
 

APPLYING VUE.JS FRAMEWORK IN 

DEVELOPING WEB APPLICATIONS 

Case: Personal Reminder web application 

 

LAHTI UNIVERSITY OF APPLIED 
SCIENCES LTD 
Bachelor of Business Administration 
Degree Program in Business Information 
Technology 
Spring 2020 
Nguyen Tran 



 

 Abstract 

Author(s) 

Tran, Nguyen 

Type of publication  

Bachelor's thesis 

Published 

Spring 2020 

Number of pages 

38 

 

Title of publication  

APPLYING VUE.JS FRAMEWORK IN DEVELOPING WEB APPLICATIONS 

Case: Personal Reminder web application  

Name of Degree 

Bachelor's Thesis in Business Information Technology 

Abstract  

The release of JavaScript, a programming language mark an essential step in the 

evolution of the web development industry, especially in recent years. The thesis con-

sists of research that proves how applying one of the most popular JavaScript frame-

works, Vue.js, can create positive effects for the development process based on cer-

tain features of the framework. Additionally, the thesis acts as an instruction to build a 

general Vue.js project and also provides the readers with the author's coding stand-

ards and best practices, which are very helpful for new developers.  

To start the research, readers need to understand the theoretical background of fun-

damental concepts that required to advance further into the study. This background 

consists of definitions of the web application as well as its components, JavaScript 

frameworks, Vue.js, and its libraries. By examining the implementation of a study 

case, which is a Reminder web application. The application is the author's Vue.js 

powered project, which he uses to collect the data for later analyzing process. This 

process includes the comparisons between the implementations with and without the 

help of the Vue.js framework,  

The final chapters of the thesis include research results, reliability, limitation, valida-

tion, and suggestions for future studies. 

Keywords 

Web application, JavaScript Frameworks, Vue.js 

 



 

CONTENTS 

1 INTRODUCTION ........................................................................................................1 

1.1 Background .........................................................................................................1 

1.2 Motivation for the Thesis ......................................................................................2 

1.3 Structure of the Thesis .........................................................................................3 

2 RESEARCH DESIGN .................................................................................................4 

2.1 Research Questions ............................................................................................4 

2.2 Research Approaches .........................................................................................4 

3 THEORETICAL FRAMEWORK ..................................................................................7 

3.1 Web Application and Website: .............................................................................7 

3.1.1 Front-end Development ................................................................................7 

3.1.2 User Interface/ User Experience Design .......................................................8 

3.1.3 Back-end Development.................................................................................9 

3.1.4 Database ....................................................................................................10 

3.2 JavaScript ..........................................................................................................11 

3.2.1 JavaScript Libraries and Frameworks .........................................................11 

3.2.2 Vue.js .........................................................................................................12 

3.2.3 Vue.js Libraries ...........................................................................................16 

4 CASE DESCRIPTION...............................................................................................18 

4.1 Reminder Application .........................................................................................18 

4.1.1 Reminder Calendar .....................................................................................18 

4.1.2 Reminder Dashboard ..................................................................................20 

4.1.3 Event List and Form ....................................................................................21 

4.1.4 User and Application Settings .....................................................................22 

4.2 Other Tools and Support Applications ................................................................23 

5 DATA COLLECTING AND ANALYZING ...................................................................25 

5.1 Data Collecting and Analyzing Process .............................................................25 

5.2 Collecting and Analyzing Data ...........................................................................25 

6 CONCLUSION ..........................................................................................................31 

6.1 Answering the Research Questions: ..................................................................31 

6.2 Research Reliability and Validation ....................................................................32 

6.3 Research Limitation ...........................................................................................32 

6.4 Suggestions for Future Studies ..........................................................................32 

7 SUMMARY ...............................................................................................................34 



 
LIST OF REFERENCES ..................................................................................................35 

 



1 

1 INTRODUCTION 

1.1 Background 

For the last seven years, JavaScript has been ranked the most used programming lan-

guage every single year, according to the Stack Overflow survey (Stack Overflow 2019). 

In 2019, statistics showed that 67.8% number of developers are using JavaScript as one 

of their coding languages. Besides, 95.2% of the world's websites, roughly around 1.52 

billion websites, are written by JavaScript (DeGroat 2019). 

JavaScript, along with Hypertext Markup Language (HTML) and Cascading Style Sheets 

(CSS) are the main languages of a website or web application. While HTML and CSS take 

care of the site's style and structure, JavaScript allows developers to create functions and 

behaviors for the page (DeGroat 2019). This language works with the document object 

model (DOM for short), which specifies what to do when the user makes some specific ac-

tions on your application. People often think of JavaScript as a front-end language. Still, 

we can use JavaScript to write the application's back-end through Nodejs environment, 

which uses JavaScript and also very popular as well.  

Moreover, scroll transitions and object movement are also available, thanks to JavaScript. 

Because of the variety of functionalities JavaScript has to offer, many current browsers 

developer are trying to help its browser to run JavaScript as fast as possible for the sake 

of improving their user experiences. An article by Kyla Brown from Codeacademy tells 

how JavaScript gained its popularity, listed these factors, which the author said: "it turned 

web browsers into application platform," in bold. However, there is one more point that I 

haven't mentioned before, which is, in my opinion, the most crucial factor that makes writ-

ing JavaScript to become not only more comfortable but also more accessible and less 

time-consuming. It is because JavaScript has many frameworks and libraries that tremen-

dously help the developers to improve their coding style.  

React, Vue.js, and Angular are among the most popular JavaScript framework at the mo-

ment. While React and Angular are developed and maintain respectively by Facebook 

and Google. The Vue.js framework was created by Evan You and his team (Duomly 

2019). Although there is no big company backing Vue.js, this framework still catches much 

attention from the web developer community. As on GitHub, Vue.js has surpassed React, 

the most well-known framework at the moment on the number of stars received in their re-

pository (as for the time of the thesis) (GitHub 2019). Through this, we can tell that alt-



2 

hough most of the companies are still using React (Figure 1), people are turning their at-

tention toward Vue.js, and in the future, it might become more popular.

 

  Figure 1 Frameworks job distribution (TechMagic 2019)   

1.2 Motivation for the Thesis 

As the popularity of the Vue.js framework grows, it is a natural behavior to turn the atten-

tion into this technology for the author. Therefore, the thesis studies some of this frame-

work's basic functionalities to see how it impacts the development process of web applica-

tions. This research also acts as guidelines for beginner developers to understand the 

concept of those features and how to apply them in real-life projects. The Vue.js frame-

work is believed to possess the steepest learning curve compared to React and Angular 

frameworks (Duomly 2019). Despite that, the thesis wants to provide developers with a 

whole picture of those features. This knowledge includes understanding the purposes of 

those functionalities and how to use them correctly. The motivation for this work is also to 

ensure that developers are following the coding standards through example implementa-

tions. This factor is especially crucial since the lack of it might cause security issues or 

negative impacts on performance (Multidots 2019). This Medium article by Multidots also 

states some advantages of implementing coding standards, such as enhancing efficiency, 

reducing project failure risk, allowing easier maintenance, and many more. Therefore, the 

thesis provides instructions to avoid coding standards and practices issues, especially for 

beginner developers. 



3 

1.3 Structure of the Thesis 

The thesis has seven chapters. The first chapter is the introduction, including background, 

thesis motivation, and structure. The second chapter specifies the research questions and 

research design. Chapter 3 gives readers the theory background. Definition and usage of 

the JavaScript frameworks in general and Vue.js in particular. Additionally, in-depth com-

parisons between using Vue.js and Vanilla JavaScript is made to show why using Vue.js 

framework for building application is a step forward from using no frameworks at all, espe-

cially for new developers. This chapter also presents the concepts of a web application 

and its required components. The fourth chapter studies a project, which is a Reminder 

web application developed by the author. "Data collection and analyzing" is the topic of 

the fifth chapter, where the author presents collected data, then perform examinations and 

explanations of why he comes up with the answers. The last two sections give the thesis 

conclusion and summary, respectively. The author also presents some limitations as well 

as missing subjects that are not covered in the thesis. The graph below shows the layout 

of the thesis. 

  Figure 2 Thesis structure   



4 

2 RESEARCH DESIGN 

2.1 Research Questions 

To start the research, the author comes up with some questions to help create the guide-

lines for the thesis. The motivation for the thesis is about helping new developers to un-

derstand some fundamental aspects of Vue.js, a JavaScript framework, and how they 

benefit the development process. To help achieve this goal, the author decides to point 

out some of the framework's highlight features and explains how those features become 

the advantages for the development process. 

For that, the thesis aims to answer these two main questions:  

 What are some of the main features of Vue.js framework, and what are their uses? 

 How do these features benefit the development process? 

2.2 Research Approaches 

The article "The Difference Between Deduction and Induction Reasoning" written by Dan-

iel Miessler, states that research is a tool to help confirm a concept which, in turn, contrib-

utes to the knowledge of the world. But to make people believe in research requires some 

kind of reasoning approach to convince them. The two most common research ap-

proaches are deduction and induction, and they are both opposite to each other. Deduc-

tive reasoning usually begins with a hypothesis, then moving toward observation and fi-

nally confirm the theory. On the other hand, "Inductive reasoning usually uses research 

questions to narrow the scope of the study." said Deborah Gabriel in her article (Gabriel 

2013). Figure 3 below also describes the difference between the approaches. Both of 

these approaches are very useful in their way. The thesis is about proving how Vue.js 

framework creates positive effects on the development process by giving tested imple-

mentations and compare them with each other. Therefore, the deductive approach is 

more suitable for this research. 



5 

To complete the research, collecting and analyzing data is a crucial part and should not 

be missing in any research since the absence of it may create inaccurate conclusions, 

which in turn makes the study invalid (Bhatia 2018). Therefore, this research needs an-

other approach for data collecting and analyzing. Qualitative and quantitative approaches 

are well-known for dealing with data; each has its purposes, methods, and essential for 

gaining different kinds of knowledge (Streefkerk 2019). The quantitative approach uses 

numbers, graphs, and statistics to analyze or establish theories. Surveys, experimental re-

search, observational research, and content analysis are the ways researchers get data 

for a quantitative approach, which are words, examinations, and symbols (Bhatia 2018). 

Qualitative gain data from interviews focus groups, case studies, and discourse analysis 

(Streefkerk 2019). A case study is presented in chapter 4, and most of this study consists 

of images from the implementations provided by the author. Through these images, the 

author makes examinations to come up with the final answer for the research questions. 

  Figure 3 Inductive and Deductive Reasoning (Miessler 2019)   



6 

To put it another way, the author chooses the qualitative approach for the research. Some 

summarized detail about qualitative and quantitative methods are in the table below.  

 

Table 1 Qualitative and Quantitative approaches (McLeod 2019) 



7 

3 THEORETICAL FRAMEWORK 

In this chapter, the author defines core concepts (such as Web application, JavaScript 

frameworks, Vue.js) so that the reader can acquire enough knowledge before entering 

into a case study where these definitions are needed. 

3.1 Web Application and Website: 

The goal of the thesis is to implement Vue.js in the web application development process. 

Therefore, we need to understand what is a web application, and how it differs from a reg-

ular website? A website provides customers with information which nowadays mainly 

used by companies for marketing purposes (Benedict 2018). Websites like Wikipedia, 

newspapers, articles, and blog sites are great examples of a website. These sites con-

tents usually stay the same every time we visit them. 

In contrast to a website, a web application is an application that runs on an internet 

browser. An application requires interactions with customers, so the purposes of an appli-

cation are not just for displaying information anymore. A web application can provide a 

wide variety of utilities such as communication, entertainment, commercing, and much 

much more (Benedict 2018). Some popular web applications are YouTube, Facebook, 

Gmail. The thesis is about implementing Vue.js into the development process of a web 

application to see the advantages it can bring. 

3.1.1 Front-end Development 

A general web application consists of four basic components: a front-end, a UI/UX design, 

a back-end, and a database. Front-end development is the process of handling the visual 

perspective for the user (Steward 2019). Mostly everything the user sees is taken care of 

by the front-end development process. For web development, front-end uses HTML, CSS, 

and JavaScript. The popularity of this trio forces most of the modern browsers such as 

Chrome, Mozilla, and Microsoft Edge to adapt them as soon as possible so that they can 

give their customers the newest features provided by these languages. As being said in a 

blog, HTML, CSS, and JavaScript are two of ten must-have skills for front-end developers 

(Morris 2017). Below is the full list of the most important knowledge required provided by 

the blog: 

1. HTML/CSS 

2. JavaScript/Jquery 

3. CSS and JavaScript framework 



8 

4. CSS preprocessing 

5. Version control/Git  

6. Responsive design 

7. Testing/ Debugging 

8. Browser developer tools 

9. Building and automation tools/ web performance 

10. Command line 

In general, these skills and pieces of knowledge are required by most front-end develop-

ment positions. Each part of the front-end development requires a specific skill in this list. 

For example, responsive design is crucial if the developer decided to have their website or 

web application running on both desktop and mobile devices. The main topic of the thesis 

is Vue.js, a well-known JavaScript framework, which you can see falls into the third item 

on this list. Other skills might be mentioned throughout the thesis, but the thesis focuses 

on discussing the topic only. 

3.1.2 User Interface/ User Experience Design 

Commonly mistaken for user experience design (aka UX), user interface design (UI) is the 

process of deciding what your website looks like and also how all the interactions are 

(Hannah 2019). A UI focuses on visual presentation, from picking color schemes to typog-

raphy; its goals are to ensure a good look and feel for the product. A UI design is also re-

sponsible for creating the responsiveness, efficiency, and accessibility of a website.  

Different from a UI, a UX, on the other hand, is primarily work on improving customer feel 

and tends to guide the user to take the actions that the company wants the customer to 

do, fulfilling the final company goal. At the same time, it also boosts customer satisfaction 

(Lamprecht, 2019). A UX design decides how the product's UI design becomes as UI is a 

part of UX. User experience is not about visual aspect anymore but relates to anything 

that improves customer feel, pleasure, and satisfaction. The table below shows some key 

differences between a user interface design and user experience design. 



9 

Table 2 UI/UX Design (Dewebkiller 2020) 

 

This table helps developers to understand the idea of UI/UX design of a web application, 

which is necessary for most web applications. There is no further study or discussion 

about this topic in the thesis. 

3.1.3 Back-end Development 

In contrast with front-end development, back-end development indicates the server-side of 

the application. Back-end consists of codes that communicate between the client browser 

and the database. In detail, this includes update, manage, and monitor functionalities and 

data for the application. Most of these things can not be seen by the client, which is why it 

is called the back-end.  

While front-end development uses HTML and CSS for its primary languages, back-end 

developers have to get familiar with programming languages such as Java, PHP, Ruby on 

Rails, .NET, or Python. Usually, developers only have to use one or two languages at a 

time, depending on the technologies their company is using, so properly learning all of 

these languages is not necessary. JavaScript also can be used to write back-end for ap-

plications using Node.js, a JavaScript runtime environment. Node.js is among the most 



10 

successful back-end languages, and many big companies like NASA, IBM, Microsoft, 

PayPal, Walmart, Uber, LinkedIn, Netflix are using it (Spec India 2019).  

 

  Figure 4 Front End and Back End Developers (Ray 2018)   

3.1.4 Database 

A database is a collection of data that are stored systematically. This system allows que-

rying, updating, manipulating, and managing data in a very effective and logical way. A 

database is usually operated by a database management system (aka DBMS), and to-

gether, they are known as a database system, or database for short (Oracle 2020). There 

are so many types of databases, such as Relational databases, NoSQL databases, Ob-

ject-oriented databases. Each type of database is useful in its field. Like NoSQL data-

bases, also known as nonrelational databases, can store and manage data without struc-

ture or semi-structured data. This type of database is widely used in the web industry, es-

pecially when the number of web applications is rising, and the apps themselves are get-

ting more complicated. The author himself used a NoSQL database, MongoDB, to be spe-

cific, to create a database for the study case application, which is presented in the next 

chapter. 



11 

3.2 JavaScript 

As the author has mentioned before in the introduction chapter, JavaScript is undeniably 

the most popular programming language nowadays, especially when we are talking in the 

web industry. Back then, when this programming language is not available, the internet 

only has full-static websites, which only use HTML and CSS. And Netscape has changed 

that by inventing, which we know for today, the most used programming language, JavaS-

cript (Dionne 2019). At first, the appearance of JavaScript was not a total success. But 

eventually, JavaScript has become so popular that finding another language to replace it 

is very hard, if not impossible (Moerkerke 2019). JavaScript's role was to make the web-

site become a fully functional application. It allows creating an interactive and dynamic 

website from which the logic can run from the client-side, which never happened before. 

JavaScript also got a lot of support from big technology companies such as Facebook or 

Google since these companies have created React and Angular, two of the most popular 

JavaScript frameworks, to expand its abilities further. People probably have heard a lot 

about these JavaScript libraries and frameworks, so what are these? 

3.2.1 JavaScript Libraries and Frameworks 

The definition of JavaScript might create the impression that JavaScript is an appropriate 

programming language for developers. But the fact is that to build a web application from 

scratch with Vanilla JavaScript is very hard and consumes much more time (Morris 2020). 

That is where JavaScript libraries and frameworks come into handy. These libraries and 

frameworks are templates for developers to follow to help the development process be 

much more efficient (Morris 2020). Specifically, they are collections of pre-written JavaS-

cript code that can perform certain tasks with better performance and reliability. Especially 

if you are new developers because most of the libraries and frameworks are written by ex-

perienced and professional developers. Besides, you do not have to write those lines of 

code, which makes the development process faster. For example, JQuery was a popular 

JavaScript library that helps coding with JavaScript very convenient because this library 

provides a lot of single-line methods that correspond to many code lines if written with Ja-

vaScript only.  

JavaScript frameworks and libraries did not stop at providing omissions and convenience 

in writing code. Some JavaScript frameworks even change the way developers build their 

projects. These include React, Angular, Vue.js, a trio of frameworks currently taking the 

lead in this industry. (Morris 2018.) 



12 

3.2.2 Vue.js 

Vue.js was first released in 2014 by Evan You, who was working for Google using Angular 

before focus on developing a framework of his own (Wikipedia 2020). The version used in 

the thesis is Vue.js 2.0 and above, which means the thesis might not be accurate for other 

versions before Vue.js 2.0 and from 3.0 afterward (which releases later). According to the 

official Vue.js website, they define Vue.js as a progressive framework used for developing 

user interfaces that belong to front-end development (Vue.js 2020). Vue.js is a compo-

nent-based framework from which developers can create custom elements that develop-

ers can reuse throughout the project. This feature is not exclusive for Vue.js as React and 

Angular also have their component feature. But for Vue.js, a component can include 

HTML, CSS, and JavaScript altogether, which form what a so-called single file compo-

nent. In a single file component, HTML code is written within <template> tag, while JavaS-

cript and CSS code belongs inside <script> and <style> tag respectively. Figure 6 below 

shows how a single file component, or a .vue file, should be. 

 

 

  Figure 5 Vue.js single file component template (Vue.js 2020)   

Now, let us take a closer look at some cool features which make Vue.js shine and gaining 

its popularity in at present. 



13 

Component options 

HTML and CSS might be familiar with most developers, but what creates the differences 

between frameworks is its component structure. A component is a reusable custom-made 

element with its methods, logic, and style. Components can communicate with each other 

by passing data (props) or listening to other component's event and then trigger particular 

actions. Take a look a figure 6 below; it is an example written by the author to demon-

strate the content inside <script> tag of a single file component.  

 

  Figure 6 Component options example   

Firstly, other components are imported and used in this component. After that, a default 

export of a JavaScript object, which is the component itself. Inside this object, developers 

declare all data, DOM, lifecycle, assets, and other options of the component. Figure 6 pro-

vides some basic and some of the most used options. Some options can be very straight-

forward, such as "name" for declaring the component's name and "data" for declaring 

component's data. The "Components" option is used to declare imported components that 

are used in this component. "Methods" option is used to declare the methods for the com-

ponent. The last option in this example is "created" which is a lifecycle hook. When the 

component reaches the "created" stage of its lifecycle, it automatically calls this method. 

There are other lifecycle hooks, as well as other component options. A full list of options 



14 

can be found in Vue.js official API page, or later in the reference section of the thesis 

(Vue.js 2020). 

Reactivity 

Inside the <script> tag, there is a data function from which developers can define data for 

the component. The object return by this function then becomes reactive resources of the 

component, which means, whenever a property in this object is changed, the component 

triggers re-render and update the view (Vuejs 2020). Another way to say it is, when devel-

opers declare data inside the data object, the component goes through every property of 

the object and convert them into setters and getters. Every component has its watcher to 

track the data changes with the help of the setters and getters. If a change is detected, the 

watcher triggers a re-render, which updates the user view with the latest data. Figure 7, 

provided by Vue.js official website below, shows how the reactivity process in Vue.js com-

ponent work. This reactivity feature allows data binding to become easier and controllable. 

In a blog written by AltexSoft, a technology consulting company, mentioned this as an ad-

vantage of Vue.js, a cool feature Even You inherited from Angular framework and applied 

it into his product (Altexsoft 2019).  

 

  Figure 7 Reactivity process in Vue.js component (Vue.js 2020)   

 

 



15 

Two-way data binding 

As being said above, two-way data binding is a compelling feature of the Vue.js frame-

work. It is proved very useful in binding data in form inputs through the v-model directive. 

Figure 8 below shows an example of a two-way data binding in form using a v-model di-

rective.

 

  Figure 8 Two-way data binding example (Vue.js 2020)   

The v-model directive binds whatever is written in it with the corresponding property in the 

"data" object. What this means is, whenever we write something inside the input, the prop-

erty "message" of the "data" object is automatically updated equal to that value, and vice 

versa. This process allows state management in components much more comfortable and 

less time-consuming. The thesis explains how it is in detail in later chapters. In this exam-

ple, we also encountered a new concept, a "Mustache" syntax, or double curly braces. 

The word "message" inside these braces is replaced with the value of the corresponding 

property in the "data" object. So whenever the value of the "message" property is 

changed, the {{ message }} is also replaced with that value. In figure 8, the word beneath 

the input shows its value, which results from this process. 

The process of reactivity can be explained like this. V-model directive of the input element 

allows the corresponding property in the "data" object to update with the same input value 

every time users type something in the input. After observing the change of the property in 

the "data" object, the watcher of the component then trigger re-render to update the view 

with the latest data. It is why users always see from the example what they typed in the 

input in the paragraph underneath.  

 

 



16 

3.2.3 Vue.js Libraries 

Vue.js alone can provide many impressive features, but developers can do much more 

with other Vue.js libraries. These libraries include Vuex, Vue Router, Vue Server Ren-

derer, and many other libraries, but the thesis only presents Vuex and Vue Router.  

Vuex 

Vuex, as described from its official site, is a state management pattern and library for 

Vue.js application (Vuex 2020). It creates a central store that can be accessed by any 

component of the application. To ensure better state manageability and security, develop-

ers can create rules and methods which mutate the states of the Vuex store. This process 

ensures the data is only changed in a controlled way and with the given pattern to avoid 

data conflict and unwanted behavior. Regularly, Vue.js components pass data to other 

components through props. But when the application grows, this can becomes too compli-

cated and very hard to maintain, as well as consumes more time. Vuex can help develop-

ers in this situation. 

Vuex consists of three essential parts: the state, the view, and the actions (Vuex 2020). 

The state is the data of the application, which serves as the source of truth. The view is 

where we can see the data from the state and might also be where we can make manipu-

lation to the state. Actions are the possible ways developers created to force predictable 

state changes. Actions usually consist of two steps, dispatching an action and committing 

a mutation. An action is used to perform arbitrary asynchronous operations, which can be 

an API call to server in the back-end of the application to retrieve, update, or delete data. 

After the operation is complete, the action method decides to commit a mutation that cor-

responds to the responses from the server. Mutations are where the Vuex states get 

changed (Gallagher 2019). A diagram from figure 9 below demonstrates the process of 

how Vuex works in Vue.js applications.  



17 

 

  Figure 9 Vuex process in Vue.js application diagram   

Vue Router 

Another great library created for Vue.js application is Vue Router. Vue Router is a router 

library built primarily for Vue.js applications (Vue Router 2020). Since Vue.js does not 

have a built-in routing feature, another library is needed. This library allows developers to 

customize the URL pathing of their application and also control the navigation security of 

it. For example, developers can check if the user has logged in to let them go into the ap-

plication dashboard URL, which otherwise is forbidden. 

The official Vue Router site lists these features available from their product:  

 Nested route/view mapping 

 Modular, component-based router configuration 

 Route params, query, wildcards 

 View transition effects 

 Fine-frained navigation control 

 Links with automatic active CSS classes 

 HTML5 history mode or hash mode 

 Customizable Scroll Behavior 



18 

4 CASE DESCRIPTION 

This chapter is about presenting readers with a study case. To be specific, this is a web 

application designed and developed by the author. Firstly, an introduction of the applica-

tion, as well as its interfaces and features, is presented. After that, the author shows some 

of the tools he used to help him create the design and the project itself.  

4.1 Reminder Application 

4.1.1 Reminder Calendar 

This sub-chapter focuses on demonstrating the web application. The application is de-

signed and developed for a school project. Various tools available for free on the internet 

are also used to help push the effectiveness of the development process further. The ap-

plication is powered by Vue.js and other libraries and frameworks such as Vuex, Vue 

Router, Buefy, Webpack. It is a Reminder application, from which users can use to create 

and manage plans or events in their daily life. A screen capture of the calendar interface 

can be found below. 

 

  Figure 10 Reminder application calendar interface   

The calendar interface is where users can find the events or plans they have created on 

the real calendar with its categories (color strips) show on the event's day grid. The appli-

cation also has a filter from which helps users to filter events and plans to provide better 

manageability and personal preference. 



19 

 

  Figure 11 Calendar filter options   

As shown in figure 11, we can see that events also have their type and repeat option. 

These event types cannot be changed or customized, but the author is planning to imple-

ment this feature in later versions in the future. Each event type has its representing color, 

so users can easily distinguish events without having to look for its detail. Standing beside 

the event types are the repeat options. These options come in handy when users want to 

have their events automatically repeat after the same duration, such as weekly, monthly, 

or annually. Daily events are also available but do not show in the calendar because it is 

unnecessary and causes many distractions since these events appear every day on the 

calendar. Therefore, daily events are shown in a different place in the application, which is 

mentioned later in this sub-chapter. These additions are added to improve users' feel and 

comfort. 

 

  Figure 12 Day details   

From the calendar view, users can see any day details and events. Figure 12 shows an 

example of a day details interface. 

 



20 

4.1.2 Reminder Dashboard 

 

  Figure 13 Reminder application dashboard interface   

The dashboard is where users can see some general information about their events, 

plans, and today's fun fact. Daily events appear at the top right side of the dashboard. A 

list of incoming events also appears on the dashboard. Users can select how long in the 

future they want to see their events. These options can show events of this week, next 

week, this month, or next month. Repeatable events can appear many times in the se-

lected duration, like weekly events, but the list only shows the nearest one of these 

events. Each event in these lists is an event card, which can be expanded to show more 

details of the event or closed to give a better overview of the list. Users can see these 

event cards appear in many places in the application.  

 

  Figure 14 Expanded event card   



21 

Figure 14 shows how an expanded event card looks. From the expanded view of the card, 

users can access to event details page to see all the event details and to modify or delete 

the event.  

 

  Figure 15 Event details example   

4.1.3 Event List and Form 

 

  Figure 16 Event lists interface   

The event list interface provides users with a full list of events, sorted in the order of event 

creation date. Each event here is also an event card like the one in the dashboard view. 

From here, users can create new events by going to another interface, an event form. 

Figure 17 below shows how an event form looks. 



22 

 

  Figure 17 Event Form interface   

From the event form, users can fill in their events information and select the event date, 

time, repeat option, and event type. The location and description field can be left empty, 

but a name is compulsory to create an event. Other fields use default values if users do 

not modify them. When modifying the events, users also use this form, but the titles and 

the methods that handle the form is different. 

4.1.4 User and Application Settings 

At the start, users have to create an account to use this application. After login in, users 

can choose to give other personal information such as first and last name, birthday, and 

email. These pieces of information are not necessary since there is no use for them at the 

moment. But the application is planned to be extended with other features where users 

might interact with each other. These features might be creating a group of users or creat-

ing shared events or plans. These are just merely plans, and there is no promise that they 

are available in the future. This Reminder application also provides two other settings. The 

first one is to set the first day of the week. It can be either Monday or Sunday, depends on 

user preference. This setting affects the calendar in both date pickers and the event cal-

endar of the application. The other one is similar to the first settings, which is used to set 

time format between 12-hours and 24-hours format. Figure 18 below shows the settings 

interface of the application.  



23 

 

  Figure 18 User and application settings interface   

These are an overview of some main features of the application. In the next sub-chapter, 

the author demonstrates some tools and support applications that helped him design and 

develop the application. 

4.2 Other Tools and Support Applications 

Draw.io 

Draw.io is a platform used to create diagrams, charts, models, and much more (Draw.io 

2020). The author uses this application to create the UML model for the database of the 

application. This platform is free to use and has many available templates to help with the 

structure design process. 

Figma 

Figma is a web application well-known for creating interface designs. This platform is a 

browser-based application but can also be a desktop application on Windows and Mac 

OS. Figma allows collaboration, which means designers can work together to create the 

same product (Bracey 2018). Below is a draft of the calendar interface created using 

Figma for the layout of the application. 



24 

 

  Figure 19 Calendar interface prototype designed on Figma   

Clockify 

Clockify is a free time tracker that runs on the browser. This product is also available on 

many desktops and mobile devices (Clockify 2020). The author uses this web application 

to track and keep records of how many hours he has invested in developing the applica-

tion. The total time so far is around 150 hours.  

This is the end of chapter 4. In the next chapter, the thesis presents the application from 

the code perspective. In other words, it shows how some Vue.js features help to create 

the project in the study case and how this implementation differs from using Vanilla Ja-

vaScript. 

 

 

 



25 

5 DATA COLLECTING AND ANALYZING 

5.1 Data Collecting and Analyzing Process 

To advance further into the research, technical or code perspective is used to examine 

and explain the study case. The process can be understood like this. Some features of 

Vue.js frameworks that this research proves they would bring some advantages to the de-

velopment process are presented through code examples from the case study. After that, 

the thesis shows a similar implementation that produces the same effect but only written 

by Vanilla JavaScript, or pure JavaScript without using frameworks. Then, the compari-

sons between the examples are made to point out possible benefits brought by using the 

Vue.js framework in the project. But sometimes, when example implementations cannot 

be given because the amount code is large, or the example would be so complicated or 

inappropriate for the research purpose or skill level of the thesis. In those cases, articles 

and blogs are given instead to support the research's argument. The data collecting and 

analyzing processes are done simultaneously to give more direct, precise comparisons 

and results. 

5.2 Collecting and Analyzing Data 

Vue.js component vs. no component 

As been explained in chapter 3, component architecture is a dominant feature of the 

Vue.js framework, especially single file components, where they include all three funda-

mental elements of web development (HTML, CSS, and JavaScript). Take a look from the 

example below; this is the code from the CalendarLayout component of the Reminder 

application. A component can be imported and used just like adding any HTML element, 

like <CalendarTable>, for example. 

 



26 

  Figure 20 Component use and communication   

In the author's opinion, component brings many conveniences and save a tremendous 

amount of time for developers because, after all, those frameworks are productions of 

many big companies like Facebook, Google, or Google's old employees (Duomly 2019). 

The logic behind creating these components is far beyond the author and the thesis's 

range of knowledge. Therefore, the thesis does not discuss how using the Vue.js compo-

nent is better than building a component structure by plain JavaScript. Instead, a compari-

son between using components and not using them is a more suitable approach. The 

comparison is not about using the Vue.js component versus building and using the Vanilla 

JavaScript component anymore. But at least, developers save a large amount of time not 

to create a component structure themselves but use it from a framework or library. 

So how can using components bring advantages to the development process? As ex-

plained in the theory chapter, components are reusable custom-made elements. Let us 

use the event cards as an example for this, these cards appear many times within the ap-

plication, in many pages.  

 

  Figure 21 Event card appears many times within the dashboard   

These event cards are almost identical in structural styling and functionality, except for the 

data of each card. All other functionalities of the cards are the same because they use 

one component to render. If these event cards are added manually in our application, then 

every time developers want to change something of the event cards, they have to apply it 

to all other event cards of the application. This repetitive process can be so frustrating and 



27 

consumes a massive amount of time. Moreover, from the author's experiences, in the de-

velopment process, changes are a crucial part and occurs a lot to reach the final product 

or desire. This reason means using components helps developers saving a lot of time do-

ing the same works overtime and encourages them for not having to do tedious and labo-

rious works. 

List rendering 

 

  Figure 22 Daily event list component   

As we can see from the daily event list in the dashboard, more than one card is rendered, 

but we only see one <DailyEventCard> element from the code. The reason behind this is 

because the element uses a particular directive from Vue.js, which is v-for. This directive 

allows list rendering, which means it takes an array of data, "dailyEvents" to be specific, 

and renders a <DailyEventCard> component for each item of the array. This directive 

helps create dynamic rendering with the use of HTML code only. On the other hand, cre-

ating dynamic functionality like this operation requires JavaScript intervention if not using 

any frameworks.  

 

  Figure 23 List rendering with plain JavaScript   

Take the implementation above, for example. This implementation uses the events array 

to create a paragraph for each item of the array. The paragraph's texts are the content of 

the item in the array. This example is just a simple implementation of how to use pure Ja-

vaScript to create the list rendering. The result is below. 



28 

 

  Figure 24 List rendering result   

The result is very modest compared to the event card presented in the previous chapter. 

Despite the simplicity of the result, the amount of code needed is quite large and harder to 

read. Besides, this example only contains simple HTML paragraphs and does not have 

any other style or interactions implemented.  

To manually render a complete event card with style and functions requires a lot of works 

and time. Look at another example implementation below.  

 

  Figure 25 Closed and opened event card example implementation   

There are two ways to create this effect. The first one is through regular HTML (can be 

used as Vue.js components) and another one through pure JavaScript.  

 

  Figure 26 JavaScript (left) and HTML (right) implementation comparison   



29 

As can be seen in figure 26, the differences are quite significant, as HTML implementation 

only takes 11 lines of code, and JavaScript takes 22 lines. That is two times the work, not 

mention about JavaScript implementation's code line is longer and harder to visualize the 

structure like the HTML one. Therefore, the author believes that using HTML to perform 

dynamic operations like list rendering is a better choice. Besides, some specific processes 

(rendering event cards from arrays) like this require dynamic rendering from JavaScript, 

but Vue.js framework makes it possible to render from HTML. These advantages are 

more distinct as the application scales up and becomes more complex. 

Reactivity 

As have seen in the example above, using Vanilla JavaScript to render anything into the 

DOM is very frustrating. But things do not stop there; let us consider reactivity. The author 

already explained about reactivity in chapter 3. In short, reactivity helps update the view 

whenever the data changes. Figure 27 below presents a simple example of a counter.  

 

  Figure 27 Simple counter mechanism example   

This simple counter has an initial value of 0 and can add or subtract the number by 1 (not 

below 0) or reset the value back to its initial value. Below are the implementations of this 

example. 

 

  Figure 28 Vanilla JavaScript (left) and Vue.js (right) implementation comparison   

The author left out the CSS code because it is the same for both implementations. At the 

first look, these two implementations do not have significant differences. Both implementa-

tions have the same number of code lines and look quite similar to each other, especially 



30 

since both have the same HTML structure and two functions with the same purpose: add 

and reset method. But in the Vanilla JavaScript implementation, it requires another func-

tion, updateItemNumberView, which updates the view. And every time the application 

call method add or reset, this method must be called again to ensure the view always 

shows the newest data. 

Meanwhile, in the Vue.js implementation, the item number is kept in the data object, mak-

ing it a reactive resource of the component. Every time the item number changes (by 

other operations or methods), the view automatically updates them. To show the data in 

the application, developers can use data binding (v-model) in forms or use mustache syn-

tax to show any data in the data object. This operation makes sure the view always shows 

the latest data without setting them manually for each data. The process of updating view 

with pure JavaScript in the implementation above may look effortless and straightforward. 

But imagine this data appears many times in the view, and there are many pieces of data 

to take care of, not only one data in like this example. That is when Vue.js reactivity be-

comes a compelling feature for developers to save time and does not have to worry about 

this frustrating and tedious issue. An article written by Alberto Gimeno on Medium, titled 

"The deepest reason why modern JavaScript frameworks exist." mentions plenty of good 

reasons. Those reasons include having component-based architecture, active and large 

community, third party dependencies, browser extensions, and suitable for making SPAs 

(Single Page Application). But this article also points out that these are not the most im-

portant reasons. Instead, it lies upon a simple yet powerful and handy functionality, sync-

ing the UI with the state (Gimeno 2018). In other words, it is what developers can achieve 

using Vue.js framework's Reactivity. 

This paragraph marks the end of chapter 5. In the next chapter, the thesis concludes the 

studies and evaluations done in this chapter. After that, answers to the research questions 

at the start of the thesis are given. Additionally, other aspects of the study that haven't 

been covered, such as reliability, validation, limitation, and suggestions for future works, 

are also presented. 



31 

6 CONCLUSION 

In this chapter, the thesis focus on concluding and giving answers to the research 

questions. After that, the thesis presents research reliability, validation, limitation, and sug-

gestions for future studies to complete the conclusion of the thesis. The start of this chap-

ter is the revision and concluding of the research questions. 

6.1 Answering the Research Questions: 

 Comes back from the start of the thesis are the two research questions. These questions 

provide the topic and the guideline for the studies. These two questions are: 

 What are some of the main features of Vue.js framework, and what are their uses? 

 How do these features benefit the development process? 

Based on the studies from chapter 5, Component-based Architecture, List Rendering 

(or dynamic rendering from components), and Reactivity are three of the many features 

provided by Vue.js framework. These selected features are also the answer to the first 

question. From the studies and evaluations in earlier chapters, the thesis tries to point out 

the positive impacts created by these functionalities, which are presented in the next para-

graph. 

Firstly, examples show Vue.js lessens the amount of code needed for specific tasks or op-

erations. Besides, this framework also prevents developers from doing repetitive and frus-

trating tasks by using components. These benefits result in reducing the development 

time as well as keeping developers' morale high. Secondly, through the implementations, 

Vue.js provides better code visualization, structuralization, and readability with Compo-

nent-based and List Rendering features. These effects can be translated in improving 

the project's manageability and effectiveness, which, if done right, can also lower develop-

ment time. Finally, Vue.js allows developers to perform certain tasks easily, which very dif-

ficult to do without the help of the framework, especially for new developers. Using Vue.js 

Reactivity is an example; this helps the development process in various ways. It includes 

providing less time-consuming, better performance with minimum code, solving the most 

challenging issue in web development (data syncing). All of these advantages also be-

comes more significant when the application start scaling up. Generally, in some specific 

situations, these three features help the development process by creating better project 

manageability and scalability while also lessening the development time and providing 

better solutions for specific difficult issues in many projects. This conclusion is the answer 

to the second question. 



32 

6.2 Research Reliability and Validation 

The thesis not only demonstrates some theories using trusted sources related to the topic 

of the study but also gives example implementations and articles to support the ideas of 

the research. Despite that, the thesis tries to improve reliability and validation in some 

other ways. 

Firstly, When presenting a feature, many example implementations are also demonstrated 

and explained. All the examples are created and tested by the author before bringing 

them into the analysis. Tested can be made using the exact code to ensure the reliability 

and validation of the examples.  

Secondly, the main subject of this research is the study case. The application project can 

be found from this link: https://github.com/tom2lua/reminder. The whole application can be 

found in this repository. The back-end of the application is not included because it is is not 

the subject of the thesis. For testing purposes, a development version can be run from this 

repository or using another link: https://amazing-shirley-0738ea.netlify.com. This link 

contains the production version of the project, which is built from the project. The 

application can be accessed directly in this second link without needing to set up the 

project.  

6.3 Research Limitation 

For the limitation of the research, as the thesis mentions in sub-chapter 3.2.2. The Vue.js 

framework version used in both the study case and example implementations is 2.0. This 

limitation can cause the result to differ in earlier or later versions of Vue.js framework. 

Another thing worth mentioning is the complexity and size of the developing application. 

The framework is only proved significant if the application has a medium or high 

complexity and size. Small and simple projects or applications might not gain benefit from 

these features. On the other hand, there can be some downsides from using them, such 

as following extra framework principles and rules to ensure the best performance. These 

things are worth taking into consideration when starting a new project to predict a better 

outcome. 

6.4 Suggestions for Future Studies 

Finally, some suggestions for future studies and researches that took the thesis for 

inspiration are given. Studies on other features of Vue.js can be sufficient since this 

research only working with three basic features. Other great topics can be focusing on in-

https://github.com/tom2lua/reminder
https://amazing-shirley-0738ea.netlify.com/


33 

depth analysis with these features to get a better understanding and optimize on how to 

use them. As the time the thesis is written, Vue.js version 3 is coming to release. This new 

update might become a proper subject for future studies as well. 

This chapter consists of concluding the research questions and giving many other 

perspectives of the study, such as reliability, validation, and limitation. There are also 

some ideas for future works that got inspired by the thesis provided by the author. The 

next chapter summarizes the content of the study and marks the end of the thesis. 



34 

7 SUMMARY 

The high demand for web applications nowadays leads to the rising need for many new 

developers. The thesis presents developers with fundamental theories of the required 

components of a web application. Other important definitions are JavaScript programming 

language and its libraries and frameworks. Since the thesis focus on studying about the 

front-end of the application, the study subject shifts onto Vue.js, one of the most well-

known JavaScript framework for front-end development. 

To get a better understanding of the framework, the thesis provides a study case of a 

Vue.js powered web application. In general, the study case is a Reminder web application 

where users can create plans to help remind them in the future. Mostly all the main fea-

tures of the application are demonstrated in this chapter.  

After the case description, three main features of Vue.js framework are presented and ex-

plained for the data collecting and analyzing. This process consists of comparisons of ex-

ample implementations with and without applying Vue.js to find the differences in the ap-

proaches. 

Conclusions are made from the analysis in the previous chapter to answer research ques-

tions. Additionally, other aspects of the study are given, such as research reliability, vali-

dation, limitation, and suggestions for possible future works. 



35 

LIST OF REFERENCES 

AltexSoft. 2020. The Good and the Bad of Vue.js Framework Programming. [accessed 10 

February]. AltexSoft. Available at: https://www.altexsoft.com/blog/engineering/pros-and-

cons-of-vue-js/ 

Benedict, G. 2018. Web Application vs. Website – What's the Difference? [accessed 5 

February 2020]. Techuz. Available at: https://www.techuz.com/blog/web-application-vs-

website-whats-the-difference/ 

Bhatia, M. 2018. Your Guide to Qualitative and Quantitative Data Analysis Methods 

[accessed 26 September 2019]. Humans of data. Available at: 

https://humansofdata.atlan.com/2018/09/qualitative-quantitative-data-analysis-methods/ 

Bracey, K. 2018. What is Figma? [accessed 11 February]. Envato Tuts+. Available at: 

https://webdesign.tutsplus.com/articles/what-is-figma--cms-32272 

Brown, K. 2018. JavaScript: How Did It Get So Popular? [accessed 26 September 2019]. 

Codeacademy. Available at: https://news.codecademy.com/javascript-history-popularity/ 

Clockify. 2020. About us. [accessed 11 February]. Clockify. Available at: 

https://clockify.me/about-us 

DeGroat. 2019. The History of JavaScript: Everything You Need to Know [accessed 26 

September 2019]. Stringboard Blog. Available at: 

https://www.springboard.com/blog/history-of-javascript/ 

Dewebkiller. 2019. UX vs. UI in Depth. [accessed 7 February 2020]. Dewebkiller. 

Available at: https://www.dewebkiller.com/ux-vs-ui-in-depth/ 

Dionne, M. 2019. Reasons Why JavaScript is Omnipresent in Modern Development. 

[accessed 8 February 2020]. Snipcart. Available at: https://snipcart.com/blog/why-

javascript-benefits 

Draw.io. 2020. Online Diagram. [accessed 11 February]. Draw.io. Available at: 

https://drawio-app.com/ 

Duomly. 2019. The Best Front-end Framework to Learn in 2019 [accessed 26 September 

2019]. DEV. Available at: https://dev.to/duomly/the-best-front-end-framework-to-learn-in-

2019-dn7 



36 

Gabriel, D. 2013. Inductive and Deductive Approaches to Research [accessed 26 

September 2019]. Dr Deborah Gabriel. Available at: 

https://deborahgabriel.com/2013/03/17/inductive-and-deductive-approaches-to-research/ 

Gallagher, M. 2019. Vuex Showdown: Mutations vs. Actions. [accessed 11 February]. 

LogRocket. Available at: https://blog.logrocket.com/vuex-showdown-mutations-vs-actions-

f48f2f7df54b/ 

Gimeno, A. 2018. The Deepest Reason Why Modern JavaScript Frameworks Exist. 

[accessed 21 April 2020]. Available at: https://medium.com/dailyjs/the-deepest-reason-

why-modern-javascript-frameworks-exist-933b86ebc445 

Hannah, J. 2019. What is a User Interface, And What Are the Elements that Comprise 

One? [accessed 6 February 2020]. CareerFoundry. Available at: 

https://careerfoundry.com/en/blog/ui-design/what-is-a-user-interface/ 

Lamprecht, E. 2019. The Difference Between UX and UI Design – A Layman's Guide. 

[accessed 6 February 2020]. CareerFoundry. Available at: 

https://careerfoundry.com/en/blog/ux-design/the-difference-between-ux-and-ui-design-a-

laymans-guide/ 

McLeod, S. 2019. What's the Difference between Qualitative and Quantitative Research? 

[accessed 26 September 2019]. SimplyPsychology. Available at: 

https://www.simplypsychology.org/qualitative-quantitative.html 

Miessler, D. 2019. The Difference Between Deductive and Inductive Reasoning [accessed 

26 September 2019]. DanielMiessler. Available at: https://danielmiessler.com/blog/the-

difference-between-deductive-and-inductive-reasoning/ 

Moerkerke, D. 2019. JavaScript Doesn't Need to Be Replaced. [accessed 8 February 

2020]. Medium. Available at: https://medium.com/javascript-in-plain-english/javascript-

doesnt-need-to-be-replaced-bd01e2f12d51 

Morris, S. 2020. Tech 101: What Is a JavaScript Framework? Here's Everything You Need 

to Know. [accessed 8 February 2020]. Skillcrush. Available at: 

https://skillcrush.com/blog/what-is-a-javascript-framework/ 

Morris, S. 2020. The 10 Skills You Need to Land Your First Front End Developer Job. 

[accessed 6 February 2020]. Skillcrush. Available at: https://skillcrush.com/blog/front-end-

developer-skills/ 

Multidots. 2019. Importance of Code Quality and Coding Standard in Software 

Development. [accessed 9 April 2020]. Medium. Available at: 



37 

https://medium.com/@multidots/importance-of-code-quality-and-coding-standard-in-

software-development-260cb0367f1a 

Oracle. 2020. What is Database. [accessed 8 February 2020]. Oracle. Available at: 

https://www.oracle.com/database/what-is-database.html 

Ray, A. 2018. Front-end Developers v/s Back-End Developers- Let's Compare. [accessed 

8 February 2020]. Capital Numbers. Available at: 

https://www.capitalnumbers.com/blog/front-end-developers-vs-back-end-developers-lets-

compare/ 

SPEC INDIA. 2019. Why Node.js is Very Popular Among Fortune 500 Companies? 

[accessed 7 February 2020]. Medium. Available at: https://medium.com/quick-code/node-

js-and-fortune-500-companies-fewer-efforts-more-rewards-282db19160c0 

Steefkerk, R. 2019. Qualitative vs. Quantitative Research [accessed 26 September 2019]. 

Scribbr. Available at: https://www.scribbr.com/methodology/qualitative-quantitative-

research/ 

Steward, L. 2019. Front End vs. Back End Development. [accessed 5 February 2020]. 

Course Report. Available at: https://www.coursereport.com/blog/front-end-development-

vs-back-end-development-where-to-start 

TechMagic. 2019. React vs. Angular vs. Vue.js – What to Choose in 2019? (updated) 

[accessed 26 September 2019]. Medium. Available at: 

https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-

b91e028fa91d 

Vue Router. 2020. Introduction. [accessed 11 February 2020]. Vue Router. Available at: 

https://router.vuejs.org/#introduction 

Vue.js 2020. Single File Components. [accessed 9 February 2020]. Vue.js. Available at: 

https://vuejs.org/v2/guide/single-file-components.html 

Vue.js. 2020. Component Options. [accessed 9 February 2020]. Vue.js. Available at: 

https://012.vuejs.org/api/options.html 

Vue.js. 2020. Form Input Bindings. [accessed 10 February 2020]. Vue.js. Available at: 

https://vuejs.org/v2/guide/forms.html 

Vue.js. 2020. Reactivity in Depth. [accessed 9 February 2020]. Vue.js. Available at: 

https://vuejs.org/v2/guide/reactivity.html 



38 

Vue.js. 2020. What is Vue.js? [accessed 9 February 2020]. Vue.js. Available at: 

https://vuejs.org/v2/guide/index.html#What-is-Vue-js 

Vuex. 2020. What is Vuex? [accessed 10 February 2020]. Vuex. Available at: 

https://vuex.vuejs.org/#what-is-vuex 

Wikipedia. 2020. Vue.js. [accessed 9 February 2020]. Wikipedia. Available at: 

https://en.wikipedia.org/wiki/Vue.js 

 

 

 


