

Khoa Pham

Implementing Application with Modern
Web Technologies and Microservices

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

04 May 2020

 Abstract

Author
Title

Number of Pages
Date

Khoa Pham
Implementing Application with Modern Web Technologies and
Microservices

55 pages
04 May 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of Department ICT

This thesis aimed for student research work in applying modern web technologies to support

everyday problems in real life. Particularly, initiated with the idea of reducing the food waste

in supermarkets, the thesis created a platform for supermarkets and many kinds of organi-

zations to connect with each other simply. However, this thesis concentrated on developing

on the technical side with the aim to trial a large-scale application with numerous technolo-

gies combined all together for the higher efficiency in the web industry nowadays.

The technologies were chosen in this project including the TypeScript as the programming

language, React and Redux for front-end development, Node.js, Express, and MongoDB for

back-end development, and Docker and Kubernetes for the microservice architecture. The

project also used Google Cloud Platform for the deployment. Aiming for researching, this

project tried to reach new experiments to find out benefits and obstacles while building an

application in a more macro-model.

In conclusion, this project has been accomplished with such a lot of effort to widen

knowledge as well as experience in developing a demo large-scale web application. Despite

the time restriction, this project has completed adequate features as a real-life application.

Finally, from the technical field, this thesis may contribute to the research and development

in expanding those kinds of techniques in various systems.

Keywords TypeScript, React, Redux, Node.js, Microservices, Docker,
Kubernetes

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical Background 2

2.1 TypeScript 2

2.2 Front-end 6

2.2.1 React 6

2.2.2 Redux 10

2.3 Back-end 12

2.3.1 Node.js 12

2.3.2 Express 17

2.3.3 MongoDB 18

2.4 Microservices 18

2.4.1 Docker 18

2.4.2 Kubernetes 20

3 Implementation 21

3.1 Project Objective 21

3.2 Project Architecture 22

3.3 Project Structure and Setup 23

3.3.1 Project Structure 23

3.3.2 Project Setup 24

3.4 Front-end Implementation 27

3.4.1 React Application Structure 27

3.4.2 Tools and Libraries 28

3.4.3 Homepage 31

3.4.4 Routing and Authentication 32

3.4.5 Food Request 36

3.4.6 Real-time Messaging 38

3.4.7 Debugging 40

3.5 Back-end Implementation 41

3.5.1 Database 41

3.5.2 RESTful APIs and WebSocket 43

3.6 Kubernetes Orchestration 46

3.6.1 Production Containerization 46

3.6.2 Kubernetes Cluster 47

3.6.3 Kubernetes Configuration Files 48

3.6.4 Load Balancing 49

3.7 Deployment 50

3.7.1 Cloud Services 50

3.7.2 CI/CD Pipeline 51

3.7.3 SSL Certificate 53

4 Results and Discussions 54

5 Conclusion 55

References 56

List of Abbreviations

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

CLI Command-line Interface

DOM Document Object Model

ES6 ECMAScript 6

GCP Google Cloud Platform

GCR Google Container Registry

GKE Google Kubernetes Engine

HTML Hypertext Markup Language

IDE Integrated Development Environment

JSX JavaScript XML

NPM Node Package Manager

ODM Object Data Modeling

RDBMS Relational Database Management System

SQL Structured Query Language

SSL Secure Sockets Layer

TLS Transport Layer Security

1

1 Introduction

With 1.3 billion tons of food production wasted globally per year, food waste has become

one of the most attentive problems nowadays [1]. Particularly, the yearly 400 million kilos

of eatable food in Finland are thrown away [2]. Therefore, this thesis is initiated from that

idea and solves the problem with a web application named Food Supporter. Generally,

the Food Supporter application is designed with the purpose to solve the aforementioned

problem, especially in supermarkets by helping them in connecting to as many organi-

zations as possible to consume the edible food instead of throwing it away.

Food Supporter will create a platform where supermarkets and different kinds of organ-

izations including non-profit organizations, restaurants, and cafeterias can contact each

other conveniently. This platform is a web application built mostly with the most modern

web technologies for the most efficient and powerful performance developed in full-stack.

Ideated from those, this thesis as Food Supporter will mainly focus on the technical side

with an all in one application starting from the frontend, going through the backend, and

completing with the microservices. The technologies which will be used for this applica-

tion are TypeScript programming language, front-end technologies using React and Re-

dux, backend technologies using Node.js, Express, and MongoDB, and microservice

architectures with Docker and Kubernetes.

In the imagination of all the users (all supermarkets, non-profit organizations, restau-

rants, and cafeterias in the whole of Finland) joining into the system, this project is con-

sidered a large-scale application. That is why it is necessary to apply the above technol-

ogies for this thesis as technical research in developing new technologies into this web

application.

Besides, the Food Supporter application is aimed to respond as many queries as possi-

ble with an extremely large database, yet still ensures the high efficiency in workload. By

applying a complex combination of distinct technologies to solve a real-life problem, this

project is realistic and reachable enough in the research field or even developing more

in the future.

2

2 Theoretical Background

2.1 TypeScript

TypeScript, which is an open-source project developed by Microsoft in 2012, is consid-

ered a high-end programming language from JavaScript. Or, it, in another explanation,

is said to be another kind of advanced JavaScript [3]. TypeScript is designed by Anders

Hejlsberg, a founder of C# programming [4].

As a superset of JavaScript, programmers can use and develop simply TypeScript

through any JavaScript file by replacing the extension .js into .ts. This language is added

static typing options and object-oriented modules, including ECMAScript with the latest

updated version [3]. Also, TypeScript supports tools for large-scale JavaScript applica-

tions with cross-platform required a large number of codes such as Web browsers,

Backend, Desktop, Mobile Apps, and Cloud [5] [6].

In 2014, Google cooperated with Microsoft for using TypeScript to improve the Angular

2 framework. Since then, this language has become more popular for developers these

days. And regarding Stack Overflow’s 2019 Developer Survey, TypeScript was ranked

in 3rd place of the most favorite programming languages as illustrated in figure 1. [3]

Figure 1. The most favorite Programming languages via Stack Overflow’s Developer Survey in
2019 [11].

68.3

69.2

69.5

72.6

73.1

73.1

83.5

0 20 40 60 80 100

Clojure

Swift

WebAssembly

Kotlin

TypeScript

Python

Rust

Source: Stack Overflow

Most loved programming language rating (%)

3

The nature of TypeScript is JavaScript, yet it is developed as a superset of JavaScript.

TypeScript is compiled into JavaScript code so that it can run anywhere that supports

JavaScript code. This also means it is possible to write TypeScript code on a JavaScript-

based code [5]. (See figure 2 below) Nonetheless, it is unable to run TypeScript in IDEs

as JavaScript, but TypeScript could be compiled to JavaScript by a compiler through the

npm package with Node.js, which programmers need to setup manually themselves [3].

Figure 2. TypeScript in relation to JavaScript.

Optimized from JavaScript, TypeScript is created static typing together with the available

dynamic typing in JavaScript as apart. With static typing, a type needs to be set into a

variable before using it. By using this, it seems to be more convenient for programmers

to create variable declarations and make some attempts to get different type results de-

spite the compile-time error, meanwhile, it has been the biggest challenge in JavaScript.

[3]

Built from JavaScript, TypeScript has all kinds of basic JavaScript data-typing, such as

Number, String, Boolean, Symbol, Array, Object, etc. However, there are other types in

TypeScript as Enum, Tuple, Any, Void. Moreover, in helping developers with an effective

programming language, TypeScript has been created with an option in which developers

can also define new types on their own by using type or interface as in listing 1. [7]

type Season = 'spring' | 'summer' | 'autumn' | 'winter';

type Age = number;

interface User {

 id: string;

 name: string;

 age: number;

}

Listing 1. Code example of user-defined type.

TypeScript

JavaScript

4

About how functions operate, a result would be returned in TypeScript depending on its

type (for example, Number, String, etc.) while any functions declared Void or Any would

return a value instead. In the listing 2 are examples of these circumstances. [7]

const hello = (name: string): void => {

 console.log(name);

};

const multiple = (a: number, b: number): number => {

 return a * b;

};

Listing 2. Code example of functions in TypeScript.

TypeScript also supports object-oriented programming with Inheritance, Abstract, Con-

structor, Implement, Interface, etc. [7]

Table 1. JavaScript and TypeScript in comparison [8].

 JavaScript TypeScript

Data-typing Dynamic Static / Dynamic

Automatically converted types support Yes No (Mostly)

Checked types at Runtime Compile-time

Error message at Runtime Compile-time

Developed from JavaScript basis and got huge advantages as summarized in table 1,

TypeScript is targeted on developers for easy lives by improving JavaScript to make

codes cleaner, more innocent, and more helpful with type annotation or structural typing

[5]. By using TypeScript, programmers can access any existing JavaScript libraries.

However, they need to define the type of files to let it work. This is somehow imperfect

for TypeScript’s programmers [3] [5].

Besides that, 2 different kinds of typing, which are static and dynamic ones which are

used in one is considered as a plus in TypeScript [4] [5]. A new update of ECMAScript

is another benefit of TypeScript as well. Developers can work in any versions without

any worries about the newer or older ones. Therefore, it could lead TypeScript to be

more trending in the future [5].

5

The compiler is one of the reasons that made TypeScript become one of the most-loved

programming languages for developers last year and helps JavaScript to become a

trending language of programmers these days [4]. The open-source Apache license to-

gether with development for cross-platform are benefits that can’t be denied as well [6].

However, there could be a limitation in TypeScript’s feature when developers aim to older

versions. It means the TypeScript compiler cannot translate completely all features used

from the latest versions down to older ones. There might be some features missing an-

yway. [7]

Besides such a lot of benefits that TypeScript has delivered to developers, one more

thing made TypeScript become a popular language is TypeScript works well for full-stack

programming. This means it matches both front-end frameworks and back-end servers

[9]. Firstly, for front-end working interactive environments, React is one of the most well-

known frameworks and the favored choice for frontend coders because its components

are defined and used frequently in TypeScript [8].

Meanwhile in another perspective, React is supposed to be not only a framework but

also a library that could render View in MVC pattern [3]. TypeScript supports the Re-

act/JSX syntax only in the release of 1.6. For the new JSX syntax, the extension .tsx

would be taken over from .ts. And templates used in React are combined into the normal

JavaScript with a similar HTML-syntax [4].

To create a new React application with a transpiler as well as a bundler, developers need

to configure files into the app by the CLI. This progress is called Create React App. The

React package installation includes a library of JavaScript to create UI called react, a

React package to work with DOM called react-dom, and the performance of Create

React App for scripting and configuring called react-scripts. [3]

Also, there are two sorts of components: function and class components declared in

React with properties and TSX rendering. Though, operating with React in TypeScript,

programmers should follow restrictions enforced by TypeScript. For instance, tag names

should be typed and nested correctly, or do not skip any irrelevant properties to a func-

tion component. [8]

6

As mentioned earlier, TypeScript grows to trend in web development since it is generated

in not only front-end frameworks, such as Angular, React, Vue but also back-end servers

like Node.js [9]. In a simple way to describe, TypeScript with node package can play a

role in transpiling .ts to .js [10].

Consequently, a protection layer is created to check and interfere with type from Type-

Script for the transpiling process. Further, TypeScript has numerous typing repository

contributed from the community known as DefinitelyTyped. By using the prefix @types/,

any kinds of typing are available via npm then. [10]

2.2 Front-end

2.2.1 React

Since React appeared, it has not only been a front-end framework built-in JavaScript but

also become a powerful JavaScript library, which is compatible with mobile applications,

server, client, or possibly VR applications as well [13]. The founder of React is Jordan

Walke, a Facebook software engineer. It started being used on Facebook in 2011 and

on Instagram in 2012, React was released officially as an open-sourced library for de-

velopers in 2013 [12].

In recent years, there are such a lot of projects in technical sites that used React to

develop because of its huge benefits for developing applications. Those companies

could be listed as Microsoft, PayPal, Tesla, Dropbox, Twitter, Disney, Netflix, Uber, or

even Salesforce excluding Facebook – the foundation one [13]. React was ranked 2nd

position in the most popular Web Frameworks (slightly overtook Angular compared to

the previous year) as in figure 3 and became 1st one for the most loved Web framework

in 2019 by developers via Stack Overflow as in figure 4 [11].

7

Figure 3. The most popular Web Frameworks via Stack Overflow’s Developer Survey in 2019
[11].

Figure 4. The most loved Web Frameworks via Stack Overflow’s Developer Survey in 2019 [11].

As seen in the chart above, in comparison with other frameworks (Angular or Vue), React

knocked down JavaScript fans quickly by its new techniques [13]. For example, React

had very good movements in 2017 with React Fiber or React Hooks in 2019 [12]. There

are some most interesting marks from React that could attract more developers to use

including the efficient Virtual DOM, component-oriented programming, and the docu-

ment-model abstraction.

15.2

16.2

19.7

26.3

30.7

31.3

48.7

0 10 20 30 40 50 60

Vue.js

Spring

Express

ASP.NET

Angular/Angular.js

React.js

jQuery

Source: Stack Overflow

The use of Web Frameworks (%)

61.1

62.1

64.9

65.6

68.3

73.6

74.5

0 10 20 30 40 50 60 70 80

Flask

Django

ASP.NET

Spring

Express

Vue.js

React.js

Source: Stack Overflow

Most loved Web Framework rating (%)

8

Firstly, one of the most considerable reasons that React got success is Virtual DOM.

Most web development techniques normally use DOM, which needs more resources by

fetching and uploading data then reloading pages. This progress may be somehow more

maintainable, scalable, and performed in the system. [14]

However, React solved that problem with an extremely complicated algorithm to create

a Virtual DOM. Virtual DOM works more effectively and quickly than the DOM by forcing

the in-memory portrayal of DOM. So, with any interactions from users, or fetching data,

React will make a comparison between the current and the newer ones, then catch the

new page instead of doing the whole process as the DOM. Consequently, applications

used React may reach 60 frames per second despite the mobile devices. [14]

Moreover, React is structured by many blocks that play different roles in one layout.

These blocks that could be anything built a user interface in React (eg. buttons, text

boxes, forms, etc.) are called components. Written on JavaScript and oriented towards

components, React with this ideal orientation is supposed to be the most beneficial for

programmers fully when it combines all in one to target specific parts on a page. [14]

It is even more ideal when the components can be reused to React [15]. This means it

has changed a little bit of the programming way by oriented towards components instead

of separate tasks containing HTML, CSS, and JavaScript. It can reduce the limitation of

different technologies. And it is also easier for developers to modify the content of each

part [14].

The last advantage from React also comes from prior ideas mentioned earlier. That is

the reduction for the document model with a super light user interface representation.

Therefore, with this meaning, React approaches compliant standards and decreases the

inconsistency in devices or browsers as well as perceives performance by the rendering

of components. [14]

Furthermore, React is also created without any limitations on any presentation patterns.

This means React works well with all kinds of models including MVC (Model – View –

Controller), MVP (Model – View – Presenter), or even MVVM (Model – View – View-

Model). Mostly, React does its task as rendering View in most models. [15]

9

Before getting knowledge about how React works, the first thing anyone needs to keep

in mind is that React is an extremely powerful library that helps developers to customize

the user interface flexibly with JavaScript and XML optionally. If JavaScript is designed

to best fit with browsers, Node.js will play a role as a mediator between JavaScript ap-

plications and the system (as the local personal computer or a server) via the CLI. Addi-

tionally, Node.js often works together with npm to get the highest efficiency. [14]

At first glance, the definition of React in the book Pro React is thought to be an engine

due to its power and interactions in the UI. React uses the Virtual DOM to manipulate

the representation with fewer resources than the normal DOM by comparing differences

between the recently changed page and the previous one, then carrying tasks out [14].

This improvement has led React with more users in the web development industry.

Then, React directs the user interface with specific and targeted content blocks named

components to lower tasks in the whole UI. These components are reusable, extendi-

ble, and maintainable. The components could be created as a single element or nested

into smaller parts as subcomponents so that programmers can easily develop their ap-

plications as their architectures. [14]

Furthermore, React works with the optional JSX, which is convenient. By adding the

HTML code into JavaScript, React becomes so simple for Java-based developers. The

minor problem in React is that it requires a translator to transpile the JSX into JavaScript.

[14]

Particularly, a normal project used React includes a container of all necessary JavaScript

modules called source folder, the main content page in index.html (commonly known as

a landing page) where its duty is how the user interface should be shown, a package.json

with all information of the project, and a module packager which is usually used to trans-

form the JSX and others related. [14]

To work with React, programmers can create React elements by createElement, then

render them into browser with ReactDOM. Then, as mentioned earlier, the most im-

portant definition in React is components with 2 types: a function and a class component.

[12]

10

Function component should be a JavaScript or ES6 function, return a React element and

might get props if needed while Class component is a bit more complex than Function

component since it needs an initialization method, life-cycle, a render function leading to

a React element, and maintain state data as well. [12]

Next, about how to let data work in components, two other definitions used are props

and state. Props are used to push data to components from above and unchangeable

whereas the state belongs to a component, works internally in a component, and could

be changed with any events from the user. Additionally, there are two kinds of compo-

nent attributes including stateful and pure components. [14]

Finally, the last part from React defined here is Hooks. Added in React 16.8, Hooks have

solved existed problems for large scale applications like “wrapper hell”, the confusing

classes, or even big component. React Hooks allow developers to use state and lifecy-

cles without an ES6 Class as usual. [16]

Some advantages from Hooks that can be listed are minimized components, concise

code, and even the use of states between components [16]. Nevertheless, there are

some rules to remember when using Hooks. For example, Hooks must be called on top

of a function, cannot be in the loops, conditions, or nested functions, or they are used

only in functional components [17].

2.2.2 Redux

Since React had appeared in the web development technology, many people thought it

would be the best fit for front-end tasks to render View in the MVC model. Nonetheless,

the larger the project is, the more difficult the state management becomes. This is the

reason why Redux was created and joined the web industry [18].

While React aims for an efficient user interface with extreme sophistication and high

interactions, Redux, in contrast, is used widely in front-end development due to its rep-

utation in state management [19]. In normal large-scale applications, there are so many

issues relating to the state of an application, such as responses from servers, fetched

data, or optimistic updates [20].

11

As a consequence, those lead to bigger problems with a conflicted and inconsistent

state. Eventually, the application state is too easy to lose control leading to a slow-down

the application generally. The main reason why those problems are too hard to solve

because we are mixing two unusual concepts: Mutation and Asynchronicity. Also, Redux

helps in trying to prevent state Mutation from unpredictable actions, yet still, keep Asyn-

chronicity performance [20].

As developed later than Flux, which is an architecture pattern in supporting React for

solving the problem above, Redux was also created for the pretty similar purpose, and

even considered as an alternative solution. So Redux commonly works with React to get

the best efficiency [18].

Redux can get connections with React via bindings that are used to connect data be-

tween the Redux store and React View component. Thus, Redux state management is

carried out simply with most frameworks, such as Angular, Backbone, Ember, etc. To

sum up for an overall view, if React is responsible for the application view, Redux will

establish the application particularly. [18]

Figure 5. Interaction between Redux and React [20].

Redux has three fundamental principles including the single store of truth, the read-only

state, and state changes made with pure functions only [20] via the flow: View → Action

12

→ Reducer → Store [18]. Figure 6 below is a diagram to show more specifically about

how Redux works generally [18].

Figure 6. Redux workflow [18].

In general, Redux is an ideal solution for managing state, especially in large-scale appli-

cations. Yet, it is only ideal for large projects which meet numerous troubles with the

state, not for the simpler ones. The advice from the creator is also considering your ap-

plications or projects before using Redux [18].

2.3 Back-end

2.3.1 Node.js

Node.js is a platform working on the V8 JavaScript Runtime environment – an extremely

fast JavaScript transpilator on the Chrome browser. Also, Node.js can be used to de-

velop many kinds of applications including web applications or even server-side or client-

side applications. Nowadays there have been more companies switching their services

to Node.js including PayPal, LinkedIn, eBay, or even Walmart. [21]

13

Figure 7. The most popular frameworks in different fields via Stack Overflow’s Developer Sur-
vey [11].

Built with asynchronous functions and the single-thread event-driven architecture,

Node.js is perfect for scalable network applications. Moreover, Node.js is designed to

solve complicated and big issues when expanding applications. It operates the combined

server-side based on JavaScript and the asynchronous non-blocking I/O mechanism.

[21]

Node.js is considered an enticing solution in modern web architecture instead of the

predecessors such as Java, Python, PHP, Ruby, etc [21]. Meanwhile, there are a few

reasons for the thing that Node.js has become the most prevailing platform in the web

development industry these days [22].

Firstly, it is simple and convenient because Node.js is written on JavaScript, also intro-

duced with the ES6. So, there is no need to learn another technology or language [22].

Secondly, the aforementioned principles of Node.js have created itself efficiently to get

high execution speed and scalability [21]. The third reason is the huge community sup-

port of Node.js might be useful for developers anyhow [22].

However, there might be some limitations that are unavoidable with Node.js. For exam-

ple, Node.js is not supposed simply to be a replacement of Apache: The simpler the

Node.js code is, the less convenient the work is. It means developers have to access

10.5

11.3

12.7

23.7

37.4

49.9

0 10 20 30 40 50 60

React Native

Unity 3D

Pandas

.NET Core

.NET

Node.js

Source: Stack Overflow

Rating for the most popular frameworks (%)

14

and program themselves at a low level of the HTTP or any other protocols. Meanwhile,

there are many frameworks in the community to help in solving this trouble by supporting

the higher level for programmers such as Express, Rails, Meteor, etc [21].

Or, another disadvantage of Node.js is that it is still being developed. This could lead to

some features which might be changed in the future [10]. Otherwise, Node.js has grown

rapidly as one of the most effective technologies these days. Before Node.js has ap-

peared in the web technology era, backend developers had to decide which language

on the server-side was suitable for their projects, such as Java, PHP, Python, or even

Ruby, whereas, frontend developers still used JavaScript commonly in the client-side

[21].

Yet, since the Node.js was designed in JavaScript-based programming language, it

solved conflicted problems above between the client-side and server-side in program-

ming. Since then, developers could start programming as full-stack work, from the first

step for the user interface to the final step on the database works without learning an-

other language. [21]

By using one language only for the whole system, the code is more concise in general,

the same data formats and tools are applied for both server-side and client-side pro-

gramming as well as the testing process and tools are similar in both sides [21]. Further-

more, Node.js is built on a JavaScript engine which is developed by Google called V8

engine for higher speed and more efficient performance [22].

However, as mentioned earlier, based on JavaScript language, Node.js works in a single

thread environment with the non-blocking I/O mechanism to get better performance on

the system [10]. Particularly, the traditional web development uses the blocking I/O to

call data back. This has caused threads waiting in a queue, and the slowdown in server

happening. For small applications, that could be minor issues, yet with the bigger ones,

that is certainly major issues [22].

15

Figure 8. The comparison of the blocking I/O with non-blocking I/O [22].

On the contrary, Node.js is designed on the non-blocking I/O instead of the normal I/O

to reduce the waiting line of processing threads, hence an event loop with asynchronous

functions is created to carry out queueing tasks effectively. This single-thread event-

driven model has made Node.js more powerful itself for backend works [21]. Figure 9

will show specifically how the Node.js manages the task line [22].

Besides that, Node.js is the ideal solution for microservice architecture, which is the best

fit for agile projects in management. The microservices, in a simple definition, are a kind

of software architecture with modules split into smaller parts called microservices and

put in discrete servers. And Node.js is an extraordinary platform for microservice imple-

mentation. [21]

16

Figure 9. The execution of Event Loop with Node.js [22].

Together with the development of Node.js, there are some management system tools

created to manage JavaScript libraries for Node.js. There are 2 most popular tools men-

tioned here to compare: NPM and Yarn.

NPM is a tool for creating and managing JavaScript libraries as well as dependencies.

NPM works as an open-source repository for packages and modules, a CLI interacting

with other online platforms, such as servers and browsers, and management tools while

working with Node.js. Also, Yarn is another JavaScript package manager designed by

Facebook, Google, and some other companies to solve problems in NPM. [21]

For NPM, package installation is slow and asynchronous, or issues related to security

when NPM allows packages to run code through installation. Therefore, Yarn is said to

be fixed those problems: It is faster, more secured, and more reliable than NPM. None-

theless, built with the same features as NPM and using the same repository of NPM, but

on top of the repository, Yarn is recommended to use due to more advantages. [21]

In the development of web technology, many web and API frameworks are popular to

support Node.js developers in speeding up their works, for example, Express, Sails,

17

Meteor, Hapi, LoopBack, Koa, etc. These frameworks are designed to increase capabil-

ities and get rid of the complexities of the default system; hence it is more convenient

and simpler for developers’ works [23].

2.3.2 Express

Express is a minimal and flexible framework built on the Node.js platform with sturdy

features in web or mobile development. The express framework is created by TJ Holo-

waychuk. It started ideas from the Sinatra framework based on the Ruby language.

Therefore, Express has become so popular with its huge benefits, such as package sup-

port or higher performance while programming [24].

With Express, two concepts made it reputable: the minimalization and flexibility. The

minimalization attribute lets developers do easier work, yet more effectiveness whereas

the flexibility simplifies the execution with receiving HTTP requests from the client-side

then gets back HTTP responses. Due to the better performance, Express is considered

best fit with the high-traffic web applications and a diverse ecosystem providing middle-

ware system flexibly. [24]

About the operation, Express supports HTTP protocols and middleware to create a ro-

bust and usable API. Main features of Express include the implementation of middleware

to return HTTP requests, defining router with different actions via the HTTP and URL,

and allowing to return HTML through parameters. In general, with Express, developers

can build their applications as a full-stack work since Express is one of the best frame-

works for Node.js in the modern web development era. [24]

Figure 10. The Express workflow with Route [25].

18

2.3.3 MongoDB

MongoDB is an open-source document-oriented database, which stores data in another

kind of database model comparing to the traditional database with tables. Unlike other

predecessors in managing databases using the RDBMS, MongoDB is distinctive be-

cause of the NoSQL (abbreviated to None-Relational SQL or Not-Only SQL). [26]

The NoSQL is created to solve existing problems of the traditional SQL, such as speed,

features, or even scalability. With NoSQL, it dismisses the database unity and transac-

tion for higher performance as well as scalability. MongoDB allows developers to store

database in JSON with a flexible schema. Compared to the SQL, it replaces table with

the collection, row with the document, column with the field, joins with embedded docu-

ments. [26]

Developed with a new technique, there are pretty numerous benefits from using Mon-

goDB. Firstly, collections in MongoDB are more diverse in sizes and more flexible in

storing the database. Next, the horizontal scalability in MongoDB is so simple by adding

nodes into the cluster. [26]

Thirdly, the cache of a data query is recorded on memory (RAM), so the flow of the next

query is faster without reading from the drive. Last but not least, its performance is better

and more powerful than other RDBMS due to the accessible speed. [26]

However, MongoDB still has some existing disadvantages. For instance, it might cause

some flaws without the binding data, or it requires more memories for saving the data-

base via the key-value. Overall, MongoDB is suitable for real-time applications that need

to respond quickly, or a bigger database requires a large number of requests. [26]

2.4 Microservices

2.4.1 Docker

Docker is an open-source platform providing tools and services for users to contain, de-

ploy, and run applications in distinct environments quickly. With Docker, users can create

19

separate and independent environments to launch and develop applications. This pro-

gress is called a container. To deploy applications onto servers, developers only need

to run a Docker container, then it will launch the application immediately. [27]

Figure 11. Docker architecture [28].

Docker includes several important elements: image, container, Docker run, Docker En-

gine, Docker Hub, Docker Daemon, etc. as in figure 11. For example, image is a read-

only file which contains necessary specifications of the application where it will run while

the container is an image instance to perform tasks on containers via Docker API or

Docker CLI, Docker Client is a tool to let users interact with Docker host, or Docker Dae-

mon is responsible on listening requests from Docker Client to manage its related objects

such as container, image, etc. [27]

Docker is mostly recommended for deployment on microservice architecture, flexible

scalability, or applications requiring building once, but running on several servers. There-

fore, its advantages to be listed are swifter than normal virtual machines in which can

start and stop in a few seconds, flexible on different servers, easy to configure work

environment. [27]

20

2.4.2 Kubernetes

Kubernetes created by Google is an open-source platform that automates management,

scalability, and deployment of applications via container. It abstracts some manual pro-

cesses relating to deploying and scaling containerized applications. Nowadays, contain-

erization via Docker is applied widely in many applications, especially in the production

environment. [29]

The orchestration of Kubernetes lets users develop scalable applications with more con-

tainers. Kubernetes is compatible with large-scale applications that need to expand af-

terward. It manages the enforcement of containers through YAML to do with a manifest.

Kubernetes mainly manages the Docker host and structure container cluster. Eventually,

Kubernetes is optimal since it is scalable, available, portable, and more secure. [29]

Figure 12. Kubernetes Architecture [29].

21

3 Implementation

3.1 Project Objective

To reduce the amount of food waste every day in supermarkets, this application builds

a platform for two different kinds of users – supermarkets, and other organizations in-

cluding non-profit organizations, restaurants, and cafeterias, to find and contact each

other quickly and easily. In this way, supermarkets will join the Food Supporter applica-

tion to give away expiring food while other organizations (including the non-profit organ-

izations, restaurants, and cafeterias) will join also the application to receive the given-

away food from supermarkets and use for their purposes.

To get the best effect, one type of user only can see the information and contact with

another type of user. For example, supermarket users only can look for, see, and get

contact with organization users, and vice versa. A supermarket user cannot find, view,

or connect to other supermarket users, and similarly for organization users.

The Food Supporter requires some important features as the request feature in which

users can create their requests to get rid of or receive the food waste, the chat feature

in which two kinds of users can contact each other to discuss food transportation or

others after seeing the requests. However, to use those features, users need to register

at first. Via the Food Supporter, users also can find the partners’ information to get con-

tacts with each other easier.

These are the requirements of the application:

• The homepage can show the application introduction, news feed, features,
and a list of partners joining the system.

• Only registered users can view the request page and send messages on
the chat page.

• Unregistered users can log in and sign up, or log out in case the users have
logged into the system.

• Users can register and sign in as Supermarket Users or Organization Us-
ers (including the non-profit organization, restaurant, or cafeteria).

• Users can view and edit their profiles.

22

• Users can view and create requests on the request page.

• There are two types of requests: offer and support. Offer requests are ap-
plied for supermarket users to give away food, and support requests are
for organization users to ask for the food they need.

• The requests should have adequate information about what they would like
to offer or need supports, place, and time to pick up, or a food list.

• Users can edit and delete all requests they have created.

• Supermarket users can view all requests of all organization users and vice
versa.

• Users can send messages and chat in real-time with their partners to dis-
cuss requests or pickup arrangements.

• Users can switch to different pages on the application via the navigation
bar.

3.2 Project Architecture

The application architecture includes several components or containers, which will be

containerized with Docker and use Docker Compose for all to run concurrently during

development. This approach can bring a lot of benefits by having the development envi-

ronment match closely with production, especially when moving forwards to deployment

with Kubernetes architecture. If the application runs in containers, it will work the same

on the server.

Figure 13. Application Architecture with Docker Compose for development environment.

23

Figure 13 illustrates all the components of the application and how it works on the devel-

opment environment. When accessing the application from the browser, the user will first

visit an Nginx web server. The server works as a router, it will then decide whether the

browser is trying to access the React App or the Express server and route the request

to the correct component.

The Express server functions both as RESTful APIs and WebSocket server thanks to

the Socket.io library. If the user is going to send messages or chat, the Socket.io will

handle the request, otherwise, the Express controllers will process. Next, the server will

store or retrieve data from the MongoDB database server if needed, which will then save

them to external volume for persistency.

3.3 Project Structure and Setup

3.3.1 Project Structure

The project divides the main components of the application into different folders. There

is a separate folder named k8s containing all the configuration files for Kubernetes. The

Docker Compose and Cloud Build CI/CD configuration files are also placed in the root

directory of the project as displayed in figure 14.

Figure 14. Project structure.

24

3.3.2 Project Setup

The frontend of the application is a React application created using the create-react-

app library with the TypeScript template.

Figure 15. The command line to create a React application.

The backend is a Node.js application initialized interactively with the yarn init command.

Then, dev dependencies are added to the application.

Figure 16. The command lines for adding dev dependencies and tsconfig.json file.

Node.js engine works on the V8 JavaScript Runtime environment, so typescript pack-

age is needed to compile .ts files to .js. @types/node is a package containing the type

definitions of Node.js. Next, nodemon is a tool for developing Node.js application by

restarting automatically the application when it recognizes changes. concurrently is

used to run contemporaneously many commands. tsc --init is the command to create

and add the tsconfig.json file into projects to configure the TypeScript compiler.

Figure 17. Scripts for commands in package.json file.

Next, the scripts above are added to the package.json file for creating custom commands

and running the application. The build and start commands are to set up and run the

application after it has been built. And the dev command is used during the development,

25

it automatically detects files changed in the directory then compiles and restarts the ap-

plication.

After both front-end and back-end applications have been initialized, they are container-

ized with Docker by adding Dockerfile.dev files to both /client and /server directories,

which describe the containerization steps for the application.

Figure 18. Dockerfile.dev files for client and server containers.

The containerization process initiates by creating a container with the node:13-alpine

image pulled from the Docker Hub server, then setting up the working directory for the

application in the container, then copying package.json and yarn.lock file to the working

directory and install all application dependencies. The next steps are copying source

code to the container and creating a default start-command for the container. A

difference in the Dockerfile.dev in server versus client is that it has an additional step for

building the application before adding the start-command. This is the result that the

React App start command has compiled TypeScript to JavaScript under the hood while

the Node.js needs to run the compiler manually.

Nginx is a lightweight and powerful web server that is used for routing traffic to client and

server containers. The Nginx configuration can be customized with the nginx.conf file.

The Nginx routing configuration is shown in figure 19 below.

26

Figure 19. Nginx configuration file.

Then, the custom configuration file is copied to nginx container which is pulled from

Docker Hub by the Dockerfile.dev added into folder /nginx.

Figure 20. Dockerfile.dev file for Nginx.

The next step is creating a docker-compose.yml file to manage Docker containers.

Docker Compose is a tool for specifying and executing many contemporary Docker

containers. For the Compose, the whole application’s services are configured with a

YAML file. So then, with only one command, it could create and activate all services

together at the same time from the configuration file.

27

Figure 21. Docker Compose configuration file.

In the docker-compose.yml file in figure 21, firstly it is necessary to define which Com-

pose file format version is used, as this project using version 3. Next, define all the ser-

vices that will run simultaneously. Each service has a built configuration that defines the

location of Dockerfile and the folder used to build the container, and a volume configu-

ration to mount the host directory with the container.

3.4 Front-end Implementation

3.4.1 React Application Structure

The front-end uses a template created by create-react-app so it has the setup of a React

Application, such as the node_modules folder with all dependencies modules, the public

folder with static files, the src folder with source code, and the general configuration files

for React App in the root directory.

28

Figure 22. React application folder structure.

3.4.2 Tools and Libraries

Material-UI

Material-UI is an open-source project providing a large assemblage of React compo-

nents that follow Google’s Material Design. It is not only gorgeous but simple for using

and customizing as well. With over 56-thousand star and used by 205 thousand reposi-

tories via GitHub till April 2020 [30], Material-UI is one of the best UI libraries for React.

This project uses Material-UI to implement the user interface rapidly and focus on devel-

oping features.

29

Figure 23. The Spinner component that is built using Material-UI.

This Spinner component is built on top of the Material-UI CircularProgress component

with a custom style. The makeStyles and createStyles functions help in creating us-

eStyles hook from Object-like CSS styles, which is called inside the component then

injects the CSS selectors to className of JSX Element.

Redux Toolkit

Redux Toolkit is an official subjective toolset developed by the Redux team for better

efficiency in Redux development and become an official Redux template for Create-Re-

act-App since 18.02.2020 [31]. Redux Toolkit changed completely the improved formula

of the Redux application following an opinionated structure.

30

As the previous structure, two folders are existing: the src/reducers for reducer logics

and src/actions for action creators. And they are set discretely with other feature com-

ponents. Redux Toolkit encourages using the new approached way – feature folder. That

is all reducer logics and action creators which are in the same file named slice, and in a

folder with components having similar features. This helps the feature development ef-

fectively, code-line reduction, and avoids the modification of many files in different folders

when needed to update one or another feature. [32]

Figure 24. Traditional Redux, new Redux Toolkit, and Food Supporter structures.

However, this structure tends to be more complicated when applying in the situation that

a Redux state or action creator is used in many different features. Hence, this project

aims for benefits taken while using Redux Toolkit functionalities, but the store, slices,

and all related Redux modules are placed in a separate folder with the name store. The

slice implementation will be discussed more specifically in feature implementation sec-

tions.

Axios

31

Axios is an HTTP client based on Promise, which is used to support the implementation

of API applications simply to more complexly, and used on both browsers and Node.js

server.

Figure 25. The axios instance configuration file.

This module creates a new instance of Axios with a custom baseURL to the API server.

This is convenient for data fetching from a server and avoidance of the configuration

writing each call. Also, this module provides a helper function called setTokenHeader,

which is triggered whenever a user logs in or logs out to add or remove the authentication

token to the request header.

3.4.3 Homepage

The homepage is the first-page user opens the application. Its layout consists of 2 major

components: the Carousel and the list of organization partners. The Carousel is an au-

tomatic slideshow switching images every five seconds, which is for the marketing pur-

pose of the application, and appears news. And the partner list is a list of cards showing

the information of supermarket users or organization users with logo, photos, name, and

description.

Figure X shows how the homepage looks like with an unregistered user. All the data

here is generated automatically and randomly from the API server for prototype pur-

poses.

32

Figure 26. Homepage view.

3.4.4 Routing and Authentication

About the application routing, the unauthorized user can access only Home in the navi-

gation bar (homepage), yet, after registering and logging in, the user is allowed to access

all pages which appear in the navigation.

Figure 27. The routing logic of the application.

33

Before signing in, the user only can see two buttons: Log in and Sign up in the navigation

bar. Then, after logging into the system, those two buttons are replaced with the Log out

button, and the Menu bar is shown to help the user in navigating to other pages.

Figure 28. The view of the navigation bar after logging in.

Deepened little into the routing logic, it is created with the react-router-dom library and

placed in the main App component.

Figure 29. The main App component.

The useSelector hook of the react-redux library is used to get the login state of the user

from the Redux store. The user is only able to access the requests, messages, or profile

page when signing in, otherwise, it will redirect to the home page. The useEffect hook

34

runs once the app is loaded. If a user has a valid token saved on the browser localStor-

age, the initialAuth action creator would be called and dispatched to fetch user data, or

the auth state would be reset by dispatching the logout action.

Figure 30. User register dialog.

The user can sign in or sign up in the appeared dialog (as figure 30) when clicking onto

the Login or Signup buttons. Or, the user can switch between the login and signup

through a link at the bottom of the dialog.

35

Figure 31. The auth slice.

The authentication state of users is stored in the auth state of the Redux store. It contains

user information, login state, authentication loading state, and error message in case the

authentication is failed. For the execution principle of an authentication task, the cre-

ateSlice function from Redux Toolkit gets an assemblage of the reducer functions, slice

name, and an initial state value, then, automatically generates a slice reducer along with

action creators and action types relatively. The authSlice Reducers and action creators

describe an authentication process.

The authentication progress begins with the authStart transforming the loading state into

true after the user fills in the form and chooses login or signup buttons. If the authentica-

tion happens successfully, the token responded from the server will be added to the

request header to authorize the user with the server and saved to browser localStorage.

After that, the authSuccess will save user information into the auth state and take over

the sign-in status to true and the loading stops. Unless the authentication is successful,

the authFail will store the error message returned from the server into the auth state and

36

loading stops. Lastly, the authReset will reset the auth state to initial state value when

the user signs out.

3.4.5 Food Request

As mentioned earlier, this is the most important feature in solving the food waste prob-

lem. Via Food Request feature, supermarket users can post the request as an offer to

get rid of their food waste whereas organization users can post the request as food sup-

port to ask for help in receiving food. However, the offer requests are viewed by the

organization users only, and vice versa. Therefore, none of the users in the same type

can view or contact each other.

The request page comprises two tabs, in which the first tab shows all the offer or support

requests coming from other kinds of users, and the second one is where the user can

view their own requests.

Figure 32. Request page on the mobile view of a restaurant user.

37

Each request is a card-component with necessary information such as the title or

purpose of the quest, the available time for pickup, place, or a list of food. Users can edit

and remove the requests created on their own.

Figure 33. Create new request page.

The Create new request page appears when the user clicks onto the New Request but-

ton. Here user can make a new request via the customized form for distinctive users.

Figure 34. The useFormField custom hook.

38

While using the React Hook, defining state variables can be duplicated many times with

one similar type of data. That causes the redundant and unclean code. Consequently,

the useFormField custom hook in Figure 33 is created to abstract the form field state

management. This hook uses a generic type for the value, so it could be reused easily

for any form field and any type of data.

3.4.6 Real-time Messaging

The message feature is designed to help users in contacting and discussing each other

quickly about the food requests. If the request feature is the most important role in this

project, the message feature is like a catalyst to encourage reducing food waste by con-

necting each other.

The message page includes two main components: ChatList and ChatArea. ChatList is

a list of conversations with partners with whom the user gets contact. Every conversation

is a ChatItem component showing information as logo, name of partners, the content of

the last message, and last message time. All message content of a conversation will be

loaded to ChatArea when the user chooses the conversation on the ChatList. Messages

are input via an input field in the MessageInput component inside the ChatArea, then

sent by clicking the send button next to or using the enter key on the keyboard.

Figure 35. Real-time Messaging page.

39

The Real-time Messaging feature used for this application is developed on the Web-

Socket technology with the Socket.io library. To use this library on the frontend, the

socket.io-client package is required to be installed by running the command yarn add

socket.io-client.

Figure 36. Socket.io client set up in the MessageInput component.

The WebSocket connection is set up in the MessageInput component, which is the last

in the component hierarchy to avoid unnecessary re-rendering of child components. The

socket.io client connects to the socket.io server via the path /api/chatlive. This connec-

tion does not need to be recomputed, so it is wrapped inside the React useMemo hook

to memoize its value.

The socket subscribes to the event message from the server. When receiving messages

and the new chat conversation, it will update the current active chat conversation, chat

list, and message into the Redux state through the dispatch function created from the

useDispatch hook. The socket will remove all listeners and close the connection when

the user switches into other pages.

40

Figure 37. The onSubmit function to send message.

The input message from the user is stored in the inputMessage state. When clicking on

the send button or pressing the enter button on the keyboard, the onSubmit event is

triggered. And, in case the inputMessage is not empty, it will be published onto the server

through the socket connection, then set the input field to be empty.

3.4.7 Debugging

Redux Toolkit has a default Redux Devtool set up under the hood, hence, it is unneces-

sary to set up manually as the traditional Redux development. The Redux Devetool helps

in debugging more conveniently and easing to jumping forward and backward between

states. Also, the action types generated automatically from the createSlice as logic

sliceName/reducerKey are beneficial to the debug.

Figure 38. Redux devtool on Google Chrome browser.

41

3.5 Back-end Implementation

3.5.1 Database

In this section, the database of this project will be explained specifically. Due to the

scalability and flexibility, MongoDB was chosen to use for this project’s database. The

schemas design will be the first step of the progress before deepening into the database

implementation.

Figure 39. MongoDB Schema Design for Food Supporter.

The database of this project consists of 4 collections: User, Request, Chat, and Mes-

sage. A user can create many requests, so the request will keep user property as a

reference key. Also, a user can create a lot of chat conversations with other users. Be-

sides that, a chat can comprise many messages. That is why the chat is put in a separate

collection and keeps the reference to participant users in the users array. The chat con-

tains the reference to the last message to access data as well. A message document

will store the information of the sender, receiver, message content, and reference to the

chat via the chatId property.

42

Next, the development environment with MongoDB can be set up easily ad quickly by

the service declaration for MongoDB using the Mongo image from Docker Hub in the

docker-compose.yml file.

Figure 40. Docker Compose file with mongo service.

MongoDB service in the docker-compose.yaml is declared besides services for the cli-

ent, server, and Nginx. To ensure the persistency and prevent data from losing when the

database stops or is deleted, the data is stored to the external volume mongodbdata

on the host machine. The external volume can be created by the command docker vol-

ume create mongodbdata.

The root username and password which are used to access the database can be con-

figured through the environment variables declared with the environment key. For se-

curity reasons, the environment variables are only applied for local development and

differentiate with the production. Then, the database username, password as well as

other database credentials used to connect the API server to the database are saved to

its environment variables to avoid that information being used directly on the source

code.

43

Figure 41. Database connection setup with Mongoose on API server.

The API server connects to the database via Mongoose, which is an ODM library for

MongoDB and Node.js. Mongoose provides a strict modeling environment to manage

data, validate the schema model, transform JavaScript objects to store into the database

whilst still maintaining flexibility as a MongoDB strength.

3.5.2 RESTful APIs and WebSocket

The server is built on the Node.js, Express, and Socket.io, hence, it can support both

RESTful APIs requests and WebSocket connection. The back-end implementation initi-

ates by setting up the Express server.

Figure 42. Express server setup.

The Express server is firstly configured with the middleware that supports further imple-

mentation. Then, it is wrapped up in the HTTP server instead of using its own server

directly as a typical Express application. The set-up adds that stage to support the

Socket.io later. Lastly, the server listens on port 5000 by default if PORT is not defined

in the environment variables.

44

The server handles a lot of distinctive REST APIs in serving different purposes and ex-

ecutes distinct data.

Figure 43. The RESTful APIs routing and custom error handler.

The publicController is responsible for solving requests from the Homepage whereas the

authController is for the login or sign-up requests. These controllers do not require the

requests to be authorized. And other controllers are on duty of the user signing in, so

requests should be validated through the auth middleware. The errorHandler middleware

will handle and send an error message back to the frontend in case an error occurs

during request processing.

Figure 44. Adding generate JWT function to User schema.

JSON Web Token or JWT is used for keeping the server secured and protecting the

sensitive information of the user. The JWT is created and returned to the frontend when

a user signs in or signs up. The JWT will be expired in eight hours. Only requests sent

to the server with the valid JWT are considered as authorized and can access secured

data from the server.

45

Figure 45. The auth middleware function.

The express-jwt is applied as the authentication middleware which validates the JWT

sent to the server. If a request is valid through the process, the decoded token including

userId will be added to the auth property of the request for the controllers to handle it in

the following steps.

Figure 46. Socket.io server setup.

The Socket.io is set up by using the prior installed Express server and operates on the

/chatlive route.

Figure 47. The socket controller for handling real-time messages.

46

The socketController handles the message transmission via the WebSocket connection.

Message data, after receipt and validation, will be added to the Messages collection. On

the other hand, if the conversation does not yet exist, a new conversation is created in

the Chat collection. Afterward, the created message and updated chat conversation are

responded to the client.

3.6 Kubernetes Orchestration

3.6.1 Production Containerization

Due to the different aspects of development and production, the containerization strategy

for services on production is designed for the most optimized performance and scalabil-

ity. The server containerization does not change much, yet the client does because of

the nature of the React application.

Figure 48. The difference in client containerization on development and production.

Since React uses the webpack-dev-server supporting the development in numerous fea-

tures which become exceeding and lower the performance on production, React pro-

vides a production to generate static files. Then, a web server is needed to serve the

static files. Nginx comes to solve this issue as a lightweight and powerful web server

altogether with the multi-step Docker builds.

47

Figure 49. The multi-step Docker builds for client containerization.

The first step in the multi-step Docker builds is similar to development build, but ends by

running yarn build to create the production build with static files. The next stage is to

generate a container from the Nginx image, copy the Nginx configuration file and the

built files from the previous one to the Nginx container, and expose the container by port

3000. WebSocket connection support is also enabled in the Nginx configuration.

Figure 50. The Nginx configuration file for React application with WebSocket enabled.

3.6.2 Kubernetes Cluster

A Kubernetes cluster is an assemblage of node machines running the containerized ap-

plications. A Kubernetes cluster consists of at least a master node and a worker node.

The responsibility of the master node is to keep the cluster in maintaining the desired

state which is described in the Kubernetes configuration files. The worker node, mean-

while, is the real workplace by containing and running applications.

48

Kubernetes can be used on the local machine to develop with the Docker Desktop ap-

plication by a built-in single-node Kubernetes cluster.

Figure 51. The architecture on the Kubernetes cluster with a worker node.

3.6.3 Kubernetes Configuration Files

Working with Kubernetes requires an assemblage of the Kubernetes configuration files,

which uses Kubernetes API objects to declare and describe the desired state of the clus-

ter. At a minimum, each containerized application needs two Kubernetes objects to show

workloads be run and the network service itself. Additionally, storage resources, as well

as the network load balancing for the whole system, also need to declare with other

objects.

The figure below presents the Kubernetes configuration file for a client application that

comprises Deployment and ClusterIP Service objects. The Deployment object depicts

which image is necessary for running containers, the port that the container reveals, and

the number of pod replicas to be deployed. The ClusterIP Service object exposes the

set of pods created by the Deployment object with the cluster internal network.

49

Figure 52. The Kubernetes configuration file for the client application.

3.6.4 Load Balancing

Besides having the ClusterIP Service to display the application pods with the internal

network inside the cluster, the application should be accessed from the outside world.

This is done with the Ingress object by exposing a group of ClusterIP Service objects

with the external network and balancing the network traffic between the in and out of the

cluster.

This project uses the Nginx Ingress, an open-source project from the Kubernetes com-

munity in the load balancing. The Nginx Ingress supports WebSocket connection by de-

fault, the only requirement is to increase the proxy read and send timeout to maintain

the connection. Besides, to proceed with the horizontal scaling with the replica extent of

the WebSocket server, it is required to enable the sticky session to ensure a particular

user connecting to the same target server during the session.

50

Figure 53. Nginx Ingress service configuration file.

3.7 Deployment

3.7.1 Cloud Services

This section will illustrate the deployment process of this project in which many cloud

services and tools are applied and combined all together to support in the progress. The

production is deployed onto GKE with diverse tools supporting by GCP. Figure 4 below

displays cloud services used in the deployment and the way they connect altogether.

Figure 54. Integration of Google Cloud Platform services.

51

GCP is one of the top cloud service providers, vying with AWS and Microsoft Azure.

Kubernetes architecture, which is developed by Google, is supported incredibly with

GKE. Other supporting services play an important role as the whole powerful infrastruc-

ture for microservice architecture. For instance, Cloud Build is supplied for building a

simple but efficient CI/CD pipeline, GCR is the private and secured Docker registry to let

images stored on the GCP, Cloud Load Balancing distributes network traffic to all in-

stances of the applications, limits risks from the overload of an instance while others are

excess of resources or Persistent Disk offers the reliability, quick and flexibility in storage

for virtual machine instances. [33]

3.7.2 CI/CD Pipeline

To automate the deployment, Google Cloud Build is applied to carry out a CI/CD pipeline

in this project. Due to the prototype goal and scope of this thesis project, this pipeline is

designed in simplified stages including building, testing, and deploying directly to pro-

duction without going through a staging environment for quality assurance.

Figure 55. The CI/CD Pipeline.

The pipeline begins when developers commit and push their changes onto the GitHub

repository. At that time, Cloud Build is automatically triggered and the build process will

start. The initial steps are building test images and running tests. If all the images pass

the tests, the optimized production images will be built and pushed to GCR. Next, Cloud

Build updates the Kubernetes deployment. GKE receives a request for using new

52

images, then pulls the images from GCR. In case any stage from the process falls, Cloud

Build will stop the process and feed the failed process back to GitHub. Otherwise, if it

succeeds, the feedback will be informed to GitHub as a success.

Figure 56. Result of the CI/CD pipeline on Cloud Build.

Figure 57. Containers run on a GKE cluster after being successfully deployed.

After Cloud Build runs the pipeline, the result and logs of the deployment process could

be viewed via the GCP Console. And from the GKE dashboard, the cluster state and

management as well as the resources could be observed. The dashboard is also useful

for debugging, troubleshooting issues, monitoring, and supporting the DevOps workflow.

53

3.7.3 SSL Certificate

For providing privacy and security for data transmission, TLS protocol and SSL certificate

are an obligatory requirement in the production. Cert-manager, a native Kubernetes cer-

tificate management controller, is used for issuing and auto-renewing SSL certificate be-

fore expiring. This project uses the SSL certificate from Let’s Encrypt, a nonprofit Certif-

icate Authority providing certificates. [34]

Figure 58. Overview of Cert-manager’s operation [34].

54

4 Results and Discussions

In this section of the thesis, the reflection of the project will be discussed critically for the

learning process as well as the feasibility of this thesis as the research on the technical

side. Some challenges notwithstanding, the project aim has been reached with full of

features following the technical requirements. The Food Supporter application now could

be found as a published site thanks to the Google Cloud Platform.

Working through this project is fairly challenging with the trials on some new technologies

combined with other prevailing ones. It took quite much time than other parts to work

through Real-time Messaging because of the first time experiment on the WebSocket

technology. Besides that, the configuration of the association between the WebSocket

and the microservice with Docker and Kubernetes caused the difficulties in debugging

and deploying on some servers, but it has been done finally and become a valuable

experience with those.

Another obstacle while doing this project also came from the ambitious objective of this

thesis to trial an all-in-one application as an assumption of developing as a large-scale

application. Therefore, the thing that requires all technologies integrated altogether with

keeping everything on track was a self-challenge for each stage including the new trial

of the new Redux Toolkit released in February 2020, or the Kubernetes in managing

containers and scaling the whole system. Yet, this project might not be a large-scale

demo application without the aforementioned hindrances.

About further developments for this project, the Request feature should be supplemented

with an updated status to ensure the possibilities of the requests such as “reserved”,

“cancelled”, or “finished”. Moreover, to get better viability, the Message feature also

needs to be improved. Particularly, the inbox connection should be linked directly to each

request after a user accepts a request, hence, users can only contact each other via

each request, not personally anymore. And, the last task which should be developed in

the future is the database scalability of the microservice with the larger database and

more servers.

55

Last but not least, for the scope of the Food Supporter, in reality, the practical of this

project as the research on applying modern web technologies for a large-scale model

could have much applicability to other applications in diverse fields. And, this project also

has contributed an idea for food waste solution which might be developed more realisti-

cally in the future.

5 Conclusion

The objective of the thesis is to create an application that is ideated from a reduction in

food waste problem using modern web technologies consisting of the TypeScript pro-

gramming language, React and Redux for the frontend, Node.js, Express, and MongoDB

for the backend, then Docker and Kubernetes in microservice. By focusing on technical

development, this thesis is considered as the research on developing a web application

for large-scale systems for full-stack developers.

The thesis as Food Supporter application has been done fully required features as listed

above such as the Request, Message, and Registration features. Moreover, the result

of this thesis is shown distinctly via the published site on Google Cloud Platform, and

this document lists as a learning diary about how the Food Supporter works.

In summary, not so good as expected because of lacking time, the thesis still has com-

pleted researching how to build a larger model application with deepening multi-tech-

niques altogether and figured out the harmony with advantages and disadvantages while

applying many technologies in just a web application. And, as further as the web industry

is developing, this thesis has been done as the basic research in those aforementioned

issues, nonetheless, the opportunity and possibility for this thesis to improve deeper to

break out of other new technologies, for example, could be more in the future.

56

References

1 UN report: one-third of world’s food wasted annually, at great economic, environ-
mental cost [online] UN News; 11 September 2013.
URL: https://news.un.org/en/story/2013/09/448652. Accessed 30 April 2020.

2 Food waste reduction by developing legistration [online] LUKE; September 2018.
URL: https://valtioneuvosto.fi/documents/1927382/2116852/
9-2018-Food+waste+reduction+by+developing+legislation/
713f019b-8b05-43c6-bfbd-5423706fadde?version=1.0. Accessed 30 April 2020.

3 Moiseev Antoon, Fain Yakov. TypeScript Quickly [e-book] Manning Publication;
March 2020.
URL: https://learning.oreilly.com/library/view/typescript-quickly/9781617295942/.
Accessed 30 March 2020.

4 Rozentals Nathan. Mastering TypeScript 3 – Third Edition [e-book] Packt Pub-
lishing; February 2019.
URL: https://learning.oreilly.com/library/view/mastering-typescript-3/
9781789536706/. Accessed 30 March 2020.

5 Dubois Sebastien, Georges Alexis. Learning TypeScript 3 by Building Web Appli-
cations [e-book] Packt Publishing; November 2019.
URL: https://learning.oreilly.com/library/view/learn-typescript-3/9781789615869/.
Accessed 30 March 2020.

6 Jansen H. Remo. Learning TypeScript [e-book] Packt Publishing; September
2015.
URL: https://learning.oreilly.com/library/view/learning-typescript/9781783985548/.
Accessed 30 March 2020.

7 Freeman Adam. Essential TypeScript: From Beginner to Pro [e-book] Apress;
August 2019.
URL: https://learning.oreilly.com/library/view/essential-typescript-from/
9781484249796/. Accessed 30 March 2020.

8 Cherny Boris. Programming TypeScript [e-book] O’Reilly Media, Inc.; May 2019.
URL: https://learning.oreilly.com/library/view/programming-typescript/
9781492037644/. Accessed 30 March 2020.

9 Neal David, Use TypeScript tp Build a Node API with Express [online] Okta; 15
November 2018.
URL: https://developer.okta.com/blog/2018/11/15/node-express-typescript.
Accessed 30 March 2020.

10 Wilson Jim. Node.js 8 the Right Way [e-book] Pragmatic Bookshelf; January
2018.
URL: https://learning.oreilly.com/library/view/nodejs-8-the/9781680505344/. Ac-
cessed 30 March 2020.

https://news.un.org/en/story/2013/09/448652
https://valtioneuvosto.fi/documents/1927382/2116852/9-2018-Food+waste+reduction+by+developing+legislation/713f019b-8b05-43c6-bfbd-5423706fadde?version=1.0
https://valtioneuvosto.fi/documents/1927382/2116852/9-2018-Food+waste+reduction+by+developing+legislation/713f019b-8b05-43c6-bfbd-5423706fadde?version=1.0
https://valtioneuvosto.fi/documents/1927382/2116852/9-2018-Food+waste+reduction+by+developing+legislation/713f019b-8b05-43c6-bfbd-5423706fadde?version=1.0
https://learning.oreilly.com/library/view/typescript-quickly/9781617295942/
https://learning.oreilly.com/library/view/mastering-typescript-3/9781789536706/
https://learning.oreilly.com/library/view/mastering-typescript-3/9781789536706/
https://learning.oreilly.com/library/view/learn-typescript-3/9781789615869/
https://learning.oreilly.com/library/view/learning-typescript/9781783985548/
https://learning.oreilly.com/library/view/essential-typescript-from/9781484249796/
https://learning.oreilly.com/library/view/essential-typescript-from/9781484249796/
https://learning.oreilly.com/library/view/programming-typescript/9781492037644/
https://learning.oreilly.com/library/view/programming-typescript/9781492037644/
https://developer.okta.com/blog/2018/11/15/node-express-typescript
https://learning.oreilly.com/library/view/nodejs-8-the/9781680505344/

57

11 Developer Survey Results 2019 [online] StackOverflow; 2019.
URL: https://insights.stackoverflow.com/survey/2019. Accessed 30 March 2020.

12 Porcello Eve, Banks Alex. Learning React, 2nd Edition [e-book] O’Reilly Media,
Inc.; July 2020.
URL: https://learning.oreilly.com/library/view/learning-react-2nd/9781492051718/.
Accessed 9 April 2020.

13 Carlos Santana Roldan. React Cookbook [e-book] Packt Publishing; August
2018.
URL: https://learning.oreilly.com/library/view/react-cookbook/9781783980727/.
Accessed 9 April 2020.

14 Cássio de Sousa Antonio. Pro React [e-book] Apress; December 2015.
URL: https://learning.oreilly.com/library/view/pro-react/9781484212608/. Ac-
cessed 9 April 2020.

15 Chiarelli Andrea. Beginning React [e-book] Packt Publishing; July 2018.
URL: https://learning.oreilly.com/library/view/beginning-react/9781789530520/.
Accessed 9 April 2020.

16 Bugl Daniel. Learn React Hooks [e-book] Packt Publishing; October 2019.
URL: https://learning.oreilly.com/library/view/learn-react-hooks/9781838641443/.
Accessed 9 April 2020.

17 Tutorial [online] React.
URL: https://reactjs.org/tutorial/tutorial.html. Accessed 9 April 2020.

18 Garreau Marc and Faurot Will. Redux in Action [e-book] Manning Publications;
June 2018.
URL: https://learning.oreilly.com/library/view/redux-in-action/9781617294976/.
Accessed 14 April 2020.

19 Lee James, Wei Tao, Mukhiya Kumar Suresh. Redux Quick Start Guide [e-book]
Packt Publishing; February 2019.
URL: https://learning.oreilly.com/library/view/redux-quick-start/9781789610086/.
Accessed 14 April 2020.

20 Bugl Daniel. Learning Redux [e-book] Packt Publishing; August 2017.
URL: https://learning.oreilly.com/library/view/learning-redux/9781786462398/. Ac-
cessed 14 April 2020.

21 Herron David. Node.js Web Development – Fourth Edition [e-book] Packt Pub-
lishing; May 2018.
URL: https://learning.oreilly.com/library/view/nodejs-web-development/
9781788626859/. Accessed 18 April 2020.

22 Casciaro Mario, Mammino Luciano. Node.js Design Patterns – Second Edition
[e-book] Packt Publishing; July 2016.
URL: https://learning.oreilly.com/library/view/nodejs-design-patterns/
9781785885587/. Accessed 18 April 2020.

https://insights.stackoverflow.com/survey/2019
https://learning.oreilly.com/library/view/learning-react-2nd/9781492051718/
https://learning.oreilly.com/library/view/react-cookbook/9781783980727/
https://learning.oreilly.com/library/view/pro-react/9781484212608/
https://learning.oreilly.com/library/view/beginning-react/9781789530520/
https://learning.oreilly.com/library/view/learn-react-hooks/9781838641443/
https://reactjs.org/tutorial/tutorial.html
https://learning.oreilly.com/library/view/redux-in-action/9781617294976/
https://learning.oreilly.com/library/view/redux-quick-start/9781789610086/
https://learning.oreilly.com/library/view/learning-redux/9781786462398/
https://learning.oreilly.com/library/view/nodejs-web-development/9781788626859/
https://learning.oreilly.com/library/view/nodejs-web-development/9781788626859/
https://learning.oreilly.com/library/view/nodejs-design-patterns/9781785885587/
https://learning.oreilly.com/library/view/nodejs-design-patterns/9781785885587/

58

23 Shipton Lizzie. The Best NodeJS Frameworks for 2020 [online] RapidAPI; 16 Oc-
tober 2019.
URL: https://rapidapi.com/blog/best-nodejs-frameworks/. Accessed 18 April 2020.

24 Brown Ethan. Web Development with Node and Express, 2nd Edition [e-book]
O’Reilly Media, Inc.; November 2019.
URL: https://learning.oreilly.com/library/view/web-development-with/
9781492053507/. Accessed 23 April 2020.

25 Santiago Antonio. Using async/await in ExpressJS middlewares [online] Acuri-
ousanimal; 15 February 2018.
URL: https://www.acuriousanimal.com/blog/2018/03/15/
express-async-middleware. Accessed 23 April 2020.

26 Hows David, Membrey Peter, Plugge Eelco. MongoDB Basisc [e-book] Apress;
December 2014.
URL: https://learning.oreilly.com/library/view/mongodb-basics/
9781484208953/. Accessed 25 April 2020.

27 Serdar Yegulalp. What is Docker? The spark for the container revolution [online]
InfoWorld; 19 April 2019.
URL: https://www.infoworld.com/article/3204171/
what-is-docker-the-spark-for-the-container-revolution.html. Accessed 27 April
2020.

28 Neeru Jain. A Quick Introduction to Docker Fundamentals [online] WhizLabs; 1
August 2019.
URL: https://www.whizlabs.com/blog/docker-fundamentals/. Accessed 27 April
2020.

29 Janakiram MSV. Kubernetes: An Overview [online] TheNewStack; 7 November
2016.
URL: https://thenewstack.io/kubernetes-an-overview/. Accessed 29 April 2020.

30 Mui-org. Material-UI [online] GitHub.
URL: https://github.com/mui-org/material-ui. Accessed 30 April 2020.

31 Reduxjs/cra-template-redux. Initial Release [online] GitHub; 18 February 2020.
URL: https://github.com/reduxjs/cra-template-redux/releases/tag/v1.0.0. Ac-
cessed 30 April 2020.

32 What is Redux Toolkit? [online] Redux.
URL: https://redux.js.org/redux-toolkit/overview. Accessed 1 May 2020.

33 Get started with Google Cloud [online] Google Cloud.
URL: https://cloud.google.com/docs. Accessed 1 May 2020.

34 Welcome to cert-manager [online] Cert-Manager.
URL: https://cert-manager.io/docs/. Accessed 1 May 20

https://rapidapi.com/blog/best-nodejs-frameworks/
https://learning.oreilly.com/library/view/web-development-with/9781492053507/
https://learning.oreilly.com/library/view/web-development-with/9781492053507/
https://www.acuriousanimal.com/blog/2018/03/15/express-async-middleware
https://www.acuriousanimal.com/blog/2018/03/15/express-async-middleware
https://learning.oreilly.com/library/view/mongodb-basics/9781484208953/?ar
https://learning.oreilly.com/library/view/mongodb-basics/9781484208953/?ar
https://www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-container-revolution.html
https://www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-container-revolution.html
https://www.whizlabs.com/blog/docker-fundamentals/
https://thenewstack.io/kubernetes-an-overview/
https://github.com/mui-org/material-ui
https://github.com/reduxjs/cra-template-redux/releases/tag/v1.0.0
https://redux.js.org/redux-toolkit/overview
https://cloud.google.com/docs?fbclid=IwAR0_UgYMWf_ZTAndPcZVZrhAdCCO6YwAC7IXvfAWTThZwW9Tf2SZY9TdGeA
https://cert-manager.io/docs/

