Bachelor’s thesis

Degree programme in Information and Communications Technology

2020

Khoi Huynh

THE DEVELOPMENT OF A WEB
APPLICATION

— The new trend - Serverless application

TURKU AMK

TURKU UNIVERSITY OF
APPLIED SCIENCES



BACHELOR'’S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES
Degree programme in Information and Communications Technology

2020 | 53 pages

Khoi Huynh

THE DEVELOPMENT OF A WEB APPLICATION

- The new trend — Serverless application

Two decades, the time when the web application is just revealed to the world thanks to the
invention of the internet, web pages were simply hard-coded with static texts and, images.
Gradually, people's curiosity about web applications rapidly increased, then the studying of web
development became more popular. In essence, the web architecture is a combination of two
programs running concurrently on browsers(frontend side) for sending requests and
servers(backend side) for responding. It seems that more and more developers tend to focus on
the development of the browser-side. Serverless application is a new technology for those who
do not need to understand about server-side aspects since they are managed by the vendors
instead.

This thesis aims at providing an overview of the web application evolution, evaluation of different
web app architectures, and a detailed introduction of serverless application, as well as discussion
of its impact.

There are two main parts in this thesis: the theoretical and the practical. In the theoretical part,
some modern popular architectures of web development are introduced. Serverless applications
are explained in detail as well as its influence as well as its ecosystem as a new trend. The
practical part demonstrates how to create a serverless application from scratch.

The thesis gives a clear understanding of how different the original architecture works compared
to serverless through detailed analysis. Moreover, the practical part is utilized as an entry-level
method for new-comers to approach serverless architecture.

KEYWORDS:

Single-page application, cloud computing, serverless, Authentication, Angular, MongoDB.



CONTENTS

LIST OF ABBREVIATIONS
1 INTRODUCTION

2 SINGLE-PAGE APPLICATION
2.1 What is a Single-Page Application?
2.2 How does a Single-Page Application work?
2.2.1 Location Primer
2.2.2 Route matching
2.3 Pros and Cons
2.4 Basics of Angular
2.4.1 Architecture
2.4.2 Modules
2.4.3 Components
2.4.4 Services
2.4.5 Router

3 CLOUD SERVICES AND SERVERLESS COMPUTING
3.1 Cloud computing
3.1.1 Service types
3.1.2 The upsides and downsides of investing Cloud computing
3.2 Serverless
3.3 Authentication
3.3.1 Sessions
3.3.2 JSON Web Token (JWT)
3.3.3 Building Custom Function

4 EXAMPLE OF BUILDING A LIVE SERVERLESS APPLICATION
4.1 Project intention and requirements

4.2 Cloud platform preparation

4.3 Client-side framework and Code Editor

4.4 Setup project repository

4.5 Integrate with MongoDB Stitch

4.6 Authentication

10
11
12
12
13
13
14
16
18
19

22
22
22
23
24
24
25
25
26

27
27
27
31
32
33
36



4.7 Deployment

5 CONCLUSION

REFERENCES

FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Number of Internet Users from 2005 to 2019 [2].

The difference between Traditional web application and SPA [5].

Example of application loading with Stateful SPA [7].
Example of application loading with Stateless SPA [7].
The structure of Location object [7].

Example of common case observed in Chrome DevTool.
An example of route configuration in SPA app (Angular).
Diagram showing the basic concept of Angular [9].

A NgModule declaration example [10].

Figure 10. Export classes in module to use in other modules [10].
Figure 11. Component declaration example.

Figure 12. Component Lifecycle hooks [11].

Figure 13. Forms of data binding in a component [9].

Figure 14. Example of a global scope service (root).

Figure 15. How Router render component based on the URL [12].
Figure 16. NgRoute configuration with nested routes example.
Figure 17. The router cycle for a route state change [12].

Figure 18. Comparison between management types [13].

Figure 19. Authentication process with JWT.

Figure 20. Steps of creating new Stitch App in MongoDB Atlas.
Figure 21. Initializing a Collection.

Figure 22. Installing Angular CLI.

Figure 23. Creating a new directory.

Figure 24. Serving the project in localhost.

Figure 25. Installing Stitch dependency.

Figure 26. Importing MongoDB Stitch.

Figure 27. Sample code of Stitch SDK initialization in app.component.ts.
Figure 28. Query with Collection in database.

Figure 29. The response with data.

Figure 30. Rules configuration UI.

Figure 31. Editing view of "owner" rule.

Figure 32. Editing view of "shared" rule.

Figure 33. Sample code of singing up user with credentials.
Figure 34. Defining confirmation URL view.

Figure 35. Confirming a registered user.

Figure 36. Authenticating a user.

Figure 37. Authorized domain configuration view in Google Console.
Figure 38. Authorized redirect URIs configuration.

Figure 39. Setting view in MongoDB Stitch.

Figure 40. Login to Google account function.

44

48

49

9
10
10
11
11
12
14
14
15
16
16
17
18
19
20
21
24
25
30
31
32
32
33
33
34
34
35
36
37
37
38
39
39
40
40
41
42
43
43



Figure 41. Handling the redirect user data.

Figure 42. Deployment history records view.

Figure 43. Command to build project into production bundle.
Figure 44. The settings of the projects.

Figure 45. Uploading the built folder to the platform.

Figure 46. Defining the redirect root file.

Figure 47. Adding the new address in Redirect URIs settings.

43
44
45
45
46
47
47



LIST OF ABBREVIATIONS

AJAX
CLI
CRUD
CSS
DOM
FaaS
HTML
laaS
JSON
JWT
0S
PaaS
SaaS
SDK
SPA
URI
URL
VS Code
XML

Asynchronous Javascript and XML
Command Line Interface
Create, Read, Update, Delete
Cascading Style Sheets
Document Object Model
Function as a Service
Hypertext Markup Language
Infrastructure as a Service
JavaScript Object Notation
JSON Web Token

Operating System

Platform as a Service
Software as a Service
Software Development Kit
Single-page Application
Uniform Resource Idendifier
Uniform Resource Locator
Visual Studio Code

Extensible Markup Language



1 INTRODUCTION

The idea of sharing information has been raised for a long time. Therefore, the Internet,
which is as known as the information superhighway, was born after Tim Berners-Lee's
proposal was published in 1989 [1]. Browsers have become a sharp weapon in the
industry due to their availability of rendering content being served on a faraway
computer. However, the slow speed and shared bandwidth with phone service are its

limitations.

Years later, to satisfy users' demand, companies found that deploying and managing a
huge number of servers is necessary. This provided opportunities for service providers
to take advantage of operating multiple environments on a single host with the purpose
of simplifying the deployment and management of the servers. Then Virtual Machines
(VM) were receiving support from Datacenter providers. Yet, still, the process of code
deployment was not really simple as much of configuration and setup were
prerequisites. Fast forward a few more years, Docker, a brighter way for infrastructure
providers, was developed. It steadily became well-known because of its investigation for
"containers"”, which was proved that can reduce the developers' worries about deploying
applications and provided a portal for delivering code directly into production. Yet,
development did not stop there, developers could not stop themselves to curious about
a chance to focus on even less. The term "Serverless" immediately attracted developers
by its mechanism which allows them to reduce the time and difficulties of handling

servers by delegating to the vendors. [1].

Since Serverless is becoming a new trend and thus, it would be an attractive topic to be
discussed. Along with this thesis and for demonstration, a serverless application is built

with detailed examples to give certain practical points of view about this new technology.
There are five chapters in this thesis:

e Chapter one is the introduction. In this chapter, the history, and the origin of the
term serverless will be briefly introduced.

e Chapter two discusses in detail about the Single-page Application, how it works
as well as its advantages and disadvantages.

e Chapter three focuses on the main topic of the thesis, serverless applications.

This chapter gives a detailed introduction of Cloud computing.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



e Chapter four is an example of building a serverless application from scratch. This
part will provide step-by-step instructions with the necessary tools.

e The last chapter summarizes all the topics discussed throughout the whole

thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



2 SINGLE-PAGE APPLICATION

, As technology continuously evolves, so do the internet users' needs. As stated in this

graph, the number of internet users highly rocketed during 2010 and 2019 (Figure 1).

5000

4131

4000

3000

2000

Mumberaof users in millians

1000

© Statista 2020

Figure 1. Number of Internet Users from 2005 to 2019 [2].

In this technology evolution, there are also modern approaches to app development to
serve the needs of s internet users. One such is the Single-Page Application (SPA).

In this chapter, the definition of SPA and relevant technologies will be discussed deeply.
The chapter will discuss how these technologies affect daily life in general and web
development specifically .

2.1 What is a Single-Page Application?

A single-page application (SPA) is a web application or website that interacts with the
web browser by dynamically rewriting the current web page with new data from the web-

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



server, instead of loading completely new pages from the server each time for a user

action. [3]

Particularly, in a more traditional web page architecture, an index.html page might link to
other HTML pages on the server that the browser will download and display from scratch,
[4]. This means that for every request of fetching data, the server will render the whole
web page with new data on the server-side, and then return it as a response. On the
contrary, SPAs allows users to keep interacting with the page and updates data

concurrently without interruption (Figure 2).

& N\
Traditional Page Lifecycle
s N N
Initial Request
eq q
[ B HTML
<€
Server
»
\\
_J
~
( ™
»
[ B HTML
<€
Server
>
JSON
&
\ >

Figure 2. The difference between Traditional web application and SPA [5].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



10

Note: Figure 2 illustrates how the communication between Client and Server using
AJAX. Besides, Websocket is an alternative that supports bi-directional communication

and provides a low-latency connection [6].
2.2 How does a Single-Page Application work?

As stated in [7], SPA is divided into two types, Stateful (Internal-state), and Stateless
(URL-based). The differences come from each type's method of implementation. The
stateful type has only one entry, which means that no matter which URL is used to access
the application, users will start at the root page (Figure 3). On the other hand, the
Stateless type provides the application data based on the URL (Figure 4).

. NAVIGATING DOES NOT SHARED LINK LOADS APP
START AT AN APP S ENTRY UPDATE THE LOCATION AT THE ENTRY

! / /

Cuck SHARE

Figure 3. Example of application loading with Stateful SPA [7].

. MNAVIGATING UPDATES SHARED LINK LOADS APP
START AT AN APP S ENTRY THE LOCATION WITH THE CORRECT CONTENT!

I fsmirk fsmirk

Cuck SHARE

Figure 4. Example of application loading with Stateless SPA [7].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



11

Most of the modern SPAs are Stateless including Angular, which will be used in this

thesis. Thus, this part will focus on the Stateless SPA type.
2.2.1 Location Primer

SPAs use "window.location" object to access different parts of the URL for interacting
(Figure 5). The parts after the hostname in the URL, particularly pathname, search and

hash , are crucial for specifying which content to render, according to [7].

e

location = {
protocol: "https:”,
hostname: “www.example.com’”,
pathname: "/one",

s:/ /www.example.com/one?key =value#trendin

search: " key= value”,
hash: "#trending"«—

Figure 5. The structure of Location object [7].

In some common cases, the search property could be included in the pathname as a

parameter following the format pathname/:search, and the hash can be deducted
(Figure 6).

Figure 6. Example of common case observed in Chrome DevTool.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



12

2.2.2 Route matching

SPAs mostly rely on a router, which is made of routes describing the location they should
match. These routes can be static (/fauth) or dynamic (/notes/:id, in which the id is a

parameter). For example:

!
» Componenpt:

, component: NoteEditComponent }

Figure 7. An example of route configuration in SPA app (Angular).

In the example above (Figure 7), each object is a route. Route matching is comparing
the current location to each route and find the one that matches. The router then will

trigger a re-render of the application with corresponding data.

2.3 Pros and Cons

Besides the basic difference between original architecture and SPA, there are some

more convincing reasons to invest this kind of web application, as demonstrated in [8].

The first reason is SPA means faster applications. The fewer requests to the server, the
less waiting time for the response. Since only data is transferred, hence the bandwidth
usage is also reduced. Additionally, in most cases, SPA stores data locally for use even

in offline mode.

A faster application leads to better user experience. The page is dynamically rendered
based on the data change, so there is no more waiting time to reload the whole page.
The users will not face any kind of interruption in the meantime. Consequently, SPA

creates a higher level of user experience.

SPAs are super easy to deploy in production. There is just one HTML file, one CSS

bundle, and one JavaScript bundle which could be hosted in any static content server.

However, there are also some drawbacks to consider, mentioned by ElSayed [8]. The

critical thing about SPAs is that it has poor Search Engine Optimization. Since there is

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



13

only the initial index.html file, the Search Engine cannot index the content. Moreover, the
complexity is also one of the downsides of SPA. Developers find that the SPA building

process is complex and requires different dynamic approaches.

2.4 Basics of Angular

There are a couple of libraries and framewaorks for building SPAs such as React, Vue,
Svelte, and Angular. Each has both good and not good sides. This section will shortly
introduce the basis of Angular, which is supported not only on web but also on various

platforms (desktop, mobile).

2.4.1 Architecture

Angular is a TypeScript based framework that provides libraries that can be imported to
the SPA. An Angular app is a set of basic building blocks call Modules which are
compilations of Components. A component defines views, which are sets of screen
elements that Angular will handle correspondingly with program logic and data. And
Services, which deal with data or logic that is not directly related to views and shareable
across components, can be injected into components as dependencies to make the code

more modular and reusable (Figure 8). [9]

Each factor is a class and the specific decorator that Angular marks each of those will

determine what they are (component, service, directives, .etc.).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



14

Metadata

Tem]:i,ﬂtﬁ

< >-

Dlrective

- {}

roperty Metaodatg Event
BlLadLAg BLuading

CoVUDOWELINT

i)

Figure 8. Diagram showing the basic concept of Angular [9].

2.4.2 Modules

Modules are those composed an Angular application. This part will dive deeply about
NgModules or Angular Modules.

For app with great scale and high level of complexity, it is a good idea to explicitly declare
things and group them together, as stated in [10]. It is also the main purpose of
NgModules.

import { NgModule } from '@angular/core’;

import { SomeComponent } from './some.component '
import { SomeDirective } from './some.directive’;
import { SomePipe } from './some.pipe';

import { SomeService } from './shared/some.service';

EMgModule{
declaraticns: [SomeComponent, SomeDirective, SomePipe],
providers: [SomeService]

by

export class SomeModule {}

Figure 9. A NgModule declaration example [10].

Angular groups things with two main structures (Figure 9):

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



15

o Declarations are for those to be used in templates, which are components,
directives, and pipes.

e Providers are for the classes that hanle data called services.

Scopes

The scope of declared classes are local, which means that they are usable with the
module. They must be exported for other modules to use (Figure 10).

@MgModule({

declarations: [SomeComponent, SomeDirective, SomePipe],

exports: [SomeComponent, SomeDirective, SomePipe]
xport class SomeModule {}

Figure 10. Export classes in module to use in other modules [10].

While on the other hand, services, which are in the global scope, are injectable for the

whole app.

Import strategy

The difference between scopes leads to confusion when and how the module should be
imported into other modules. [10]. Modules are classified into types:

Modules to import only once (normally are modules for the use of services):

¢ HttpClientModule, which is an Angular built-in module for handling client-side
requests.

e Featured modules that provide services only.

Modules to import multiple times when necessary (modules for the use components,

template-related things such as directives, pipes):

e Ul modules
¢ CommonModule, which gives all the basics of Angular.

e Featured modules exporting components, directives, .etc.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



16

2.4.3 Components

A component is a basic building block of Ul in Angular with metadata determining how

the component is used at runtime (Figure 11). [9]

ort { Component, OnInit }
@Component ({
selector: 'app-
templateUrl:
styleUrls: ['./ g .- component.

ymponent

ngOnInit() {

Figure 11. Component declaration example.

Lifecycle hooks

A component control and handle its behavior with various stages called lifecycle hooks
(Figure 12).

— ngAFterContentirit
th-Her\/lewlnH- nghfterContentChecked

OnChohger;
| \
{ \
nghfterview c
Checked [ OnDestroy

Figure 12. Component Lifecycle hooks [11].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



17

Constructor: runs when the component is activated which will initialize and inject
all services.

ngOnChanges: render the Document Object Model (DOM) multiple time
whenever an input property’s value is changed before it binds to view.

ngOninit: runs only once after the initialization of all properties.

ngDoCheck: activates everytime there is a change of component’s properties.
ngAfterContentinit: called after the component’s view values changed.
ngAfterContentChecked: this hook runs after Angular checked whether the
content has been projected into the component.

ngAfterViewlnit: runs after the view has been initialized.

ngAfterViewChecked: called after ngAfterViewlnit to check if view has any
changes.

ngOnDestroy: only called when the component is removed.

Data bindings

Angular supports a mechanism called Data binding to take over the pushing data into

HTML controls and turns user responses into actions and value updates. Data binding

plays an important role in communication not only between a template and its component

but also between different components. [9]

There are several forms (Figure 13):

DOM

LNANOdWO2

Figure 13. Forms of data binding in a component [9].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



18

¢ Interpolation is the most basic way to bind data that fills value from the component
to the template.

e Property binding passes data one-way from the component to the property of
another component in the template.

e Event binding links any event triggered in the DOM to the component.

e Two-way binding allows property and event to be bound from component to the
DOM and vice versa. Data flows from the component to the HTML controls as
with property binding, and synchronous any changes made to those controls back
to the component.

2.4.4 Services

An application always works with data that can be handled inside any component.
However, as the application scale expands, data usage also significantly increases.
Hence, managing data within separated components leads to high complexity and
inconsistency. Services, which provides data or logic across the app, are considered the
solution. A NgService is typically a decorator marked Javascript class (Figure 14) with a
well-defined specific purpose that enhances the modularity and reusability, not to

mention that it helps the components lean and more efficient. [9]

@Injectable({
providedIn: ‘root’

export Logger {

log(msg: any) . console.log(msg); }

g
L
error(msg: any) { console.error(msg); }
1]
L

warn{msg: any) | console.warn{(msg); [}

Figure 14. Example of a global scope service (root).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



19

2.4.5 Router

The Router Module gives the ability to display components dynamically based on the
URL. For example, the HomeComponent and NotesComponent should be displayed

correspondingly as below (Figure 15):

Case 1: Case 2:
url: localhost:4200/home url: localhost:4200/notes
AppComponent AppComponent

Figure 15. How Router render component based on the URL [12].

Each of the above routable components is considered a router state in a tree of router

states, which can be configured with Router Module.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



20

er';

‘@angular/rou

., component: MNotesComponent },
', component: MNoteComponent }

Figure 16. NgRoute configuration with nested routes example.
As defined, each state will match a component. Angular Router also provides nested-
route. In particular, for /notes, there are two sub-routes defined as /notes/ and /notes/:id

(:id is a query string). For eachid, the NotesComponent should contain a different
instance of NoteComponent as a child route with different data. (Figure 16)

Router Lifecycle

The Router also has a chain of steps to cycle through every single time that the state
changes (Figure 17).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



21

(1) Redirects Applied
Final Url

et HephndetalocEini (2) Match Url to Router State

(4) Activate view in outlet (3) Process any guards and resolvers

Figure 17. The router cycle for a route state change [12].

e (1) A redirect occurs, then the URL must be processed. The router does not
redirect at this stage, so the app stays unchanged.

e (2) The router uses a first-match strategy to match the url to a route state that
already defined in the configuration.

¢ (3) In this stage, the router triggers an extra-check whether there is any guard
that prevents navigation for the matched route.

e (4) The corresponding component is rendered.

¢ (5) The cycle finishes and waits for another redirect.

Lazy loading

As a large-scale application grows and has more feature modules over time, the
increasingly long loading time thus leads to bad user experience. To solve this problem,
Angular supports a mechanism, called Lazy loading, which will only load the required
features on demand when users navigate instead of all of them at the entry time.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



22

3 CLOUD SERVICES AND SERVERLESS COMPUTING

Building only a good client-side SPA is not enough for production. Like any application,
an SPA also needs to deal with data and servers. However, deploying a server is a
tremendous commitment. To get everything up and running, operators have to manage
all the Server, Operating System (OS) and Network, required dependencies and the
maintenance for years. Virtual machines (VMs) are the alternative solution for a while
but keeping them running does not get rid of the heavy workload of server management.
Furthermore, VMs deployment charges per-second even the system is idle and the

resources are not in use. [13]

Cloud computing rapidly becomes an alternative that plays a crucial role in serverless
computing. The next section will shortly describe Cloud computing and Serverless

terminology.

3.1 Cloud computing

Generally, cloud computing is that all hardware and software needed to serve a website
is provided by an outsourcing company as a service, which can be accessed over the
internet. Developers are not required to manage how the platform performs to keep
applications operating. Thus, organizations become more agile and manage expenses
better.

3.1.1 Service types

Infrastructure as a Service (laaS)

laaS provides virtualized underlying resources such as OS, networking, etc. over the
internet for developing applications. For instance, users buy access to the raw computing
hardware like servers or storage with a monthly charge to host a website. laaS reduces
the management expenses for building their own datacenter as well as prevent the high

complexity.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



23

Software as a Service (SaaS)

SaaS is a method of delivering not only the infrastructure but also the software
application. The provider takes care of the security and availability of both operation and
maintenance. One case is that Web-based email in which Google power from developing

to serving the application over the interconnected network.

Platform as a Service (PaaS)

PaaS is the cloud service is the mixture of the other mentioned types that deliver an on-
demand environment for the software developing cycle including building, testing,
deployment and management.

3.1.2 The upsides and downsides of investing Cloud computing

As mentioned by Jain in [14], the first reason for using Cloud service is that it addresses
the wasted resource issue. And the application billing plan can be modified quickly
according to the application scaling. The app globalization is easier with Cloud provider
support. Cloud computing refers deliver the proper amount of resources from the right
geolocation, serves applications in multiple domains all over the world, and increases
the user experience. Losing important data due to disaster or unexpected incident is a
nightmare. Using cloud services means all data is backed up and protected by the

provider, making it more invulnerable.

Everything has both sides, even Cloud service can issue some problems, taking care of
what is coming is never redundant. Using cloud computing means buying services, or
renting. Thus, upfront costs become ongoing operating costs and may be more
expensive in a long time instead of owning the system. Furthermore, the dependence on
the supplier restricts the users need as off-the-peg solutions are not available. Last but
not least, the service's availability is not manageable. If the providers stop supporting,

users have no guaranty to keep the application working.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



24

3.2 Serverless

Hence, Serverless computing potentially makes a better solution as it provides “pay-as-
you-go” payment method. That means there is no more wasted budget if the system is
not currently in use. Moreover, the platforms conduct all the deployment procedures

(Network, OS, Maintenance, etc.) automatically (Figure 18).

B ~ o T ~ o 0 ~
i I P H
1 1 1

Apps : Apps 1 Apps H
Runtime + Packages Runtime + Packages
0s

s

Hardware

Networking

Networking Networking

On-Premises Servers VMs Serverless

PLL LTI T T
- —

- - -
- - - -

o - -
- -

i o o

Figure 18. Comparison between management types [13].

Serverless computing is exactly a cloud computing model wherein the developers have
the minimal visibility and control on the above server stuffs — kernel, file system, OS and
so forth.

Function as a Service (FaaS) is the computation aspect of serverless. This allows
developers to upload modular codes as functions into the cloud and executes them
independently as a REST server.

3.3 Authentication

User authentication was always an important topic, more precise for serverless
applications. Since there are no real servers managed by developers, this issue has to
be getting more consideration.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



25

3.3.1 Sessions

According to [15], Sessions, a standard approach for handling user identity, may lead to
a high datastore cost because of retrieving sessions and prolong loading time. The
reason is that for every request sent, ther server has to look up user and all related

information in the database, which makes the response time longer.
3.3.2 JSON Web Token (JWT)

JWT is said to be more convenient for Serverless applications. As JWT allows storing
additional information directly into the token other than just credentials itself, the server
does not need to look up those in the database anymore. [15]

Figure 19 shows how JWT is used for authenticating users. When a user logs with their
credentials, which is then forwarded to the Authorizer, the JWT will be returned in
success. Every request made from the user to the Serverless platform should include
the JWT. The platform will validate the JWT before granting access to protected
resources. [16]

1. Send Cradentials
e

zer

Client-side
Application

5. Send
sessions
token

4. Forward
JWT

JWT Authorizer
Serverless platform

Figure 19. Authentication process with JWT.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



26

3.3.3 Building Custom Function

As FaaS is a key characteristic of Serverless, developers are able to implement custom

functions with their authentication logic, validation strategy, etc.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



27

4 EXAMPLE OF BUILDING A LIVE SERVERLESS
APPLICATION

4.1 Project intention and requirements

According to the mechanism of serverless, no infrastructure management is needed.
However, there is also a difficulty as the understanding of a targeted platform provider is
a crucial part of the whole development process. Fortunately, this new developer
generation is strongly backed by "big whales" companies. Particularly, there is a variety
of cloud-platform providers to be considered such as Azure, Amazon Web Service
(AWS), Google Cloud Platform, MongoDB Stitch, .etc with lots of services like

Authentication, Database Management, and Hosting.

This part gives a detailed view of what is necessary for building a serverless application
by a working demo project. Since this is only for demonstration, the technologies and

tools should possibly be a low-cost budget plan and with basic features.

The project intends to provide an online note-taking application where people can create
and manage amazing notes. Taking-note used to be personal, but in the present life in
which technology is blooming thanks to the internet, people tend to socialize daily
activities, some even love sharing their very confidential to the world. Thus, making a
greatly meaning note to be collaborative to everyone is not an exception. This project is

to give people a mini social network for nothing more than sharing their useful notes.

Besides how to build a complete serverless application, additional technologies and

useful tools will be introduced along with this chapter as well.

4.2 Cloud platform preparation

The very first step is to choose a cloud platform. According to the requirements, it should
be one that can provide a real-time database management system with third-party

authentication support also.

MongoDB Stitch is the chosen one as it can satisfy the requirements quite well. The next

section will demonstrate how to get started with a MongoDB Stitch application.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



28

Create a new MongoDB account

Go to the registration address: https://account.mongodb.com/account/register and sign

up by going through these steps:

1. Provide the following:

Email address

First Name and Last Name
Password

Phone Number

Company

Job Function

Country

Review and accept the Privacy Policy and the Terms of Service.

Click Sign up.

Create an Atlas cluster

After successfully completed. MongoDB Atlas can be accessed by using MongoDB

Account. After logging into MongoDB Atlas, create an Atlas cluster with these steps:

1. Click Clusters in the left navigation pane, then Build New Cluster button.

2. In Create New Cluster page, choose preferred provider and region, tier. The

corresponding cost will be the displayed at the bottom. This project uses Free

Tier (MO) for the demo purpose only.

3. Name the cluster (NotesApp) and click Create Cluster to finish.

Add a Stitch App (Figure 20)

Click Stitch in the left-hand navigation.

Click Create New Application.

3. In the poped-up window, fill in the required fields:

Application Name (notes-app).
Select the cluster (NotesApp) from the Link to Cluster dropdown. Stitch will

automatically create a MongoDB service that is linked to this cluster.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh


https://account.mongodb.com/account/register

29

o Enter the name of the service (mongodb-atlas-notesapp) that Stitch will
create.

e Choose Global Deployment model and Region. Then click Create.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



30

Create a new application

Application Name
notes-app
Link to Cluster
Only available clusters in 'NOTES’ running MongoDB 3.4 or greater are shown.

Refresh this page to view available clusters.

MotesApp

4k

MNote: Stitch is currently only located in select AWS regions. Linking it to Aflas
clusters in other regions may result in lower performance.

Stitch Service Name €@

mongodb-atlas-notesapp

Select a Deployment Model

Choose from two deployment models - ‘Local’ (Single Region) or ‘Global’
(distributed across all supported regions). Learn more about deployment models.

i1 Local

® Global

Select a Primary Region
Stitch will process application requests in the region closest to your end users. We
recommend choosing the region closest to your cluster's primary. Learn More.

Ireland (eu-west-1)

ik
-
Cancel Create

Figure 20. Steps of creating new Stitch App in MongoDB Atlas.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



31

Create a database and add collections (Figure 21)

Navigate to Stitch dashboard by clicking Stitch in the left pane. Scroll down to the Getting

started section and do these steps:

1. Skip Turn on Authentication as this step will be mentioned in detail later in this
part.
2. Initialize a MongoDB Collection:
e The Linked Cluster Name will be automatically selected.
e A collection must belong to a database (A Stitch app can have multiple
databases). Create a new Database name.
e Then, enter the Collection name.

e Click Add Collection.

o Initialize a MongeDB Collection ~

Let's go ahead and add a named collection in your MongoDB cluster for you, so you can get up and running with your app.

Linked Cluster Name
Database Name notes-app

Collection Name notes

Figure 21. Initializing a Collection.

4.3 Client-side framework and Code Editor

This part will introduce the basis of Angular, one of the modern Javascript Framework,

as there is no restriction on specific frameworks or languages.

A suitable code editor also plays an important role as it can boost the speed of the
development process. Some are favored more by developers such as Sublime, Vim,

Atom and Visual Studio Code (VS Code). All give a beautiful visual user interface.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



32

Sublime will come with a charged fee, Atom and Vim are quite slow compared to others.
Thus, VS Code will be used in this thesis because it is not only fast and light-weight but
also provides a huge extensions market which can help developers save more time for

programming.

4.4 Setup project repository

Install Node.js

Angular requires a current, active LTS, or maintenance LTS version of Node.js.

e To check Node.js version, run node -v in a terminal/console window.

e To get Node.js, go to nodejs.org.

Install Angular Command Line Interface (CLI)

Angular CLI can create projects and a variety of ongoing tasks such as Testing, Bundling,
and Deployment.

Open a terminal/console window and enter command (Figure 22):

npm install -

Figure 22. Install Angular CLI.

Create a application with CLI

After successfully installing CLI, type the command below to create a project named my-

app (Figure 23):

ng new my-app

Figure 23. Create new directory.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



33

Run the application

Open my-app folder with VS Code.
Open the integrated terminal in VS Code by pressing Ctrl + °.
3. Launch the project by typing this command (Figure 24):

d my-app

ng serve -—-open

Figure 24. Serve the project in localhost.

Now the project is up and running locally.

4.5 Integrate with MongoDB Stitch

This step will illustrate how to connect the project to the Stitch project.

Install Stitch SDK

Navigate to my-app project folder. Open terminal and type (Figure 25):

npm install mongodb-stitch-browser-sdk --save

Figure 25. Install Stitch dependency.

The Node Packages Manager (NPM) will download and add StitchAppClient SDK to the

repository.

Note: the --save flag will update the packages version to package.json file.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



34

Import Stitch Dependencies

Figure 26. Import MongoDB Stitch.

Note: The import is required for every .ts files in the project where the APIs are called
(Figure 26).

Initialize the global AppClient instance in the main ts file (Figure 27)

import { Component, OnInit } from "@angular/core’;
import { Stitch } from "mongodb-stitch-b
onent({

selector: 'app-re
templateUrl:

gg "
i

ngonInit(): void {

Stitch.initializeDefaultAppClient(’<APP-ID>");

Figure 27. Sample code of Stitch SDK initialization in app.component.ts.

The application will instantly connect to MongoDB services once it runs. This next step

will show an example of querying data from Stitch.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



35

Get all records from notes collection (Figure 28)

@Effect() getho
ofType(NotesActions.a

aultAppClient.getServiceClient{RemoteMongoClie
i~ P t

: any[])

console. log( 'Notes ync: ', notes)
processedilotes = notes.map({note) {
return Note(note.content, note._id.toString(), note.use
r, note.createdDate, note.isShared)
}

return MotesActions.Synclotes({ notes: processediotes }})

Figure 28. Query with Collection in database.

The returned data is logged into the screen (Figure 29).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



36

Notes Effect Sync:
(8) [{-}, {-}, {-} {1

_did: Objectld,
: Objectld,
_did: Objectld,
: Objectld,
_id: Objectld,
: Objectld,
_id: Objectld,

: Array(0)

Figure 29. The response with data.

4.6 Authentication

Besides the CRUD functions for managing data, Stitch also supports users with its

authentication or integration with third-party providers.

As data is sensitive, even for sharing purposes, well data management with restrictions
is a really good investment. Regarding this, Stitch provides rules on each collection and

fields which are modifiable to make data invulnerable from unauthorized access.

This section gives a simple case of how to integrate the authentication service.

Define rules in Stitch (Figure 30)

1. Log into MongoDB Stitch and navigate to the notes-app application. Click Rules
in the left pane.

2. Add a new MongoDB Collection Namespace by selecting Add
Database/Collection in the context menu of the linked cluster.

3. Choose a rule template, this could be optional. The result should look like this:

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



37

B Rules
- . notes-sppnotes
mongodb-atias... @ Permissions REMOVE CONFIGURATION | ADVANCED MODE
 notes-app Learn how to define roles and permissions for
netes Qo [
pers 3B 2= ‘ Fal) + NEW ROLE
Read Wi Read W
Fiekis o Actions
+ ADD FIELD
Al Additional Fields o

Figure 30. Rules configuration UI.

4. Define “Apply When” Condition

For notes collection, there are 2 roles (Figure 31 and 32):

o owner

Name owner
1-
2 “"uzer™: "EXuser.id" L|:|
3}

Apply When

Learn more about JSON expressions.

Ln3Col2

Document-Level Permissions ' Insert Documents

+ Delete Documents

CLOSE

Figure 31. Editing view of "owner" rule.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh




38

a sharad
Name shared
1~
2 "isShared”: true |:|
3]
Apply When
Learn more about JSON expressions.
Ln3 Col2
Document-Level Permissions O Insert Documents
O Delete Documents
CLOSE

Figure 32. . Editing view of "shared" rule.

A role’s “Apply When” condition written in JSON Expression determines whether the role

applies to a particular document for the user that issued a query.

These two mean a logged-in user has full permissions with their own records in notes

collection, and can only read a note if it is shared.

Stitch supports integrated authentication services from several providers for client-
application including Facebook, Google or with only Email/Password. This section will

go through how to implement each of the mentioned above.

Email/Password with Stitch

1. Register new user with provided Email/Password (Figure 33)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



39

Stitch.defaultAppClient.auth.getProviderClient (UserPasswordAuthProviderCl
ient.factory)

.registerWithEmail{requestData.payload.email, requestData.payload.passwor
d)

.then({)

.catch{err console.error("Error registering new user:", err))

Figure 33. Sample code of singing up user with credentials.

After the application sends a request, Stitch sends an email with a pre-set link including
the token which opens the confirmation URL. The confirmation URL then processes the

token in the final step to create the user object in the Stitch database.
2. Configure the comfirmation URL (pre-set link) (Figure 34)

Click Users tab in the left pane in Stitch page.

Choose Providers tab. Select Email/Password.

Enable and enter the Confirmation URL (specific route of the application to handle

token).

pr—
Users il

Provider Enabled

User Confirmation Method

Email Confirmation URL

Figure 34. Define confirmation URL view.

Enter Email Subject and Save.

3. Confirm and create User Object (Figure 35)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



40

ch.defaultAppClient.auth.getProviderClient (UserPasswordAuthProviderCl

ient.factory)

.confirmUser(cpnfirmationCredentials.token, confirmationCredentials.token
Id)

Figure 35. Confirm registered user.

4. Authenticate registered user (Figure 36)

credentials = UserPasswordCredential {authData.payload.email, au
thData.payload.password)

Stitch.defaultfAppClient.auth.loginWithCredential({credentials)

.then{authedUser console.log( successfully 1 d in with id: authed
User.id} ™))

.catch{err console.error( login failed with error:

Figure 36. Authenticate user.

Third-party provider (Google)

To identify a user from Google as a third-party service, Stitch needs OAuth 2.0 access
token provided by Google when a user logs in successfully. Stitch uses the token to

obtain approved data from Google APIs.
1. Setup required configurations

Create a Google Account and sign in to the Console Cloud Platform at:

https://console.cloud.google.com/.

Open Navigation Menu, choose APIs and Services and select Credentials in the

extended menu.
Click Create Project. Enter Project name then Create.

Oauth requires configurating consent screen as a prerequisite. Click Configure consent

screen to proceed.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh


https://console.cloud.google.com/

41

Tick the External User Type to make it available for any user with a Google account.

Create.
Name the application.

In the Authorized domains, add mongodb.com (Figure 37):

Authorized domains
To protect you and your users, Google only allows applications that authenticate using
ains z

Your applications’ links must be hosted on Author

Figure 37. Authorized domain configuration view in Google Console.

Save. Go back to the Credentials page and Click Create Credentials. Choose Oauth

client ID.

Choose Web application type. Name the OAuth client ID freely as it is not for displaying.

For Restrictions: URIs for Stitch application that is hosted in the eu-west-1 region (this

could be modified later) (Figure 38).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



42

Authorized JavaScript origins @

For use with requests from a browser

URIs

https://stitch.mongedb.com

=+ ADD URI

Authorized redirect URIs @

For use with reguests from a web server

URIs

https:/feu-west-1.aws.stitch.mongodb.com/api/client/v2.0/auth/callback

4 ADD URI

Figure 38. Authorized redirect URIs configuration.

The Client ID and Client secret are necessary for Stitch settings.

Log into Atlas and navigate to Stitch application.

Select Values & Secrets to privately store Google Client secret.

Name the secret and enter the Client secret as value.

Do the same step above to configure Google Providers.

Enable and enter Client ID from Google, choose a created secret in the dropdown.

Enter Redirect URIs as the client-side application will authenticate user (Figure 39):

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



43

http:/localhost:4200/auth =

+ Add Redirect URI

Figure 39. Setting view in MongoDB Stitch.

Select Metadata fields those will need approvement of user.
2. Implementation in code

To begin with Google authentication process. Call loginWithRedirect() function (Figure
40).

loginWithGG() {
credential =

Figure 40. Login to Google account function.

The application starts redirecting the user to the Google login page. Once users proceed
with their credentials, Google will authenticate their identity and, if users are confirmed
successfully, ask for permission to share data corresponding to Metadata fields. Google
will then navigate to Stitch to save access token and the user is redirected back to the
redirect URI as specified (localhost:4200/auth) to give users access to use application

by calling (Figure 41):

if (Stitch.defaulta&ppClient.auth.hasRedirectResult(}) {

Stitch.defaultAppClient.auth.handleRedirectResult().then{user

.store.dispatch( AuthActions_Signedin(user})

Figure 41. Handle the redirect user data.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



44

4.7 Deployment

Server-side app deployment (Stitch app)

Stitch app is automatically deployed within MongoDB Stitch server, as a server-side

application. To watch the deployment history (Figure 42):
Go to Stitch page after successfully logged into Atlas.
Choose Deploy beneath the Manage section in the left-hand pane.

Choose the History tab.

Deploy
History
Only the last 100 deployments will be captured in deployment history. Automatic Deployment: OFF € = Refresh
Time of Daployment Status Change Qrigin Actions
02/18/2020 12:47:34 Successful  Sttch Ul
02/18/2020 12:38:42 Successful  Stitch Ul
02/16/2020 12:57:23 Successful  Stitch Ul

Figure 42. Deployment history records view.

Host a Client side application into Stitch

1. Build application for production mode.

The current build of the project is in development mode. To make it ready for hosting,

follow these steps:

Open terminal/command prompt and go to the project directory (Figure 43). Run:

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



45

ng build --pred

Figure 43. Command to build project into production bundle.

As defined in the angular.json file (Figure 44), the output directory of built version path
is: dist/Notes based on the project directory with the root file is index.html.

"architect™: {
"build": {|
"builder”: "@angular-devkit/build-angular:browser

“options”™: {
"outputPath": *
"index": "src/3

Figure 44. The settings of the projects.

2. Upload the built folder to Stitch.
Click Hosting under the Manage section in the left hand pane in Stitch page.
Choose Upload Files and select the folder Notes in the /dist path.

The process ends up with the uploaded directory is served at the URL (Figure 45):

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



Hosting

Files Seattings

notes-app-kpbad.mongodbstitch.com /

£ UPLOAD FILES + CREATE FOLDER Actions

O

o

Name

B main-
222015.ecb1230665108924d522 j=

B polyfills-
es2015.4d31 ccalafcdbefd85bE js

Bl _redirects

El main-es5.012b1 74169220633 j=

B runtime-es5.465c2333d355 1 5bechfl s

Bl polyfills-es5 e0a0858fa7791e140ae0 jo

B) styles.0922c710755c8867a460.css

B favicon.ico

B runtime-
es2015.703a23=48ad83c851e49 s

B index htmi

Last Modifled

02/18/2020
12:47:32

02/18/2020
12:47:33

02/18/2020
12:47:31

02/18/2020
12:47:33

02/18/2020
12:47:34

02/18/2020
12:47:33

02/18/2020
12:47:34

02/18/2020
12:47:32

02/18/2020
12:47:33

02/18/2020
12:47:32

Figure 45. Upload built folder to the platform.

Size

590.82
(=1

37.30kB

18 Bytes

661.48
kB

1.44 kB

115.42

543 kB

1.44 kB

1.43 kB

File Type

application/x-
javascript

application/x-
javascript

application/x-
javascript

application/x-
javascript

application/x-
javascript

texticss

image/x-icon

application/x-
javascript

text’html

46

Actions

Most of the things are up and running, yet Angular or other modern frameworks use a

client-side router as a behavior of a Single Page Application. This can return a 404 error

page for any request other than the root file.

In this case, Stitch provides a configuration for handle all requests to the root page.

Go to the Settings tab in the Hosting page.

Select Choose file next to Single-Page Application and choose the root file
(/index.html) (Figure 46).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



47

Choose SPA entrypoint

Narme Last Modifled Size Fila Typa

* [ indexhtm 02/18/2020 12:47:32 143 kB text/html

Cancel

Figure 46. Define the redirect root file.

The project is served and works properly as in the development mode.
3. Re-configure the redirect URIs

Since the real URL of the project is quite different from in the development build
(localhost). Hence, this could affect the request for third-party authentication services.

Navigate to Users on the Stitch page.
Select Providers and choose the one that the client-side application uses (Google).

Add the URL for authentication confirmation as a new Redirect URI (Figure 47). Then
hit Save.

http:/localhost 4200/auth =
https://notes-app-kpbad mongodbstitch.com/fauth | =

+ Add Redirect URI

Figure 47. Add the new address in Redirect URIs settings.

It is done as the Google Authentication works perfectly now.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



48

5 CONCLUSION

The purpose of this thesis was to provide an overview of web application development
in general and specifically the potential of SPA. SPA has thoroughly been introduced
throughout the thesis. The mechanism of how SPA works, as well as its advantages and
disadvantages are also mentioned to give a better idea of why it gain more developer

focuses.

Along with the uprising power of SPA, Cloud computing is becoming more and more
popular due to not only the improvements it created but also its reliability in scale
management of servers. Different types of cloud computing models are discussed in the

thesis to give a comprehensive idea of each type.

This thesis also provides a good practical method of building a serverless application
from scratch, which offers a good start for those who want to dive into Serverless

applications.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



49

REFERENCES

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

A. Boten, "The evolution to serverless and where we stand today," 2018. [Online].
Available: https://medium.com/@codeboten/the-evolution-to-serverless-and-
where-do-we-stand-today-bc9586990b18. [Accessed 2 2020].

J. Clement, "Number of internet users worldwide from 2005 to 2019," 1 2020.
[Online]. Available: https://www.statista.com/statistics/273018/number-of-internet-

users-worldwide/. [Accessed 3 2020].

Wikipedia, "Single-page Aplication,” [Online]. Available:
https://en.wikipedia.org/wiki/Single-page_application. [Accessed 2 2020].

A. Groom, "What Is a Single-Page Application?," 18 7 2018. [Online]. Available:

https://dzone.com/articles/what-is-a-single-page-application. [Accessed 2 2020].

M. Wasson, "ASP.NET - Single-Page Applications: Build Modern, Responsive
Web Apps with ASP.NET," 08 06 2015. [Online]. Available:
https://docs.microsoft.com/en-us/archive/msdn-magazine/2013/november/asp-
net-single-page-applications-build-modern-responsive-web-apps-with-asp-net.
[Accessed 2 2020].

Wikipedia, "WebSocket," 25 2 2020. [Online]. Available:
https://en.wikipedia.org/wiki/WebSocket. [Accessed 2 2020].

P. Sherman, "How Single-Page Applications Work," 11 4 2018. [Online].
Available: https://blog.pshrmn.com/how-single-page-applications-work/.
[Accessed 2 2020].

G. Elsayed, "WHY (SPA)? Let’s dive into Single-page Application,” 13 3 2019.
[Online]. Available: https://medium.com/@ghadaalsayed2/why-spa-lets-dive-into-

single-page-application-dOea92be986¢. [Accessed 2 2020].

Angular, "Introduction to the Angular Docs," [Online]. Available:

https://angular.io/docs. [Accessed 2 2020].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



50

[10] C. Tuzi, "Understanding Angular modules (NgModule) and their scopes," 7 4
2017. [Online]. Available: https://medium.com/@cyrilletuzi/understanding-angular-
modules-ngmodule-and-their-scopes-81e4ed6f7407. [Accessed 2 2020].

[11] R. Khalaf, "Angular life-cycle hooks," 20 6 2017. [Online]. Available:
https://stackoverflow.com/questions/44648066/angular-life-cycle-hooks.
[Accessed 2 2020].

[12] N. Lapinski, "The Three Pillars of Angular Routing," 4 9 2018. [Online]. Available:
https://medium.com/angular-in-depth/the-three-pillars-of-angular-routing-angular-
router-series-introduction-fb34e4e8758e. [Accessed 2 2020].

[13] R. Y, "Serverless on Google Cloud Platform: an Introduction with Serverless Store
Demo," 24 1 2019. [Online]. Available: https://medium.com/google-
cloud/serverless-on-google-cloud-platform-an-introduction-with-serverless-store-
demo-41992dec085. [Accessed 2 2020].

[14] N. Jain, "Introduction to Cloud Computing — Growing Importance,” 2 4 2018.
[Online]. Available: https://www.whizlabs.com/blog/cloud-computing/. [Accessed 2
2020].

[15] J. Coffield, "Serverless blog," [Online]. Available:
https://serverless.com/blog/strategies-implementing-user-authentication-

serverless-applications/. [Accessed 3 2020].

[16] JWT, "Introduction to JSON Web Tokens," [Online]. Available:
https://jwt.io/introduction/. [Accessed 3 2020].

[17] A. Abel, "Introduction to Angular component,” 2 12 2017. [Online]. Available:
https://medium.com/@agoiabeladeyemi/introduction-to-angular-component-
138e9c24b54a. [Accessed 2 2020].

[18] B. Han, "An Introduction to Serverless and FaaS," 5 11 2017. [Online]. Available:
https://medium.com/@BoweiHan/an-introduction-to-serverless-and-faas-

functions-as-a-service-fb5cec0417b2. [Accessed 2 2020].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



51

[19] I. MongoDB, "Welcome to the MongoDB Docs," [Online]. Available:
https://docs.mongodb.com. [Accessed 2 2020].

[20] A. Perera, "Introduction to Serverless,” 12 10 2018. [Online]. Available:
https://dzone.com/articles/introduction-to-serverless. [Accessed 2 2020].

[21] C. Woodford, "Cloud Computing,” 11 5 2019. [Online]. Available:
https://www.explainthatstuff.com/cloud-computing-introduction.html. [Accessed 2
2020].

[22] P. R, "Angular 2 Life cycle hooks," 25 4 2017. [Online]. Available:
https://www.techjini.com/blog/angular2-lifecycle-hooks/. [Accessed 2 2020].

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Khoi Huynh



