 15 09 2020].

Dincer, C. et al., 2019. Disposable Sensors in Diagnostics, Food, and Environmental
Monitoring. Wiley Online Library, 31(30).

Firebase.google.com, 2020. Firebase. [Online]
Available at: https://firebase.google.com/ [Accessed 31 08 2020].

Firebase-Hosting, 2020. Firebase. [Online]
Available at: https://firebase.google.com/docs/hosting [Accessed 31 08 2020].

Firebase-Pricing, 2020. Firebase. [Online]
Available at: https://firebase.google.com/pricing?authuser=0 [Accessed 31 08 2020].

Flexera, 2020. Flexera. [Online]
Available at: https://info.flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020
[Accessed 31 08 2020].

gdpr-info.eu, 2016. GDPR.EU. [Online] Available at: https://gdpr-info.eu/
[Accessed 31 8 2020].

GoogleCloud, 2020. Google Cloud. [Online] Available at:
https://cloud.google.com/maps-platform/pricing/sheet [Accessed 31 08 2020].

37

Hostingtrybunal, 2020. Hostingtrybunal. [Online] Available at:
https://hostingtribunal.com/blog/cloud-computing-statistics [Accessed 15 09 2020].

Myerson , J. . M., 2006. RFID in the Supply Chain: A Guide to Selection and
Implementation. illustrated ed. s.l.:CRC Press.

RaspberryPi, 2020. RaspberryPi. [Online]
Available at: https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/ [Accessed
31 08 2020].

ReactJS.org, 2020. React official website. [Online]
Available at: https://reactjs.org/ [Accessed 31 08 2020].

Reberts, M., 2018. Serverless Architectures. [Online]
Available at: https://martinfowler.com/articles/serverless.html [Accessed 31 08 2020].

Rountree, D. & Castrillo, I., 2014. The basics of cloud computing. Waltham: Elsevier.

Rouse, M. & Shore, J., 2012. SearchCloudComputing. [Online] Available at:
https://searchcloudcomputing.techtarget.com/definition/cloud-application
[Accessed 31 08 2020].

Ryan, J., 2010. A History of the Internet and the Digital Future. Dublin: Reaktion
Books.

Sawyer, L., 2018. CMSC Media. [Online]
Available at: https://www.cms-connected.com/News-Archive/November-2018/CMS-
Top-Players,-Trends,-and-Market-Share-Growth [Accessed 2020 08 31].

tomtop.com, 2020. pinterest.com. [Online]
Available at: https://rb.gy/itvuf8 [Accessed 15 09 2020].

Turner, B., 2020. TechRadar. [Online]
Available at: https://www.techradar.com/news/what-is-saas [Accessed 2020 09 15].

Upton, E., 2019. RaspberryPi. [Online]
Available at: https://www.raspberrypi.org/blog/raspberry-pi-4-on-sale-now-from-35/
[Accessed 31 08 2020].

Upton, E., 2019. Twitter. [Online]
Available at: https://twitter.com/EbenUpton/status/1205646606504275968?s=19
[Accessed 31 08 2020].

38

W3Techs, 2020. W3Techs. [Online] Available at:
https://w3techs.com/technologies/overview/programming_language
[Accessed 31 08 2020].

visualstudio.com, 2020. Visual Studio Code. [Online]
Available at: https://code.visualstudio.com/ [Accessed 31 08 2020].

Appendix 2
1 (1)

Appendices:

Appendix 1. Survey for lecturers
Appendix 2. Survey for students
Appendix 3. Responses and analysis.

