

Determination and
Implementation of Suitable BPMS
Solutions

A journey into a strive for a data driven enterprise

Karl Henrik Bäckström

Degree Thesis for Bachelor of Engineering

Degree Programme in Electrical Engineering and Automation

Vasa 2020

BACHELOR’S THESIS

Author: Henrik Bäckström

Degree Programme: Electrical Engineering and Automation

Specialization: Automation

Supervisors: Erik Englund, Nishant Redekar

Title: Determination and Implementation of Suitable BPMS Solutions

Date: May 7,2020 Number of pages: 38 Appendices: -

Abstract

This Bachelor’s thesis was made on behalf of Wärtsilä in order to investigate and

determine suitable ways of implementing solutions of business process management

systems (BPMS). This is a theoretical foundation for further development of an overlying

business automation platform.

This could establish an audit traceable workflow-platform, interconnecting existing

enterprise resource planning (ERP) tools with human processes. Through the use of

business process modelling (BPM), graphical modelling tools for defining rules and tasks

will be included in order to bridge the gap of the business specialist being the process

owner and the technical developer being responsible for the underlying service

infrastructure. The approach of implementing such systems is done through an

introduction to a set of standards.

During the assessment the available solutions being considered were limited to two. For

a proof of concept, a demonstrative frontend was implemented in order to provide a

demarcated end-user experience for initiating and interacting with adapted processes.

The thesis resulted in an approval for a practical pilot project.

Language: English Key words: BPMS, BRMS, BPA, BPMN, DMN, CMMN, ERP

EXAMENSARBETE

Författare: Henrik Bäckström

Utbildning och ort: El- och Automationsteknik, Vasa

Inriktningsalternativ: Automation

Handledare: Erik Englund, Nishant Redekar

Titel: Determination och implementering av tillämpliga BPMS-lösningar

Datum: 7. maj 2020 Sidantal: 38 Bilagor: -

Abstrakt

Detta examensarbete utfördes för Wärtsilä för att undersöka och bestämma lämpliga
lösningar för att implementera affärsprocesshanteringssystem (BPMS). Detta arbete
skall bilda en teoretisk grund för framtida utveckling av en överliggande
affärsautomations plattform.

Genom detta skall en auditerbar arbetsflödesplattform kunna införas som kopplar
samman befintliga verktyg för företagsresursplanering (ERP-system) med mänskliga
processer. Med introduktionen av affärsprocessmodellering (BPM) tillkommer grafiska
modelleringsverktyg för att definiera regler och uppgifter för att överbrygga klyftan
mellan affärsspecialisten som är processägaren och den tekniska utvecklaren som
ansvarar för tjänst-infrastrukturen. Detta görs genom en uppsättning av standardiserade
medel och metoder.

Under utvärderingen begränsades de beaktade lösningarna till två stycken. För att
demonstrera en tillämpning av systemet blev ett webbanvändargränssnitt utvecklat.
Dess syfte var att ge en avgränsad användarupplevelse för att starta och behandla de
adapterade processerna från de underliggande systemen. Demonstrationen resulterade i
ett beviljande av ett praktiskt pilotprojekt.

Språk: engelska Nyckelord: BPMS, BRMS, BPA, BPMN, DMN, CMMN, ERP

OPINNÄYTETYÖ

Tekijä: Henrik Bäckström

Koulutus ja paikkakunta: Sähkö- ja automaatiotekniikka, Vaasa

Suuntautumisvaihtoehto: Automaatiotekniikka

Ohjaajat: Erik Englund, Nishant Redekar

Nimike: Sopivien BPMS-ratkaisujen määrittäminen ja toteutus

Päivämäärä: 7.5.2020 Sivumäärä: 38 Liitteet: -

Tiivistelmä

Tämä tutkielma on tehty Wärtsilälle. Opinnäytetyön tavoitteena oli tutkia ja määrittää

sopivia tapoja toteuttaa liiketoimintaprosessien hallintajärjestelmä (BPMS). Tämä on

teoreettinen perusta päällekkäisen liiketoiminta-automaatioalustan edelleen

kehittämiselle.

Tavoitteena oli auditoitavan työnkulkualustan käyttöönoton tutkinta, joka yhdistäisi

olemassa olevat toiminnanohjausjärjestelmät (ERP) ihmiskeskeisiin prosesseihin.

Liiketoimintaprosessien mallinnuksen (BPM) käyttöönoton myötä esitetään graafiset

mallinnustyökalut sääntöjen ja tehtävien määrittelemiseksi, jotta voidaan kaventaa

kuilua prosessinomistajana toimivan liiketoiminta-asiantuntijan ja

palveluinfrastruktuurista vastaavan teknisen kehittäjän välillä. Tämä tapahtuu

käyttämällä aihealueen standardeja.

Arvioinnin aikana käytettävissä olevat ratkaisut rajattiin kahteen vaihtoehtoon.

Konseptin todistamiseksi loppukäyttäjälle toteutettiin demonstratiivinen käyttöliittymä.

Tämä mahdollisti valittujen toiminnallisuuksien toteuttamisen liittyen prosessien

aloittamiseen ja vuorovaikutukseen niiden kanssa. Tulos johti käytännön pilottiprojektin

hyväksymiseen.

Kieli: englanti Avainsanat: BPMS, BRMS, BPA, BPMN, DMN, CMMN, ERP

Table of contents

1 Introduction. ...1

1.1 The commissioner ...1

1.2 The thesis topic ...1

1.3 Means of solution ..1

2 The concept behind business process management systems 2

3 Theory ... 4

3.1 Standards .. 4

3.1.1 Business Process Modelling and Notation (BPMN) 4

3.1.2 Decision Model and Notation (DMN) ... 6

3.1.3 Case Management Model and Notation (CMMN)....................................... 8

3.1.4 Predictive Model Markup Language (PMML) ... 9

3.2 Software architectural concepts .. 10

3.2.1 Distributed microservices ... 10

3.2.2 REST .. 10

3.3 Development and deployment tools .. 11

3.3.1 Git .. 11

3.3.2 Apache Maven ... 11

3.4 Runtime stack ... 11

3.4.1 Java runtime .. 12

3.4.2 Java EE ... 12

3.5 Deployment stack ... 13

3.5.1 Docker ... 13

3.5.2 Kubernetes .. 14

4 Solutions considered during assessment .. 16

4.1 Red Hat Process Automation Manager .. 16

4.1.1 KIE-Server .. 17

4.1.2 Business Central ... 17

4.1.3 Red Hat Enterprise Application Platform (EAP) ... 17

4.1.4 OpenShift .. 18

4.2 Camunda .. 18

5 Evaluation .. 20

5.1 Red Hat Process Automation Manager ... 20

5.2 Camunda ... 24

5.3 Conclusion .. 27

6 Implementation ... 29

6.1 Proof of Concept .. 29

6.2 Use case ... 29

6.3 Implementation .. 30

6.4 Outcome ... 31

7 Conclusion .. 32

8 References .. 35

 1

1 Introduction.

1.1 The commissioner

This thesis work was carried out for the Information Management department at Wärtsilä.

Wärtsilä was first founded in 1834 in eastern Finland when a sawmill was established.

During the following years, its premises was to be expanded in order to include iron works

facilities and then later on renamed to what we know it of as of today. Today, the company

has evolved into a global actor in the energy and marine market with an aim to enable the

industry transformation into being of 100% renewable energy. In the ongoing strive for

change, companies are trying to adapt to data driven approaches, which in turn is where

this thesis becomes relevant.

1.2 The thesis topic

The task of this thesis is to research suitable solutions and ways of implementing tools for

Business Process Modelling (BPM) or Business Process Management Software (BPMS) for

a foundation to build robust process automation. Ultimately, this would allow internal

departments to define or describe their needs for process flows in BPMN, a notation

standard which would help to create or tie in automation which would remove human

error, with the added benefit of proper audit trails for each process taken into account.

Part of the challenge is to integrate such systems to make it interconnected in order for

automation to become viable in the first place.

1.3 Means of solution

The ideal solution would allow business experts to model and define rules for decisions and

then reuse those in definable business processes. The tools for creation of these models

should be extendable in such a manner that it is easy to provide a solid framework to cover

all bases.

In addition, the system itself should be flexible enough. It must not be too troublesome to

incorporate integrations with already existing services. At the same time the defined rules

can be reused in other applications by means of communication such as REST-APIs. This

would bring additional value even outside the solution in the future.

 2

2 The concept behind business process management systems

Today each and every company has to have a strategy for keeping track of bookkeeping

and managing corporate trading agreements and relationships with customers, suppliers

and other vendors. Hence, there is a big market for software-based solutions as it comes

to aiding companies in different aspects to the core business. This becomes of big

importance when a company is growing or operating on a bigger scale across the globe.

There is already a heap of domain specific solutions which provide so called enterprise

resource planning (ERP), customer relationship management (CRM) and supply chain

management (SCM) solutions. You might have heard of big vendor names or actors in this

branch such as SAP, Oracle, Salesforce, Microsoft and so on. (Harmon, 2014)

Nevertheless, this helps, but there are still underlying processes where these solutions play

their respective important parts. These processes can usually be characterised by a chain

of events along with different mediums and interactions between humans and machines.

In this space there lies untapped potential for introducing process automation that could

bring a standardised way of interconnecting humans and machines. This also opens

possibilities to provide a system overreaching process insight which you would not have

had earlier. (Harmon, 2014)

In order to achieve this level of automation, there needs to be a common determinator

between the technical system implementation and the actual process owner. In other

words, there is a gap to bridge between the actual business process specialists and the

developers responsible for delivering such IT-infrastructure. In order to avoid inflexible

workflow process implementations and growing technical debt, there is a need to include

the process owners in a more flexible way. This is where a set of three standards introduce

ways of defining an intermediate design format between system implementation and

business specialist. These things will be handled more in detail in the following chapters.

(Harmon, 2014)

By relying on these standardised description formats, the models could double as a

knowledge store. Big and overreaching processes could be split into smaller ones with

accompanying adequate documentation. This could help to gather a definitive process

documentation which would otherwise be spread out in different departments or business

 3

units among different employees. Then if the BPMS solution is successfully implemented

as the go-to-operation platform, you could gain complete audit traceable logging and

reporting capabilities on top of company-wide internal processes. (Harmon, 2014)

From the perspective of the end-users, the solution would come into play in different

ways. Generally, there should be a user interface to use for any employee to initiate a

process, whether or not it has anything to do with an approval-process. This user interface

should also be the go-to tool for handling request reviews alike. When it comes to the

creation and management of adapted processes, there should be a separate platform or

set of tools which are not visible for the general employee. Therefore, there should be a

clear distinction between the actual automation platform development and the end-user

experience for utilising the processes themselves.

Figure 1: Map of the correlation of concept services and standards with existing services and their respective

end-users. Note that the technical developers are involved in all stages in order to provide the infrastructure.

 4

The business process specialists will end up on both sides of the spectrum. The process

development flow (creation of low-code model descriptions) and its tools will be aimed for

a citizen developer community approach where departments can slowly adapt their

processes themselves to suit their respective needs without being limited by a fixed

development routine concerning a new feature for an existing platform. Consequently,

that would give the flexibility and control of the process where the actual knowledge is at

the same time as the problem of indirect ownership of process implementations in code is

lifted from the technical developer.

3 Theory

3.1 Standards

There are several standards which will become relevant through this work. Those

standards are described in the following sub-sections. One common attribute of all these

standards is that they are usually being serialized into Extensible Markup Language (XML),

which can be interpreted by other application implementations for interchangeability.

3.1.1 Business Process Modelling and Notation (BPMN)

The idea behind the BPMN standard is to create a notation that is easy enough to

understand both from the business specialist’s standpoint as well as from the technical

developer’s standpoint who is to implement that process. In other words, a common way

of presenting process descriptions between designer and implementor. Due to the fact

that there are a handful of other more or less vaguely related notations which have

attempted to partially solve this problem, this is a notation that would try to tie their ideas

together into one remaining standard. One of the later versions of BPMN (namely 2.0.1) is

also known as ISO/IEC 19510:2013, whereas the latest version is one revision ahead at the

time of writing.

From the designer viewpoint this standard provides a graphical flowchart like format

which follows an imperative design paradigm. This means that each path from start to end

in the described process should be known to a full extent. To attain a format which

combines understandability with complex process workflows, BPMN introduces a set of

schematics. (Object Management Group, Inc., 2013)

 5

Figure 2: A complex BPMN diagram taken from the sample Visual Studio Code extension project from

BPMN.io. (Kiefer, 2019)

The schematics are grouped into the following:

• Flow objects

• Connecting objects

• Swim lanes

• Artifacts

Among the flow objects there are events, activities and gateways. While events are self-

explanatory, activities allow you to define a certain task or sub-process which needs to

take place in the sequence. These tasks are otherwise used to trigger services, scripts, user

tasks, or alternatively, decisions or cases based on the DMN and CMMN standards.

Gateways are for routing the workflow sequence. This can be done in several different

configurations, for instance, exclusive, inclusive, parallel branching or in alternative event-

based gateways. (Object Management Group, Inc., 2013)

 6

The connecting objects consist of sequence, message flows and associations. Sequence

flows dictate what order and direction the process goes in the diagram. Message flows are

used to indicate what kind of informal messages cross boundaries such as different pool-

lanes. An association is used for connecting references to objects belonging to the artifact

category. (Object Management Group, Inc., 2013)

The swim-lane category simply holds pools and lanes, where one pool contains either one

or several lanes. This is generally used for modelling interactions between different

participating processes. (Object Management Group, Inc., 2013)

Data objects, groups and annotations belong to the artifacts which are mainly used for

documentation and descriptions of respective modelled processes. (Object Management

Group, Inc., 2013)

3.1.2 Decision Model and Notation (DMN)

This notation standard is similar to the BPMN in the sense of trying to make a notation

understandable between two parties. DMN is an attempt to form an interchange format

for decisions based on rulesets. A ruleset can be defined as a decision table with different

hit policies. (Object Management Group, Inc., 2019)

Among the hit policies there are:

• Unique

• Any

• Priority

• First

• Collect

• Output order

• Rule order

 7

The unique policy enforces that only one single rule can be matched. Similar to the unique

policy there also is the first policy. It will not enforce a single result, but it will return the

first one it can match in the table from top-down order. The any policy allows matching of

several rules but only if they state the same output. The policy of priority allows several

rules to be seen as triggered, but it only returns the one with the highest output priority as

a match. A collect policy allows you to aggregate matched rules by utilising an operator of

choice. The operator can be: number, maximum, minimum or sum. The number operator

returns the amount of outputs the matching rules return. Sum, maximum and minimum

do exactly what their names imply to the matching rule outputs. The collect policy can also

function in a table, returning multiple results. Rule order returns a list of matching outputs,

sorted by sequence. And lastly, the output order policy which takes all matched outputs

sorted by decreasing priority. (Object Management Group, Inc., 2019)

Figure 3: Example of decision table from BPMN.io. (Camunda Services GmbH and contributors, 2020)

DMN also includes the expression language called FEEL (Friendly Enough Expression

Language) in order to have a way of expressing a rule in the decision tables. In addition to

the graphical view of the decision tables, you can interconnect rule-flows with their

respective inputs in the decision requirement diagram (DRD). (Object Management

Group, Inc., 2019)

 8

Figure 4: The decision requirement diagram (DRD) view from the same example as Figure 3. (Camunda

Services GmbH and contributors, 2020)

3.1.3 Case Management Model and Notation (CMMN)

The CMMN standard is intended to be used in conjunction with the BPMN standard in

order to address a broader spectrum of work methods within a given case or project which

might be less clear or straight forward to implement as a process. In other words, it is a

means of describing alternate cases where the process would end up being very different

from time to time depending on the factors being considered. Thereby it follows a

declarative design paradigm for describing the process. In practice this means that you do

not need to model firm sequence flows but rather a loosely tied set of constraints that

need to be fulfilled in order to progress.

A case model can be split up into stages or plans with actions which optionally have either

entry or exit conditions, so-called criteria. The actions can be of different types, for

instance, human-, process- or case-tasks. These actions can be either blocking or non-

blocking, indicating whether the start of an activity or the end should indicate its

 9

completion. This enables modelling of asynchronous task behaviour. Activities can also be

marked as repeatable or as optional. In addition, there are event listeners like in BPMN. A

certain set of events or tasks can achieve a milestone when the predefined criteria are

fulfilled. (Object Management Group, Inc., 2016)

Figure 5: Another example from BPMN.io of a CMMN diagram. (Camunda Services GmbH and contributors,

2020)

3.1.4 Predictive Model Markup Language (PMML)

PMML is a predictive model description format which is meant to enable sharing of

predictive models between different tools and application for analytic purposes. These

shared models can be the results of common machine learning methods as well as the

results of data mining (Data Mining Group, 2020).

 10

3.2 Software architectural concepts

Different systems and ways to configure and interconnect these will be described later on.

Therefore, this chapter will briefly touch on some software architectural concepts in the

sections below.

3.2.1 Distributed microservices

The concept of microservices is the notion of splitting up your monolith applications into

a smaller subset of services which together form the same feature set as your previous

application. By dividing the responsibilities of the applications into smaller parts, it

becomes easier to involve new people into the development process and to do smaller

incremental updates regularly. At the same time as you gain the possibility to scale up

individual areas of responsibility within the application, you can do so without duplicating

the resources in order to scale a single, larger application. This enables an immutable

approach of service deployments which go hand in hand with cloud native applications. By

separating the configuration from the actual runtime setup, you gain deployment

flexibility. By having smaller services, it is also easier to dedicate developers to a specific

domain of the application, which helps if you aim to achieve practices of agile

development. (Adamski, 2018)

3.2.2 REST

REST is not a standard but more of a predefined ruleset one could follow when designing

restful application interfaces (APIs) in order to form machine to machine communication,

server to client communication, or vice versa, over http. REST stands for representational

state transfer and was coined by Roy Fielding who was one of the contributors to the HTTP

specification. In general, it describes that the communication should be stateless. In other

words, the receiver should always be given the contextual data, so a valid response can be

returned without the need to keep track of additional context between requests. The

resource endpoints of a REST-API, an application interface consisting of different URLs,

should be uniform in such a way that the different methods are defined by the already

existing HTTP verbs such as GET, POST, PUT and DELETE. The data presentation can be

in various formats and should be indicated in the HTTP headers of the resource request

along with an indicator of the ability of the request to be cached at the client side. The

 11

formats being usually utilised are either JSON (JavaScript Object Notation) or XML

(Extensible Markup Language). (Richardson & Ruby, 2007)

3.3 Development and deployment tools

To aid ongoing software development, there are many tools one can utilise. Most certainly

you will at least need a way of managing versioning and enabling collaborative

development if there are more than one person working on the same code base. This

section touches briefly on some of these tools.

3.3.1 Git

Git is an open source project initially created when a version control system was needed in

the Linux Kernel community. A version control system is a way of keeping track of file

changes in a project. By having a centralized git repository, you can have multiple

contributors working on the same project simultaneously with full history of changes. Git

allows you to have several branches which can be worked on in parallel and then later be

merged into the master branch or another sub-branch. Git is also distributed which means

that for each contributor who uses the repository you have a backup since it mirrors the

entirety of the given branch in the central repository in case it goes down. Git is only one

of many solutions for version control, but it remains as one among the popular ones being

used within the industry as of today. (Chacon & Straub, 2019)

3.3.2 Apache Maven

Maven is mainly a build tool with capability for handling dependencies for Java projects. It

enables build time automation, for example running unit tests and then deploying to

different targets. Its capabilities can be extended with Maven plugins, and thus it can also

support projects written in other languages (Apache Software Foundation, 2019).

3.4 Runtime stack

Most of the already existing attempts to create BPM solutions are crafted in Java. The

following sections will briefly cover details specifically about the runtime and its

underlying features and specifications.

 12

3.4.1 Java runtime

Java is an object-oriented programming language like Microsoft C#. It was mainly inspired

by C++ but has partially taken away the responsibility of managing memory allocation

from the developer due to implemented automatic garbage collection. Thus, it can be

categorised as a higher-level programming language. One of the strong points of Java is

that it has a versatile runtime which can be utilised on plenty of platforms. This is done by

the implementation of a Java virtual machine (JVM) which takes Java bytecode and

translates it to proper machine instructions (Lindholm, et al., 2018) (Evans, 2015).

There are many different JVM implementations. Owing to that, it is merely a standard that

dictates what the JVM should be capable of. This allows developers to choose their

approach themselves as it comes to how their VM interacts with the lower-level

instructions to the respective underlying hardware. There are many different existing

implementations and even programming languages which follow the same standard to

target the JVM as runtime such as Kotlin, Scala, Clojure etc. (Evans, 2015)

3.4.2 Java EE

Java EE can be described as a standard consisting of a collection of specifications which

conform to enterprise usage of applications written in Java. Therefore, when utilising a

given Java EE product, it is often in a form of a Java application server that can run Java

apps with API-interfaces and runtime conventions for having interservice dependency

relations with supported methods and protocols of messaging, transactions and

persistence handling coupled with dependency injection containers and Java component

encapsulation. The aim with this can be seen as to provide a complete runtime

environment for Java applications with their respective needs, to allow the developer to

concentrate on the business logic (instead of on the surrounding implementation

requirements) of said applications. (Adamski, 2018)

There are a handful of different application servers which will be mentioned later. One of

these is Tomcat which is a project under the Apache Software Foundation. Another

alternative implementation of a Java application server is WildFly, formerly known as the

JBoss Application Server. This open source project is the foundation for Red Hat’s JBoss

Enterprise Application Server (EAP) offering.

 13

3.5 Deployment stack

The deployment pipeline takes into account how a certain set of applications are being

handled from the stage of being built from the version control repository to the stage of

being configured and deployed into an existing environment with underlying server

hardware. Therefore, the following subsections are about some of the tools being used

today in cloud-based solutions.

This pipeline flow is often described as continuous integration or continuous deployment

or continuous delivery (CD). Although these terms are often used interchangeably, they

have slightly different meaning. With continuous integration you have automatic builds

triggered by changes in your repository of choice, with proper test coverage to catch issues

early, whereas with continuous delivery or deployment it generally refers to the whole

process of continuous integration to the end where the actual deployment of a build or a

release occurs. (Ott, et al., 2016) (Arundel & Domingus, 2019)

3.5.1 Docker

Docker is a way of handling containerisation of the entire application runtime into an

image which is easier to build, maintain and deploy under different contexts without the

struggles of managing virtual machines (VMs) with their respective resource needs and

overhead of configuration and size. In other words, it allows developers to easily describe

an image containing the underlying operating system with the instructions of setting up

the needed dependencies for runtime. To make development faster, those images can be

shared and extended on so called Docker repositories. (Gupta, 2016)

Each docker image can therefore be thought of as a collection of reusable layers. Internally

this is due to the usage of a union filesystem. By utilising it, docker can take each

description from the docker-file and branch out file changes to separate file systems for

each instruction while still retaining the ability to overlay them collectively as one single

file system. (Gupta, 2016)

This effectively means that if all running containers use the same base image, only the

overlying layers need to be downloaded in order to do the complete automated

deployments. It also speeds up the general process of building containers when the

underlying layers remain unchanged and can therefore be skipped. (Gupta, 2016)

 14

This also enables flexible multi-stage builds, where a build can account for the different

build-time prerequisites but then produces a slimmed down runtime image without the

now redundant build dependencies.

Due to the format of containers, all file-system changes occurring within the running

container get wiped on restart. The application state has either to be saved outside the

container by using external databases, or it has to be configured in a shared storage

volume to which the containers can write persisted data. (Gupta, 2016)

These readily built Docker containers can then quickly be started or instantiated according

to the need for the packaged application. By running multiple instances of these

containers behind a reverse-proxy, one can create scalable solutions which will effectively

utilise the underlying hardware in order to serve the growing demand. When it comes to

interconnecting, monitoring and managing these clustered environments, the need of

orchestration of such instances becomes apparent.

3.5.2 Kubernetes

Kubernetes is an open source project with its roots originating from Google, but it is now

under the umbrella of the Cloud Native Computing Foundation. Its aim is to be a tool for

orchestrating automation of deployments, scaling regardless of hosts or what the

containerised operation is. Although this is not an end-to-end solution from the hardware

level, it has proven itself through its wide adoption within the field due to more and more

corporations adapting to a cloud native infrastructure. (Burns, et al., 2016) (Arundel &

Domingus, 2019)

Kubernetes contains a few concepts along with so called objects (The Linux Foundation,

2019). Pods represent defined processes which need to be run in the cluster. These

processes can be either a single container or several. By wrapping for example, a docker

container in a pod, it gives you the ability to dictate what resources you allocate, e.g.,

storage, networking amongst other things. When scaling this containerised application,

one can start several pods of the same container which is referred to as replication in

Kubernetes. These replications are often grouped together and managed by another

concept of Kubernetes controllers. (The Linux Foundation, 2019)

 15

A controller is responsible for directing the cluster into a desired state described in

configuration. This can for example be a job which would spawn a set of pods for a

scheduled time. Or in other cases driving the cluster state to the desired one when pods

fail or crash in unforeseen events. Due to the controller being an abstraction, there are

several underlying implementations other than a job that are available for use such as

daemon-set, replica-set etc. (The Linux Foundation, 2019)

Created pods are often run under concept objects called nodes. In reality these nodes can

be the underlying physical host servers or virtual machines responsible for running these

containers. In order for the nodes to be able to instantiate pods, each node includes its

underlying services which include the container runtime, the node agent called Kubelet

and the network proxy. These accompanying structural node services can vary depending

on which cloud provider you happen to choose, unless you choose to maintain the

Kubernetes backbone as well, where you can choose for yourself. (The Linux Foundation,

2019)

To expose a set of pods whose functionality is responsible for a coherent part of a bigger

application (in accordance with the microservice architecture), those could be abstracted

under a Kubernetes service. This exposes for example a way of defining reverse proxy for

Figure 6: Illustration of how the overlying concepts tie in together to form an orchestration system for a

containerised application cluster.

 16

scaled backends where a statically served frontend could be pointed. This is facilitated at

configuration time by each pod having its own assigned dns-name and ip-address within

the cluster. (The Linux Foundation, 2019)

To handle persistent data, Kubernetes introduces the concept of volumes which pods can

utilise. This gives a means of storing data elsewhere than in the container itself, which

otherwise would start with a clean slate each time a pod would be restarted. (The Linux

Foundation, 2019)

For clusters that are getting large in size one can utilise namespaces. A namespace is a way

of dividing parts of the cluster into scopes. This can be useful for example when managing

resources between several developers in a larger cluster. (The Linux Foundation, 2019)

4 Solutions considered during assessment

There is a plethora of available solutions for BPM and BPA oriented systems . Most of these

can be ruled out just by the licensing being based on transactions and usage in general and

the core system being proprietary. The main two alternatives remaining are alternatives

derived from the Drools and jBPM projects and Camunda which all happen to be open

source with a commercial enterprise support tier.

4.1 Red Hat Process Automation Manager

Process Automation Manager is the Red Hat supported enterprise solution for creating

and managing business rules and models by means of the BPMN and DMN. The

foundation of this offering is built upon the solutions under the umbrella project KIE

(Knowledge is Everything). The underlying projects are Drools, jBPM and Optaplanner

amongst others. Therefore, the KIE-server (a.k.a. Process Server) and the Business

Central, which are two key components of the solution, remain quite the same although

being rebranded in the Red Hat offering. (Red Hat, Inc., 2020) (Red Hat, Inc. and

contributors , 2020)

Drools is an open source business rule management system (BRMS) solution which is

trying to tackle the problem of business process management (BPM) through several

standards coupled with a supported declarative programming paradigm for developers to

 17

use in the given rule engine. This was first done by the introduction of the Drools Rule

Language (DRL) but also later on accompanied by the way of the DMN standard. (Bali,

2013)

With the rule engine covered, the jBPM project comes into the picture in order to prove a

workflow engine, now based upon the BPMN standard. Optaplanner (also called Business

Optimizer) is a constraint solver which can be used for optimisation problems. The line

between all these projects is blurred since they refer to each other with parts and sub-

projects which have been merged under different names at several occasions. Therefore,

the sections below will focus on the process automation manager and its Business Central

and process server (KIE-server) and their underlying runtimes. (Red Hat, Inc., 2020)

4.1.1 KIE-Server

The KIE-server is the backend responsible for creating instances running the rule models

and artifacts (built java projects) in such a way that they become available as discoverable

rest services ready for use. In this way the rules become available for use within the BPMS

solution and potentially outside, if needed. (Red Hat, Inc., 2020)

4.1.2 Business Central

Business Central is a service which provides a frontend and a backend for managing and

creating model descriptions. In other words, it is a platform for managing the lifecycle for

rule and process artifacts which need to be deployed to a KIE-server container in order to

be run. Depending on user permissions, this can become a control panel for relevant areas

and a tool for others. (Red Hat, Inc., 2020)

4.1.3 Red Hat Enterprise Application Platform (EAP)

The enterprise application platform is an alternative for deploying enterprise grade Java

EE applications. Among the provided features are secure clustered deployments suitable

for containerisation in OpenShift. In comparison to the common Drools setup with WildFly

or JBoss Web Server which relies on Apache Tomcat as a Java Application Server, EAP is a

supported platform based upon WildFly. (Red Hat, Inc., 2020)

 18

4.1.4 OpenShift

OpenShift is an open source project maintained by Red Hat with an attempt at offering

an end-to-end platform for hosting managed Kubernetes clusters with their respective

applications. OpenShift itself is an abstraction of Kubernetes with additional tooling. The

main difference between OpenShift and Kubernetes is that the former is a complete

product offering, whereas the latter is just an open source project. This gives customers

the option of getting support regarding hosting their containers with OpenShift. In

addition, Red Hat offers OpenShift on already existing cloud providers like Amazon Web

Services (AWS), Google Cloud Platform (GCP) and Microsoft Azure. (Adamski, 2018)

(Red Hat, Inc., 2020)

4.2 Camunda

Camunda is another offering that implements the BPMN and DMN standards through a

collection of services.

Figure 7: Overview illustration of Camunda BPM products. (Camunda Services GmbH, 2020)

The Camunda Modeler is a standalone application which utilises the open source projects

Camunda has under the bpmn.io group. The modeler itself is a tool which implements

these web technologies in order to form an application for editing the diagrams of the

BPMN, DMN and CMMN standards. In addition to this it is also extensible and lets you do

direct deployment of your process diagrams or decision tables into an existing Camunda

installation, given the correct authorization. (Camunda Services GmbH and contributors,

2020)

 19

Cawemo is a stripped-down version of the Modeler which utilises the same open source

projects to enable collaborative drafting and development of diagrams with versioning

and commenting as an in-browser experience. This tool is available for free with a

registered account, or you could deploy it on your own premises. The whole code base of

the Camunda services is available as open source, except for functionality which the

licensed enterprise supported versions include (which Cawemo essentially is, for on-

premise deployed usage). (Camunda Services GmbH, 2020)

Camunda Cockpit is a web frontend (for the workflow engine) which provides a means of

monitoring, analysing and resolving incidents (issues caused by process errors) in

deployed processes. Furthermore, it provides an insight into the history of previous

processes as well. (Camunda Services GmbH, 2020)

Tasklist is a similar frontend which focuses on offering the end-user experience for

resolving tasks where persons need to be involved in a described BPMN process.

(Camunda Services GmbH, 2020)

The workflow engine is the backbone of Camunda. It keeps track of deployed processes

and active process-instances, and it orchestrates the given modelled business processes.

It can either be deployed as a standalone service or embedded in your own Java

application. (Camunda Services GmbH, 2020)

The decision engine is responsible for handling the execution of deployed DMN tables or

diagrams. It is embedded by default in the workflow engine but can be utilised as a

standalone application and embedded in your own Java applications likewise. (Camunda

Services GmbH, 2020)

Camunda Optimize is a web-app you get with the licensed enterprise version. Optimize

gives the feature set for creating analytical reports, dashboards and visualisation of past

and running processes. BPMN diagrams can for example be presented with heatmaps for

comparison of different time periods needed for different tasks and such. This enables you

to find bottlenecks in the process-flow quite easily. For process targets you can also set

alerts for certain events. (Camunda Services GmbH, 2020)

 20

5 Evaluation

First thing being considered is how we can apply the solution beside our existing services

and then how we will be able to scale it according to our usage when we have future

proofing in mind. The solution itself should be grounded on robust and proven methods

while it offers reusable components for usage within the solution as well as the possibility

for external systems to utilise it. The platform should in other words offer the functionality

to deliver value for other systems at the same time as it should be able to harness others.

Therefore, the design should be application interface (API) centred in such a way that it

can consume and provide in an extensible manner. By having the core of the process driven

by data, it should also have extensive logging capabilities for the ability to trace changes

for proper auditing. This is a major corner stone of the solution if it is to be implemented

to deliver continuous automation between different enterprise resource planning (ERP)

systems as well as being the core system to initiate changes to revisory master data with

accompanying approval workflows. The idea behind having a citizen driven development

community is that each department should have the possibility to utilise suitable tools to

implement their respective processes in such a manner that they do not need the expertise

of a full-stack developer. However, the possibility to implement more intricate

functionality should still exist to a certain extent. As such user friendliness accompanying

with a valuable technical platform for automation needs to be achieved without hard

vendor lock-ins with the added benefit of the ability to be developed in-house.

The idea behind the chosen solution would be that it first would get a proof of concept use

case where it would be able to demonstrate some of its capabilities. After a demonstration

with internal stakeholders it would hopefully get a greenlight for a real pilot project with

practical use.

5.1 Red Hat Process Automation Manager

The process automation manager is a project which is based on open source projects

which have been existing in the BPM space for quite some time. During the years a lot of

changes have taken place. At first sight Red Hat Process Automation Manager has

comprehensive documentation available and the underlying projects have a reoccurring

 21

release schedule with one to two releases each month. The available artifacts and

examples suggest utilising WildFly or its derivatives for hosting it as a Java EE application.

Since the process automation manager consists of several components, simply speaking

of the business-central & KIE-server (with their respective sub components), they can be

deployed either under the same Java EE server or under separate instances. The

configuration of the underlying WildFly server can also be managed differently depending

on whether you choose to run your instances in standalone or domain mode. The

capabilities of these modes are the same since it is how the configuration is handled where

it differs. Since many of the responsibilities fall back on the underlying Java application

server, it has some inheriting importance of being configured correctly in order to support

the running applications. (Fugaro, 2015) (Red Hat, Inc., 2020)

In domain mode configuration you set up a master domain controller which then will be

able to hand out the deployed applications and configurations selectively to a set of

defined slave nodes. Despite the possibility to make this work in a container environment

in the cloud, it goes against the principle that each container answers to its very own

responsibility in a microservice architecture. Nonetheless, it is useful knowledge if you are

to set up a simpler development environment for extensions to Business Central or for

service tasks for local development. (Fugaro, 2015)

Testing was done to a certain extent relating to how this configuration could be done with

WildFly or with Red Hat’s EAP offering. This was done through utilising a virtual machine

instance in Google Cloud on Debian Linux with some scripting to handle the application

server configuration with the possibility to refer to different versions and setups (e.g.

domain or standalone mode) in order to compare these. There were quite a lot of naming

changes between the projects which can cause some confusion. Another interesting fact

is that the readily available releases of the drools and setups seemed to refer to WildFly 14

since there were four newer major revisions since that version. Red Hat EAP follows a

completely different release cycle with unmatching increments.

Business Central complicates things also in regard to how it handles the internal projects

and deployments you create or add to the platform. Projects can either be imported or

created solely within the provided Business Central web-based toolset. These projects are

then stored in an internal virtual file system (VFS) based repository (in this case a git

 22

repository). Imported repositories can also be kept as external by configuring git hooks to

order Business Central to keep in sync. (Red Hat, Inc., 2020)

Each project, either created or imported, is in practice a Maven project. This means that in

practice Business Central is an abstraction to prove an integrated development

environment (IDE) around complete Java Maven projects. It handles creating, managing

and deploying these projects by saving the built artifacts (the build result of Maven

projects) onto a Maven repository which can either be local to Business Central or external

(such as an external Nexus repository). The resulting Maven artifacts are then to be used

in a KIE-server deployment. (Red Hat, Inc., 2020)

With the task of providing web-based tooling on top of Maven projects for definitions and

serving it as a low-code experience according to the standards, it becomes hard to keep it

from seeping some of its complexity onto the design time for the end user. One apparent

example is how the editor locks the entire project specifically to you in order to hinder

others from working on it at the same time due to all changes being committed on save to

the underlying git repository. Although the possibility to do work on separate branches

and pull requests (which are named change requests within Business Central) still exists, it

might add to the learning curve of the end-user.

Due to the inherited complexity of abstracting the tools of the whole development process

into one single platform, it becomes troublesome when it comes to scaling Business

Central itself. The approach would be aimed at scaling vertically (by giving the machine

running the application better hardware resources) since this is preferable from the

configuration standpoint. Otherwise one would have to set up a solution for file inter-

locking mechanisms to keep several Business Central instances in sync with the same

contents in the internal VFS store if you so choose to run the central in high availability as

the KIE-servers are meant to be run in. In addition, a message broker between the

instances would need to be setup. Although this is still technically possible, it is something

that is said to be in technology preview and the existing documentation gives different

hints depending on what source you choose to read from. This can also be seen as

unnecessary from a domain driven design architecture standpoint. Especially if it is to be

used solely during development time. But if that is the case, there might actually be a need

 23

for a separate frontend for letting the end-users start and interact with processes which in

turn put the attention on the KIE-servers. (Red Hat, Inc., 2020)

From that standpoint you will have to build your own frontend while relying on the APIs of

the KIE-servers to interact with the processes or rule definitions. This can become tricky

when you have different deployments on different KIE-server instances since all results

from each instance would need to be aggregated to get a holistic view of all deployed

processes. Luckily, this can be solved by relying on the smart routing solution from Red

Hat for this use case. It enables you to communicate with the cluster of KIE-servers in a

similar fashion like having them behind a reverse proxy albeit a bit differently. This router

enables you to interact with all existing KIE-instances as one single KIE-server. (Red Hat,

Inc., 2020)

Figure 8: Visualisation of what a potential hybrid cloud setup of the Red Hat Process Automation Manager

could look like.

When it comes to the management of these KIE-server instances, there are several

different approaches. The set of KIE-servers running in parallel can either be run in

managed or unmanaged mode. This affects how the Business Central projects are handed

over to the KIE-servers. Usually the KIE-servers are run with a head controller. In a simple

setup this controller usually resides in Business Central itself. But when it comes to multi-

stage environments (such as development, quality assurance and production

environments), it is not unusual that the KIE-controller sits on the cluster and not on the

 24

Business Central instance. When running the KIE-cluster in managed mode with the

separate controller, it can be configured to poll for new artifacts on the Maven repository

and then automatically deploy them. When running the unmanaged mode, you will be

able to achieve greater immutability with the releases which means that a rebuild and a

redeployment occur each time a new process is deployed. This approach follows the

microservice architecture closer than the managed approach. Whether you want to do this

depends on what you prefer and how you want to approach the cluster management. (Red

Hat, Inc., 2020)

The KIE-servers can, like Camunda, be embedded in a Spring Boot application as well, but

the benefit here is maybe not as big as with Camunda. Since Red Hat provides support for

running the KIE-servers in unmanaged mode with OpenShift, which has source to image

tools, this could actually be the less maintenance demanding approach of the two.

However, if there is an existing cluster, the embedded or the other approaches are still

equally valid, with varying extents of support. (Red Hat, Inc., 2020) (Adamski, 2018)

When it comes to providing integrations to external services, you can implement custom

work-item handlers in Java. The characteristics of each work handler can be described in a

format which allows Business Central to provide them as custom BPMN tasks in the model

editor. These work handlers can be in the form of a Maven project whose artifacts are

added to the Business Central repository. From there you can either enable the handler in

the administrator panel to allow all projects to install them in the settings menu, or you

can add them manually to each project by adding the artifact as a dependency with the

correct work-item definitions. (Red Hat, Inc., 2020) (Maio, et al., 2014)

5.2 Camunda

Camunda offers a solution which is concentrated on one backend which can either be run

standalone in parallel connected into the same database or embedded into your own Java

EE application. This gives you the possibility to choose how far you as a developer want to

go with developing around the given solution yourself.

A plus is that Camunda offers standalone tools for drafting and then actually developing

and deploying processes into the workflow engine. Cawemo is a web platform which can

be deployed internally and can be configured to sync the already deployed processes for

 25

drafting on reiterations to improve the workflow. The Camunda modeler is an

implementation of a collection of open source projects under the bpmn.io namespace,

which can be reused in custom-made frontends or in your own modelling tools, if so

needed. (Camunda Services GmbH and contributors, 2020)

With the Camunda modeler you can refer to service tasks in the BPMN workflow in which

you either can do some light scripting or actually refer to a java class path for an

implemented java delegate to handle the action needed. This is becoming quite handy

since developers could build a reusable toolset to manage all the interactions between

different systems needed as such. (Camunda Services GmbH and contributors, 2020)

The service task libraries would also need to be deployed in conjunction either with the

specific process in mind or with Camunda itself to become reusable across a set of

processes. This is something that need to be considered when one starts thinking about

offering it as a service. Should the end-users be able to deploy their accompanying

delegates and service functions as complete Java web applications, or should it be

constrained to a pre-existing tool set available for all, which is leaner. (Camunda Services

GmbH, 2020)

Another option for the service tasks is that they can be separated entirely from the

workflow engine runtime to become decoupled as external clients. The communication

between the service client and the engine can happen in different ways in push or pull

configurations over REST or equivalent APIs. The disadvantage with this is that it becomes

harder to do unit testing. Furthermore, it can also be detrimental from the transactional

standpoint albeit you gain the possibility to create services in your choice of language. This

approach, however, indirectly opposes an open service landscape if you start building a

separate application tailored specifically to Camunda instead of being targeted for generic

availability. The generic API for said external service could instead be wrapped as an

abstraction provided by a Java delegate to the workflow engine. In that way external

components gain value outside a single domain of usage which would be preferable.

(Camunda Services GmbH, 2020)

For an approach concentrated on the tooling workflow, which Cawemo in combination

with the Modeler provide, it is not that bad of an approach to run Camunda in embedded

 26

form in conjunction with for example the Spring Framework. (Camunda Services GmbH,

2020)

The needed toolbox of service task delegates, to incorporate external services, can be

concentrated into one main project where the whole workflow-engine lives. That

simplifies the management of deployment of the core addons. The additional benefit of

using an embedded engine is that you can easily build a proper unit test suite to validate

whether the pluggable services work as expected.

To handle security concerning the provided web tools (cockpit, tasklist), one can rely on

the Spring Security framework to provide a single sign-on (SSO) experience and

authorization around the rest-API. To get users and user groups, one can incorporate it

with LDAP to provide user authorization. One reoccurring theme among the community

projects which provide LDAP integration or Keycloak integration (which is another Red

Hat offering) is that they seem to be lacking support for multi-tenacy configurations.

(Karanam, 2018)

Figure 9: Theoretical cluster environment configuration for running Camunda.

 27

By having a single project being responsible for the core of the backend, it becomes quite

straight forward to include builds for readily available docker containers which then can be

put in different test runtime environments with the abstractions of Kubernetes and

surrounding release pipelines to get there.

Session handling for the replicated embedded Camunda instances can be handled by the

session handling support which the Spring framework already provides. In this case that

could be a Redis instance which is usually used for varying caching applications with

structured data or where some sort of message broker is needed. (Karanam, 2018)

This would mean that each time the user request does not end up at the same replicated

instance, after going through the front-facing reverse-proxy and the replica instances have

been scaled down, the instance itself would check in with the Redis cache to check for a

valid previously existing session. Using that session instead allows the user to continue

without getting prompted to authenticate again.

5.3 Conclusion

Camunda has promising and extensible modelling tools available. If the current modelling

tools do not have a needed feature set, you can either extend the existing Camunda

Modeler or roll your own implementation using the open source libraries. Since the entire

modeler is built on web-technologies, you can easily embed it in your own applications.

These could be in your own frontend served as a website or as a desktop application

wrapped in Electron.js (similarly as the Camunda Modeler itself). Cawemo brings a

separate platform enabling collaborative real-time model tools for drafting and

documentation.

Holistically this provides a simple toolset to promote for a citizen developer community

with the focus staying on the described models. This in turn simplifies the underlying

infrastructure to an extent without disallowing you to go down the route of creating

separate domain specific Java applications on an application server in the future.

Red Hat, on the other hand, has embraced the concept by abstracting the modelling and

management tools around full Java projects. This is a large area to cover in order to make

 28

it completely user friendly, and therefore it can feel rough around the edges when using

its modelling tools.

There is also a difference in how the standards are supported in these tools. Camunda

supports modelling for BPMN, DMN and CMMN, whereas Red Hat PAM only supports

modelling for BPMN and DMN although support for execution of CMMN models still

exists. This can be seen as a bit odd although CMMN can be claimed to be harder to grasp

from the presentation view than a BPMN diagram in comparison due to its mere nature.

Therefore, Red Hat seems to suggest relying just on BPMN modelling with a custom

milestone activity to mimic the CMMN standard, but supposedly in a more readable

manner. In contrast, Red Hat PAM supports the additional standard of PMML which can

be seen as valuable but out of scope from the current consideration. (Red Hat, Inc., 2020)

The way of modelling BPMN can be different since Camunda allows you for example to

join several sequence flows into one single task activity and adding boundary events on

top. The process automation manager on the other hand enforces you to re-join all flows

through gates before routing them to any activities. Some of these can be discussed as

valid enforcement of best practices in BPMN modelling while it can be inconvenient from

the perspective of small processes.

Both solutions are capable in their respective ways, but both do not have an included

frontend capable enough for delivering such an end-user experience we were targeting.

Camunda allows you to extend their respective frontends to a certain extent with plugins.

The Tasklist can for example refer to embedded forms in deployed processes (when

processes are deployed as separate projects on the Java Application server) or to external

ones. That makes the process of creating forms and taking them to use more inflexible

than deploying the process definitions themselves (from the viewpoint of the embedded

workflow-engine shared by all). Red Hat has a more involving approach to the data

parameters and object models, on a per task and process basis, throughout its modelling

tools. That allows you to generate a foundation for forms in the tools available in Business

Central. These forms can be used within the built-in equivalent task lists of Business

Central and so on. That would introduce the whole central workflow development tools to

all users with different roles and permission sets. From our viewpoint this should be a

separate usage domain being concerned with the underlying foundation that Business

 29

Central consists of in retrospect. This can be seen as an opportunity to create a custom

frontend for providing an abstraction for the intricacies which the underlying systems

contain. One of these could for example be the so-called business keys which can be given

as contextual clues when starting a new process instance.

6 Implementation

6.1 Proof of Concept

This chapter describes the work regarding the creation of a proof of concept

demonstration utilising the Camunda platform. For delivering the means for the end users

(all employees within Wärtsilä) to initiate a process in Camunda, the default task-list web

application might become shorthanded. For us it would mean that we would decide on

creating an alternative frontend for this. The default Camunda Tasklist has some

extension possibilities such as deploying custom forms for handling user tasks or referring

to external ones. For us this is not quite enough. There is a need for a more streamlined

way of working without having it ending up as a work effort for a developer when a new

user task for a process needs to be implemented.

6.2 Use case

The proof of concept would ideally be able to achieve similar functionality as the task-list

but with the ability to start new processes by filling in a web based form and then let the

process continue and eventually end up at an approver’s table in a similar fashion by using

user tasks from within the BPMN process definition. In order to handle the forms part of

the frontend, we have to respect the fact that it is not only the business process and

decision models that should be doable by the end-users but also the form creation. When

forms should be doable in a similar manner with low-code tools, a similar definition format

needs to be found or implemented.

 30

6.3 Implementation

The idea behind a custom task-list is that it should have a form schema or description

format that easily can be modified with a web-based form builder and then easily referred

to and used in the actual process. The schema itself can be serialized in a suitable format

like JSON and then stored elsewhere and retrieved when needed. The definition itself

could be referable from the BPMN standpoint via the start events or user task elements

via the form-key property on them. A library or framework called Formio became of

interest for this functionality and will be utilised for the proof of concept frontend.

In this case Camunda provides some sample projects, under Camunda Consulting, which

one can use as a foundation to build further upon. I chose to go with the React.js based

one since there are other services within Wärtsilä which are already dependent on it.

A recurring technical challenge among the frontend frameworks is how to manage the

state in the hierarchy of web components. It is easy to fall in the pit of prop drilling where

you end up passing properties top-down in a long hierarchy of react components in order

to get the needed properties into the nested components you have written. Consequently,

you get the accompanying problem with unnecessary re-renders and how to trigger

changes to the overlying state from the composition-based component hierarchy in the

DOM.

Many developers usually opt for utilising Redux in conjunction with React, but this time I

opted to utilise Atlassian’s react-sweet-state library which offers much of the same

functionality. In comparison it lets you have a global state and then nested and separate

scoped states with the same support for state selectors with the addition of having

asynchronous dispatch actions without relying on the Redux-thunks library. Middleware is

supported for manipulating the state on change as well, like in Redux, and it was utilised

for managing the rest API calls to the Camunda backend. One drawback by utilising

middleware is that the state changes are happening outside the reducer actions as a side

effect. This makes it harder to debug when things go wrong. Therefore, it might help with

the existing Redux debugging browser extensions, which both of the frameworks support.

In order to tackle immutability with a more complex state which has nested objects due to

the REST-API responses being stored, the Immer library was utilised, which in turn uses

 31

JavaScript ECMAScript 6 (ES6) standard for proxies under the hood to always return a new

object with the reflected changes when you mutate the properties of the draft objects.

Even if you can replace the default mutator in the reducer to always use Immer, so that

you can always mutate the state in the reducer actions, there is an accompanying

performance cost for the convenience. Therefore, it becomes a useful tool when being

used as opt-in within selected reducer actions.

The reasoning behind the need for immutability is that React will not see the changes to

nested sub properties due to the fact that it uses a shallow compare for props. This means

that all the parent objects in the structure need to be recreated with the previous values

and new values so that the path up to the root object will be seen as changed. Otherwise

it will result in a stale state which then results in outdated component props being passed

down, hindering needed re-renders to display changes. Another pitfall is when you refer

to an immutable state object within an event handler where it might become stale as well

due to JS closures when React batches state changes to hinder excessive re-rendering. To

further help the state structure for usage with API data being stored, one can use the

Normalizr library to split up embedded entities from the API response into separate

sections according to schemas in order to store them in the state.

Since Formio is internally dependent on bootstrap for cascading style sheets (CSS), I opted

to use it for the whole frontend. For the time being, the form definitions were mocked and

saved as JSON files in the frontend itself. For future use this would be handled by a

separate service to create and store them.

6.4 Outcome

The end result was put in a virtual machine (VM) instance in the Google Cloud Platform

(GCP) together with a trial enterprise instance of Camunda serving as the backend. The

proof of concept application was presented several times for different stakeholders. It was

approved to receive funding for a pilot project for practical use already on the first

showcase.

 32

Figure 10: A pair of views taken from the resulting proof of concept frontend.

7 Conclusion

This has undoubtedly been a big learning journey and opportunity to dive into full-stack

development. Besides the technology the topic is quite a wide area to cover. Therefore,

there is much which is left out of this work. The actual decision, on solution of choice, will

in the end likely fall back on the respective product licensing terms.

The whole topic around business process automation (BPA), or rather business process

management systems (BPMS), is an area which I could see to become more commonplace

than it is today. For companies already looking into or having already established the use

of robotic process automation (RPA), this could be the next natural step forward for

getting a backbone system for all process automation and integration needs. The BPMN

standard will definitely be part of that and, as a matter of fact, it is already part of it to a

growing extent. The concept is not new. It has existed for a long time and might be picking

up more traction in the near future, which will be interesting to follow.

Those who are interested in taking a look at the Red Hat solutions should definitely spare

some time to do so bearing in mind the different sources and amount of documentation

that comes with the surrounding stack, which you can opt for. In the offering Red Hat

provides there are also more products which might become of interest besides the BPMS

oriented solutions which could be a future investigation. They do also have a separate

 33

product upcoming called Kogito which is aimed at being a cloud native alternative with

the possibility of being compiled to native code for fast containerised performance. Since

it is in active development with no stable builds, it was not considered during the time of

writing. It could, however, become an interesting option worthy of consideration in the

future.

Regarding the frontend implementation, it could be a beneficial point in the future to

investigate in using TypeScript instead of plain JavaScript to avoid unnecessary errors due

to missing type safety. This inspection could delve deeper into how Typescript could be

utilised in conjunction with React.JS and the state handling library of choice.

In regard to Java build systems, I had interesting finds when attempting to optimise build-

time spent in docker containers. Maven usually downloads and caches copies of all needed

libraries listed as dependencies. This is done each time if you start your Maven builds with

one single Maven install command in the docker container. This can considerably slow

down the build jobs with larger projects. One way to remedy this problem is to copy the

Maven pom file containing the project descriptions separately from the source code first

into the docker image and then attempt to run the Maven commands for preparing the

project for offline mode. This would in theory allow you to create a separate docker layer

which would automatically be skipped as long as the pom file does not change and thus

skip downloading dependencies all over. This was fine until I started experimenting with

packaging the build artifacts in different ways through Maven plugins after the build-time

completion. Then the issue of Maven not preparing the dependencies for said Maven

plugins for offline mode was found even though it should. One way around this was to run

the Maven install command straight on the pom file without the source code. But this

approach not only interferes with any post build activities but also is reliant on letting it fail

and is therefore more of a hack than an actual solution. Hence, I found it might be of

interest to investigate how other build tools are in comparison, such as Gradle.

 34

Finally, I want to give my sincere thanks to the many people who have contributed to my

thesis and who have supported me in my endeavour to reach this milestone. Many thanks

to my supervisors, both from the school and work side and, furthermore, the entire team

of wonderful colleagues at Wärtsilä who I have had the privileged opportunity to work

with. And at last and not to be forgotten, the reviewing teachers at Novia. Thanks, all of

you.

 35

8 References

Adamski, T., 2018. Hands-On Cloud Development with WildFly. Birmingham: Pact
Publishing Ltd..

Apache Software Foundation, 2019. What is maven?. [Online]
Available at: https://maven.apache.org/what-is-maven.html
[Accessed 27 December 2019].

Arundel, J. & Domingus, J., 2019. Cloud Native DevOps with Kubernetes. 2 ed. Sebastopol:
O'Reilly Media, Inc..

Bali, M., 2013. Drools JBoss Rules 5.5 Developers Guide. 1 ed. Birningham B3 2PB, UK:
Packt Publishing Ltd..

Burns, B. et al., 2016. Borg, Omega, and Kubernetes. ACM Queue, March.

Camunda Services GmbH and contributors, 2020. BPMN.io - CMMN demo. [Online]
Available at: https://demo.bpmn.io/cmmn
[Accessed 30 April 2020].

Camunda Services GmbH and contributors, 2020. BPMN.io - DMN demo. [Online]
Available at: https://demo.bpmn.io/dmn
[Accessed 30 April 2020].

Camunda Services GmbH and contributors, 2020. Camunda Docs - Delegation Code - Java
Delegate. [Online]
Available at: https://docs.camunda.org/manual/7.12/user-guide/process-
engine/delegation-code/#java-delegate
[Accessed 10 May 2020].

Camunda Services GmbH and contributors, 2020. GitHub - camunda/camunda-modeler.
[Online]
Available at: https://github.com/camunda/camunda-modeler
[Accessed 23 February 2020].

Camunda Services GmbH, 2020. Camunda Best Practises - Invoking Services from the
Process. [Online]
Available at: https://camunda.com/best-practices/invoking-services-from-the-process/
[Accessed 10 May 2020].

Camunda Services GmbH, 2020. Camunda products - Camunda BPM. [Online]
Available at: https://camunda.com/products/
[Accessed 27 May 2020].

Camunda Services GmbH, 2020. Deciding About Your Stack. [Online]
Available at: https://camunda.com/best-practices/deciding-about-your-stack/
[Accessed 11 May 2020].

Chacon, S. & Straub, B., 2019. Pro Git. s.l.:Apress.

 36

Data Mining Group, 2020. Data Mining Group - PMML 4.4. [Online]
Available at: http://dmg.org/pmml/v4-4/GeneralStructure.html
[Accessed 27 March 2020].

Evans, B., 2015. Java: The Legend. 1 ed. 1005 Gravenstein Highway North, Sebastopol,
CA 95472.: O’Reilly Media, Inc..

Fugaro, L., 2015. WildFly Cookbook. Birmingham: Packt Publishing Ltd..

Gupta, A., 2016. Docker for Java Developers. 1 ed. 1005 Gravenstein Highway North,
Sebastopol, CA 95472.: O’Reilly Media, Inc..

Harmon, P., 2014. Business Process Change. 3 ed. 225 Wyman Street, Waltham, MA
02451, USA: Elsevier Inc..

Karanam, R. R., 2018. Spring: Microservices with Spring Boot. 1 ed. Birmingham B3 2PB,
UK: Packt Publishing Ltd..

Kiefer, N., 2019. Github - bpmn-io/vs-code-bpmn-io. [Online]
Available at: https://github.com/bpmn-io/vs-code-bpmn-io/tree/master/resources/bpmn
[Accessed 30 April 2020].

Lindholm, T. et al., 2018. The Java® Virtual Machine Specification - Java SE 11 Edition.
[Online]
Available at: https://docs.oracle.com/javase/specs/jvms/se11/jvms11.pdf
[Accessed 2 January 2019].

Maio, M. N. D., Salatino, M. & Aliverti, E., 2014. jBPM6 Developer Guide. 3 ed.
Birmingham B3 2PB, UK: Packt Publishing Ltd..

Object Management Group, Inc., 2013. Business Process Model and Notation (BPMN),
Version 2.0.2. [Online]
Available at: https://www.omg.org/spec/BPMN/2.0.2/PDF
[Accessed 13 Januari 2020].

Object Management Group, Inc., 2016. Case Management Model and Notation (CMMN) -
Version 1.1 with change bars. [Online]
Available at: https://www.omg.org/spec/CMMN/1.1/PDF/changebar
[Accessed 25 January 2020].

Object Management Group, Inc., 2019. Decision Model and Notation, Version 1.3. [Online]
Available at: https://www.omg.org/spec/DMN/1.3/PDF
[Accessed 27 April 2020].

Ott, B., Pham, J. & Saker, H., 2016. Enterprise DevOps Playbook. 1 ed. 1005 Gravenstein
Highway North, Sebastopol, CA 95472: O’Reilly Media, Inc..

Red Hat, Inc. and contributors , 2020. KIE-Group. [Online]
Available at: https://www.kiegroup.org/
[Accessed 11 May 2020].

Red Hat, Inc., 2020. OpenShift - What is OpenShift?. [Online]
Available at: https://www.openshift.com/learn/what-is-openshift
[Accessed 11 May 2020].

 37

Red Hat, Inc., 2020. Red Hat JBoss Enterprise Application Platform 7.3 - Introduction to
JBoss EAP. [Online]
Available at: https://access.redhat.com/documentation/en-
us/red_hat_jboss_enterprise_application_platform/7.3/pdf/introduction_to_jboss_eap/R
ed_Hat_JBoss_Enterprise_Application_Platform-7.3-Introduction_to_JBoss_EAP-en-
US.pdf
[Accessed 7 May 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager 7 Component Details. [Online]
Available at: https://access.redhat.com/articles/3463751#RHPAM77
[Accessed 10 May 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager 7.7 - Creating Red Hat Process
Automation Manager business applications with Spring Boot. [Online]
Available at: https://access.redhat.com/documentation/en-
us/red_hat_process_automation_manager/7.7/pdf/creating_red_hat_process_automatio
n_manager_business_applications_with_spring_boot/Red_Hat_Process_Automation_M
anager-7.7-Creating_Red_Hat_Process_Automation_Manager_
[Accessed 2 May 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager 7.7 - Custom tasks and work
item handlers in Business Central. [Online]
Available at: https://access.redhat.com/documentation/en-
us/red_hat_process_automation_manager/7.7/pdf/custom_tasks_and_work_item_handl
ers_in_business_central/Red_Hat_Process_Automation_Manager-7.7-
Custom_tasks_and_work_item_handlers_in_Business_Central-en-US.pdf
[Accessed 25 April 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager 7.7 - Designing your decision
management architecture for Red Hat Process Automation Manager. [Online]
Available at: https://access.redhat.com/documentation/en-
us/red_hat_process_automation_manager/7.7/pdf/designing_your_decision_manageme
nt_architecture_for_red_hat_process_automation_manager/Red_Hat_Process_Automa
tion_Manager-7.7-Designing_your_decision_management_archi
[Accessed 17 April 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager 7.7 - Installing and configuring
Red Hat Process Automation Manager in a Red Hat JBoss EAP clustered environment.
[Online]
Available at: https://access.redhat.com/documentation/en-
us/red_hat_process_automation_manager/7.7/pdf/installing_and_configuring_red_hat_
process_automation_manager_in_a_red_hat_jboss_eap_clustered_environment/Red_H
at_Process_Automation_Manager-7.7-Installing_and_confi
[Accessed 03 May 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager 7.7 - Managing and monitoring
KIE Server. [Online]
Available at: https://access.redhat.com/documentation/en-
us/red_hat_process_automation_manager/7.7/pdf/managing_and_monitoring_kie_serve
r/Red_Hat_Process_Automation_Manager-7.7-Managing_and_monitoring_KIE_Server-

 38

en-US.pdf
[Accessed 10 May 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager 7.7 - Planning a Red Hat Process
Automation Manager installation. [Online]
Available at: https://access.redhat.com/documentation/en-
us/red_hat_process_automation_manager/7.7/pdf/planning_a_red_hat_process_automa
tion_manager_installation/Red_Hat_Process_Automation_Manager-7.7-
Planning_a_Red_Hat_Process_Automation_Manager_installation-en-US.pdf
[Accessed 18 April 2020].

Red Hat, Inc., 2020. Red Hat Process Automation Manager Supported Standards. [Online]
Available at: https://access.redhat.com/articles/3642982
[Accessed 10 May 2020].

Richardson, L. & Ruby, S., 2007. RESTful Web Services. 1 ed. 1005 Gravenstein Highway
North, Sebastopol, CA 95472: O’Reilly Media, Inc..

The Linux Foundation, 2019. Kubernetes concepts. [Online]
Available at: https://kubernetes.io/docs/concepts/
[Accessed 27 December 2019].

The Linux Foundation, 2019. Kubernetes concepts - Namespace. [Online]
Available at: https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/
[Accessed 27 December 2019].

The Linux Foundation, 2019. Kubernetes concepts - Nodes. [Online]
Available at: https://kubernetes.io/docs/concepts/architecture/nodes/
[Accessed 27 December 2019].

The Linux Foundation, 2019. Kubernetes concepts - Pods. [Online]
Available at: https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
[Accessed 27 December 2019].

The Linux Foundation, 2019. Kubernetes concepts - Service. [Online]
Available at: https://kubernetes.io/docs/concepts/services-networking/service/
[Accessed 27 December 2019].

The Linux Foundation, 2019. Kubernetes concepts - Volumes. [Online]
Available at: https://kubernetes.io/docs/concepts/storage/volumes/
[Accessed 27 December 2019].

The Linux Foundation, 2019. Kubernetes concpets - Controllers. [Online]
Available at: https://kubernetes.io/docs/concepts/architecture/controller/
[Accessed 27 December 2019].

