

Adding security testing in DevOps

software development with continu-

ous integration and continuous

delivery practices

Ella Viitasuo

Bachelor’s thesis
May 2020
Technology, communication and transport
Program in Information and Communication technology

Description

Author(s)

Viitasuo Ella
Type of publication

Bachelor’s thesis
Date

May 2020

Language of publication:
English

Number of pages

48 + 2
Permission for web

publication: X

Title of publication

Adding security testing in DevOps software development with continuous integration and
continuous delivery practices

Degree programme

Information and communication technology

Supervisor(s)

Mieskolainen Matti, Saharinen Karo

Assigned by

Company X

Abstract

In Company X there was found a need for creating a starting point for security testing in
software project. As modern software development is moving forwards DevOps and agile
type of development this would need to be suitable for that. The aim was to develop a
continuous integration and continuous delivery (CI/CD) pipeline to include security testing
that could be adopted in DevOps software projects. The pipeline should advocate open
source tools that could be accessible for most different size software development pro-
jects.

The idea of developing a CI/CD pipeline for modern software projects with integrated secu-
rity testing came from acknowledging how security is often misunderstood as add-on fea-
ture in software instead of build in quality. Software is a huge part of modern society and
many software stores and handles sensitive information. How to protect sensitive infor-
mation, should be considered when designing the software.

Emphasizing the importance of starting security testing even with small software develop-
ment projects and benefits it can offer, is one of the main elements of the thesis. This the-
sis discusses about understanding security awareness and small steps that could improve it
in development process.

Adding small steps towards building more secure software does not require too much ef-
fort or money. Open source tools can offer starting point of understanding security better
and developing more secure way of coding. Understanding most common vulnerabilities
and how to identify them in the development phase should be standard and easily achiev-
able mission in software development process.

Keywords/tags (subjects)

DevOps, DevSecOps, Security testing, Application security testing, OWASP Top 10, CI/CD
Miscellaneous (Confidential information)

http://finto.fi/en/
https://intra.jamk.fi/opiskelijat/student/thesis/Pages/publicity.aspx

Kuvailulehti

Tekijä(t)

Viitasuo Ella
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

Toukokuu 2020

Julkaisun kieli
Englanti

Sivumäärä

48 + 2
Verkkojulkaisulupa
myönnetty: X

Työn nimi

Adding security testing in DevOps software development with continuous integration and
continuous delivery practices

Tutkinto-ohjelma

Information and communication technology

Työn ohjaaja(t)

Mieskolainen Matti, Saharinen Karo

Toimeksiantaja(t)

Yritys X

Tiivistelmä

Yrityksessä X huomattiin tarve kehittää ratkaisu erilaisille ohjelmistokehitysprojekteille
tietoturvatestauksen malli. Kehitettävän ratkaisun tulisi tukea DevOps sekä ketterä kehitys
malleja, jotka ovat vakiintumassa modernissa ohjelmistokehityksessä. Tavoitteena työssä
oli kehittää jatkuvan integraation (eng. Continuous Integration) sekä jatkuvan julkaisu (eng.
Continuous Delivery) (CI/CD) tietoturvatestausputki , jota pystyttäisiin hyödyntämään
DevOps ohjelmistoprojekteissa.

Tietoturva on usein väärinymmärretty ylimääräiseksi, lisättäväksi ominaisuudeksi sen
sijaan että se olisi rakennettuna ohjelmistoon, josta ajatus tietoturvatestausputken
kehittämiselle lähti. Ohjelmistot ovat iso osa modernia yhteiskuntaa ja useasti ohjelmistot
käsittelevät ja varastoivat henkilötietoja sekä erilaista arkaluontoisia tietoja. Miten
arkaluontoista tietoa suojataan, tulisi käsitellä jo ohjelmiston suunnitteluvaiheessa.

Tietoturvatestaustaus voi tuoda pienissäkin ohjelmistoprojekteissa jopa suuria taloudellisia
etuja. Opinnäytetyössä keskitytään tietoturvatestausputken kehittämiseen avoimen
lähdekoodin työkaluilla, jotta tietoturvatestausta ei jätettäisi pois kustannussyistä.
Tietoturvan ymmärrys sekä sen parantaminen pienillä askeleilla on yksi opinnäytetyön
pääteemoista.

Pienet askeleet tietoturvallisemman ohjelmistokehitykseen ei vaadi liikaa ylimääräistä
työtä ja rahaa. Avoimen lähdekoodin työkalut voivat tarjota aloituspisteen
tietoturvatestauksen kehittämiseen. Yleisten tietoturvahaavoittuvuuksien ymmärtäminen
ja niiden tunnistaminen ohjelmiston kehitysvaiheessa tulisi olla saavutettavissa oleva
tavoite.

Avainsanat (asiasanat)
Tietoturvatestaus, DevOps, ketterä kehitys, CI/CD, jatkuva integraatio, jatkuva julkaisu

DevOps, DevSecOps, Security testing, Application security testing, OWASP Top 10Muut tiedot (salassa pidettävät liitteet)

http://www.finto.fi/
https://intra.jamk.fi/opiskelijat/opinnayte/Sivut/Opinnäytetyön%20julkisuus%20ja%20salassapito.aspx

1

Contents

1 Introduction ... 4

2 Research method and material .. 5

3 Software Development Models ... 5

3.1 Waterfall .. 6

3.2 Agile ... 6

3.3 DevOps .. 7

4 Continuous integration and continuous delivery ... 8

4.1 Continuous integration .. 8

4.2 Continuous testing ... 11

4.3 Continuous Delivery ... 12

5 Testing security in software project... 15

5.1 Software security ... 15

5.2 Mindset of security testing... 16

5.3 Security testing techniques and testing methods 17

5.4 Security testing in software development life cycle 18

6 Web Application Security testing and OWASP Top 10 24

7 Developing Open Source Security Testing Pipeline .. 30

7.1 Pipeline architecture .. 30

7.2 Static analysis architecture... 33

7.3 Dynamic analysis architecture .. 37

2

8 End Results .. 40

9 End discussion.. 43

References ... 47

Appendices .. 49

Appendix 1. Dockerfile configurations for building GoCD agent 49

Appendix 2. Docker images for testing environment 50

Figures

Figure 1 CI/CD process (Sharma 2017, 17) .. 8

Figure 2 Pipeline architecture... 31

Figure 3 GoCD user interface .. 31

Figure 4 Jenkins pipeline view (Jenkins Official Page) ... 32

Figure 5 GoCD pipeline view ... 33

Figure 6 SonarQube report in server .. 35

Figure 7 SonarQube warning from security vulnerability .. 35

Figure 8 Scanning container with Clair.. 36

Figure 9 Dependency-Check report .. 37

Figure 10 ZAP report .. 39

Figure 11 Vulnerability detail ... 39

Figure 12 Generated pipeline ... 40

Figure 13 Dependency-Check summary.. 42

Figure 14 ZAP summary from alerts ... 42

3

Tables

Table 1 SonarQube analysis reported vulnerabilities and security hotspots 41

Table 2 OWASP Top 10 vulnerabilities found in security hotspots 41

Table 3 Clair-scanner vulnerabilities found ... 41

Table 4 ZAP vulnerabilities found ... 43

4

1 Introduction

Software are a huge part of modern society and many software store and handle

sensitive information, that could be forgotten. Web application development trend

grows as for example online shopping is constantly a growing market. As web appli-

cation development grows, web application vulnerabilities grow as well.

In 2011 Sony Pictures Europe systems where exploited by using commonly known

SQL-injection attack. Injection is number one in OWASP Top 10 most common web

application vulnerability. The breach cost Sony more than 600 000 USD. Sony has suf-

fered from many injection attacks against multiple locations including Sony Pictures

Russian, Sony Portugal and Sony Europe. (Arthur, C 2012; Greenberg, A, 2011)

The aim of this thesis is to create a pipeline that could be utilized in software projects

as a starting point to improve security testing and developing more secure code. De-

veloping software fast and more agile does not mean that there is no time for testing

the security in the process.

As security testing is automated as part-of the software build process it becomes eas-

ier to adopt more secure way of developing, when the security status is checked af-

ter every change. This thesis presents open source tools that could be used while not

creating extra costs for the project. Understanding basis of the vulnerabilities espe-

cially for those that web applications may be exposed to; it is important in order to

learn how to avoid them. As many exploiting methods are more available for anyone

to use, protecting the software from the most common vulnerabilities becomes

more crucial.

Company X is a large international company that has multiple different size software

development projects. In smaller projects there might not be room in the budget to

use expensive commercial tools for testing. For Company X it was important to cre-

ate security testing also with open source tools as they can be incorporated without

additional costs to the project. The biggest problem for open source tools can be the

lack of support or documentation. When learning to maintain these tools they can

also create a great value in the future.

5

2 Research method and material

The aim of the thesis was to develop a security testing pipeline that would be suita-

ble for modern agile and DevOps software development projects. For the purposes

of saving costs while still improving security testing status, all tools selected should

be open source. As the end result developed pipeline model could be utilized in dif-

ferent projects in the future.

One of the most important parts of the thesis was to gather information to develop a

solution. Qualitative research method was used to gather the information. Qualita-

tive research aims to develop a solution or create more understanding to the prob-

lem. Action research was not applied as the research method as the solution could

not be tested in the production by the Company X before the thesis. (Kananen 2015,

29.)

Research material was gathered from electronic books and publication as well as cer-

tification material about software development models and software security test-

ing. User documentations were used as a material for technical tools.

3 Software Development Models

Every software project, regardless of the size of it, has a development life cycle, re-

ferred as Software Development Life Cycle (SDLC). Software development process

goes through the same steps but as the selected development model changes, the

cycles they go through may vary. Software development process undergoes usually:

(Dooley 2017, Chapter 2)

• Conception

• Requirements gathering/exploration/modeling

• Design

• Coding and debugging

• Testing

• Release

• Maintenance/software evolution

• Retirement

6

In different models, some steps might be combined and hard to tell apart. For exam-

ple, in agile models when trying to develop frequent releases faster, many steps

blend it together. (Dooley 2017, Chapter 2)

3.1 Waterfall

Waterfall software development model is based on completing every step of previ-

ous phase of development before moving on next one. In waterfall model testing

starts after development is completed. Software development methodologies that

practice sequential development model, like waterfall, typically require months or

years to be deployed for customer. Waterfall has some downfalls, as you are sup-

posed to finish previous development activity before moving on the next one. All the

requirements should be set on before the development process starts. Creating all

requirements means understanding everything that the customer wants. In practice

this is challenging and usually there comes changes in the development process. (Ol-

sen, Parveen, Black, Friedenberg, McKay, Posthuma, Schaefer, Smilgin, Smith, Toms,

Ulrich, Walsh & Zakaria 2018, 28; Dooley 2017, Chapter 2)

3.2 Agile

Agile is more of a way of working and challenging the way of thinking in software de-

velopment team rather than technical practices. The agile way of thinking might

make the change in the process. Development and Operations (DevOps) is consid-

ered more directive than agile and agile way of thinking makes DevOps software de-

velopment flow work. Agile varies from other software development approaches by

its focus on people behind the work and how they work together. Teams should be

self-organizing with the ability to figure out how to achieve given goals on their own.

(Clokie 2017, 6.)

Agile comes with multiple different frameworks that helps teams to organize the

work and are the most common things that comes in-mind when talking about agile:

Scrum, Feature-Driven Development, Test-Driven Development, Sprints, Planning

7

Sessions, etc. These frameworks are just tools to implement agile software develop-

ment in practice but are commonly mistaken from being agile itself. (Agile Alliance,

Agile 101)

3.3 DevOps

Agile made development process faster but the delivery process could not keep up

with this, which sparked the idea of DevOps. DevOps was the solution to bring devel-

opment and operations together to achieve quicker development and delivery to

production. The development side needs to understand the production system and

its constraints and to do so it needs to communicate closely with the operations

team. (Sharma 2017, 5-9.)

Adopting DevOps practices Sharma (2017, 11) states that there are few practices

above others: continuous integration and continuous delivery.” Without these two

capabilities, there is no DevOps, and they should be considered essential to DevOps

adoption, with all others being extensions, or supporting capabilities.” (Sharma 2017,

11)

Adding security view into DevOps, DevSecOps

As in the past the security role of software development was placed in the final stage

in the development. Nowadays when development processes are much faster and

agile the security point of view needs to be added earlier to the development pro-

cess. DevOps enabled fast and frequent development cycles but adding up to date

security practices in place it can be more efficient. The term DevSecOps adds the se-

curity mindset from the beginning. Securing applications and infrastructure from the

start. As well as in DevOps and continuous integration and continuous delivery prac-

tices, automation plays a role in this as well. Automating security tests enables agile

and smooth workflow. Even with the plain term DevOps, the main goal has always

been to keep security in mind in every step of the development lifecycle. When de-

veloping the software with security in mind from the start, it is important to evaluate

risks. (What is DevSecOps? N.d.)

8

As todays software development focuses on creating greater scale and dynamic in-

frastructure, the key elements are containers and microservices. DevSecOps needs to

focus on container security and securing microservices. What to add to CI/CD process

from security point of view Red Hat (What is DevSecOps? Nd.) lists:

1. Integrate security scanners for containers.

2. Automate security testing in CI process.

3. Add automated tests for security capabilities into the acceptance test pro-

cess.

4. Automate security updates, such as patches for known vulnerabilities.

5. Automate system and service configuration management capabilities.

4 Continuous integration and continuous delivery

As previously stated by Sharma (2017, 11) the core capabilities of DevOps are contin-

uous integration and continuous delivery. In Figure 1 is demonstrated continuous in-

tegration, continuous testing and continuous delivery that leads to the final product.

After software is released into the production continuous monitoring should be ap-

plied. (Sharma 2017, 11)

Figure 1 CI/CD process (Sharma 2017, 17)

4.1 Continuous integration

Continuous integration is considered to be one of the key technical practices from

agile. In modern software development there are usually multiple people developing

the code at the same time or developing different components of the software. To

ensure that the separately developed parts work together they need to be integrated

regularly, which is now known as continuous integration. The main goal of CI, besides

9

ensuring the developed software functions as expected, is to recognize dependencies

between technology or scheduling. (Sharma 2017, 11-12)

For implementing continuous integration Sharma (2017, 13-15) includes a list of ten

key practices listed by Martin Fowler (N.d.):

• Maintain single-source repository.

• Automate the build.

• Make your build self-testing.

• Ensure that everyone commits to the mainline every day.

• Ensure that every commit builds the mainline on an integration machine.

• Keep the build fast.

• Test in a clone of the production environment.

• Make it easy for anyone to get the latest executable.

• Make sure everyone can see what is happening.

• Automate deployment.

Maintaining single-source repository

Version management becomes essential when data needs to be accessed and modi-

fied by multiple different people in the project. Also, accessing data in multiple dif-

ferent locations and in different versions is often needed. Source code management,

SCM, tool that supports multiple user access and versioning is critical in today’s soft-

ware development. (Sharma 2017, 13)

Automate the build

By automating build process, you ensure that the build contains everything it needs

to succeed, and that the build is consistent (Sharma 2014, 32). Automating build pro-

cess should also, if needed, be able to coordinate build to different platforms

(Sharma 2017, 13).

Make your build self-testing

One of the goals of continuous integration is to ensure that the software that is built

works as expected. Automating testing process, starting from the base unit-test level

to the top application level tests ensures that the new changes did not break the

10

software. To test the software and deploy it after every build requires a lot of re-

sources can also help to improve the quality of the code developed. Creating and

maintaining automated tests, as well as to being able to run them at any given time,

takes a lot of time and resources, that should be considered. (Sharma 2017, 14)

Ensure that everyone commits to the mainline every day

Committing changes, to earlier mentioned, common source code management sys-

tem integrating work is easier to manage and not too complex. Integrating work reg-

ularly helps to identify risks and dependencies to other developers work. (Sharma

2017, 14)

Keep the build fast

One of the key elements in continuous integration and agile is the speed. Modern

tools can help to increase the speed of the build process or build only new changes.

(Sharma 2017, 14)

Test in a clone of the production environment

Testing in production like environment will give more realistic results for the end

product and how it will function in production. For many reasons testing in produc-

tion environment with production data, for example resources or need to mask the

data, is not possible. Testing in a copy or similar environment will give some guide-

lines how the environment and its settings will affect on the software or application.

In more complex systems or systems that are using pre-existing services, this might

be challenging and creating test environment may create additional costs. (Sharma

2017, 14-15)

Make it easy for everyone to get the latest executable

Everyone in the development project should have access to the latest version that

has been built and a way to utilize it. Having access to the latest built can be used to

verify the changes made and are they working as anticipated. (Sharma 2017, 15)

Make sure everyone can see what is happening

Agile and DevOps both emphasize the collaboration between the people and the cul-

ture of sharing in the development project. The common encouragement of sharing

11

the information and improving visibility should come from the top of the organiza-

tion. Sharing the visibility of the build status for all project team will give everyone

involved a sense of the status of the software or application. In continuous integra-

tion sharing the build status is usually done by sharing the deployment pipeline or a

dashboard. Extending visibility to all stakeholders, for example customers, creates

an environment of sharing and working for a common goal. (Clokie 2017, 2-5, 44;

Sharma 2014, 17; Sharma 2017, 15)

Automate deployment

Practising continuous integration often leads to adopting continuous delivery prac-

tises. Deployment tools are in the core of DevOps tools. Automated deployment

tools make it easy to track the version of the build version that is deployed. Deploy-

ment automation tools can also usually manage environment configurations. Contin-

uous delivery is more than just the deployment of the application. Continuous deliv-

ery practices more detailed in section 3.4. (Sharma 2014, 27)

For following these practices organization can find themselves practising more agile

approach. Adopting continuous integration practises often leads to adopting continu-

ous delivery practises. (Sharma 2017, 12)

4.2 Continuous testing

Continuous testing includes testing of the software or application being developed in

every step of the SDLC. Continuous testing is often included on automated continu-

ous delivery pipeline and continuous testing is often adopted, and included, in con-

tinuous integration and continuous delivery practices. Continuous testing is the re-

sponse for more rapid software development where testing starts earlier in the soft-

ware development, shift left approach, and in parallel with development activities.

(Hollier & Wagner 2017, 3-6; Sharma 2017, 23)

A key aspect of continuous testing is to test early and often. Biggest challenges when

it comes to continuous testing in agile or DevOps projects is the time. Testers might

still be in previous iteration when development is focusing on the next one. Testing is

often thought as too expensive as it often delays the delivery of the application when

12

time goes fixing the bugs testing finds. Also test environments and data might be is-

sue in larger development projects. To handle these issues testing must evolve

smarter. Most critical parts of the software should be tested as early and often as

possible to ensure the business side. Test environment can include virtualization, or

mock-services and they can be built up and tear down quickly. Including test automa-

tion into deployment pipeline can test the changes in the application and run tests

more often. (Hollier & Wagner 2017, 21-23; Sharma 2017,25)

Shift left

Shift left approach focuses on moving testing earlier in the SDLC. The main goal of

shifting left is to build in the quality and to find bugs earlier in the development cycle.

Shifting left moves testing in the software build face and testing activities start be-

fore the whole application of software is deployed. This reduces the costs when bugs

are found earlier when they are cheaper to fix than later in the production phase.

(Hollier & Wagner 2017, 23)

Automated testing

When adopting DevOps and agile practices to improve speed of the development

process it must be balanced with the quality of the development. With increased

speed executing manual testing is not sustainable where automation comes in. Try-

ing to automate everything is not possible or cost-efficient. Test automation process

should start from evaluating which tests are efficient to automate. Developing suffi-

cient test automation framework for software development process can be challeng-

ing if it is not approached correctly. Test automation is a software development pro-

ject itself as it needs to have requirements, architecture, design, code and validation.

Without careful planning test automation can become difficult to maintain and frag-

ile which leads to its abandonment. (Hollier & Wagner 2017, 9-10, 16-17)

4.3 Continuous Delivery

Continuous delivery is automating software deployment process. Adopting continu-

ous delivery process is one of the most important part of adopting DevOps practices.

DevOps is larger scale than just continuous delivery, but continuous delivery is essen-

13

tial part of it. Deployment automation tools are the core tools of DevOps. Deploy-

ment pipeline that automates the process of build, test and deploy the application to

environment makes continuous delivery actually continuous. (Sharma 2014, 21, 27;

Sharma 2017, 16)

Deploying software manually is time consuming job. Most modern software are com-

plex and manual deployment requires crafting the environment, installing required

third-party components, copying data and configuration information. One of the big-

gest disadvantages in every manual installation is that depending on how the steps

were followed it can lead to different outcomes which is rarely a good thing. Manu-

ally performed steps need to be documented in order to repeatable. (Farley & Huble

2010, 5-7)

Automatic deployment process is repeatable and is dependable only of the deploy-

ment scripts and not technical expert to handle every step of deployment process.

Automated scripts acts also as documentation of deployment process. (Farley &

Huble 2010, 5-7)

Deployment pipeline

Deployment pipeline is automated implementation of your projects build, deploy,

test and release process. Every change that has been made, commits, needs to trig-

ger the pipeline. Each test that runs in the pipeline are verifying that the new

changes are working and can be released. (Farley & Huble 2010, 3-4)

There are three goals of deployment pipeline: (Farley & Huble 2010, 3-4)

1. Improves visibility of the build, test and deploy process for everyone involved

2. It creates a feedback loop to identify and solve problems quicker

3. It enables automated deployment and release of any version of the software

to any environment

The deployment pipeline should include automated testing in different levels of the

deployment process. Deployment pipeline should act as a tool to monitor the behav-

ior of the software and the status of the deployment.

14

Clokie (2017, 44) included different level test types to be part-of the deployment

pipeline:

• Static analysis of code quality

• Building the source code

• Unit testing, integration and test automation

• Functional and non-functional test automation

• Deployment scripts for different environments

Continuous Deployment

Continuous delivery could be described as a capability to deploy the software to the

production or to any environment needed at given time, not actually deploying every

change to production. Deployment in continuous delivery can also be parts of the ap-

plication, components, and not necessary the whole software developed. Continuous

deployment is actually deploying every change made to the production. Deploying

every change does not mean everything that is deployed is a ready feature. Changes

can be parts of the feature and may not be visible in the deployment at all. Continu-

ous delivery also builds a version of software from every change, but the key is that it

is not deployed to production. (Sharma 2017, 17-19)

One of the key things to remember of continuous deployment is that even if the

change made could pass every test set in the deployment pipeline, it does not mean

that the change is perfect. Automated test should be developed also during develop-

ment process, as stated in section 3.2, and might not find the effects of the change.

Acceptance tests should already be in place for the change before the change will go

through the pipeline. When practicing continuous deployment test automation in all

levels should be done with care and developed parallel or before the actual change is

pushed to the pipeline. (Farley & Huble 2010, 266-267)

One of the upsides of continuous deployment is the risk related to releasing a soft-

ware. Releasing software after every change, limits the changes in each release to

just one. More changes in the release, more risks it contains. (Farley & Huble 2010,

266-267)

15

5 Testing security in software project

The main goal of software testing is to ensure that the developed software is func-

tioning as it is supposed to. Software that doesn’t work correctly may cause loss of

money, time, business reputation or in works case injury or death. Testing process

includes not only running tests but also planning, analyzing, designing, implementing,

reporting progress and results and evaluating the quality of tested object. While test-

ing can improve the quality of the software, testing doesn’t mean that there are not

any defects. It is not possible to test everything. Testing should be prioritized and

planned, based on risk analysis and focusing on testing techniques, rather than focus-

ing on testing everything. (Olsen et al. 2018, 13,16-17)

As with testing in general, the main goal of security testing is to minimize risks and

improve quality of the security in the software. Security testing cannot prove that

there will not be any vulnerabilities or that the application or software is safe from

every attack there is. Security testing can be used to evaluate risks that the applica-

tion or software have in securities point of view and evaluate the efficiency in secu-

rity practices that are in place already. When it comes to software that handles sensi-

tive data, there might be legal obligations when it comes to security practices. Ne-

glecting security or protection of the digital assets in the software or application may

result in legal actions. Security testing, however can help to prove that measures

were taken to improve security practices and to protect those digital assets and may

save from legal actions. (Rice, Daughtrey, Dijkman, Oliveira & Ribault 2016, 27-28)

5.1 Software security

In the modern world, software is essential part of critical systems. Most of security

solutions are made to reduce the risks of insecure software. Whether to build secu-

rity in the software or not is usually a business decision and evaluating costs of build-

ing the security versus the risks of not. One of the challenges on proving that building

security is worth of the investment is explaining the technical vulnerabilities conse-

quences to the business. Costs of insecure software is hard to estimate but Meucci

and Muller (2014, 9) raised up a survey conducted by National Institute of Standards

(NIST) that evaluates more than third of the costs could be saved if testing would

16

have been at better level. The goals of software security should align with the CIA

principle:

• Confidentiality: Information is available to only those who are authorized to

view it. Minimizing the unauthorized access is the goal of implementing confi-

dentiality in the software.

• Integrity: Protecting the information’s reliability and preventing unauthorized

modifications.

• Availability: Authorized personnel and users have the ability to access the in-

formation at timely manner.

 (Ransome & Misra 2018, 1-3; Chapple & Stewards & Gibson 2018; Meucci & Muller

2014, 9)

Ransome and Misra (2018, 2) also takes a stand when separating what is considered

to be software security and application security, when they often are linked as the

same: “In our model, software security is about building security into the software

through a SDL in an SDLC, whereas application security is about protecting the soft-

ware and the systems on which it runs after release.” Whether the term for some

may mean the same or vary as Ransome and Misra propose, based on Gary

McGraw’s description of both, most agree on security needs to be considered while

developing software and different security activities must align in software develop-

ment lifecycle.

5.2 Mindset of security testing

Security testing as well as testing in general should be part of each step of the soft-

ware development process. Finding bugs and vulnerabilities earlier in the SDLC the

lower the costs of fixing it will be. Security training is essential for not only security

testers, but for developers as well as new vulnerabilities will arise all the time. Secu-

rity training will help to create a security mindset that allows to think as malicious

user trying to attack the software. Thinking outside the box of normal processes is

the key of understanding what an attacker might use to attack the software. (Meucci

& Muller 2014, 11-12)

17

Automated security testing tools are made to perform routine tasks and find com-

monly known vulnerabilities. Automated security testing, as well as automated test-

ing in general, can not think outside the box and does not replace manual testing.

Automates tools can still be useful and results can be further analyzed by security

testers. When selecting automated security testing tool, it is important to evaluate

what is the tool made for and what is wanted from it. (Meucci & Muller 2014, 12)

5.3 Security testing techniques and testing methods

Testing can be static, which is testing without actually executing the code. Static

testing can be manual examination for example code review, or it can be tool-driven

automated static analysis or evaluation. Static testing has become an important part

of security testing and it is usually incorporated continuous delivery pipeline. Static

analysis and incorporating static security testing in the delivery pipeline ensures or

should encourage developers to follow secure way of coding. Since static testing

does not execute code, it can be started early in the software development. (Rice et

al. 2016, 53,78; Meucci & Muller 2014, 19)

Dynamic testing requires execution of the code or other objective that is tested. In

security testing context static and dynamic testing techniques may be challenging to

categorize depending what is considered as a test object. Definition of static testing

is testing when the system is not in operational mode. In case of dynamic security

testing tools, they often also perform static scanning to some parts of the system un-

der test but are considered dynamic testing when test object is considered to be the

whole system. (Rice et al. 2016, 79)

Fuzzing is security testing method which inputs a massive amount of data to compo-

nent or system. Fuzzing may detect buffer overflow and memory corruption. (Rice et

al. 2016, 54)

Penetration testing is attacking the software as a malicious user would. Penetration

testing can go beyond the software itself to actual operating system and network

that is being used in the production environment. Penetration testing is in the final

stages before the software is in production and vulnerabilities found in penetration

testing can get costly. Automated penetration testing tools are made to automate

18

process. Penetration testing can also act as assurance that vulnerabilities found in

earlier security test are fixed correctly. (Meucci & Muller 2014, 14)

Security testing activities can also be categorized depending on the approach of test-

ing. When testing is based on the knowledge of the software and information is dis-

closed about the software for example structure or design, testing can be called

white-box-testing. When information is disclosed about the software being tested,

testing can target specific parts of the software and coverage of testing can be meas-

ured more carefully. Source code analysis is considered to be white-box testing since

the source code is available for testing. Black-box testing is the opposite of white-box

testing. In black-box, testing is not based on information about the software and it

should not be disclosed. Black-box testing can be more time consuming and might

not find the embedded vulnerabilities in the code level that could have been found in

static analysis of the code. Penetration testing is usually considered to be black-box

testing. Grey-box testing can be placed in between the white-box and black-box test-

ing methods. In grey-box testing, the tester might have some knowledge about the

software. (Rice et al. 2016, 53; Meucci & Muller 2014, 12,14, 19)

Security testing should utilize different testing techniques and methods to build sus-

tainable security testing framework. Different methods and techniques used depend

on the software development phase and they should always be synchronized.

(Meucci & Muller 2014, 14)

5.4 Security testing in software development life cycle

Security testing is not dependent of the software development model. The security

testing activities just happen in different cycles or stages when the development

model changes. In agile or DevOps method security testing should circle around in

the software development increments. The role of security testing is shifting from

previously seen just as black-box penetration testing to actually testing security in

each development phase. Black-box penetration testing is costly and can only be exe-

cuted with ready software. Fixing vulnerabilities found on ready software can be-

come expensive. (Meucci & Muller 2014, 24)

19

Security testing is seen now as actual process instead of the product it has been seen

before. Built-in security is achieved only by security-oriented design and security

testing throughout the software development process. Adding security point-of-view

into each development phase, allows to comprehensive perspective of software se-

curity. Security testing should start as the whole software development process

starts and end to the same as the development process. (Rice et al. 2016, 49; Meucci

& Muller 2014, 10-12)

Microsoft security development lifecycle

Microsoft has developed a model to develop more secure software called The Secu-

rity Development Lifecycle: “The Security Development Lifecycle (SDL) consists of a

set of practices that support security assurance and compliance requirements. The

SDL helps developers build more secure software by reducing the number and sever-

ity of vulnerabilities in software, while reducing development cost.” Developed

model starts from beginning at the SDLC and as it is promoting Microsoft’s own tools

to utilize in the process, the steps and practices can be used with different tools as

well. Microsoft’s SDL consist of 12 practices (What are the Microsoft SDL practices?

N.d.):

1. Provide training:

Everyone involved must understand the basics of security to know how to

build it into the software. Training enforces security policies, practices, stand-

ards and requirements of software security. (What are the Microsoft SDL

practices? N.d.)

2. Define Security Requirements:

Security requirements should, if possible be planned during initial design and

planning stages but continually updated depending on the functionality being

developed. Security requirements might include also legal and industry re-

lated requirements, internal standards and practices. (What are the Microsoft

SDL practices? N.d.)

3. Define Metrics and Compliance Reporting:

20

Defining the minimum acceptance criteria for security quality helps to hold

teams accountable for it. Setting severity thresholds for security vulnerabili-

ties, timeframe for fixing them and tracking for security related bugs helps re-

porting and measuring security related issues. Setting practices from the start

of the project helps teams to understand the importance of risks associated

to security. (What are the Microsoft SDL practices? N.d.)

4. Perform Threat Modeling:

Determining the risks associated the software security helps to understand

what kind of security features are necessary for the software. Threat model-

ing can be done at different levels of the software. (What are the Microsoft

SDL practices? N.d.)

5. Establish Design Requirements:

Defining the features with security aspect already thought out helps develop-

ers to implement features with security built in. Adding security to features in

the end will usually be more complicated than consistently adding for exam-

ple authentication and logging throughout the development process will pro-

vide more sustainable solution. It is important to understand used security

solutions and what kind of protection they provide. (What are the Microsoft

SDL practices? N.d.)

6. Define and Use Cryptography Standards:

All data while in transit or stored should be protected from unauthorized dis-

closure. Decision of used cryptography method should be left to experts and

to use encryption methods already used in the industry. Design should also

allow to change the used method at any time if needed. (What are the Mi-

crosoft SDL practices? N.d.)

7. Mange the Security Risk of Using Third-Party Components:

Many of the modern software is built by including third-party components.

Evaluating the third-party-components used and the possible vulnerability

they might have and what risks would that cause is important. Planning the

21

response when ever a vulnerability is found on third-party-component is criti-

cal. Additional validation of third-party-components might be worth a while

depending on the impact it might cause if it is vulnerable. (What are the Mi-

crosoft SDL practices? N.d.)

8. Use Approved Tools:

Project should publish approved tools and encourage to use the latest version

of them and utilize the security functions in them if possible. (What are the

Microsoft SDL practices? N.d.)

9. Perform Static Analysis Security Testing (SAST):

Analyzing the code before compilation ensures secure code practices are be-

ing followed. SAST tools are usually integrated to the pipeline to identify vul-

nerabilities each time the software is built. Some of the tools can also be in

developer’s environment to help developer actively while coding. (What are

the Microsoft SDL practices? N.d.)

10. Perform Dynamic Analysis Security Testing (DAST):

Executing security tests on fully compiled and running software can give re-

sults that can’t be found in static analysis. There are a lot of tools that can be

integrated to the CI/CD process easily but there are also options that can be

used to detect vulnerabilities, for example fuzzing. (What are the Microsoft

SDL practices? N.d.)

11. Perform Penetration Testing:

Penetration testing is used to discover potential vulnerabilities that are re-

sults from errors in code, configuration or possible from deployment. Pene-

tration testing is performing similar actions as a hacker or other malicious

user. Testing can consist of automated and manual code reviews to provide

more holistic view of the security. (What are the Microsoft SDL practices?

N.d.)

12. Establish a Standard Incident Response Process:

22

In modern world new threats arise constantly. By developing proper incident

response process, reacting to new threats is clearer. The plan developed,

should be tested as well. (What are the Microsoft SDL practices? N.d.)

Security testing activities before the development

Security testing should start from the begging of the SDLC. Actual software develop-

ment process starts from the planning of the software. Planning often includes de-

signing the software and gathering the requirements. Requirements might include

legal regulations about the software. Requirements should always be documented so

that they can be reviewed. Documentation gives guidelines and policies that can be

followed and visited later when needed. Documentation can also be standards such

as cryptography standard that is being used. Gathered documents should be re-

viewed to ensure that they are correct, complete and understandable. Threat model-

ing is important part of planning phase. Threat modeling is made based on design

and architecture reviews and models. Discovering security flaws before development

is most cost-efficient and changes to the software are easier to make. (Meucci &

Muller 2014, 24; Rice et al. 2016, 49-50)

Meucci and Muller lists (2014, 25) security mechanism that should be checked for se-

curity requirement flaws:

• User Management

• Authentication

• Authorization

• Data Confidentiality

• Integrity

• Accountability

• Session Management

• Transport Security

• Tiered System Segregation

• Legislative and standards compliance (including Privacy, Government and In-

dustry standards)

Similar practices can be found from both ISTQB Certification documentation (Rice et

al. 2016) and OWASP Testing Guide 4.0 (Meucci & Muller 2014) with Microsoft SDL.

23

Microsoft SDL practices 1-7 all consist of practices that are before the actual develop-

ment work starts.

Security testing in development

Security testing can start from the start of the implementation and development pro-

cess. In security point of view, it is important to test how the designed requirements

are met and how the actual security methods are implemented, for example authen-

tication. Security testing should start from the lowest level of implementation before

separate component are attached to each other. Code reviews are a common way of

ensuring that the coding practices set are in use. Code review is usually manual in-

spection from another developer. Code review can be based on check-lists and many

different vendors offer ready checklist to use, for example Microsoft Secure Coding

checklist. (Meucci & Muller 2014, 25; Rice et al. 2016, 50)

Source code analysis is often used to validate the code quality and security features

automatically. Also developing unit test and dynamic analysis to validate the func-

tionality of actual security features often helps to identify possible vulnerabilities.

When developing testcases for security functionality, it is important to add not only

positive cases but also negative cases that should not work. Negative testcases can

help to identify issues with error handling. Automated static analysis tools can be in-

tegrated with the development pipeline. Quality gate should be set to the tool used

which will not build the software if it is not met. (Meucci & Muller 2014, 20)

After the software is build testing can test the full software and simulate attack sce-

narios. Dynamic testing can be done with manual testing of the software or with au-

tomates tools. Dynamic security testing requires knowledge about the software as

well as the security. Dynamic security testing after component integration level can

consist of possible attack scenarios that are implemented manually or with tools,

more targeted attacks to certain vulnerabilities and testing with specialized tech-

niques, for example fuzzing. (Meucci & Muller 2014, 21)

When mirroring back to Microsoft’s SDL practices 8-10 are in development phase.

24

Security testing in sofware deployment

Before software is deployed to customer, penetration testing should be performed.

Final configurations that are used in production should be tested for potential mis-

configurations, for example minimum privileges, SSL certificates, and only essential

services are used. Penetration testing activities can be performed in the user ac-

ceptance environment, but final penetration testing should be done in the produc-

tion environment. (Meucci & Muller 2014, 25)

Microsoft SDL practice 11 aligns with OWASP testing Guide 4.0.

Security testing in software maintenance

While software is in production, vulnerabilities can still be found, and new attacks

are developed. Software can also need fixes for the business logic and updates. As in

development phase every change needs to be tested for security flaws and vulnera-

bilities, new changes need to be tested the same way. (Rice et al. 2016. 51)

Regression testing should ensure that the business logic and designed features work

as they are supposed to. Security regression testing should ensure that the security

status will match the security requirements. Regression testing for security status can

be hard to verify since the vulnerabilities can be in any part of the production envi-

ronment, everything from configurations, network, operating system to hardware.

After maintenance work has any changes to any part of the production environment,

for example the hardware, the whole environment should be tested for potential se-

curity flaws. Regression testing and health checks should be done in regular bases

even if no new changes are made after last check. Establishing a change manage-

ment process for testing the changes made in production environment is critical.

(Rice et al. 2016. 56-57; Meucci & Muller 2014. 26)

6 Web Application Security testing and OWASP Top 10

As discussed in chapter 4.1, application security testing often refers to testing the se-

curity of the application that is developed and not the whole software including the

environment, hardware, operating system, network and other aspects. Web applica-

25

tion security testing focuses the security of the application itself. The goal is to en-

sure that the application meets the defined security related requirements. Web ap-

plication security testing cannot ensure that there are no weaknesses in the produc-

tion environment which can lead to exploitation of the software. Web application

security testing often relies on black-box testing methods. (Meucci & Muller 2014.

27)

In modern software development OWASP top 10 has become a standard for web ap-

plication security. OWASP top 10 list 10 most common security vulnerabilities in web

applications. OWASP top 10 was made to raise awareness of security vulnerabilities

as the software industry grows. As modern software is becoming more independent

from the operating systems and hardware, as new technologies rise with cloud com-

puting, microservices and containers, new vulnerabilities rises. As OWASP top 10

supports most common web application security risks, following it to secure all top

10 vulnerabilities won’t still ensure your application is completely safe, but it is a

good starting point. (Ransome & Misra 2018; OWASP Top 10 -2017 N.d.; Hodson

2019, Chapter 8.)

OWASP Top 10 is an open source organization that creates application security tools

and standards, books about security testing, secure code development and review.

The goal of OWASP Top 10 was initially to raise awareness to developers about the

most common vulnerabilities but through time it has become a standard that more

organizations use. 2017 Version of the OWASP Top 10 most common web application

vulnerabilities (OWASP Top 10 -2017 N.d., 1-4):

1. Injection

2. Broken authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with known vulnerabilities

10. Insufficient Logging & Monitoring

26

Injection

Injection flaws occur when malicious data is sent to system as part of command or

query, for example SQL, NOSQL, OS or LDAP injection. Interpreter can execute mali-

cious command or access data without authorization. Injection can be easily discov-

ered when analyzing the code. Malicious user can find potentially vulnerable system

by using scanners and fuzzers against the system. Organizations can use static source

code analysis and dynamic application testing tools to find potentially vulnerable

parts of system. (OWASP Top 10 -2017 N.d. 6-7)

SQL-injection is most commonly known injection attack as SQL is considered to have

easy syntax which explains why it is so commonly used. As SQL injection is most com-

monly known injection attack, there are more vulnerabilities that injection attack can

exploit. (Hodson 2019, Chapter 8)

Broken authentication

Broken authentication often occurs when authentication and session management is

not implemented correctly, and malicious users are able to compromise passwords,

keys or session tokens. System may be vulnerable to attacks against authentication if

it for example permits weak passwords or system allows brute force attacks or other

automated attacks. Using multi-factor authentication, creating password policies

against weak passwords, limiting failed login attempts and using session manage-

ment can prevent vulnerabilities in authentication. (OWASP Top 10 -2017 N.d., 8)

Broken authentication could also mean stealing credentials that allows malicious us-

ers to login as legitimate user. Credentials, cryptography keys, tokens and session

identifiers can be stolen using man-in-the-middle attack or exploiting other vulnera-

bility for example Cross-site-scripting. (Hodson 2019, Chapter 8)

Sensitive Data Exposure

Many application and service handle sensitive data, for example credit card infor-

mation, health information or personal information. Passwords are also considered

to be sensitive information. Legal regulations, for example GDPR, can also determine

how data should be handled and protected, but every organization should determine

27

ways to protect data while in rest and when transferring. Sensitive data exposure can

occur if application transfers data without encryption or if it uses weak cryptographic

methods. Storing and handling sensitive data should be avoided if it is not necessary

for business as it might be a target for malicious users. (OWASP Top 10 -2017 N.d., 9)

XML External Entities (XXE)

Applications or XML-based web services that evaluate external entities within XML

documents can be vulnerable to attacks such as denial-if-service. Vulnerability is ex-

ploitable in applications that accepts XML directly, XML uploads or inserts data to

XML documents which is parsed by XML processor from untrusted source. Using less

complex data format and avoiding sensitive data serialization can help to prevent

XXE vulnerability. SAST-tools can identify XXE, but also code reviews are useful to

identify vulnerability in source code. (OWASP Top 10 -2017 N.d., 10)

Broken Access Control

Access control allows user to perform only needed actions in order to do their job.

Failures in access control configurations can lead to unauthorized information disclo-

sure and user performing actions that it should not be able to do, for example modi-

fying or deleting data. Access control methods should be centralized in application. If

access control uses JSON Web Tokens, (JWT), they should be invalidated after logout.

Access control methods should be tested by developers and testers since access con-

trol is hard to test using automated tools. (OWASP Top 10 -2017 N.d., 11)

On businesses removing privileges and access from employees is commonly forgot-

ten and can lead to employee having unnecessary privileges. Automating privilege re-

moval process can help to follow minimum privilege strategy. (Hodson 2019, Chapter

8)

Security Misconfiguration

Security misconfiguration may occur in any level of the application: network services,

platform, web server, application server, database, frameworks, code, virtual ma-

chines or containers or storage. Application could be vulnerable if security configura-

28

tion is not implemented in every level of the system, unnecessary features and set-

tings are used or system contains default usernames and passwords for example. IoT

devices are commonly known from insecure default configurations. Logging and

monitoring solutions are important part of software security, but too informative and

detailed error messages can give malicious user too much information about the ap-

plication.

Automating software deployment using deployment scripts can help to prevent mis-

configurations. For preventing security misconfiguration hardening should be done

in every level of the application and minimal privileges and features used. Security

misconfiguration can often detect security misconfiguration flaws. (OWASP Top 10 -

2017 N.d., 12; Hodson 2019, Chapter 8)

Cross-Site Scripting (XSS)

XSS failures occur when untrusted data is included in new web page without valida-

tion. In existing web pages user inputted updates via browser Application Program-

ming Interface (API) that create HTML or JavaScript can also be the source of XSS fail-

ure. XSS vulnerability allows malicious user to execute scripts in other users’ browser.

The goal of XSS can be session hijacking or redirecting user to malicious site. (Hodson

2019, Chapter 8)

Cross-Site Scripting has three forms: Reflected XSS, Stored XSS and DOM XSS. Re-

flected XSS allows unvalidated and unescaped input to application or API as part of

HTML output. Attack may allow malicious HTML or JavaScript to be executed in vic-

tim’s browser. Usually attack requires victim to interact with for example a malicious

link inserted to page. Stored XSS allows application or API to store malicious user in-

put that is viewed later by another user. Stored XSS is considered to be high or criti-

cal risk. Application may be vulnerable to DOM XSS if applications JavaScript frame-

works, single-page applications and API’s handle attacker controllable data dynami-

cally. To prevent vulnerability to XSS attacks development should use frameworks

that escape XSS by design, for example Ruby on Rail and escaping untrusted HTTP re-

quest data. Automated tools can detect XSS vulnerabilities, but there are also tools

for exploiting XSS vulnerabilities easily accessible. (OWASP Top 10 -2017 N.d., 13)

29

Insecure Deserialization

Insecure deserialization can occur when deserialization allows untrusted user input.

Deserialization is converting data from storage or transit format, which is often low-

level such as binary or in file format such as XML or JSON, to object format. Serializa-

tion can be used in applications for example HTTP cookies, API authentication tokens

or databases. System may be vulnerable to insecure deserialization if it allows mali-

cious or tampered objects to be deserialized. Insecure deserialization can lead to se-

rious attacks such as remote code execution. Flaws in deserialization can be found

using automated tools but validating it can require more human input. As many of

the OWASP Top 10 vulnerabilities can be exploited using ready exploits and tools,

deserialization can be more difficult to exploit, but if exploited, its consequences

should not be understated. To prevent insecure deserialization is designing architec-

ture to accept serialized objects from only trusted sources. (OWASP Top 10 -2017

N.d., 14; Hodson 2019, Chapter 8)

Using Components with Known Vulnerabilities

Software is built from components such as libraries, modules and frameworks. Com-

ponents often run as the same privileges as the application itself, that can cause a

problem if it contains vulnerability that can be exploited. Some vulnerabilities can be

easy to exploit with ready tools, but some may require more work. Using a compo-

nent with known vulnerabilities can also be a business decision. In that case it is im-

portant to have a plan for in case someone tries to exploit the vulnerability. (OWASP

Top 10 -2017 N.d., 15; Hodson 2019, Chapter 8)

Monitoring, scanning and updating application in regular bases can help to identify

where there are potential components with known vulnerabilities. OWASP has devel-

oped Dependency-Check that scans application for known vulnerabilities. Planning

update cycles, removing unused components and using only components from offi-

cial sources can help to prevent attacks impact on application. (OWASP Top 10 -2017

N.d., 15)

30

Insufficient Loggin & Monitoring

Logging and monitoring are an important part of incident detection and response.

Logging and monitoring can be used to detect suspicious activity in application. Insuf-

ficient logging can also refer to unclear log messages of errors and warnings or stor-

ing them without backing them up. Logging and monitoring solutions should always

be able to answer questions: who, what, when and where. Suspicious activities, for

example failed login attempts, should always be logged and alerted to the system ad-

ministrator. Developing auditing solution with integrity controls will help to prevent

data tampering and deletion. An incident response plan with sufficient monitoring

and logging functions, will reduce the time since suspicious activity is noticed and re-

ported. In order to help identify if login and monitoring is enough, examining logs af-

ter penetration testing is required. (OWASP Top 10 -2017 N.d., 16; Hodson 2019,

Chapter 8)

7 Developing Open Source Security Testing Pipeline

The aim was to develop security testing pipeline that could be integrated to deploy-

ment pipeline using open source tools to save additional costs. Also, it was important

that the security testing pipeline is such that it could be able to detect potential

OWASP Top 10 vulnerabilities. The pipeline itself was built to support modern soft-

ware with container technology.

Open source security testing tools divide opinions as they have many advantages but

also disadvantages. Open source tools are usually free and can save costs, but it may

take a lot of time and technical skills to configure and maintain them. (Rice et al.

2016, 78-79)

7.1 Pipeline architecture

For the basis of the pipeline it was important to use platform that supported agile

and CI/CD principles. The chosen pipeline platform is GoCD which is an open source

project supported by ThoughtWorks Inc. When looking at the DevOps and agile prin-

31

ciples visibility in the development process is emphasized along with open communi-

cation. GoCD has clear pipeline structure that can be used to share visibility in the

developing process. GoCD pipeline view can be seen in Figure 3.

The pipeline was created for demonstrating purposes using docker environment.

Used docker containers for testing can be seen in Appendix 2. The pipeline included

static analysis with SonarQube, Clair-scanner and Dependency-Check and dynamic

analysis and penetration testing with ZAP. The pipeline architecture pictured in Fig-

ure 2.

Figure 2 Pipeline architecture

GoCD

Figure 3 GoCD user interface

GoCD is specialized for CD but it can be used to CI as well. There are plenty of docu-

mentation and installation guides available in GoCD home page (GoCD User Docu-

mentation). There are multiple options when choosing a CI/CD platform and often

tools support each other. As many most popular and used CI/CD tools list Jenkins

very high it has some downfalls why it was not chosen for this. Jenkins is mainly de-

signed for CI and tough adding CD is some cases possible it might be difficult to im-

plement. GoCD pipeline structure was clearer and the view of the pipeline is clearer

compared to Jenkins pipeline view in Figure 6.

32

Figure 4 Jenkins pipeline view (Jenkins Official Page)

GoCD is also easy to integrate with other tools as it is as Jenkins mainly provides

plugin to integrate other tools. GoCD has a user interface that makes configuring it

easy, but pipelines can also be configured using YAML configuration files. (The differ-

ences between GoCD and Jenkins)

GoCD single pipeline view can be seen on Figure 5. It includes checkmarks for each

passed step. The pipeline it self consists of 5 steps:

• Quality Check and code analysis

• Build of the application

• Vulnerability scanning of the container with Clair

• Checking vulnerabilities from 3rd party dependencies

• Vulnerability analysis and penetration testing.

33

Figure 5 GoCD pipeline view

GoCD Agents

One of the things that makes GoCD easy to integrate is that you can build your own

agents to do exactly what you need to. Agents are the ones that perform the actions

in the pipeline. Multiple pipelines can be run simultaneously using multiple agents.

Agents can be build based on needed quality and can have pre-installed content for

the jobs. For this specific pipeline the agent needed to have Docker, Maven, Sonar-

scanner, Clair-scanner and Dependency-Check-client and Java installed to run the

jobs.

GoCD agent was built from Dockerfile based on Ubuntu 16.04 GoCD Agent Image. In-

stalling needed tools for Dockerfile can be seen in Appendix 2.

7.2 Static analysis architecture

As in chapter 4.3, Security testing techniques and testing methods stated that static

security testing has become a big part of security testing to ensure that the code is

following secure code practices. Static security testing can be done often and early

on software development life cycle. Static testing can start in code analysis level

when the first lines of code are written and move on the container scanning when

containers are built.

When selecting SAST (Static Application Security Testing) tools it was important that

the tool could be automated and could detect OWASP Top 10 vulnerabilities. Also,

important selecting criteria was that the tool would be open source and no extra

34

costs would be created to the project. Static analysis included also container security

scanning to support security in container-based software.

SonarQube

SonarQube has taken steps to become more SAST tool as known for being a code

quality scanner. SonarQube has listed in its documentation that it has security rules

that supports CWE, SANS Top 25 as well as OWASP Top 10. SonarQube also has a

plugin available to include OWASP Dependency-Check into SonarQube scan. So-

narQube requires a language plugin to detect issues from the code but it supports a

wide variety of coding languages. SonarQube has also commercial version that has

more features. (Security-related Rules; Code Security, for Everyone)

To scan the code, you need both SonarQube server and the scanner running on the

agent to perform the actual analysis. SonarQube server was installed as docker im-

age that can be seen in Appendix 2.

SonarQube scan was run by installing sonar-scanner to a custom GoCD-agent build to

run the pipeline. Sonarscanner installation to Dockerfile can be seen in Appendix 1.

After the custom agent was built once, it could be used to run scans. After sonar-

scanner was installed to the agent it could be called by using bash command: >/so-

nar-scanner/bin/sonar-scanner -Dsonar.projectKey=key -Dsonar.sources=. \-Dso-

nar.host.url=url \-Dsonar.login=token. Installing and configuring SonarQube was rela-

tively easy and it could be controlled by using the SonarQube server UI. SonarQube

UI report view can be seen in Figure 6.

35

Figure 6 SonarQube report in server

SonarQube was chosen tool as it is easy integrate in various tools, for example

GitLab, and it detects OWASP Top 10 vulnerabilities as well as analyzes code quality.

SonarQube endorsers secure way of coding by requesting user to review potential

security vulnerabilities. Security review request, in Figure 7, gives option to mark as

done or suppress the issue if the vulnerability could not be detected or exploited af-

ter testing.

Figure 7 SonarQube warning from security vulnerability

CoreOs Clair

Clair is developed by Core OS and is open source container vulnerability scanner. It

supports static vulnerability analysis for appc and docker containers. It can be inte-

grated to pipeline build process of the application. For the desired quality, there is

option to set the severity level of the vulnerabilities found that fails the scan if the

desired quality is not met. This feature can be used to fail the application build if it

contains critical or high-level vulnerabilities. Clair scans container layer by layer and

searches for known vulnerabilities. (Clair 2.0.1 Documentation)

36

In this integration clair-scanner was used since it allows white-listing for approved

vulnerabilities. Clair can be integrated different ways to fit the desired purpose. As in

SonarQube you need to have both Clair server running, and the Clair-scanner in-

stalled to agent to be able to run scans against the container. Clair also needs a data-

base that contains vulnerability information. Clair server image used can be seen in

Appendix 2. Clair-scanner installation to the GoCD Agent can be found in Appendix 1.

Clair-scanner was run from command line: --clair=http://clair-server:6060 --

ip=$HOSTNAME --threshold='Critical' --report=clair_report.json --log=clair_log.txt

$image_to_be_scanned .(Clair 2.0.1 Documentation; Clair Integrations; Clair scanner)

Figure 8 Scanning container with Clair

Clair is also used in GitLab own CI/CD tooling as an option (Container Scanning).

OWASP Dependency-Check

OWASP Dependency-Check identifies and detects dependencies that have publicly

known vulnerabilities. Tool was chosen to identify components with known vulnera-

bilities that is one of the OWASP Top 10 security risks for web applications. Depend-

ency-Check checks Common Platform Enumeration (CPE) identifier for given depend-

ency and will generate a report that links it to associated Common Vulnerabilities

and Exposures (CVE) entry. (OWASP Dependency-Check)

Dependency-Check did not require a server running and installing as well as running

the scan was quite easy. Dependency-Check also provides a report as seen in Figure

9, that can be printed out to be analyzed. Dependency-Check was installed to the

custom GoCD Agent image that can be seen in Appendix 1. The scan itself was run by

37

using command line: --project "$project_name" --scan "$project_directory" --out

"$output_directory" --format "HTML"

Figure 9 Dependency-Check report

7.3 Dynamic analysis architecture

As in SAST, in DAST it was important that selected tools could be integrated together

and automated. When targeting tools to identify OWASP Top 10 vulnerabilities it was

logical to favor tool that was developed by OWASP.

OWASP Zed Attack Proxy (ZAP)

As stated in chapter 6 Web Application Security testing and OWASP Top 10, most of

the vulnerabilities are exploited trough the API. OWASP ZAP can be used for both

DAST and for penetration testing as well. ZAP provides many functionalities that de-

tect and identify OWASP Top 10 vulnerabilities. ZAP includes many features that can

be automated and included in CI/CD pipeline but also supports manual exploration

for security testers. For the purposes of this security testing pipeline ZAP was inte-

grated to pipeline using its API.

38

OWASP ZAP Desktop User Guide lists all features on ZAP. For scanning the applica-

tion ZAP offers for example:

• Active scan:

Active scan realistically implements attack scenarios on a target application.

Active scan should only be targeting an application which you own or have

permission to target since it can exploit the application. There is an option to

set rules regarding the scan, for example setting different thresholds for cer-

tain vulnerabilities. (OWASP ZAP Desktop User Guide N.d.)

• Passive scan:

Passive scan scans HTTP messages but does not try to modify them. A passive

scan should not slow down the use of the application and is safe to use.

(OWASP ZAP Desktop User Guide N.d.)

• Spider:

The spider discovers resources of the given site. The spider can identify hy-

perlinks from the messages and add them as a resource. (OWASP ZAP Desk-

top User Guide N.d.)

• Man-in-the-middle proxy

If ZAP is used as a proxy it allows to see traffic and requests from web applica-

tion and responses it receives (OWASP ZAP Desktop User Guide N.d.).

ZAP can produce HTML format reports that can be fetch using the API. The report

format can be seen in Figure 10. In this case report was attached in the GoCD pipe-

line as an artifact for accessing report after every run easily. In the report ZAP lists

found vulnerability, information about it and possible solutions to fix it, as seen in

Figure 11.

39

Figure 10 ZAP report

Figure 11 Vulnerability detail

OWASP ZAP has a few settings to be mindful of when scanning the target application:

• If application has authentication it needs to be setup for the scan

• ZAP is more powerful and might get more results when using it as a proxy

when performing regression tests

• ZAP has different modes: Safe mode, standard mode, protected mode and at-

tack mode and the scanning results may vary depending which mode you are

using

• When using attack mode, it is important to exclude targets or URL’s you don’t

want ZAP to attack

OWASP ZAP Desktop User Guide offers a list how to find and detect OWASP Top 10

vulnerabilities using ZAP. Automated active scan can detect: Injection, Sensitive data

exposure, XML external entities, broken access control, XSS, using components with

known vulnerabilities and insufficient logging and monitoring. For detecting Broken

authentication and security misconfiguration manual inspection is required. Insecure

deserialization detection is being developed to ZAP. (OWASP ZAP Desktop User

Guide N.d.)

ZAP can be configured to run in the pipeline, but it may require a lot of work depend-

ing the type of your test environment and application. According to OWASP ZAP

Desktop User Guide settings, ZAP available in public IP is only available when ZAP is

running in AWS EC2 instance and setting public IP address to ZAP otherwise might

40

not work. ZAP does offer alternative solution to connect trough another proxy that

might solve this problem for some. (OWASP ZAP Desktop User Guide N.d.)

ZAP image used for testing in this pipeline can be seen in Appendix 2. Zaproxy Docu-

mentation includes docker installation guide. Zap was executed in headless mode

and could be started by using: zap.sh -daemon -port $port_number -host 0.0.0.0 -

config api.addrs.addr.name=.* -config api.key=$api_key -config api.addrs.addr.re-

gex=true

8 End Results

As an end result generated pipeline included status analysis, dynamic analysis and

penetration testing steps as demonstrated in Figure 12.

Figure 12 Generated pipeline

SonarQube found OWASP Top 10 vulnerabilities and other security and code quality

related issues. SonarQube’s updated functionalities support security issues better

than the previous versions. SonarQube scan was tested against known vulnerable

web application, Damn Vulnerable Web Application (DVWA). DVWA image that was

used for testing can be seen in Appendix 2. DVWA was developed for testing web ap-

plication vulnerabilities (Damn Vulnerable Web Application). SonarQube reports se-

curity related issues as security hotspots and vulnerabilities. SonarQube findings

from the scan against DVWA can be seen in Table 1. Findings from security hotspots

that could be categorized by possible OWASP Top 10 vulnerabilities can be seen in

Table 2.

41

Table 1 SonarQube analysis reported vulnerabilities and security hotspots

Table 2 OWASP Top 10 vulnerabilities found in security hotspots

Clair Scanner found total count of 616 vulnerabilities in the build docker container of

DVWA. For testing purposes threshold for passing the scan was set to Critical vulner-

abilities. High level vulnerabilities indicated that container could be vulnerable for

stack-based buffer overflow, remote code execution, injection and man-in-the-mid-

dle attacks. Vulnerability count is demonstrated in Table 3.

Table 3 Clair-scanner vulnerabilities found

Dependency-Check scanned for dependencies that could potentially have known vul-

nerabilities. Dependency-Check recognized two packages that could contain different

known vulnerabilities. Report could summarize scanned dependencies and found is-

sues that can be seen in Figure 13.

42

Figure 13 Dependency-Check summary

OWASP ZAP found 19 different vulnerabilities by scanning the application. Results

from using the Spider and the Active scan can be seen in the report summary in Fig-

ure 14. Different types of vulnerabilities can be seen listed in Table 4. From OWASP

Top 10 ZAP found traces of injection flaws, possibility for XSS exploitation, security

misconfiguration and sensitive data exposure.

Figure 14 ZAP alert summary

43

Table 4 ZAP vulnerabilities found

9 End discussion

The starting point for the thesis was to develop a pipeline using open source tools to

suit different software development projects. Different aspects of developed solu-

tions should be considered:

- How easy the tools where to install and use?

44

- Would the tools be suitable for company use?
- Did the tools provide results that could be acted on? Did the tools provide enough

information about the status of the security?
- How the pipeline can be utilized in future?

Many of the tools used to build the security testing pipeline are easy to integrate and

produce reports that can be utilized to further analyze the problems.

SonarQube was easy to integrate and maintain, which was expected as it is already

popular code analyzer tool. SonarQube is actively developed and new security re-

lated features moves SonarQube closer to become a definite SAST tool. Clair-scanner

was more work to integrate as there were not as much documentation available.

Clair offers different integration options that could possibly provide better user expe-

rience. Dependency-Check was easy to use and integrating it did not require a lot of

work. The difficulty of setting up ZAP depends on the testing environment and the

desired effect it is used for. Setting ZAP as a proxy and using it during regression tests

can prove to be quite powerful with low effort. The Active scans can be more stress-

ful for the testing environment. ZAP API became helpful for automation, but it still is

not the easiest tool to automate.

For open source tools lack of documentation and support can become an issue as

commercial tools often offer more extensive documentation and user guide as well

as customer support. SonarQube offers a lot of documentation available online in its

official site. As SonarQube is a commonly used tool already, information is easy to

find from other sources as well. Clair has commercial versions that could potentially

have better documentation and a customer support. As for the clair-scanner integra-

tion version, it did not have much of a documentation available or that could be

found. As Dependency-Check was easy to integrate and it offers different integration

options, the lack of extensive documentation did not became an issue. ZAP required

more studying to get better understanding of it, although a lot of useful information

about managing ZAP can be found on OWASP ZAP Desktop User Guide.

Reporting functionalities on tools are important as customers usually demand the

data from security testing also for themselves. SonarQube reports are clear and pro-

vide enough information about the issues found. Clair-scanner was not as corporate

friendly as the JSON-format reports are not as appealing to look at or share to the

45

customer. The scanner found valuable information but there could be room for im-

proving its suitability for larger scale projects. Dependency-Check HTML-format re-

port was clear and suitable for potentially sharing it to the customer. ZAP provided

HTML format reporting as well. ZAP reports contained information about the found

vulnerability as well as for the possible solution on how to patch it. SonarQube, De-

pendency-Check and ZAP all provided information about the found vulnerability that

could be utilized on evaluating the possible risks of leaving it or help to fix it. Security

testing’s goal is not to fix the vulnerabilities, but to give company or customer data

that could help to evaluate possible risks that the software might be exposed to.

One of the most important goals set for the thesis was to see if these open source

tools could find vulnerabilities and prove to be useful. As a source code material, this

project used DVWA that was designed to be vulnerable, which explained why so

many OWASP Top 10 listed vulnerabilities were found. As one of the main goals of

security testing is to create understanding about the status of the software security,

the selected tools provided a good view of the applications security status.

For the Company X developed pipeline could be utilized for smaller software devel-

opment projects that does not have the budget for expensive commercial tools. As

the researcher method for the thesis was qualitative, the developed solution does

not contain case studies from production.

When looking at the developed model for testing security in software project, it is

clear that only developing a pipeline that includes security testing at different levels

cannot ensure that the software is secure. Developed solution consist of application

security testing in development and testing environment. Penetration testing and ap-

plication security testing should also be done in the production environment to find

vulnerabilities in the environment itself that could expose the software at risk.

Establishing secure way of coding and understanding importance of security is the

key of developing more secure software. Single pipeline cannot provide security

training, but it can help to improve understanding inside the development project.

OWASP Top 10 is not a standard of security and not finding any OWASP Top 10 vul-

nerabilities using developed pipeline should not be considered as an indicator of se-

cure software. Eliminating OWASP Top 10 vulnerabilities from the software can be

46

seen as a starting point of making more secure software. The same method could be

considered using this pipeline: it can be a starting point of security testing in the de-

velopment process.

47

References

Agile Alliance, Agile 101. Accessed on 21.12.2019.
https://www.agilealliance.org/agile101/

Arthur,C. 29.8.2012. LulzSec hacker arrested over Sony attack. Article on The
Guardian. Accessed on 26.5.2020
https://www.theguardian.com/technology/2012/aug/29/lulzsec-hacker-arrest-sony-
attack

Ashby, D. 2016. Continuous Testing in DevOps… Blog post. Accessed on 20.4.2020.
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/

Black, Claesson, Coleman, Cornanguer, Forgacs, Linetzki, Linz, van der Aalst, Walsh, &
Weber. 2014. International Software Testing Qualifications Board. Foundation Level
Extension Syllabus Agile Tester. Accessed on 21.12.2019

Chapple, M; Stewards J & Gibson, D. 2018. CISSP: Certified Information Systems
Security Professional Study Guide, Eighth Edition Accessed on 12.4.2020

Clair 2.0.1 Documentation. Clair Documentation on CoreOs official site. Accessed on
26.4.2020 https://coreos.com/clair/docs/latest/

Clair Integrations. Github repository. Accessed on 28.4.2020
https://github.com/quay/clair/blob/master/Documentation/integrations.md

Clair scanner. GitHub repository hosted by Arminc. Accessed on 26.5.2020.
https://github.com/arminc/clair-scanner

Clokie, K. 2017. A Practical Guide to Testing in DevOps. Accessed on 16.10.2019

Code Security, for Everyone. Sonarqube security features. Accessed on 26.4.2020.
https://www.sonarqube.org/features/security/

Container Scanning. Gitlab Documentation. Accessed on 26.4.2020.
https://docs.gitlab.com/ee/user/application_security/container_scanning/

Damn Vulnerable Web Application (DVWA). Information site about DVWA. Accessed
on 27.5.2020. http://www.dvwa.co.uk/

Dooley, J. 2017. Software Development, Design and Coding: With Patterns,
Debugging, Unit Testing, and Refactoring, Second Edition. Accessed on 30.4.2020.

GoCD User Documentation. Accessed on 26.4.2020. https://docs.gocd.org/

Hodson, C. 2019. Cyber Risk Management: Prioritize Threats, Identify Vulnerabilities
and Apply Controls. Accessed on 23.4.2020

Hollier, M & Wagner, A 2017. Continuous Testing For Dummies, IBM Limited Edition.
Accessed on 28.3.2020.

Humble, J & Farley, D 2010. Continuous delivery : reliable software releases through
build, test, and deployment automation. Accessed on 30.3.2020

Greenberg, A. 20.6.2011. In Sony's 20th Breach In Two Months, Hackers Claim
177,000 Email Addresses Compromised. Article in Forbes. Accessed on 26.5.2020.

https://www.agilealliance.org/agile101/
https://www.theguardian.com/technology/2012/aug/29/lulzsec-hacker-arrest-sony-attack
https://www.theguardian.com/technology/2012/aug/29/lulzsec-hacker-arrest-sony-attack
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://coreos.com/clair/docs/latest/
https://github.com/quay/clair/blob/master/Documentation/integrations.md
https://github.com/arminc/clair-scanner
https://www.sonarqube.org/features/security/
https://docs.gitlab.com/ee/user/application_security/container_scanning/
http://www.dvwa.co.uk/
https://docs.gocd.org/

48

https://www.forbes.com/sites/andygreenberg/2011/06/20/in-sonys-20th-breach-in-
two-months-hacker-claims-177000-sony-emails-compromised/#76f1caf94f06

Jenkins 2 Overview. Jenkins 2.0 Documentation. Accessed on 27.4.2020.
https://www.jenkins.io/2.0/ Accessed on 26.4.2020.

Kananen, J. 2015. Opinnäytetyön kirjoittajan opas : Näin kirjoitan opinnäytetyön tai
pro gradun alusta loppuun. Jyväskylä: Jyväskylän ammatikorkeakoulu. Accessed on
26.5.2020

Meucci & Muller 2014. OWASP Testing Guide 4.0 Accessed on 13.4.2020

Olsen, Parveen, Black, Friedenberg, McKay, Posthuma, Schaefer, Smilgin, Smith,
Toms, Ulrich, Walsh & Zakaria 2018. International Software Testing Qualifications
Board. Certified Tester Foundation Level Syllabus. 2018 Version. Accessed on
21.12.2019

OWASP Dependency-Check. Official OWASP page. Accessed on 27.4.2020.
https://owasp.org/www-project-dependency-check/

OWASP Top 10 -2017.N.d. The Ten Most Critical Web Application Security Risks.
Accessed on 23.4.2020. https://owasp.org/www-project-top-
ten/OWASP_Top_Ten_2017/

Ransome & Misra 2018. Core Software Security, Security at the source. Accessed on
12.4.2020

RedHat DevOps: What Is DevSecOps? Accessed on 30.3.2020
https://www.redhat.com/en/topics/devops/what-is-devsecops

Rice, Daughtrey, Dijkman, Oliveira, Ribault 2016. International Software Testing
Qualifications Board. Certified Tester Advanced Level Syllabus Security Tester Version
2016. Accessed on 12.4.2020

Security-related Rules. SonarQube Documentation 8.2 Accessed on 26.4.2020.
https://docs.sonarqube.org/latest/user-guide/security-rules/

Sharma, S. 2014. DevOps For Dummies, IBM Limited Edition. Accessed on
21.12.2019.

Sharma, S. 2017. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a
Multi-Speed IT Enterprise. Accessed on 16.10.2019

The differences between GoCD and Jenkins. GoCD Official Page.
https://www.gocd.org/jenkins/ Accessed on 26.4.2020

Van der Stock, Glas, Smithline & Gigler 2017. OWASP Top 10 – 2017. The Ten Most
Critical Web Application Security Risks
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

What are the Microsoft SDL practices? Microsoft official site. Accessed on 18.4.2020.
https://www.microsoft.com/en-us/securityengineering/sdl/practices

OWASP ZAP Desktop User Guide. N.d. Accessed on 20.3.2020.
https://www.zaproxy.org/docs/desktop/

https://www.forbes.com/sites/andygreenberg/2011/06/20/in-sonys-20th-breach-in-two-months-hacker-claims-177000-sony-emails-compromised/#76f1caf94f06
https://www.forbes.com/sites/andygreenberg/2011/06/20/in-sonys-20th-breach-in-two-months-hacker-claims-177000-sony-emails-compromised/#76f1caf94f06
https://www.jenkins.io/2.0/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/
https://www.redhat.com/en/topics/devops/what-is-devsecops
https://docs.sonarqube.org/latest/user-guide/security-rules/
https://www.gocd.org/jenkins/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.zaproxy.org/docs/desktop/

49

Appendices

Appendix 1. Dockerfile configurations for building GoCD agent

Additional settings can be added to Dockerfile.

Base image for Dockerfile from Docker Hub:

- gocd/gocd-agent-ubuntu-16.04:v19.3.0

Update base image:

- RUN apt-get update && apt-get install -y apt-transport-https locales wget
- RUN apt-get install -y apt-transport-https ca-certificates curl gnupg-agent software-

properties-common

Maven installation:

- RUN apt-get update && apt-get install maven -y

Docker installation for Docker-in-Docker testing setup:

- RUN apt-get install docker -y
- RUN curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
- RUN add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ub-

untu $(lsb_release -cs) stable"
- RUN apt-get update
- RUN apt-get install -y docker-ce docker-ce-cli containerd.io

Clair-scanner installation:

- RUN wget -q https://github.com/arminc/clair-scanner/releases/download/v8/clair-
scanner_linux_386 -O /usr/local/bin/clair-scanner

- RUN chmod 0755 /usr/local/bin/clair-scanner

Sonar-canner installation:

- RUN curl -s -L https://binaries.sonarsource.com/Distribution/sonar-scanner-cli/so-
nar-scanner-cli-3.3.0.1492-linux.zip -o sonarscanner.zip \

- && unzip -qq sonarscanner.zip \
- && rm -rf sonarscanner.zip \
- && mv sonar-scanner-3.3.0.1492-linux sonar-scanner

Dependency-check installation:

50

- RUN curl -s -L https://dl.bintray.com/jeremy-long/owasp/dependency-check-5.3.0-
release.zip -o dependency-check.zip \

- && unzip -qq dependency-check.zip \
- && rm -rf dependency-check.zip \

Java installation:

- RUN sudo add-apt-repository ppa:openjdk-r/ppa \
- && sudo apt-get update -q \
- && sudo apt-get install -y openjdk-11-jdk

Environment variables set for sonarscanner and Java:

- ENV SONAR_RUNNER_HOME=sonar-scanner
- ENV PATH $PATH:sonar-scanner/bin
- ENV JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64
- ENV PATH $PATH:$JAVA_HOME/bin

Appendix 2. Docker images for testing environment

Docker version:

- Docker Engine v.19.03.8
- Docker Compose v.1.25.5

Docker images for testing material from Docker Hub:

- gitlab/gitlab-ee:latest

DVWA image for testing purposes from Docker Hub:

- vulnerables/web-dvwa

Docker images for testing tools from Docker Hub:

- gocd/gocd-server:v19.3.0
- sonarqube:latest
- arminc/clair-db:latest
- arminc/clair-local-scan:v2.0.6
- owasp/zap2docker-stable

	Thesis_final_before_fin_desc_pdf
	Kuvailulehti

