

Bachelor’s thesis

Bachelor of Engineering in Information and Communications Technology

2020

Sujan Pokharel

DEVELOPING A BACKEND
WEB APPLICATION AND
DOCKERIZING
- A Note Keeping Application

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Bachelor of Engineering in Information and Communications Technology

2020 | 44

Sujan Pokharel

DEVELOPING A BACKEND WEB APPLICATION
AND DOCKERIZING
- A Note Keeping Application

The main objective of the thesis was to study the backend of web development with NodeJS,
MongoDB, Express, containerization technology, develop a prototype based on learning and
finally package the developed application with Docker

The theoretical part of the thesis introduces the main technologies for the backend, i.e., Node,
Express, MongoDB, Mongoose and the concept of containerization is presented through the
study of Docker. Since the backend of MERN/MEAN stack is heavily dependent on the
knowledge of JavaScript programming language, a brief history of web development and
evolution of JavaScript was carried out. The practical part of the thesis guides through the
backend development process of a note-taking application and then Docker was implemented to
package the app.

As a result, a fully functional backend was developed and was containerized with Docker. The
goal of learning about backend development and containerization was fulfilled along with in-depth
knowledge of NodeJS in backend development.

KEYWORDS:

Web development, Backend Web Development, Containerization, Node, MongoDB, Docker

CONTENTS

LIST OF ABBREVIATIONS

1 INTRODUCTION 7

2 BACKGROUND 9

2.1 A brief history of web development 9

2.2 JavaScript 10

3 BACKEND DEVELOPMENT 14

3.1 Node and its Working pattern 14

3.2 Express 16

3.3 MongoDB 17

3.4 Mongoose 17

3.5 Frontend Technology (React) 18

4 CONTANERIZATION WITH DOCKER 20

4.1 Docker containers vs Virtual Machine Architecture 20

4.2 Docker Objects 22

5 PROJECT IMPLEMENTATION 23

5.1 Project Introduction 23

5.2 Development environment 26

5.3 Package Installation and database connection 26

5.4 Models 28

5.5 Controller 30

5.6 Authentication 32

5.7 Testing with Postman 33

5.8 Docker Implementation 35

6 RESULTS AND DISCUSSION 38

7 CONCLUSION 41

REFERENCES 42

 FIGURES

Figure 1. ES6 important features. ... 13
Figure 2. Working of I/O in NodeJS (Ofogbu, 2018). .. 15
Figure 3. Working of Middleware (Ramirez, 2020). ... 16
Figure 4. Virtual Dom vs DOM. ... 19
Figure 5. Docker Architecture vs Virtual Machine Architecture (Yadav, Garg and
Mehara, 2019). .. 21
Figure 6. Overview of the application. ... 24
Figure 7. MVC architecture (Syromiatnikov and Weyns, 2014). 25
Figure 8. Notes Model. .. 29
Figure 9. The structure of the project. ... 31
Figure 10. Sign-up to the application. ... 32
Figure 11. Login Testing with Postman. .. 34
Figure 12. Dockerfile of backend. .. 35
Figure 13. Docker-compose.yml file of the project. ... 37
Figure 14. The result from docker-compose. .. 39

TABLES

Table 1. List of ECMAScript Edition and published date. .. 12

LIST OF ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CI/CD Continuous Integration/ Continuous Development

CLI Command Line Interface

CPU Central Processing Unit

CRUD Create Read Update Delete

CSS Cascading Style Sheets

DevOps Development and Operations

DOM Document Object Model

ECMA European Computer Manufacturer’s Association

ES6 ECMAScript 6

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IT Information Technology

JS JavaScript

JSON JavaScript Object Notation

JWT Json Web Token

MEAN MongoDB Express Angular NodeJS

MERN MongoDB Express React NodeJS

MVC Model View Controller

NPM Node Package Manager

OS Operating System

SPA Single Page Application

UI User Interface

URL Uniform Resource Locator

VCS Version Control System

WWW World Wide Web

XHR XMLHttpRequest

XML Extensible Markup Language

YML YAML Ain’t Markup Language

ZSH Z Shell

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

1 INTRODUCTION

With the advancement in all technological fields, web development has also seen

tremendous changes in recent years. The changes have occurred both in the structure

of writing a web program, the way web browser behaves and how the program is

packaged before deployment on the server. In the past, web applications were

developed with HTML, CSS, and JavaScript. When entering the page, the browser

fetched the HTML document in the beginning and upon receiving the HTML page, it

would again fetch the CSS and JavaScript file from the server. Modern web applications

are Single-page application (SPA) and they do not fetch all the pages separately but

instead a single HTML page from the server (fullstackopen, 2020).

This thesis focuses on creating a modern-day backend of a website with the use of

practices that is prevalent in modern web applications. Backend is a part of a web

application that handles every logic behind the application, database interaction, user

authentication, server configuration and so on. Despite having the availability of many

frameworks and libraries to create a web app, this thesis is only concerned with the

research and development of backend development of MERN (MongoDB Express

React, and NodeJS) Stack or MEAN (MongoDB, Express Angular and NodeJS). In other

words, the study will be made on NodeJS, Express, different packages, and MongoDB

and backend prototype will be developed so that it can be either rendered using React

or Angular. The reason behind choosing this stack is the popularity of NodeJS to create

Restful APIs. The front-end development is beyond the scope of this thesis but instead,

the thesis explains the containerization technology with the use of Docker to wrap the

application so that application is ready for DevOps and deployment. DevOps is a set of

practices that works to automate and integrate the process between software

development and IT teams to build, test, and release software faster and more reliability.

The thesis will commence with an overview of the history of web development, providing

brief insight of past web. After this has been achieved, the thesis will elaborate on the

purpose and motivation behind the topic and later will go through the environment setup

and focus on the technologies such as JavaScript, NodeJS, Express, MongoDB which

are used in backend development and then about containerization with Docker.

 A prototype will be built using the above-mentioned technologies and a detailed

explanation of building a backend and packaging the application with Docker will be

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

carried out. This will provide a solid base for understanding the development of backend

and containerization technology. The backend can be used to make a full-stack

development with either MERN or MEAN stack if React and Angular are implemented

respectively. Since this thesis is also a research study on Node and its framework that

makes backend of MERN/MEAN stack, the reasons for the growing popularity of Node

are also presented.

After the discussion of different technologies for backend development and

implementation of Docker, the results chapter will then evaluate whether the project

achieved its goal and analyze the used technologies.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

2 BACKGROUND

2.1 A brief history of web development

After the invention of the World Wide Web (WWW) by Tim Berners-Lee in 1989, the

WWW has come a long way. Originally, the main purpose behind the development of

the web was “to meet the demand for automated information-sharing between scientists

in universities and institutes around the world” (Runestone Academy, 2020). It was

publicly accessible in 1991 and is accessible at its original URL. Information was shared

between computers over the network with the text documents in the form of static HTML

pages (Runestone Academy, 2020).

The web’s popularity grew quickly, and later it became possible to add images, audio

files and videos to the web pages but still were static. There was the intention to make

HTML pages dynamic, so it resulted in the development of client-side programming

language; JavaScript in 1995 (Runestone Academy, 2020).

However, a real shift from static to dynamic web pages did not take place until the

introduction of AJAX (Asynchronous JavaScript and XML) in 2005. It was the new

approach that enabled who? What? to use responsive web design app. It meant a client-

side web application could be built entirely in JavaScript. Web sites were becoming like

desktop applications and the browser became the platform for an application.

JavaScript was immature at this point, thus there was a need for modern tools and

libraries (Runestone Academy, 2020). So, different libraries and frameworks were

introduced. There was the improvement in hardware and networks were solid with

greater bandwidth and this also paved the way for constant improvement of the

frameworks.

The need for the web application also grew tremendously as web applications are easy

to access from any operating system with the help of the browser. Desktop applications,

on the other hand, required developers to develop an application for each operating

system as one application will not be compatible with both.

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

2.2 JavaScript

The thesis is primarily focused on the background of the web and project introduction

until this point. To proceed further into the development of backend, it is important to

introduce the JavaScript, as NodeJS is dependent on knowledge of JS. Thus, this section

will introduce JavaScript and its different versions.

Introduction to JavaScript

JavaScript or in shortened form JS is a lightweight, object-oriented language with first-

class functions based on objects that can return a value by passing a function itself or

other functions as an argument. It is also known as the scripting language and can be

used in many non-browser environments. JavaScript was first developed in 1995 by

Brendan Eich in a company named Netscape. It was developed to serve as a scripting

language for Java (MDN Web Docs, 2020). Although JavaScript was primarily known to

be used for client-side of the web, it has evolved significantly to support the server-side

scripting as well. JavaScript now is viewed as a programming language that is used for

front-end and back-end of web applications, and databases.

Since JavaScript supports both front and backend development, it has several

advantages over using different languages in frontend and backend. With the knowledge

of a single language, one can be established as a full stack developer. It is a good stack

for developing dynamic and high performing applications. Code sharing and reusability

help to lessen the number of lines of code. Moreover, using a common language helps

in better team efficiency, since all the team member is working on the application.

Besides, developers do not need to worry about the syntactical differences as the same

language is being used for the application. (MDN Web Docs. 2020).

According to the report (PayPal Engineering, 2020), PayPal after moving from JAVA

language to NodeJS for their server-slide application found a tremendous increase in

performance with NodeJS. It claimed that (PayPal Engineering, 2020), the development

of an application with JavaScript required less than half of the time as compared with

Java and had fewer people, 33% fewer lines of code and 40% fewer files”. Similarly, in

terms of performance, “NodeJS application had double the requests per second and

there was a 35% decrease in the average response time” (PayPal Engineering, 2020).

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

JavaScript Versions

Ever since, JavaScript was standardized by Netscape in 1996 with ECMA (Ecma

International – European Association for Standardizing Information and Communication

Systems), JavaScript has gone through major changes in the syntax of code. ECMA sets

the standards and works to make JavaScript modern and relevant to the current

technological standard. Different versions were being released in space of considerate

time until 2015, but they decided to release new version afterwards each year. Thus,

ECMA was changed to ECMAScript (ES6) but popularly it is known as ES6.

ES6 was released to support writing complex applications, libraries as well as code

generators. More importantly, its main purpose was to keep the versioning system simple

and better. As a result, the new version introduced several new features such as

modules, classes, arrow functions and ES6 proxies to name a few (Rauschmayer, 2014)

Although ES6 was released in 2015, most of the browsers did not support new features.

Therefore, Babel and Google Traceur were used as transpilers to convert the JavaScript

code written in ES6 to ES5. Later, all the modern browsers supported new ES6 features

and the use of transpilers is obsolete. Table 1 shows the list of different ECMAScript

editions, their official name and release date.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Table 1. List of ECMAScript Edition and published date.

Edition Official name Published Date

ES10 ES2019 June 2019

ES9 ES2018 June 2018

Es8 ES2017 June 2017

ES7 ES2016 June 2016

ES6 ES2015 June 2015

ES5.1 ES5.1 June 2011

ES5 ES5 December 2009

ES4 ES4 Abandoned

ES3 ES3 December 1999

ES2 ES2 June 1998

ES1 ES1 June 1997

This detailed explanation of each edition is beyond the scope of this thesis but some

common features that were introduced in ES6 are shown in Figure 1. Since this thesis is

about the development of backend, an explanation of promise and async function is

provided.

Promises

Promises were introduced in ES6. Promises make work slightly easier when it comes

to writing complicated asynchronous functions. A promise is an object with “then” and

“catch” methods. Either of the above methods is called when the promise returns either

a value or error but never both. A promise object is created from promise

constructor/class and needs a callback function. This callback function receives the

“resolve” and “reject” function parameters.These methods are chainable as shown in

Figure 1 under Promises.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Async/Await

ES7 introduced a new way to add async behaviour in JavaScript thereby making it easier

for developers to work with Promise. With the introduction of the async and await

keywords, the async keyword can be used before a function declaration. This keyword

makes it asynchronous, which means that when the function is called, a promise is

returned, and normal code execution will commence as usual. Similarly, the await

keyword can be used inside the same function which blocks the execution of JavaScript

in that context until the promise it is awaiting is settled. This gives a cleaner syntax to

work with promises in asynchronous function.

Figure 1. ES6 important features.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

3 BACKEND DEVELOPMENT

Until now, the background for the web, purpose for the thesis and JavaScript and its

different version was discussed. In this section, the focus will be on the introduction of

the technologies that are going to be used in the project. Thus, the section will explore

on NodeJS, Express, MongoDB, Mongoose and a brief introduction on React as

boilerplate was used during Docker use. Even though the focus on frontend development

is beyond the scope, it is necessary to introduce the brief concept as it is vital for full-

stack development.

3.1 Node and its Working pattern

JavaScript primarily had been a language for browsers until Ryan Dahl created NodeJS

in 2009. It is a JavaScript runtime built on Google Chrome’s V8 JavaScript engine (The

Odin Project, 2020). This approach allowed JavaScript to run on a server. Suddenly,

developers did not require to have additional language such as PHP or Python to write

server-side code. Instead, they could focus on JavaScript.

NodeJS is a non-blocking, asynchronous and event driven I/O system. Asynchronous

means that sequence or order in which the program runs is not put into consideration.

Instead, functions that were written will get called when there is an occurrence of events

like network request (event-driven) (The Odin Project, 2020). If the code is processed

synchronously, then there the steps in which the code is written will matter. When a

function is called, the program will wait until the function returns before moving into the

next step. This process is considerably slow.

In NodeJS, when a file system is reading the file, it uses the idle time to handle another

request. When there is the completion of a file system, it tells NodeJS to take the

resources and send to the browser. Event Loop is a program that waits for events and

dispatches upon receiving. “Node uses an event loop that facilitates non-blocking I/O

combined with event-driven I/O, a scheme where a registered event callback function is

invoked when some action happens in the program “(Chettri, 2016).

It is also important to note that there are two types of operations. I/O operations like

read/write of file, network as explained above and other CPU intensive operations like

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

editing an image, compressing and decompressing etc. Latter tasks require a lot of time

and would have a negative effect if the process runs on the main thread. Thus, such

operations should run on the background thread and upon completion, the result should

be sent to the main thread.

Thus, there is a need for “two different thread pools for the background work that the

application will do” (Hellman, 2020). As most of the operations are I/O, it should have a

larger pool, but threads for CPU-only operations also should be considered (Hellman,

2020)

Figure 2 illustrates the general working process of NodeJS. NodeJS creates an event

loop to execute all the requests that comes to the server. As a result, it increases the

speed and performance of an application.

Figure 2. Working of I/O in NodeJS (Ofogbu, 2018).

NodeJS’s performance and stability are constantly being improved regularly. The new

JavaScript features that are introduced in the yearly release of ECMAScript are

integrated into NodeJS in its new releases.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

3.2 Express

Express is a web framework written in JavaScript and hosted within NodeJS runtime

environment. It is also the most popular NodeJS web framework and provides useful

features like writing handlers for requests with different HTTP verbs at different URL

routes, adding middleware etc. along with the core node module. With Express, one can

speed up the web development process with ease (Express Documentation, 2020).

“Express, is deliberately a very lightweight web application framework, so the main

benefit comes from the use of third-party libraries and features” (Express Documentation,

2020). With Express, use of middlewares is possible. Middleware is/are functions that

are invoked by the Express routing layer before final request handler is made.

Middlewares have access to the request, the response object along with the next function

(Express Documentation, 2020). The middleware function that is loaded first will get

executed first as shown in Figure 3.

Figure 3. Working of Middleware (Ramirez, 2020).

The middleware takes the request object, executes the code, changes the request as

well as response objects and calls the next function. This activates the next middleware

if there is any in the queue.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

3.3 MongoDB

MongoDB is a document-based database that is designed to make development easier

and scalable. Unlike NoSQL which uses traditional “relational” data storing methods,

MongoDB stores the data more flexibly as there is no format or structure like in SQL

database. In this method, BSON format is used to store the data. This format is also

called binary JSON. The document contains different data types like strings, numbers,

floats, arrays and objects. MongoDB supports all the CRUD operations like querying,

inserting, editing and deleting in the database (Subramanian, 2018).

MongoDB supports storing of dynamic data. Unlike the compulsion for storing similarly

structured data in the same group in the SQL database with key-values, the documents

can be under same collection. Such an approach provides more flexibility to store non-

alike data. Moreover, there is improvement in speed of the database operations. There

are also unnecessary hassles to connect different tables like in traditional database

(Subramanian, 2018).

3.4 Mongoose

Mongoose is an Object Document Mapper (ODM) meaning that it is possible to define

objects with a schema that is mapped against a MongoDB document (Munro, 2020). The

data needs to be structured properly thus; Mongoose helps in organizing the data. With

the help of Mongoose, schemas can be defied with strongly typed data. With the

schemes, models can be created based on the data. It can validate the data. It has also

the ability to allow only valid data types to be saved in the database. Later, Mongoose

Model is mapped to MongoDB Document in reference to Model’s schema definition.

Furthermore, features provided in MongoDB are enhanced with additional features to

make the querying easier into the database. Most importantly, connection with the

database can be done with the server and along with it can perform similar database

CRUD operations (Munro, 2020).

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

3.5 Frontend Technology (React)

React is one of the modern web libraries for front-end application built by Facebook. It is

a JavaScript library used for DOM manipulation to handle navigation through HTML5

push state. In other words, it is a view library that uses components to change contents

on the page without refreshing, which is the core principle behind single-page

applications. It is used along with react-router to create single-page web applications.

This makes websites run fast as a user does not have to wait for different pages to load.

It also reduces strain on the server.

The most interesting feature of React is its components. The main ambition behind its

development was to make it modular so that it can be reused into different parts of the

application.

React uses a syntax called JSX, which is like HTML but uses JavaScript. JSX allows

specifying the DOM elements before the components are inside of JavaScript files. This

makes logic that is behind the component and visuals all in one place.

The main performance for React comes by utilizing virtual DOM. Unlike other

frameworks or libraries, it directly does not operate on browser’s DOM. Rather than

manipulating the document in the browser, which is quite slow, it uses virtual DOM to

compare it with real DOM to tell which elements need to be updated and which are not

to be. The Virtual DOM exists entirely in-memory.

Components

React allows users to split any page of the application into independent, reusable pieces

called React Components. React components takes in the data and return the desired

output through the render method. Each class-based component has several lifecycle

methods while functional component does not have a lifecycle method, but later Hooks

have been introduced and can function like a class-based component.

The state in the class-based component is a JavaScript object used for recording and

reacting to user events. Whenever a component state is changed, the component and

all its child components re-renders immediately. States hold values throughout the

component and is passed down to other components as props when there is need to

pass the state.

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Virtual Document Object Model

The HTML DOM was mostly used until the development of React. They were originally

intended for static pages and was not optimized for creating dynamic UI. Before, when

there was an update in any of the DOM node, HTML DOM needed to update every node

and re-render the web page with corresponding CSS and layout. It was common for a

single web page application to re-render the whole page when event listeners were

attached to them. In dynamic web pages, the HTML DOM must check for every change

in each node at a regular time. This considerately reduced application performance. In

Figure 4, the difference between DOM and Virtual DOM is presented.

Figure 4. Virtual Dom vs DOM.

The virtual DOM was invented as a solution to this inefficiency. It is lightweight and is

detached from the browser. It can be updated without any changes affecting virtual DOM.

React has Virtual Dom built-in module called React DOM. When the updates are

supplied. React uses a process called reconciliation, using an algorithm that compares

changes to know which elements need updating. React then change those elements

only without affecting the other elements that don’t need change (OnCrawl, 2020).

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

4 CONTANERIZATION WITH DOCKER

The need for virtualization dates to the 1960s when computers could only perform an

individual task due to technical limitations. Bigger projects that required more resource

evolved as the result computers needed to be more robust. New hardware and software

were requested from different vendors that could support multitasking (Oracle, 2019).

Ever since virtualization has been constantly evolving. The major advantage of

virtualization is the isolation at the highest level from the machine that supports the

virtualization. This makes it possible to select either the host OS or the virtualized OS.

Nevertheless, such implementation has the main drawback regarding the use of

computer resource. The amount of resource needed to virtualize is higher for a

completely isolated system and does not share anything with the host machine, while

containers share the host OS kernel (Docker Documentation, 2020). Virtual machines

that are commonly used by individuals and organizations are Oracle’s Virtual Box,

VMWare’s vSphere or Microsoft’s Hyper-V (Kleyman, 2012).

A container in Docker is a software that wraps all the code including all the dependencies

to make an application to run smoothly from one platform to another (Docker

Documentation, 2020). Both containers and virtual machines help to create a self-

contained virtual package. Despite being used for a similar purpose, the architecture,

advantage and fallbacks of each system are slightly different from each other and

explained in Section 6.1

4.1 Docker containers vs Virtual Machine Architecture

From Figure 5, it is seen that the container shares the kernel of the host OS with other

containers, and the shared part of the operating system is read-only. Containers share

common OS with the help of Docker Daemon which is an engine for Docker. Thus, the

containers are lightweight. This enables developers to deploy multiple containers on a

single server or virtual machine. There is no need to dedicate the entire server to a single

application. As there is only one OS to maintain, scaling becomes easy and fast without

the need for more server space.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Figure 5. Docker Architecture vs Virtual Machine Architecture (Yadav, Garg and Mehara,
2019).

However, the container has also a few disadvantages. As container shares a kernel with

the container host, security vulnerability in the OS kernel is a threat to all containers on

the machine, Besides, Containerization is still a new solution with variation in

implementation, so adoption could be a challenge for some. Containers are better when

developers have to lower the number of servers for multiple applications.

Virtualization, as in Fig 5, enables running of multiple operating systems a server in total

isolation. A hypervisor is used to control different running OS. Each OS needs own

dependencies and own CPU and memory resource. The main benefit of using virtual

machines is that the virtual machine image looks like a data folder. Each can be copied

and moved like usual files. This nature helps teams to centralize workloads and run many

different OS without on-premises hardware (Burwood Group, 2019). Updating apps and

OS would be easy without affecting the end-user experience.

However, virtual machines are not without their disadvantages. As each VM includes an

OS and a virtual copy of all the hardware, they require significant RAM and CPU.

Besides, moving VMs between public clouds, private clouds and traditional data centres

is also challenging (Burwood Group, 2019)

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

4.2 Docker Objects

During the implementation phase below listed objects are heavily used. This section

provides a brief overview of them.

Image

An Image is a read-only template to build containers with instructions in it. It is based on

another image with some customization (Docker Documentation, 2020). Docker images

are created by writing the steps using Dockerfile. Each step creates the layer in the

image. During any rebuild or change, only the layers from where the changes have been

made are rebuilt. Thus, when writing Dockerfile, attention must be paid on the sequence

of steps. Due to this reason, the images are small, lightweight and fast as compared

other virtualization technologies (Docker Documentation, 2020)

Containers

 Containers are runnable instances of an image that can be created, started, stopped,

moved or deleted by using the Docker API or CLI (Docker Documentation, 2020).

Containers are isolated from other containers and the host machine.

Storage

 Data can be stored within the writable layer of a container in the form of persistent

storage. In this case, Docker provides four options like data volumes, data volume

container, storage plugins and directory mounts. Data volumes provide the ability to list

and rename volumes and list the container associated with the volume.

 In a data volume container, container hosts a volume and mount that to other containers.

Since the volume container is independent of the application container, it can be shared

among the containers.

Storage plugins connect the external storage platforms by mapping from the host to

external sources like storage array or an appliance.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

5 PROJECT IMPLEMENTATION

5.1 Project Introduction

The project is chosen out of personal choice and different functionalities that are

prevalent in modern-day web application was made sure to be included in the prototype.

As the author has some daily writing habit, an application that is capable of keeping notes

was thought of and development was carried out. The main problem that the author had

was the lack of a fixed system to record the notes. Sometimes, there is the use of a paper

form like a diary, but other time uses word document or online form to record notes.

The application facilitates daily writing. Also, writing becomes manageable in one single

private application. The project has CRUD (Create Read Update Delete) operation which

will help to create, read, update and delete the notes. Besides, the system has the

authentication system developed so the owner of notes will be able to perform CRUD

operations.

Features and Functionalities

After investigating the problems and doing the requirements analysis for the project, the

following requirements were listed for a prototype to be built.

• Users shall be able to create an account.

• Users shall be able to login into the system with their credentials.

• Users shall be able to be greeted with welcome mail upon signing up.

• Users shall be able to add notes in the application.

• Users shall be able to edit their individual note in the application.

• Users shall be able to see all their notes in the application.

• Users shall be able to fetch each note in the application.

• Users shall be able to delete each note in the application.

• Users shall be able to add an image in their profile.

• Users shall be able to delete an image in their profile

• Users shall be able to logout of the application.

• Users shall be able to remove their account from the application.

• Users shall be greeted with goodbye message upon deleting of their account.

• Timestamps for the performed operation shall be noted.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Based on the requirements listed and overview of the application as shown in Figure 6,

MVC (Model View Controller) architecture is used to design and develop the backend of

the project.

Figure 6. Overview of the application.

Use of MVC architecture is also one of the modern features of the programming

paradigm. MVC separates the representation of the application domain (Model) from the

display of the application’s state (View) and interaction control (Controller)

(Syromiatnikov and Weyns, 2014).

Thus, the application is divided into three separate parts, a Model, a Controller and a

View which all communicate with each other. Models are an object which contains the

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

data of the application. They define the data types that live in and receive the data from

the controller. They also send the data to the view. The view of an application is the front

face of the application where the application user sees and interacts. Users provide the

data through the view of the application. Usually, front-end design is the view layer. The

controller is the backbone of an application, where all the logic required for the

application is kept. CRUD actions such as creating, retrieving, editing and deleting data

from models are handled by the controller.

Figure 7 illustrates the scopes of model, view and controller of an MVC application and

how they communicate with each other.

Figure 7. MVC architecture (Syromiatnikov and Weyns, 2014).

As shown, the view displays the data from the Model, observers the Model and redraws

itself when some data is changed from the user. The controller handles the user,

observes the model and triggers Model methods on user actions. In the end, the view

gets the updated data from the model and displays the same data (Syromiatnikov and

Weyns, 2014).

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

5.2 Development environment

Visual Studio Code is a lightweight and powerful source code editor available for

Windows, macOS and Linux and comes with built-in support for JavaScript, TypeScript

and Node.js (code, 2020). VS Code is a product of Microsoft and was first released in

2015. Since then, it has quickly become leading code editor for JavaScript developer in

the market. The version Visual Studio Code used for the development of this application

is 1.44.2. Additionally, a package named Node.js and NPM is installed to facilitate the

development of Node application.

Git was chosen as the version control system (VCS) which made it easier to track

changes made in files. It is a powerful and popular tool for tracking changes. According

to a survey conducted by Stack Overflow among the professional software developers

in 2018, lion’s share 88.4 percentage of respondents used Git as a version control

system (Stack Overflow, 2020). Git thinks of its data more like a series of snapshots of

a filesystem. With Git, whenever there is commit, or save, Git takes a picture of what all

files look like at that particular moment and stores a reference of that snapshot. If files

have not been changed, Git doesn’t store the file again, just links it to the previous

identical file that has already been stored. This way it maintains its efficiency. Git

considers its data like a stream of snapshots. (Git, 2020)

The operating system chosen was macOS Mojave 10.14, on a 2017 MacBook Pro 15".

This is the primary development machine of the author and it has been heavily

customized for the comfort of development. Visual Studio is heavily customized with

external extensions for comfort. Unix-based OS is also considered ideal for web

development as it offers quick and easy access to the command line and working is

similar to the Linux server.

The used terminal was ZSH. It is an extended version of Bourne Shell (sh) with new

features. It supports plugins and themes. It has intelligent command completion, spelling

correction and improved git integration over alternative software.

5.3 Package Installation and database connection

The development environment was set up with NodeJS installed as explained earlier in

the chapter. The tools and nodes packages that are required were installed with Node

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Package Manager. (NPM) It is an open-source package manager used for installing

JavaScript packages. Node packages that were used were Express, mongoose,

Nodemon, SendGrid etc. After installing NodeJS, Express framework was installed with

the command “sudo npm install express”. Nodemon is used for restarting the application

automatically after any changes are made to the server-side code. It was installed with

the command “npm install nodemon -save -dev”. The use of flag installs the

dependencies only in the development environment but not on the production

environment.

After installing the required Packages, MongoDB database was setup. The cloud version

of MongoDB was used after signing up in the MongoDB website and the free cluster was

chosen. The current IP address was added to get access to the and MongoDB driver

was installed with command “npm install mongodb”

After installing MongoDB, mongoose with installed with the command “npm install

mongoose” to get the latest version. As stated earlier, mongoose is the query language

for MongoDB. The database connection was successful between application and the

server with the use of URL that has username and cluster password created during the

setup of the cluster. Furthermore, Schemas were created and put inside the model which

is discussed in a topic latter.

SendGrid

“SendGrid is a cloud-based SMTP provider that allows to send email without having to

maintain email servers” (SendGrid, 2020). SendGrid is used to send email from the

application in different cases like, sending a link to the user when resetting a password,

purchasing something online, successful registration and so on. Hence, SendGrid is a

third-party email server that sends an email securely and reliably.

 SendGrid uses two ways to send an email; through SMTP relay or web API. In the

project, SendGrid follows a Web API method to send an email. A free account was

created on the SendGrid website and the package was installed using the command

‘npm install --save SendGrid’

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Multer

Multer is a Middleware for Express and Node.js which is used for handling form data. It

adds a body object and a file/files object to the request object. The body object contains

the values of the text fields of the form and the file/files object contains the files uploaded

through the form (Bcrypt, 2020). The purpose of use of Multer in the project is to help

uploading of files into the application. It was installed using the command “npm install --

save Multer”

Bcrypt

Bcrypt is an encryption library used to hash the password. The password should not be

put in a plain text in the database instead it should be hashed and salted. This package

was installed into the application using “npm install bcrypt”

JSON Web Token

“JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and

self-contained way for securing transmitting information between parties as a JSON

object” (JWT, 2020). It is used in the Authorization of a user during the login. When the

user is logged in, each request from the user will include JWT, so that the user can

access routes, services and resources. It contains header, payload and signature. It was

installed with the command “npm install jsonwebtoken”

5.4 Models

Models are like a blueprint for the data types that remain in the system registers in the

database. Models were created to define a standard structure for the documents. The

application consists of two models namely user Model and Note Model. A schema for

the notes object is created in the note model and is exported to be used in other files of

applications as shown in Figure 8.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Figure 8. Notes Model.

The model only accepts properties that are defined in Schema as shown in figure 8. For

instance, the title property is required and must be a string. The trim property is used to

sanitize the data that comes in from the user. If the user types “ user “ taking the

unnecessary spaces, it trims the unnecessary space. Similarly, the note model also

contains the title, description, owner and “myday” property. The owner object stores the

reference of the user who created the note. The person who logs in into the system and

creates notes is the owner. ‘timestamps’ property is used to record the time of the

creation of post and its modification. Finally, the Note model is exported so that this

module can be used in other parts of the application. Making such files help to reduce

the code so this is also one practice of modern web programming.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Filtering and Sanitizing

The data that the user sends to the server should always be checked. The users that

use application could be vulnerable to harming the application by sending the scrips or

by trying to steal confidential information from the server. So, any data that a user sends

are a security threat, therefore, data needs to be validated and sanitized. Validation can

be implemented in both the client-side and server-side, but client-side validation does

not prevent the application from attacks thus, server-side is validation is carried out when

dealing with user data. To carry out this task, Validator was chosen.

Validator is a third-party package that validates and sanitizes the data which are sent by

the user. It is installed using the command ‘npm install validator’. The incoming data is

checked in each of the routes and if there are any errors, they are sent back to the user

to correct and submit the data again. Unnecessary spaces are automatically removed

by the validator. Likewise, the input is sanitized with the validator before keeping

5.5 Controller

The controller has all the server-side logic of the application where the REST API is

implemented. The ‘users.js’ file contains the logic and the routes for all the user-related

activities such as displaying the register and login page, registering a user, uploading

the profile image into to the database and checking for the credentials before logging

into the system. It also has all the CRUD routes for updating credentials, logging out or

deleting the account. The “note.js” file has all the logics that are related to updating,

creating, reading and deleting the note by the owner. The main logic in controller involves

the use of the database. Figure 9 shows the folder structure of the project.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Figure 9. The structure of the project.

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

5.6 Authentication

Authentication is the process in which a user verifies themselves to have access in the

application. There are several ways users can verify themselves to the server. They can

verify with the login form, fingerprint, online banking data, voice etc. However, the most

common form is the authentication with the login form that has email and password and

it was implemented in the application.

A user upon creating an account for themselves with information such as email, name

and password. The password is encrypted before being saved in the database. The key

concept of handling authentication is the understanding of JWT. When the user tries to

log in, the server verifies the credentials of the user by comparing the information that

was stored during the creation of the account in the database. If the data match, the

server sends the JWT token and a session is created and stored in the user’s browser

as a cookie. The cookie is sent with every other request to establish the connection. The

session is destroyed after the user is logout out from the application and during the

closing of the browser.

 To access the services of the application such as adding notes, adding profile image,

changing profile image, editing notes and so on the user must log in to the application

first.

Figure 10. Sign-up to the application.

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

5.7 Testing with Postman

Postman is a platform for testing APIs, by executing requests and validating responses.

API testing is a part of integrating testing that determines whether the APIs meets the

users' expectations in terms of application functionality, reliability, performances, and

security. Postman returns the response for the test carried out. API testing helps to

determine the structure of the output, checks the response based on a request, and

checks the time the API takes to retrieve and authorize the data.

All the backend of the application was tested in the Postman by sending a request to the

server and getting the response back. In the Postman, users can set up all the headers

and cookies the API needs and check the response. It works in the server-side and

makes sure that each API endpoint is working as expected. Postman provides a

collection of API calls, and one must follow the collection of API calls for testing APIs of

the application (Kotecha, 2018). An API response consists of the body, headers, and the

status code (Postman, 2020). A request can perform CRUD operations on data and send

parameters, authorization details, along with other data that are required. When the

request is sent, Postman displays the response received from the API server in a way

that lets the user examine, visualize, and troubleshoot if needed. All the responses can

be saved and are available whenever the request is loaded. The Postman body tab

consists of several tools to help the user to understand the response quickly. User can

view the body in one of three views: pretty, raw, and preview. The pretty model formats

JSON or XML responses, so the responses are easier to view. The preview model is

helpful to restrict the default return of HTML errors. Headers are displayed as key-value

pairs and describe the header according to the HTTP specification. Postman breaks

down the size of the response into body and headers, the sizes of the responses are

approximate.

By default, Postman selects the GET method for a new request. Different request

methods are available in Postman to send data to APIs. Below are the four request

methods used frequently to test the APIs of the application

• POST Request – Adding new data

• GET Request – Updating the data

• PATCH Request – Updating some existing data fields

• DELETE Request – Deleting existing data

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

For instance, Figure 11 shows the output during the Login of the User. Postman

generated the status code of 200 which meant succeeded in login. Similarly, all the API

endpoints were tested with the Postman and the desired response status code was

received during the test.

Figure 11. Login Testing with Postman.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

5.8 Docker Implementation

As mentioned earlier in the docker objects; section, docker images are built with

Dockerfile, where all the steps are defined in Dockerfile. When creating the Dockerfile,

three things need to be considered which are mentioned below.

• The base image needs to be specified

• Run some commands to install dependencies

• Command to run on the container on startup

In the project, two Dockerfile were created meaning the project has two images, each for

the frontend and backend of the application. Although the development of frontend was

beyond the scope of this thesis, a project which had frontend was to merge in the

containerization process. This would resemble real project and thesis could also explore

the ways to manage two containers instead of one with the use of Docker-compose.

Figure 12 shows the Dockerfile created for backend development.

Figure 12. Dockerfile of backend.

The image has the base image of the Node. Alpine is the lightweight and stable version

Node. The working directory is defined and package.json file will be copied to the working

directory and then the dependencies for the project will be added. Finally, the command

“npm run start” is executed.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

The file should be named as Dockefile and “docker build . -t image-name:tag sh”

command will build the image. The command will give a shell session inside the

container to interact with it. “docker ps” will list out the running container.

Dockerfile is used to manage a single container but when multiple containers should be

considered, it becomes difficult to manage only with Dockerfile. The applications in real

life have external dependencies database or external service that the application has to

rely upon. The communication between the containers becomes difficult to establish so

Docker-compose comes into the scene.

Docker Compose

Docker Compose is a tool for defining and running many containers of Docker

applications. A YAML file is used to configure full application including its all

dependencies in a single file, which makes development easy. The building of Docker-

compose file can be divided into six main steps as bellows.

1. Splitting into services

2. Pulling or building image

3. Configuring environment variables

4. configuring networking

5. setting up volumes

6. Building and running

With these above-mentioned steps, Docker-compose file is created as shown in the

figure below. Two images that were built previously using the docker file was listed under

services. The build will investigate the context directory and run the Dockerfile. Creating

an image means taking a snapshot of all the source code inside the directory. A docker

volume has a reference that points to the local directory from which the mage was made.

This is the way to link files and folders in a docker container to the files in the local

directory. Environment variables that needed for the projects to run are kept under

environment.

Running of the container is done with the command “docker-compose up -d (detach)”

The “d” flag help to launch the containers in the background. “docker ps” command will

list the running containers.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Figure 13. Docker-compose.yml file of the project.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

6 RESULTS AND DISCUSSION

The MEAN and MERN stack are the buzzing stack among the developers. The only

difference between them is either the use of React or Angular for the frontend

development. However, the backend development of both the stack is the same which

the thesis tried to explain and implement.

In the Notes application, when testing the API endpoints, a user was able to create an

account, log in into the system with their credentials, was greeted with welcome mail

upon signing up in their signing up email. The user was able to add notes, edit, fetch

each note or all notes and delete the particular note. Besides, the user was able to update

their credentials and upload their Image and logout from the system. Finally, when

deleting the account from the system the user was sent a goodbye email. The application

was a success as all the routes worked correctly either when performing the CRUD

operation or when adding an external package into the app like for uploading the image

or sending the email. Thus, the application fulfilled its ambitions in creating the backend.

Although the author was familiar with the JavaScript, the development of backend was

comparatively new. The main challenge in the application was learning about the Models

methods and how the Models interacted in the NoSQL database. NodeJS supporting

different external packages made work easier but understanding the integration into the

application took a considerate amount of time. The app in itself has all the basic

functionalities of CRUD operations, use of the external library, authentication system but

more additional features can be implemented like role-based authentication, testing and

frontend implementation etc.

The Use of Node, Express, MongoDB provided much flexibility as many third-party

packages can be easily integrated. The flexibility is one of the main reasons for being it

so popular. Furthermore, knowledge of JavaScript alone can be enough for developing

a full application so, there is not any need to switch between different programming

language. Likewise, the use of JSON format and cloud service by MongoDB to store

data is useful and easier to transform the work into production mode. Finally, the MVC

architecture could be easily applied so, the logic, data and the view are distinct.

In addition to the development of backend, packaging it with Docker was also other main

ambition and it was carried out successfully as shown in Figure 14.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Figure 14. The result from docker-compose.

Two Dockerfile were written to create the image for the frontend and backend and listed

as services in the Docker-compose file. Instructions that were listed in the file were

carried out to run each image in their own container. The main benefit of docker is that

the whole project is summarized on a single file and when other user needs to run the

same project, the user does not need to take care of the installation of individual

component and dependencies. This would save time and becomes handy in CI/CD

(Continuous Integration/Continuous Delivery) environment where each small change

involves a workflow that implies running the stack each time to verify that it is stable.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Since this process happens several times a day and sometimes concurrently when

changes are made from different persons simultaneously, docker helps to get faster

software iterations without the need to spend on better hardware (Docker

Documentation, 2020).

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

7 CONCLUSION

This thesis aimed to study the backend of web development with NodeJS, MongoDB,

Express, containerization technology, develop a prototype based on learning and finally

package the developed application with Docker. A significant amount of time was

invested in learning each technology and knowledge was later used to develop the

application and packaged with docker. The key concepts that were understood are

discussed in the theoretical part of this thesis followed by an in-depth guide to build the

application.

The prototype built was a web application for keeping daily notes, the idea of an online

personal diary that manages the notes or memos written in it. Users were able to register

into the application with an email address and password and logging-in using the

credentials. The registered users were able to use different features such as creating,

editing, updating, deleting, uploading images, getting emails etc. The application uses a

modern paradigm of writing code e.g. making the code modular, separation of logic.

The developed prototype is wrapped into a container using Docker which enables the

application to be portable, meaning that any other developer who wants to run the

application does not need to take care of the installation of dependencies. The DevOps

process is carried out fast, resulting in the faster lifecycle of software development.

Lastly, the thesis is the documentation of developing a backend for MEAN/MERN stack

and implementing Docker. With the growth of internet user around the world increasing,

businesses whether small or large are modelling into an online business, so the need for

web technology is more than ever. Consequently, NodeJS offering client-server

development integration, aiding code reusability in web applications, is a perfect tool for

developing fast, scalable network applications (Chaniotis, and Tselikas, 2014).

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

REFERENCES

Bcrypt, G., 2020. Kelektiv/Node.Bcrypt.Js. [online] GitHub. Available at:

<https://github.com/kelektiv/node.bcrypt.js/> [Accessed 26 April 2020].

Burwood Group. 2019. Containerization Vs. Virtualization: What's The Difference? [online]

Available at: <https://www.burwood.com/blog-archive/containerization-vs-virtualization>

[Accessed 16 April 2020].

Chaniotis, I., Ioannis, K. and Tselikas, N., 2014. Is Node.js a viable option for building modern
web applications? A performance evaluation study.

Chettri, N., 2016. A Comparative Analysis of Node.Js (Server-Side Javascript). [online]
Repository.stcloudstate.edu. Available at: <https://repository.stcloudstate.edu/csit_etds>
[Accessed 1 May 2020].

Code, V., 2020. Documentation for Visual Studio Code. [online] Code.visualstudio.com. Available
at: <https://code.visualstudio.com/docs> [Accessed 26 March 2020].

Docker Documentation. 2020a. Docker Documentation. [online] Available at:

<https://docs.docker.com/> [Accessed 27 April 2020].

Docker Documentation. 2020b. Docker Overview. [online] Available at:

<https://docs.docker.com/get-started/overview/#docker-architecture> [Accessed 29 April 2020].

Oracle. 2012. 1.1.1. Brief History of Virtualization. [online] Available at:

<https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html> [Accessed 25 April

2020].

Express Documentation. 2020. Using Express Middleware. [online] Available at:

<https://expressjs.com/en/guide/using-middleware.html> [Accessed 19 April 2020].

Fullstackopen.com. 2020. Fullstack Part0 |. [online] Available at:
<https://fullstackopen.com/en/part0/fundamentals_of_web_apps> [Accessed 25 March
202Heading of Appendix

Git-scm.com. 2020. Git - What Is Git?. [online] Available at: <https://git-
scm.com/book/en/v2/Getting-Started-What-is-Git%3F> [Accessed 26 March 2020].

Hellman, E., 2020. Understanding CPU And I/O Bound For Asynchronous Operations. [online]
Hellsoft. Available at: <https://www.hellsoft.se/understanding-cpu-and-i-o-bound-for-
asynchronous-operations/> [Accessed 6 May 2020].

JWT, D., 2020. JWT.IO - JSON Web Tokens Introduction. [online] Jwt.io. Available at:
<https://jwt.io/introduction/> [Accessed 20 April 2020].

Kleyman, B., 2012. Hypervisor 101: Understanding the Virtualization Market. Available at:
http://www.datacenterknowledge.com/archives/2012/08/01/hypervisor-101-a-look-
hypervisormarket/ [Accessed 28 March 2020].

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

MDN Web Docs. 2020a. About Javascript. [online] Available at: <https://developer.mozilla.org/en-
US/docs/Web/JavaScript/About_JavaScript> [Accessed 10 March 2020].

MDN Web Docs. 2020b. Express/Node Introduction. [online] Available at:

<https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction>

[Accessed 13 April 2020].

PayPal Engineering. 2020. Node.Js At Paypal. [online] Available at: <https://medium.com/paypal-
engineering/node-js-at-paypal-4e2d1d08ce4f> [Accessed 26 March 2020].

Munro, J., 2020. An Introduction to MongoosefFor Mongodb and Node.Js. [online] Code Envato

Tuts+. Available at: <https://code.tutsplus.com/articles/an-introduction-to-mongoose-for-
mongodb-and-nodejs--cms-29527> [Accessed 18 April 2020].

Ofogbu, V., 2018. The Only Nodejs Introduction You’Ll Ever Need. [online] codeburst.io. Available

at: <https://codeburst.io/the-only-nodejs-introduction-youll-ever-need-d969a47ef219> [Accessed

11 April 2020].

OnCrawl. 2020. How Does A Browser Create A Web Page? - Oncrawl. [online] Available at:

<https://www.oncrawl.com/technical-seo/how-does-a-browser-create-a-web-page/> [Accessed

18 April 2020].

Postman,. 2020. Responses. [online] Postman Learning Center. Available at:

<https://learning.postman.com/docs/postman/sending-api-requests/responses/> [Accessed 30

April 2020].

Ramirez, J., 2020. Jorgeramirez/Se2019-Node-Express. [online] GitHub. Available at:

<https://github.com/jorgeramirez/se2019-node-express/blob/master/day3/README.md>
[Accessed 29 April 2020].

Rauschmayer, A., 2014. Speaking Javascript. Sebastopol, CA: O'Reilly Media, Inc.

React Kung Fu. 2020. The Difference Between Virtual DOM And DOM. [online] Available at:
<https://reactkungfu.com/2015/10/the-difference-between-virtual-dom-and-dom/> [Accessed 2

April 2020].

Runestone.academy. 2020. 1.2. History — Fundamentals Of Web Programming. [online]
Available at:
<https://runestone.academy/runestone/books/published/webfundamentals/WWW/history.html>
[Accessed 26 March 2020].

Sendgrid, d., 2020. [online] Sendgrid.com. Available at: <https://sendgrid.com/wp-
content/uploads/2016/09/SendGrid-Implementation-Review.pdf> [Accessed 26 April 2020].

Stack Overflow. 2020. Stack Overflow Developer Survey 2018. [online] Available at:
<https://insights.stackoverflow.com/survey/2018#work-version-control> [Accessed 26 March
2020].

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Sujan Pokharel

Subramanian, V., n.d. Pro MERN Stack: Full Stack Web App Development With Mongo, Express,

React, And Node. Apress, p.93.

Syromiatnikov, A. and Weyns, D., 2014. A Journey through the Land of Model-View-Design
Patterns. Working IEEE/IFIP Conference on Software Architecture 2014.

Theodinproject.com. 2020. Introduction: What Is Nodejs | The Odin Project. [online] Available at:
<https://www.theodinproject.com/courses/nodejs/lessons/introduction-what-is-nodejs>
[Accessed 2 May 2020].

Yadav, A., Garg, M. and Mehara, R., 2019. Docker Containers Versus Virtual Machine-Based

Virtualization: Proceedings of IEMIS 2018. Emerging Technologies in Data Mining and

Information Security, (10.1007/978-981-13-1501-5_12).

