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Abstract 
The railway traffic management and security system are undergoing a renewal. Computer 
based systems are becoming the backbone that control moving trains. At the same time, 
cyber-attacks are becoming more common in the sphere of industrial control systems. The 
purpose of this thesis is to show how the trusted computing module can help mitigating 
attacks on industrial control systems. 
 
The thesis introduces the basic framework of social trust and the options available to 
expand that trust into the computer domain with the trusted platform module and 
attestation. Industrial control system attacks such as Stuxnet, Triton and Industroyer are 
introduced to present vectors on how the railway security system can be targeted in a 
cyber-physical attack. The thesis also briefly examines the Finnish Railway security system 
and traffic management. 
 
Study was conducted by means of intervention methodology. A background study was 
made concerning the implementation of a simulation environment for testing integrity 
failures in rail traffic. Testing was conducted to find out if integrity measurements are 
needed in this environment. 
 
The findings show that attacks can generate incidents that can be noticed by monitoring 
firmware integrity. The study also shows that in a rail security environment where 
measured boot and attestation have been implemented, integrity deviations are not only 
easily noticed but also possible to pinpoint. 
 
The simulation framework developed in this study uses containers to simulate devices. 
Admittedly this is a limited approach when measuring firmware integrity. Containers 
illustrating the firmware startup and runtime, can adequately showcase complex structures 
of attestation with multiple devices. The scope of the study we hope to expand into testing 
on real rail security systems. 
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1 INTRODUCTION 

Railway infrastructure has been secured by a reliable infrastructure based on 

relays for decades. However, these systems lifecycle is ending. Old systems are 

replaced by new computer-based systems. (Buurmans et al. 2018.) 

 

The shift to computer-based systems will bring targeted cost savings, but also the 

inheritance of all security weaknesses. These are new challenges for the rail 

industry. In order to make the change smoothly while new safety systems are 

introduced, new personnel, methods and standardization are needed to maintain 

security. (Buurmans et al. 2018.) 

 

Industrial Control Systems (ICS), have seen a ramp-up in cyber-attacks during 

the last 10-years. Before this era, cyber security was not a crucial part of the ICS. 

(Assante & Lee 2015; Caracano et al. 2018; Langner 2013.) 

 

The integrity of the software in ICS is important, but so is the option of remote 

programming (Stumpp 2019). Restrictions for programming or updating can 

render a device inoperable. 

 

The challenge is to notice integrity failures in ICS within a time frame when 

incident prevention is possible (Langner 2013). The failure notification should 

provide additional information so that measures can be taken faster than with a 

general notice of failure (Chien et al. 2011). 

 

1.1 Purpose of the thesis 

Previous ICS security systems where implemented without a connection to the 

Information Technology (IT) segment. In the railway industry, the security system 

consisted of relays. These would provide security without intervention from a 

computer-based system. Today every new track section is controlled by a 

computer system responsible for the security. (Kantamaa & Sorsimo 2018.) 

 



 

In the past, the rail industry would implement the relay-based security system, 

verify the security implementation and put it into production (Kantamaa & 

Sorsimo 2018). Integrity failures could be monitored through analog signals. In a 

computer-based system this is not enough, a new verification method is needed. 

There is no unified solution for monitoring the computer-based security systems 

integrity in the rail industry (Stumpp 2019). 

 

The purpose of this study is to incorporate an integrity monitoring solution for the 

computer-based security ICS in a railway environment. The aim is to simulate the 

implementation to provide an example for further studies. In a larger scale, the 

aim is to help the rail industry and others in implementing trusted computing. 

 

This thesis was commissioned by the Cyber Security Research Team at Nokia 

Bell Labs in Espoo, Finland, as an extension to their prior research into Trusted 

Computing. 

 

1.2 Research questions and scope 

The thesis research questions are: 

• How can a firmware integrity failure in the security system lead to a 
dangerous situation in the rail environment? 

• How can a railway traffic operator validate the firmware integrity of 
the security system? 

 

The first question evaluates the need to monitor the integrity of railway security 

systems. The question can be answered by exploring attacks made on similar 

systems and then simulating them on the railway system. 

 

The second question seeks to find a solution to make integrity monitoring 

accessible for the traffic operator. Active integrity monitoring has not been a 

requirement for device manufacturers (Stumpp 2019). The question also seeks to 

accomplish faster mitigation times on integrity failures to prevent incidents. By 

utilizing the simulation, tests can be conducted to evaluate integrity monitoring by 

an operator. 

 



 

The focus of this thesis is on the railway security system implemented in Finland. 

A simulation scenario is implemented and presented in this study. The Trusted 

Platform Module specification 2.0 by Trusted Computing Group (TCG) will be 

used as the integrity monitoring solution. We will follow the Personal Computer 

(PC) implementation. 

 

1.3 Research method and material 

The research method is intervention. This study will provide a method of testing 

an integrity monitoring solution for devices attached to a railway security system. 

The purpose is to increase the security of a system. (Kananen 2017.) 

 

Technology for firmware measurements have been accessible for 20 years. This 

have been used in monitoring the integrity of the PC platform, other computer 

platforms have not yet adopted the method. We strongly believe that by 

developing a framework that can demonstrate benefits in different cases, we can 

accelerate the implementation of this technology. A reason why the simulation 

framework is developed to be used on a single computer is the flexibility of 

demonstration. 

 

Implementing a new system into a real railway security system is not applicable 

without testing. There are very strict standards, on testing new components to a 

railway security system (Kantamaa & Sorsimo 2018). 

 

However, the rail industry has testing facilities and equipment that could be used 

for testing. The problem is lack of Trusted Platform Module (TPM) 

implementations in the existing equipment. This is a requirement for measuring 

the integrity on the computer-based security system. 

 

Therefore, we developed a simulation framework to test our proposed solution. 

By using background material on the Finnish railway security implementation, 

containerization and software TPMs, we were able to build our own test 

framework for evaluation. 

 



 

In the theory section, scientific literature is reviewed, the concepts of trust and 

asymmetric cryptography is explained and the characteristics of cyber attacks are 

studied. In addition, the concepts of TPM, attestation and virtualization are 

examined with reference to the railway security system. Based on the gathered 

information, a simulation environment where built on which tests can be run. 

 

Establishing integrity measurements in computer-based systems follows the 

Trusted Computing Groups (TCG) specifications. The specification for the PC 

platform has wide adoption, Microsoft Windows have required Original Equipment 

Manufacturers (OEM) to include a TPM 2.0 implementation on new computers 

since 2016 (TPM recommendations 2018). 

 

1.4 Phases of the thesis 

Chapters 2–4 introduce the conceptual basis of this study. Chapters 5 and 7 are 

describing the structure of the simulation framework made for the case study of 

the rail traffic management system from chapter 6. Chapter 8 analyzes and 

presents the results of the simulation. Chapter 9 presents a summary of 

conclusions made in the study. 

 

2 TRUST 

The concept of trust in computer systems originates from social trust. The focus 

of this thesis is on the aspect of containing trust in computer systems. This 

chapter is an introduction to the general idea of social trust and how it can be 

implemented into computer systems. 

 

2.1 A philosophical view on trust 

Fukuyama (1995) states that trust does not reside in integrated circuits and it is 

not reducible to information. He defines trust as the expectations one has on 

others within a community of regular, honest and cooperative people that share 

common norms. (Fukuyama 1995, 25–26.) 

 



 

It is difficult to describe or define why we trust someone since trust is a complex 

concept. When something is considered complex there is always an amount of 

uncertainty, actions whose results cannot be fully predicted (Nason 2017, 8). If 

trust only where complicated, it could be separated into steps and processed into 

results. This is not feasible with regards to social trust. It might be possible to 

break a trust relationship with a friend into components, but not to fully explain 

our gut feeling of trust in a person. 

 

Computer systems are originally pieces of components that interact in a logical 

way with a set of static rules and algorithms. One could ask why we need trust in 

a system, that perform with a set of predefined rules. It should be possible to 

calculate the output of a computer, but it would not make much sense using a 

computer to compute a result that is already known. A various amount of the 

growth in the world has happened owing to immediately available results 

generated by computers. A process we do not necessary understand but trust. 

 

Trust would not be needed if actions could be undertaken with complete certainty 

and no risk (Lewis & Weigert 1985). Implementing computing processes with 

complete certainty would require a great amount of effort, and every component 

and piece of code would have to be verified by the end user. Utilizing a system 

like that would not very easily contribute to growth. 

 

The application of trust has given society significant gains (Harari 2014). The 

financial revolution which started at the end of the 17th century established a 

system where states could loan money due to general trust that they would pay 

back (Roseveare 1991). Since then, the credit systems have been fine-tuned to 

establish trust in the loaners. However, the general trust occasionally fails which 

leads to an economic crisis. Today, most often such crisis is reflected all over the 

world. 

 

Trust in computer systems are in an infant stage compared to the financial 

system. The first commercial computers were introduced in 1945, after the 

transistor was invented. Only much later have people started to rely on trust 



 

when using computers. In the early years of computers, people verified by other 

means the results the computer calculated (Ceruzzi 2003). 

 

Human trust complexity is a major part of all computing. All systems that are in 

use today rely on code and hardware that have been developed by thousands of 

people. It is not feasible to establish an individual trust relationship with everyone 

who is developing these systems. Therefore, certificates play a crucial role in 

establishing trust. 

 

According to Oxfords dictionary in English, a certificate is an official document 

attesting a fact (Soanes & Stevenson 2005). Digital certificates can be used to 

sign computer hardware and code. This certificate ties the signed piece to a 

verified identity. Other attributes can be added to the digital certificate if 

necessary (Azad & Pathan 2014). 

 

In this thesis, we look at the most common methods to verify the integrity of a 

computing platform are examined. More trust in the platform can be established if 

it is possible to verify that every piece of code is the one intended to be used. 

 

2.2 Private messaging and signed verification 

This sub-chapter presents an introduction to Public Key Infrastructure (PKI) and 

hash functions. PKI is one of the main methods of implementing trust on 

computers. It is used to securely and privately exchange data on the Internet. It is 

also widely used to sign hash values of code and data. 

 

Public key infrastructure (PKI) use public-key cryptography or asymmetric key 

cryptography. Cryptography can be referred to as the science of preventing 

access to sensitive data by parties who are not authorized to access the data. 

Using asymmetric keys, the encryption key is public (public-key) and the 

decryption key is private (private-key). Figure 1 shows the basic scheme of 

encrypting and decrypting information. 



 

 

Figure 1. Asymmetric-key crypto scheme (Adams & Lloyd 2002, 13) 

 

PKI extends trust with a Certification Authority (CA) that will verify the requester’s 

identity before issuing a certificate and linking the key to that identity. Parties that 

trust the CA can rely on the verification of other parties. Certification is the act of 

binding identity details with a public key (Adams & Lloyd 2002, 85.). 

 

For example, if Bob and Alice want to communicate. Alice registers her 

asymmetric key with her identity to a CA. Bob can then ask for Alice’s certificate 

for the public key through a CA he trusts. Bob then encrypts his message with 

Alice’s public key and sends the message to Alice. Alice is then able to decrypt 

the message with her private key. (Das & Madhavan 2009, 2–5.) 



 

 

Figure 2. Public Key Infrastructure verification (Vacca 2004). 

 

CAs use trust chaining to extend trust boundaries, hence forming PKI 

hierarchies. A hierarchy has at least one root certificate. Intermediate 

certificate’s are signed with the root certificates private-key. There can be 

many levels of intermediate certificates. Verification can be done by going back 

the chain to the root certificate or through cross-certificate chains that are 

established between intermediate certificates. (Vacca 2004, 23–24.) 

 

Trust provided by PKI is only as strong as the CA chain. If a certificate’s private 

key is compromised by any means, the PKI hierarchy under that key is 

compromised. The process of key revocation is cumbersome, and the initial 

PKI implementation often suffers from problems. Revocation relies on updating 

information on compromised keys and the information is usually published in 

Certification Revocation Lists (CRL). (Vacca 2004, 25.) 

 

Integrity values can be signed by a private key that is registered to a CA. The 

values are most often hashes of the data. A hash is a value returned from a 



 

hash function. This function maps data of arbitrary length to a fixed size and 

the process is infeasible to reverse (Azad & Pathan 2014). This function can be 

used to verify data integrity. Due to the fixed length, a small storage is 

sufficient to store hash values. 

 

Together, PKI and hash functions provide a method of establishing trust in 

computer systems. These methods are widely used but can be difficult to 

implement securely. The easiest way is to let a third party perform the 

implementation, thus outsourcing the liability. 

 

 

Figure 3. PKI hierarchy (Vacca 2004). 

 

This model makes it possible to sign malware as well, which can happen if 

access control to the private key fails (Zetter 2019). Because most verification 

systems work automatically, they will only fail when the signature is invalid. The 

signed malware is not noticed until something else fails in the computer system. 

 

2.3 State of Railway Security Systems 

The European Railway Agency (ERA) launched a study to acquire an overview of 

the existing Command, Control and Signalling (CCS) systems. This was done to 

assist ERA with the European Rail Traffic Management Systems (ERTMS) 

deployment. ERTMS aims at replacing the different national train control and 

command systems in Europe. (Buurmans et al. 2018, 6.) 

 



 

The ERA study report was finished in 2018, 10 countries were part of the 

research. All Railway Infrastructure Managers in this study were at least 

considering implementing digital-based CCS systems. It is believed that the lack 

of people with expertise in this new field is affecting the adaptation of digital 

systems. Insufficient competence affects the regulatory side which struggles to 

predict the new risks. (Buurmans et al. 2018, 6–8.) 

 

The EN 50126 standard specifies the CCS systems safety requirements. EN 

50126 part 5 specifies functional safety in Railway applications (EN 50126-5: 

2014). Key specifications are made for the development process (Kantamaa & 

Sorsimo 2018). However, few specifications are made on software maintenance 

and patching. Implementations are left to the vendor or contractor that oversees 

maintenance (Stumpp 2019). 

 

The Railway CCS system was in the past a vendor specific implementation with 

specific applications, components and interfaces to comply with national 

specifications (Buurmans et al. 2018). This has made the systems unfavourable 

among attackers due to the limited affect. 

 

Today, new interoperability specifications in Europe and the demand to lower the 

cost of the old relay-based CCS systems, new standardized digital CCS systems 

will start emerging. If no appropriate tools and procedures are implemented, 

standardized systems can become a target for criminals and hackers in the 

future. The next chapter introduces previous attacks on systems similar to those 

that are being introduced into the railway sector. 

 

3 ATTACKING INDUSTRIAL CONTROL SYSTEMS 

Attacks against Industrial Control Systems (ICS) can be described as cyber-

physical attacks. They involve more layers than the everyday criminal attack on 

the Internet. In Figure 4, the layers are reproduced from Langner (2013). The IT 

layer is used to inject and spread the malware. The control system layer is used 

to manipulate process control to accomplish damage on the physical layer. 

(Langner 2013, 4.) 



 

 

In this chapter, three well known attacks against ICS-systems are introduced. 

The oldest attack, Stuxnet, changed the security environment for these systems. 

Before Stuxnet, air gaping these systems to secure them seemed sufficient. The 

amount of resources needed to develop malware for ICS-systems is dramatically 

lower now (Caracano et al. 2018). Common communication protocols, standards, 

equipment and computer architectures will even lower the bar for attackers if the 

security aspect is not taken into greater consideration. 

 

 

Figure 4. Layers of a sophisticated cyber-physical attack (Langner 2013). 

 

3.1 Stuxnet 

The purpose of the Stuxnet attack was to slow down the enrichment of weapon 

grade uranium in Iran’s enrichment facility at Nathanz. The attack utilized the 

Information Technology (IT) layer to manipulate the ICS layer which then caused 

harm to the physical layer. (Langner 2013, 4.) 

 

Centrifugal rotors were broken as an effect of the attack. Because the rotors were 

radioactive, they were troublesome to replace. This meant that enrichment time 

were lost, and the throughput of weapon grade Uranium was decreased. 



 

 

Two different attacks were carried out between 2007-2010 to accomplish the 

objective of prolonging development of a nuclear bomb in Iran. It is suggested 

that the second attack were introduced later because the attackers wanted faster 

results. This made the second attack bolder and more visible, which eventually 

lead to the detection of the whole attack in 2010. This was approximately two 

years later than the beginning of the first attack. (Langner 2013, 4–5.) 

 

The first attack propagated into the IT layer only through physical media that 

were opened with a certain vendor’s engineering software. Through a laptop, the 

malware was able to reach the ICS-layer where it infected the main Siemens S7-

417 industrial controller which controlled the valves and pressure sensors of 984 

centrifuges. 

 

The malware positioned itself between the legitimate operational logic and the 

analog inputs and outputs (I/O) were it was able to control I/O operations. It 

passed signals or generated faked signals repeatedly to the legitimate logic. 

(Langner 2013, 8–9.). 

 

The first phase malware also de-calibrated the pressure sensors that were 

connected to the Siemens S7-417 controller. This was a measure to hide the 

operation and not directly control the sensors. The direct control of the sensors 

could have been discovered by the facility personnel more easily than the 

recalibration. (Langner 2013.) 

 

Stuxnet’s second IT propagation path was designed with bold tactics and hiding 

was not prioritized. It utilized previously unknown vulnerabilities (zero-days) 

against Microsoft Windows and was able to enter the system as a legitimate 

driver using stolen credentials. It was even able to maintain Command and 

Control functionality to the infected air-gaped ICS system by peer-to-peer 

communication through the IT layer. (Chien et al. 2011, 21–23.) 

 



 

Siemens S7-315, a smaller Programmable Logic Controller (PLC) than the S7-

417, was targeted in the second attack. This controller was in charge of the 

Centrifuge Drive System. By suspending the control logic and iterating this 

procedure, the centrifugal rotors were slowed down from 63,000 rpm to 120 rpm 

and up again to the original speed. (Langner 2013.) 

 

During speed up, there is certain critical phases that causes the rotor to vibrate. 

Every time the rotor vibrates, there is a chance that it will break (Langner 2013). 

This eventually had a greater impact than the previous attack. 

 

Due to the aggressive IT propagation path of the second attack, malware 

samples started to appear early 2010. Some were discovered as early as 2009 

but the slow propagation on the IT layer kept the general interest low. (Langner 

2013, 4.) 

 

At least two driver certificates were stolen and used to sign malware that posed 

itself as legitimate Windows drivers. The stolen certificates were from Realtek 

Semiconductor and JMicron Technology Corporation (Langner 2013, 20.). 

 

3.2 Industroyer 

On 23 December 2015, a power outage occurred in Ukraine that left 225,000 

citizens without electricity before Christmas celebration. A year later, on 17 

December 2016, Ukraine suffered another power outage. Both power outages 

were the result of a cyber-attack against the electric power system. (Cherepanov 

2017.) 

 

The first attack took offline at least 27 sub-stations across three energy 

companies. Attackers were successful in compromising the IT system and used 

the Human Machine Interface (HMI) to turn off the sub-stations. Mitigation against 

the attack was slowed down by destroying software and interfaces to the ICS 

system. (Analysis of the Cyber Attack on the Ukrainian Power Grid 2016, 8– 

9.) 

 



 

The first attack utilized legitimate control tools in the IT layer to shut down the 

power. In the second attack, the attackers used tools that were able to control 

switches and circuit breakers directly with their own tools. Four different 

standardized communication protocols were used: 

• IEC 60870-5-101, protocol for monitoring and controlling electronic 
power systems on serial connections. 

• IEC 60870-5-104, extension of 101 to TCP/IP networks. 
• IEC 61850, protocol for multi-vendor communication of electrical 

substation automation systems. 
• OPC DA, software standard for real-time data exchange between 

distributed components. (Cherepanov 2017, 2.) 

 

The first two protocols are part of a set of standards which define systems used 

for telecontrol in electrical engineering and power system automation applications 

(IEC 60870-5: 2020). The former utilizes serial communication interfaces and the 

latter the internet protocol suite (TCP/IP). 

 

IEC 61850 is an international standard for communication networks and systems 

for power utility automation (IEC 61850: 2020). Its aim is to accomplish 

multivendor communication between devices on electrical substation automation 

systems. A device task can be protection, automation, metering, monitoring or 

control. (Cherepanov 2017, 10–12.) 

 

The last protocol the malware used was Microsoft’s OLE for Process Control 

(OPC) which applied several Microsoft technologies for Remote Procedure Calls 

(RPC) to enable real-time data exchanges between distributed components. 

(Cherepanov 2017.) 

 

The malware Industroyer were structured in different payloads for these 

protocols. They were controlled by a launcher that on a trigger date executed the 

payloads. It is not confirmed but strongly believed that this malware were the one 

causing the second power outage in Ukraine. A hard-coded trigger date was 

detected inside the malware that matched the second power outage (Cherepanov 

2017, 

15.). 



 

 

3.3 Triton 

During the last months of 2017, Mandiant, a subsidiary of FireEye, responded to 

a cyber incident in the Middle East. The attackers were targeting a Safety 

Instrumented System (SIS) which provided emergency shutdown capabilities to 

an industrial process. By examination of the attack, FireEye assessed that the 

attackers were developing a capability to cause physical damage at the facility 

(Johnson et al. 2017). 

 

A SIS is the last safety system in an industrial facility. Its task is to safely 

shutdown the facility in a threatening situation to prevent damage to equipment 

and personnel. It runs independently of other systems, monitoring thresholds and 

activating on its own if values are out of range. (Johnson et al. 2017.) 

 

The attacker compromised the IT layer and gained control to an engineering 

workstation. From the workstation, the attacker reprogrammed the SIS 

controllers. This triggered some controllers to enter a failsafe mode which was 

noticed by the personnel at the plant (Greenberg 2017). 

 

The code that injected the payload to the targeted Triconex Safety Instrumented 

System from Schneider Electric used a zero-day vulnerability. The injected 

malware would have provided remote control capabilities of the SIS device to the 

attackers. (Johnson et al. 2017.) 

 

It is not known which code triggered the failsafe, the injector or the payload. 

However, one of the processors inside the multi-core device triggered a 

redundancy alarm which forced all three main processors to start the safety 

shutdown process. (Caracano et al. 2018, 17.) 

 

Security researchers at Nozomi Networks restructured the process of developing 

and testing malware at the targeted system. Their results indicate that attacking 

ICS is no longer outside the reach of criminals. When Stuxnet was developed, it 

required specialised skills to attack ICS. This is not the case anymore because 



 

tools, techniques and equipment are accessible to anyone wishing to start 

developing their own attacks against these systems. (Caracano et al. 2018, 19.) 

 

4 TRUSTED PLATFORM MODULE 

The former Trusted Computing Platform Alliance (TCPA) established in 1999 

served as the foundation upon which the Trusted Computing Group (TCG) was 

formed in 2003. Since the beginning, it has worked on providing an efficient and 

low-cost way to implement trusted computing. A concrete part of the outcome is 

the Trusted Platform Module (TPM) which has been manufactured and 

implemented into many platforms. (Arthur & Challener 2015.) 

 

The TPM can establish a Trusted Platform (TP) that is able to store early 

firmware measurements from the platform. These measurements can then be 

evaluated against known good values which can reflect on human trust. 

 

TCG has specifications of the TPM implementation for different platforms, the x86 

PC platform specification was utilized in this study with the latest specification 

version 2.0, which is an architectural redesign from the 1.2 version (Arthur & 

Challener 2015, 5). 

 

This chapter starts by introducing the generic TPM provided features. Then the 

components of a trusted platform are examined. Finally, TPM identity and 

attestation is briefly described with reference to the platform boot. 

 

4.1 TPM features 

A TPM can be implemented by at least four different means (TCG 2019): 

• Discrete TPM 
• Integrated TPM 
• Firmware TPM 
• Software TPM 

 

A discrete TPM is a stand-alone chip on a platform. It provides the highest level 

of security by also withstanding hardware tampering. An integrated TPM is also 



 

implemented in hardware but incorporated in another chip. This exposes the TPM 

for hardware tampering through exposed interfaces. (TCG 2019.) 

 

Figure 5 shows some of the different TPM implementations and features. 

 

 

Figure 5. TPM implementations and features (TCG 2019). 

 

The rest of the TPM implementations are different software implementations. The 

most common x86 processor manufacturers has implemented the TPM as 

firmware inside their Central Processing Units (CPU). This is the standard 

consumer line implementation. 

 

Intel’s firmware TPM implementation is part of the Converged Security and 

Management Engine (CSME) formerly known as the Management Engine (ME) 

(Ruan 2014). AMD’s implementation is part of the Platform Secure Processor 

(PSP) (Cimpanu 2018). 

 

The firmware TPM is protected inside a Trusted Execution Environment (TEE). 

This is a form of separation from the normal workload running on the platform. 

However, the TPM needs to rely on other software for its security. (TCG 2019.) 

 

This thesis uses a software TPM developed by Ken Goldman from IBM. His 

implementation extends on source code donated by Microsoft. The simulator 

works according to the TCG TPM 2.0 specification (Goldman 2016). 

 



 

A software TPM is not intended for production use. It is, however, an efficient way 

to test and develop applications that use TPM features. Here are some of the 

features the TPM provides (TCG 2019): 

• High quality random numbers 
• Cryptographic services 
• Small protected persistent storage 
• Pseudo-persistent store of keys and data 
• Platform identities 
• Signing and verifying digital signatures 
• Certifying the properties of keys and data 

 

The TPM can generate random numbers through a cryptographic function done 

on random seeds implemented inside a protected storage of the TPM. The seed 

information is not accessible directly by the user or the platform, only by the TPM. 

(Trusted Platform Module Library, Part 1: Architecture 2016.) 

 

A seed is implemented as multiple one-time programmable eFuses. Once an 

eFuse-bit is set to the value of 1, it cannot be set back to 0. A high-quality 

random value is injected during manufacturing to the seed which gives the TPM a 

trusted entropy. (TCG PC Client Platform Firmware Profile 2019.) 

 

Three different seeds are implemented on the TPM. These are maped to different 

life cycle roles with their own authorization. In this thesis only the endorsement 

seed is used, which maps to the endorsement hierarchy. Authorization values or 

methods for accessing the hierarchy are omitted from this study. (Trusted 

Platform Module Library: Part 1: Architecture 2019.) 

 

Through the seeds, the module is also able to generate keys used for 

cryptographic functions such as encryption, decryption and signing. The TPM 

provides both symmetric and asymmetric cryptographic services. 

 

The protected persistent storage is small and can only hold a few keys at once. 

By using the seeds and a Key Derivation Function (KDF), pseudo-persistent keys 

can be generated. This is achieved by providing an input for the KDF. If the input 



 

and the seed are the same, key generation will be consistent. (Trusted Platform 

Module Library: Part 1: Architecture 2019.) 

 

By restricting the key usage inside the TPM, an asymmetric private key can be 

part of the platform identity. The public key is available for verification, but the 

private key never leaves the TPM. 

 

4.2 Trusted Platform 

A Trusted Platform is constituted of a Trusted Building Block (TBB). Three 

components are needed (Trusted Platform Module Library: Part 1: Architecture 

2019): 

• TPM 
• CPU 
• Storage for the initial application on the platform. 

 

The initial application is called the Core Root of Trust for Measurements (CRTM) 

in the TCG specifications. The initial start up script in this study is referred to as 

the CRTM. 

 

Depending on the TPM type, the aforementioned components are implemented 

differently. In a discrete TPM solution, they should all be integrated inside the 

TPM chip. An example of an integrated solution is presented in Figure 6. The 

connections in Figure 6 are also considered part of the TBB. 

 

 

Figure 6. Trusted Building Block (Trusted Platform Module Library: Part 1: Architecture 2019). 

 



 

The TBB needs to be vouched for by the manufacturer of the platform. The trust 

in a platform starts with the reputation of the manufacturer and the 

implementation of the TBB. The end user should be able to expect that the TBB 

does not compromise the goals of a trusted platforms. (Trusted Platform Module 

Library: Part 1: Architecture 2019, 21-22.) 

 

From the elements in a TBB, three Roots of Trusts can be derived. These are 

TCG specified system elements whose misbehaviour cannot be detected by the 

user. Therefore, these elements need to be trusted in order to establish a Trusted 

Platform. The three Roots of Trust are (Trusted Platform Module Library: Part 1: 

Architecture 2019): 

• Root of Trust for Storage (RTS) 
• Root of Trust for Measurement (RTM) 
• Root of Trust for Reporting (RTR) 

 

The RTS is contained inside the TPM. Interactions are only made through the 

TCG specified interfaces. The storage is constituted mostly by shielded space but 

also the accessible Platform Configuration Register (PCR). The PCR plays a 

crucial role in establishing a trusted platform and is described later in this chapter. 

 

The RTM consists of a CPU and the first set of instructions (CRTM) that are 

executed when a system is reset. The CRTM will measure itself and the next 

instruction set that will be run after. The measurements will be stored in the RTS. 

Reporting is done on the contents of the RTS, which is the function of RTR 

(Trusted Platform Module Library: Part 1: Architecture 2019). The report is 

usually a signed digest of the values inside the RTR. The whole TBB is needed to 

accomplish reporting. In addition, a platform identity is needed. 

 

4.3 Platform Identity 

The TPM contains cryptographically verifiable identities for reporting. The feature 

to produce asymmetric keys inside the TPM provides asymmetric aliases for the 

platform. An alias private key should only be usable inside the TPM. (Trusted 

Platform Module Library: Part 1: Architecture 2019). 



 

 

An Endorsement Key (EK) is produced when the TPM is manufactured. A 

certificate is signed by the manufacturer for the asymmetric decryption key. The 

certificate can verify that the TPM is produced according to TCG specifications. 

Usually, the platform EK certificate is stored inside the TPM. This can then be 

verified by a PKI chain to the manufacturer. An example of the EK certificate 

generation and verification is shown in Figure 8. (TCG TPM v2.0 Provisioning 

Guidance 2017.) 

 

Figure 7 shows an example of the public information of an EK generated by the 

TPM simulator used in this study. The TPM restricts the use of a key through 

attributes. 

 

 

Figure 7. Endorsement Key public information. 

 

Table 1 describes in more detail the function of these attributes for the EK. Keys 

that are generated from seeds are primary objects that acquire automatically the 

attributes fixedtpm and fixedparent (Trusted Platform Module Library: Part 1: 

Architecture 2019, 160). The administrator authorization role is beyond the scope 

of this thesis. 

 

Table 1. List of Endorsement Key attributes (Trusted Platform Module Library: Part 1: Architecture 
2019). 

Attribute Description 

fixedtpm The private key can not be extracted from the TPM. 

fixedparent The seed is not extractable from the TPM. 

sensitivedataorigin Key derived from a seed within the TPM. Restricts 

usage to protect the seed value. 



 

adminwithpolicy Admin role authorization method. 

restricted Restricts asymmetric key functionality. 

decrypt Type of functionality the key is restricted to. 

 

For reporting purposes, a signing key is needed. This is usually generated later 

by the platform owner. The best practice of reporting is performed through remote 

attestation. This is why the reporting key is called the Attestation Key (AK). 

 

Attestation can be achieved without a TPM. In this study the TPM provided 

functions and methods to accomplish remote attestation is used. Attestation with 

a TPM is performed by signing data inside the TPM. 

 

 

Figure 8. Creation and verification of EK certificate (TCG TPM v2.0 Provisioning Guidance 2017). 

 

Introduced here is a corporate example where the platform is provisioned to a 

remote attestation service. This is done before it is handed over to the end user. 

Before provisioning, the owner verifies the trust certificates of the platform. In 



 

many corporate cases, the owner is an IT administrator. The number of 

certificates available depends on the manufacturer and the supply chain process. 

 

If the owner considers the platform trusted, he generates an AK for the platform 

and provisions the platform to the remote attestation service. In a simple setup, 

the AK is generated under the EK with the attributes shown in Table 2. The 

attribute userwithauth is a policy method that is not further discussed in this 

study. 

 

Table 2. List of requires AK attributes (Trusted Platform Module Library: Part 1: Architecture 
2019). 

Attribute Description 

fixedtpm The private key can not be extracted from the TPM. 

fixedparent Parent key (EK) is not extractable from the TPM. 

sensitivedataorigin Parent key derived from a seed. Restricts usage to 

protect the seed value. 

userwithauth User role authentication can be provided by 

password, HMAC or policy. 

restricted Key functionality restricted. 

sign Key restricted to signing only. 

 

In this thesis, only a few generic features of the provisioning process are 

examined and more detailed methods are omitted. The endorsement certificate of 

the device requesting enrolment is validated by the provisioning service. This 

proves that the requester uses a certified TPM. 

 

The AK attributes are verified by the provisioning service, and a challenge is 

generated together with the attestation key name. This is then encrypted with the 

public part of the requesters EK and sent back. A certified TPM will only decrypt 

the challenge if the AK is loaded into the requester TPM and the AK name 

matches the response. (TCG TPM v2.0 Provisioning Guidance 2017.) 

 

It should be noted that this requires a TPM that is developed by TCG standards. 

The EK certificate is crucial because otherwise there is no guarantee that the 

TPM or some other entity will be able to accept an AK generated outside of a 



 

TPM. The generic provisioning process is shown in Figure 9. (TCG TPM v2.0 

Provisioning Guidance 2017.) 

 

 

Figure 9. Device provisioning to attestation service (TCG TPM v2.0 Provisioning Guidance 2017). 

 

4.4 Platform boot 

A Platform Configuration Register (PCR) is a storage that contains one hash of a 

supported hashing function by the TPM. Per supported hashing algorithm, there 

are at least 24 PCRs. SHA-1 and SHA-256 are mandatory in a TPM 2.0 

implementation. (TCG PC Client Platform TPM Profile Specification for TPM 2.0. 

2020.) 

 

When a platform is powered on or reset, it starts the CRTM instruction set which 

provides functionalities to measure itself and the next set of instructions. 

Depending on the TPM implementation, different hardware elements are 

interacting during the CRTM execution. Before the CRTM completes, it shall 

extend the measurement hashes into a PCR. (TCG PC Client Platform Firmware 

Profile 2019.) 

 



 

An extend function takes the old hash value, adds the new and hashes it. The 

sequence of extending a PCR needs to be the same throughout resets, because 

extending A before B would not bring the same results as extending B before A. 

The extend function is presented below. 

 

PCRnew := Halg(PCRold||digest) 

The PCRs is started with a default initial condition upon platform reset. The initial 

condition for a PC platform is PCRs 1-16 and 23 all bits zero and PCRs 17-20 all 

bits one. PCR 0 is a special case and acquires an initial value between 4–0 on a 

PC platform. (TCG PC Client Platform TPM Profile Specification for TPM 2.0. 

2020.) 

 

CRTM starts a process of Transitive Trust by measuring itself and the next 

application before handing over execution. No other application measures itself 

than the CRTM. As long as the measured values are represented by trusted 

applications, the software stack can be trusted. (TCG PC Client Platform 

Firmware Profile 2019.) 

 

An ideal situation would be that all software developers publish trusted values of 

their products so that measurements could be verified. This is, however, not the 

case and therefore it is necessary to establish a trusted baseline after installation 

or configuration. If measurements deviate from the previous software installation 

or configuration, it can be assumed that unwanted changes have occured. 

 

When deviation along the chain is spotted, no further software measurements 

can be trusted. This is due to the fact that the previous stage is responsible for 

measuring the next. It has therefore the ability to tamper with the measurement. 

 

Table 3 illustrates the aspects that are measured into each PCR on a PC 

platform. The PCRs 0-7 are considered the Static Root of Trust for Measurement 

(S-RTM) and are only re-producible on a system reset (TCG PC Client Platform 

Firmware Profile 2019). 

 



 

Table 3. PCR usage on the PC platform (TCG PC Client Platform Firmware Profile 2019). 

PCR 

Index 

Static-Root of Trust for Measurements 

0 CRTM, BIOS, Host Platform Extensions, Embedded 

Option ROMs and PI Drivers 

1 Host Platform Configuration 

2 UEFI driver and application Code 

3 UEFI driver and application Configuration and Data 

4 UEFI Boot Manager Code and Boot Attempts 

5 Boot Manager Code Configuration and Data and 

GPT or Partition Table 

6 Host Platform Manufacturer Specific 

7 Secure Boot Policy 

8-15 Defined for use by the Static OS 

 

Figure 10 aims to map different boot specifications to the boot process. It shows 

that the TCG specified Measured Boot covers the whole boot process. Verified 

Boot and UEFI Secure boot usually function together and can verify the firmware 

components utilizing PKI. These methods usually halt the boot process if 

verification fails. (Bratus et al. 2019, 338–339.) 

 

 

Figure 10. Different boot types protecting the software stack (Bratus et al. 2019). 

 

4.5 Attestation 

In this study, the TPM is used to attest PCR values. The TPM uses an attest 

structure that is signed by the provisioned AK. The structure contains a single 



 

hash of one or more PCRs referred to as a quote. (Trusted Platform Module 

Library: Part 1: Architecture 2019.) 

 

The actual PCR hashes are not included in the quote. PCR hashes can be 

provided in plain text and then verified by the attestation service through the 

quote. The attestation service takes the plain text hashes and hashes them. If the 

hash matches the quote hash the plain text hashes can be considered same as 

on the attested TPM. (Trusted Platform Module Library: Part 1: Architecture 

2019.) 

 

Table 4. TPM ATTEST structure (Trusted Platform Module Library: Part 1: Architecture 2019). 

Field Description 

Magic number Prevents external data to be forged as an attest 

struct. 

Quote type Type of the attestation structure. 

Qualified signer Certifies the environment

 the signature was made 

Extra data Functions as an anti-replay nonce. 

TPM clock states Clock, resetCount, restartCount and Safe. 

TPM firmware version Can be used to only allow certain versions. 

Attested Signed hash of selected PCR values. 

 

Table 4 shows the fields used by the TPM in the attest structure (Trusted 

Platform Module Library, Part 2: Structures 2016, p. 110). A quote from a 

simulated device on Nokia’s attestation service can be seen in Figure 11. 

 

 



 

 

Figure 11. Quote details shown in Nokia Bell Labs Attestation service. 

 

5 SIMULATION ENVIRONMENT 

The aim of simulation in this study is to reproduce a view of the traffic 

management system, including a way of monitoring the device integrity. In this 

study, integrity monitoring is included in another user interface (UI) but could be 

integrated to the traffic operators view in the future. 

 

In order to be able to see changes in device integrity, the device is provisioned to 

an attestation service. The TPM attest feature is then used to report on PCR 

values. 

 

Railway signals must only be tampered with, in a controlled environment, so as 

not to cause real incidents when testing. It is more secure, cost friendly and safer 

to simulate a rail security system virtually than using real equipment. When 



 

tampering with firmware on real devices, there is a great risk that the system will 

not be recoverable. 

 

This chapter introduces the different roles implemented for future testing of the 

framework. In this chapter, only the simulation environment administrator’s role is 

introduced in detail. The other roles are introduced in Chapter 7. 

 

In this chapter, the hardware and software needed to run the simulation are 

studied. The purpose is also to examine what services are needed in the process 

and how a particular device is simulated. This chapter ends with the 

documentation on how a small simulation without frontends can be run. 

 

5.1 Simulation Environment Roles 

Since the aim is that this study could be utilized as a test framework in the future, 

different roles are introduced for training, showcasing and testing. The end user 

in this test scenario is the traffic control operator. A simulation administrator is 

defined as the training instructor implementing the scenario for the traffic 

operator. 

 

In addition to these roles, a simulation environment administrator may be 

necessary. This can, of course, be the same person as the simulation 

administrator if he has the required competence. 

 

Simulated scenarios are launched and controlled interactively by the simulation 

administrator. Simulated railway traffic scenarios should be specified and 

implemented according to training purposes. 

 



 

 

Figure 12. Simulation environment roles. 

 

The infrastructure is managed by the environment administrator. Once the 

scenario is running on a system the administrator’s presence is not necessary 

during the simulation. 

 

5.2 Simulation environment administrator 

For managing the framework that the simulation run on, the simulation 

environments administrator uses common IT administrator tool’s. An overview of 

a framework example can be seen in Figure 13. 

 

This environment can be run on a single computer with an installation of Docker, 

Node.js and Angular. However, the best practice would be to run Docker and the 

simulation admin interface on separate virtual machines. 



 

 

Figure 13. Overview of the simulation environment. 

 

The simulation admin interface benefits from communicating directly to the host 

machine where the dockerd daemon is running. From the administrator interface, 

the simulation admin can create, start, stop and delete device containers. 

It is also possible to run the admin interface as a container on a hypervisor 

separate from the Docker machine. This is how the simulation is performed in this 

thesis. 

 

5.2.1 Containerization 

Containerization was chosen as the base method for simulating devices. Fully 

virtualized computers need more resources and simulate the underlying 

hardware. Containers use the host system kernel and simulate only the operating 

system, behaving in the same manner independently of the hardware. Figure 14 

demonstrates the difference between a container and a virtual machine 

(Schenker 2020.) 

 



 

 

Figure 14. Containerization (Schenker 2020). 

 

Docker was chosen as the containerization technology, but other technologies 

would also be applicable. Docker has good documentation online, and a software 

TPM simulation had already been made earlier by the author of the thesis. 

 

Containers are made into run time environments from images by the dockerd 

service which uses Linux technologies as namespaces, control groups and the 

union file system to isolate the environment from the host operating system and 

other containers (Docker 2020). Containers are started from images that consist 

of at least one data layer with needed binaries. In its simplest form, an image can 

consist of one executable binary (Create a base image 2020). 

 

Users mostly utilize Linux operating system images to build Docker containers. 

This thesis utilizes Ubuntu 20.04 Focal as its parent image. In order to be able to 

easily utilize TPM 2.0 tools, they are extended on top of the parent image. 

 

The best practice of building Docker images is specifying a Dockerfile. This 

consists of instructions to run inside the parent image. If all instructions are 

successfully executed, the building process returns an image of the environment 

state. (Schenker 2020.) 

 

The device Docker basic build file is available at Nokia GitHub (TPMCourse 

2020). Table 5 illustrates the used tools for this study that are installed on top of 

the parent image. 

 

 

 



 

Table 5. Software included in the device container. 

Software Version Developer 

Ubuntu binaries 20.04 Focal Canonical 

dbus 1.12.x. freedesktop 

tpm2-tss 2.3.2 tpm2-software 

tpm2-abrmd 2.3.1 community 

tpm2-tools 3.2.1  

IBM’s software TPM 2.0 1563 IBM 

Trust Agent  Nokia 

 

5.2.2 Hardware in the loop 

In order to implement a one-to-one simulation of a platform boot, virtualized 

machines can be used running Open Virtual Machine Firmware (OVMF) with 

tianocore EDK II (OVMF FAQ 2019). Another option is to use real hardware. 

 

Both options can be directly connected to the simulation environment. In this 

study, the use of real TPMs is fully supported by the Attestation service and the 

simulation environment. TPM EK certificate validation is also supported by the 

attestation service. 

 

The benefits of trusted computing can, however, be showcased with a simplified 

platform boot simulated inside containers. This approach makes the simulation 

easy to showcase anywhere on a normal laptop. The speed of starting and 

resetting a simulation is very fast through device simulation. The whole simulation 

environment can be launched and reset in 2 minutes. 

 

5.2.3 Simulation services 

Docker needs a host with the simulation environment Docker images and a 

running daemon. In order to control the containers from the simulation admins 

frontend, the REST API needs to be opened for the daemon on the host. This 

configuration step is well defined in Dockers documentation (Docker 2020). 

 



 

In order to connect the simulation containers a Docker created network is used. 

Docker’s internal Domain Name Server is used to automatically translate 

container hostnames to IP addresses. A container hostname can be given when 

starting the container. 

 

By using DNS, it is trivial to automate configuration when starting up the 

simulation environment since no IP addresses need to be manually added or 

edited. Hostnames for attestation server, mongo database, device controller are 

some used and added to all config files in the building process. 

 

The Node.js development server where the Angular simulation frontend is served 

need to have the Docker daemon host IP address implemented inside the 

Angular proxy.json file. In this study, we are using plain HTTP traffic between the 

frontend and the Docker server. 

 

The test scenario containing device parameters is defined inside the Angular 

application folder. A config.json file describes all simulated containers and also 

the attestation containers. Different scenarios can be implemented with different 

config files. 

 

Connections between rail devices are simulated by a Message Queuing 

Telemetry Transport (MQTT) broker. State information and commands from the 

security devices are transported with MQTT protocol version 3.1.1. The service is 

its own container running on the same Docker host. 

 

5.2.4 Attestation service 

 

Nokia Bell Labs in Espoo have been developing their own attestation server to 

showcase the benefits of trusted computing. This thesis is an extension of their 

work, targeting the rail industry. 

 

The developed attestation server is implemented in Python and can be executed 

inside a Docker container. It interacts with attested devices through a REST API 



 

and utilizes a separate Mongo database. A user interface has been developed 

with Angular and runs on a Node.js development server. All of these services are 

usually supplied from three different Docker containers that can reside on the 

same dockerd server as the device containers. 

 

The best way to begin a simulation is to first start the attestation services after 

which devices can be provisioned to it. The IBM’s TPM simulator does not have 

an Endorsement certificate. In this thesis, the IBM TPM implementation is 

considered trusted, and no endorsement certificate is implemented or checked 

during provisioning. 

 

5.3 Simulating a Trusted Device 

 

When a container is started, no processes are running as a default. Execution 

can be specified to one executable on the start-up. A container will also stop 

running if it does not have a task to do. 

 

For simulating a device with a container, an execution script is needed to start-up 

more processes than one. Job execution needs to be considered because the 

container must stay alive even if it has no active task. 

 

Because the aim is to simulate to some extent a real platform firmware three 

bash scripts execution is chained on the container start-up. The scripts are: 

• crtm.sh 
• uefi.sh 
• application.sh 

 

The crtm.sh starts execution on the start-up and initiates the software TPM. Then 

it measures itself, extends the hash to PCR 0. Next it moves on to measure and 

extend the hash of uefi.sh to the same PCR. Only after this, it hands over the 

execution to the uefi.sh script. 

 



 

 

Figure 15. Container start up process. 

 

The uefi.sh initializes bash input and output variables and extends them to PCR 

1. These are later tied to the application that simulates the ICS device 

functionality. The ICS software is represented by the application.sh script which is 

measured in uefi.sh and extended to PCR 2. The chained execution ends with 

the application script that leaves the ICS software running. 

 

The PCR values monitored in the simulated devices are PCRs 0-2. This range 

can simulate the CRTM, firmware and the application and was deemed sufficient 

to reach the aim of this thesis. 

 

Inside application.sh, an automated attestation provision sequence is started 

upon the first start-up of the container. The sequence will first generate an EK 

and AK for the device. Secondly it will try to connect to the attestation service for 

provisioning. After a successful initial provisioning, the device will attest it’s 

firmware by reporting the PCR value range 0-2. Lastly the device generates a 

policy that considers the attested values trusted and attaches the policy to itself in 

the attestation service. 

 

This automatic provision process helps rapid testing. Changes can be made to 

the image and it will be automatically trusted on the start-up. Table 6 shows the 

used environment variables for automatic provisioning. These are implemented in 

the scenario config file, inside the Angular application. 

 



 

Table 6. Environment variables for device provisioning. 

Variable Usage 

DEVICENAME Name of the device in the attestation service 

ATTESTATIONCLOUD Cloud is the higher hierarchy to which the 

device belongs to. Policies can be attached to 

this group of devices. 

ATTESTATIONSLICE Lower hierarchy than cloud which the device 

can belong to. Policies can be attached to this 

group of devices. 

ATTESTATIONPCRS TPM PCR definition for the view in the frontend. 

ATTESTATION- 

OPENSTACK 

Not used in this simulation 

 

The Nokia Trust Agent that communicates with the attestation server is also 

started at the end of every start-up. 

 

A device reset is also needed for proper simulation. A reset is triggered by 

running a different script called restart.sh. The script generates a few empty files 

in the filesystem before it kills all other processes inside the container, before it 

hands over execution to crtm.sh. By looking up the generated files during start-up 

change the behaviour from initial start up to reset. This is important because we 

do not want the device to provision itself again on a reset. 

 

The software TPM uses a file called NVCHIP as persistent memory if the file is 

found during TPM start-up. This way, seeds and keys can be stored between 

resets. 

 

5.4 Starting an example environment 

A description of the procedure for starting a small-scale environment with the 

attestation service and a simulated trusted device will conclude this chapter. All 

the services will be started on the same dockerd host and attached to a Docker 

network. 

 

All containers will be started from the command line and not the simulation admin 

interface. The step of downloading or building the containers is omitted from this 

example. The sequence of starting the small-scale environment is the following: 



 

1. Create the Docker container network. 
2. Start the mongo database. 
3. Start the attestation server. 
4. Start attestation frontend (optional). 
5. Start the device container. 

Docker daemon start-up commands are in the same order as in Listing 1. 

 

The name of the container image is in the end of the run command, this is usually 

specified as <image>:<version> or <framework>:<type>. The last part of the 

command specifies the command executed inside the container on start-up. The 

command is not needed if the container is built with it or an entry point. By 

specifying a command on start-up, the built-in command is ignored. In listing 1 

the command is added for clarification of the command started. 

 

Listing 1. Command examples. 

 

 

With the network option in Listing 1, every container is attached to the simnet 

network. Both hostname and network-alias option is needed for DNS to work in 

lookup mode. The “env” option adds environment variables to the container which 

are used to specify attestation options on client provisioning. 

 



 

6 CASE STUDY: RAIL TRAFFIC MANAGEMENT SYSTEM 

The simulation environment described in this study is built to simulate a generic 

interlocking model. The Finnish railway security system is studied as a basis for 

the model. 

 

The railway control system usually consists of sensors, controllers, turnouts, 

traffic lights and radios. The interlocking system is a controller containing a 

protective logic which is responsible for providing safe movement on track 

sections. Integrity failure on the device can have great negative impact on 

security. 

 

This chapter gives an understanding of the Finnish electronic interlocking system, 

and how it protects train environment. The Finnish Rail Traffic Management 

System is studied from the book published by the Finnish transport infrastructure 

agency, this book is consistently used as a reference in this whole chapter 

(Kantamaa & Sorsimo 2018). 

 

The first sub-chapter introduces the railway security terminology. The interlocking 

devices tasks are examined before introducing the track section used in this 

study. 

 

6.1 The Finnish rail traffic management system 

The Finnish rail traffic management system consist of four individual systems that 

work together: 

• Interlocking 
• Track vacancy monitoring 
• Automatic Train Protection (ATP) 
• Remote control system 

 

The interlocking system is connected to all other systems and by a predefined 

logic developed through a strict standardized process, it controls other 

equipment. In this study, traffic signals are considered a part of the interlocking, 

because it controls the aspect of the lights. 



 

 

The track vacancy monitor system provides input signals to the interlocking 

controller. Signals tell the interlocking system which track sections are occupied. 

Vacancy implementation is either done by track circuits or axle counters. 

 

The Finnish Automated Train Protection (ATP) systems abbreviation is ATP-

VR/RHK, this comes from the words valtion rautatie (VR) and ratahallintokeskus 

(RHK) in this study the system will be referred to as ATP. It consists of track side 

devices that can forward messages to a train integrated device, which is able to 

limit the train movement. 

 

Track reservations for train movement are requested by the remote-control 

system from the interlocking system. The remote-control system cannot normally 

override the interlocking systems reservations. 

 

6.2 Interlocking 

 

Safety is the main purpose of the interlocking system. It takes vacancy input 

signals and grants access to remote-control requests if safe passage can be 

routed. The interlocking controls track side traffic signals and data sent to the 

ATP system. 

 

The protective logic in the interlocking system is implemented as an application 

by device specific procedures and tools. The application development process is 

highly standardized, with steps that review, verify, simulate and test the logic 

before it can be used to protect a real track environment. 

 

The interlocking device firmware initializes and maps the input and output 

interfaces to either variables or registers, which the protective logic then uses to 

interact with the track environment. Integrity verification during production use of 

an interlocking device, should consider measuring the firmware and the 

protective logic. 

 



 

An overview of the interlocking interfaces is displayed in figure 16. 

 

 

Figure 16. Interlocking devices interfaces (Kantamaa & Sorsimo 2018). 

 

Interlocking device integrity failures during production use today, can only be 

spotted by the train driver (Hidden 1989). This can generate accidents before the 

integrity failure is mitigated. 

 

Some interlocking devices are accessible from a Control System network for 

maintenance, this is an attack vector for the attacker (Stumpp 2019). By 

propagating through the IT and Control layer the interlocking device can be 

accessed. Without integrity checks no one can be sure if a device firmware or 

logic has been changed from the network. 

 

6.3 Track section protection 

The track section that is use throughout this study, is introduced in this sub-

chapter together with some of the protective logic. The protection implemented is 

significantly stricter than Finnish track protection standards and only allows few 

input combinations for granting movement (Kantamaa & Sorsimo 2018). 

 



 

Figure 17 shows the track section and enumerates all track side equipment. 

Every track block is assigned a plain number and can have the status of occupied 

or free. In this study the axle counter input is generated directly to a block. 

 

 

Figure 17. Track section. 

 

In Figure 18 the train T100 occupies block 351 and train T200 block 302. In the 

figure a reservation is done for T100 on the main track, across the track section. 

As shown in this example of reservation, the interlocking device outputs signals 

to control the physical equipment in order to protect every train in the track 

section. The interlocking device controls in this scenario among other things 

(Kantamaa & Sorsimo 2018): 

• the signal aspects. 

• the turnout devices. 

 

The interlocking device have means of verifying that the outputs are according to 

its sent commands, these are mostly implemented with analog signals. Different 

signals are used to verify that traffic lights are showing the right aspect and 

turnouts are pointing in the right direction. 

 

 

Figure 18. Reserved track section. 



 

 

Figure 19 illustrates that the turnout is wired with inputs from the turnout that can 

signal through a closed circuit the position of the turnout. The outputs in this 

figure could be wired to separate relays controlling a motor, able to switch the 

turnout position from track block 301 to 302 and vice versa. These illustrated 

inputs and outputs will be used in the simulation to demonstrate what can happen 

when they are changed in the firmware mapping phase. 

 

 

Figure 19. Turnout input and output. 

 

 

A signal shows danger for T200, this signals the train not to proceed past the 

traffic light. In Finland there are three main signals which of two are used in this 

scenario, used aspects are proceed (green) and danger (red). (Kantamaa & 

Sorsimo 2018.) The interlocking protective logic or application restricts T200 to 

enter the main track section reserved for T100 movement with the aspect. 

 

The implemented protective logic in the simulation only accepts green aspects for 

traffic lights showing proceed in Figure 19, they change to red after T100 has 

passed the signal. The turnout V311 is in all situations pointing to block 301, this 

is hard coded into the logic. 

 

7 SIMULATED TRUSTED TRAFFIC MANAGEMENT SYSTEM 

 

This chapter introduces the method of starting the simulation. Controls accessible 

to the simulation administrator and traffic management operator are examined. 



 

The attestation service for assessing system integrity by the traffic management 

operator is examined in the last sub-chapter. 

 

7.1 Simulation administrator’s perspective 

The simulation administrator specifies the scenario, devices and track section 

before the simulation is launched. If necessary, this can be done together with 

the environment administrator. In this study, the scenario introduced in the 

previous chapter is prepared and starts automatically upon simulation start-up. 

Configurations are propagated automatically to the following services and 

devices: 

• Administrator frontend. 
• Attestation services. 
• Interlocking device. 
• Other device containers. 

 

It is recommended to start the mongo database service first, a few seconds 

before the attestation container. The attestation container will however delay the 

start-up until it can acquire a DNS response from the mongo_db host. 

 

The simulation administrator can start all device containers from the User 

Interface (UI) in Figure 20. In this example, all visible containers are already 

started except the MQTT broker. In order to help resetting the scenario, buttons 

for controlling all devices containers are generated under the device container 

heading. 

 

A Docker container status update is requested once a second from the dockerd 

daemon, this helps the administrator to monitor the state of the containers. The 

update can tell the administrator if a container stopped for an unknown reason, 

which helps troubleshooting containers when developing scenarios. The update 

feature can be toggled on and off from the refresh button. 

 



 

 

Figure 20. Simulation administrator UI. 

 

The simulation administrator has another UI to control the scenario and monitor 

the track situation, this shows the real view of the track section. The UI view can 

be seen in Figure 21 and is otherwise the same as the operators but shows the 

real state of track devices. Operators UI shows the track state interpreted by the 

interlocking device. Controls for setting the scenario and moving the train is 

included in the administrators UI. 

 



 

 

Figure 21. Simulation administrator real view. 

 

By changing the inputs from a turnout device vice versa in the interlocking 

containers application or firmware changes the perception of the track state for 

the operator. The interlocking device believes that the turnout points to track 

block 302 when it in fact points to 301, this deviation can be seen by examining 

both UIs. 

 

The train scenario simulation can be set and controlled in the real track view. The 

button, set scenario, initializes the simulation scenario and sets trains in the 

starting position as introduced. The administrator can move the train T100 

forward to simulate movement across the track section. 

 

7.2 Traffic management operator’s perspective 

The traffic operator has a similar track section UI as the simulation administrator 

but without the control buttons and the real track view. The view is displayed in 

Figure 22. 

 

 

Figure 22. Operator view of the track section. 

 



 

Displayed in Figure 23 is the attestation UI for integrity monitoring and validation, 

this is accessible for the operator. The figure shows the main view were devices 

are assigned to a cloud and a trust slice, which is done automatically when the 

devices are provisioned. 

 

 

Figure 23. Operator view of attestation UI. 

 

Depending on the ruleset different properties are measured when attested, a 

basic ruleset is used in this study for the devices. Each trust slice can have its 

own ruleset and rules. The rules attached to the simulated devices in this study 

are: 

• Correct System Measurements 
• Valid Signature 
• Valid Type Field 
• Valid Magic Field 
• Valid Firmware 

 

Correct system measurements are validated if the monitored PCRs contain 

values that are considered trusted, this is measured by the attest hash which is a 

hash of the monitored PCR values. In the study simulation PCRs 0-2 are values 

monitored. 

 

The signature is valid if the attest structure is signed by the corresponding AK 

that the device was provisioned with. Type validation reflects on the attestation 

structure and attested parameters. The magic field indicates that the attest 



 

structure begins with a predefined value which restricts the TPM from only 

signing an attest structure generated inside the TPM. Firmware validation verifies 

the version of the TPM in the attested device (Trusted Platform Module Library: 

Part 1: Architecture. 2019.) 

 

Validated trust decisions displayed in Figure 24 can be explored in the attestation 

UI by going into an elements details. 

 

 

Figure 24. Last trust decision 

 

Attesting a device can be done from the UI, every device in the study simulation 

automatically attests itself on reset. When a device is attested it will return a 

quote with information to validate the ruleset. Quote details are accessible from 

the UI, these are displayed in Figure 25. 



 

 

Figure 25. Quote details 

 

Restart count reflects on device restart, this value is not used in the study. Safe 

and extra data are other values omitted from this study. The purpose of the 

magic, type, signature and firmware fields were explained, in Figure 25 the 

values can be studied. 

 

Fields in red contain values that have changed between quotes. Clock value 

should increase which makes the signature also differ between quotes. Extended 

rules can be generated on values in the quote, for example a change in the clock 

backwards could easily be detected by a rule. 

 

Reset count reflects on TPM reset which happens on a device restart. On a 

simulated restart this value increases, the restart count is omitted. Qualified 

signer is the AK name in this study, this is supplied to the attestation service 

when the device is provisioned. 

 

The most interesting value in the quote for this study is attested, this is the hash 

of the monitored PCRs. During the last phase of device provisioning in this 



 

simulation, the device measures itself and generates the attest hash in the rule. 

This is the trusted value when the simulation is started and reflects on the correct 

system measurement rule. 

 

General element details are accessible from the attestation UI, these are 

displayed in Figure 26. The details contain the name and IP address that was 

applied during device provisioning. Openstack ID can be used for additional 

identity information but omitted in this study. Both EK and AK public keys are 

displayed in the figure which after a timestamp is listed from the day the device 

was provisioned. 

 

Figure 26. Element information. 

 

 

The validation of keys and the EK certificate is displayed in the end of the 

information in Figure 26. In this study scenario keys are valid if they have the 



 

correct attestation key attributes explained in Chapter 4. The server can check 

the EK certificate if it has access to the CA chain, this feature is omitted from the 

study. 

 

In the home view of the attestation UI displayed in Figure 26, the operator can 

with a single view acknowledge that every device attached to the simulation is 

trusted. The traffic management system can be considered trusted according to 

the ruleset applied, because every validation check assigned has been 

successfully validated. In the next chapter an untrusted view is examined. 

 

8 ATTACKING THE TRUSTED RAILWAY SIMULATION 

Attacking the simulation is introduced in this chapter, this is done through the 

simulation administrator role. How to tamper with the interlocking firmware and 

generate a critical flaw, that will generate a dangerous situation is explained in 

this chapter. 

 

The chapter concludes with explaining how the firmware change can be 

discovered with the attestation UI and what kind of mitigation procedures could 

help fixing the critical situation. 

 

8.1 Tampering a simulated interlocking device 

The attacks studied in Chapter 3 indicate that propagation through the IT layer 

can give access to the ICS layer for an attacker. No simulation of propagation is 

implemented in this study, the aim is to discover attacks after tampering has 

happened. In order to tamper with the interlocking device, the simulation 

administrator directly edits the firmware and triggers a restart. 

 

The uefi.sh script acquires virtual inputs and outputs during start-up, which are 

mapped to variables that the security application use. In Figure 27 input 1 is 

mapped to the application variable input 301 which represents the connection to 

track block 301 in turnout V311. When turnout V311 is pointing to track block 



 

301, an active signal is generated from the turnout device to the application 

variable. 

 

The interlocking operates its outputs according to the application logic. 

 

 

Figure 27. Initial uefi.sh mapping. 

 

When the interlocking requires to switch a turnout, it generates a signal on the 

corresponding output to which it wants the turnout to point. In this simulation an 

input will immediately indicate that the turnout has switched to another track 

block. An overview of the track section and the connections from the turnout is 

displayed in Figure 28. 

 

 

Figure 28. Inputs and outputs from interlocking to V311. 

 

In order to simulate an error that is not visible in the traffic operators normal track 

UI, the input and output mappings are changed in the uefi.sh script. Variables 

represent the physical interfaces in the script, the simulation administrator can 

directly edit the variable values inside uefi.sh which resides in the interlocking 

containers file system. 

 



 

Table 8 shows the original variable values and how they can be flipped to 

introduce a dangerous situation for the simulated track environment. Figure 29 

illustrates how the flipped mappings connect to the application logic. 

 

Table 7. uefi.sh mapping variables. 

Variable Original Value Edited value 

INPUT1 301 302 

INPUT2 302 301 

OUTPUT1 301 302 

OUTPUT2 302 301 

 

After the file has been edited by the simulation administrator, a restart is required 

for the changes to take effect. Restarting can be done from inside the interlocking 

container through the restart.sh script or starting the container after it has been 

stopped. Crtm.sh starts the boot process and hands over execution to the uefi.sh 

script which will extend the variable values to PCR 1 before mapping them to 

Linux environment variables. 

 

Last step in the boot sequence starts after the application.sh is extended to PCR 

2. The interlocking application is the last to start after a successful restart. 

 

 

Figure 29. Flipped uefi.sh mapping. 

 

The uefi.sh is the glue between the physical interface and the application 

interface. The interlocking software loads its protective logic last with the 

variables provided by uefi.sh. No change is done in the protective logic inside the 

train application to affect the end functionality. 



 

 

8.2 Characteristics of attacks 

The PCR measurements of register 1 is incorrect after the explained tampering 

and restart of the interlocking device. The reported value does not match the 

initial measurement made on the containers first start up. 

 

The change in mappings cannot be spotted by the traffic operator in his UI shown 

in Figure 30. However, the turnout V311 is pointing to track block 302 even if it is 

showing it as pointing to 301, this is confirmed in the simulation administrator’s UI 

in Figure 31. 

 

 

Figure 30. Operator view of turnout V311. 

 

 

Figure 31.Real view of turnout V311. 

 

By using the attestation UI, the traffic management operator can spot an integrity 

change in the interlocking device. The interlocking device belongs to the Rail 

Cloud and the Control slice, both instances are displayed in Figure 32 as 

untrusted with a red color. 

 



 

 

Figure 32. Untrusted control slice. 

 

The operator can open the slice and view all devices trust state attached to it. A 

red indicator shows that there is an issue with the interlocking device in Figure 

33. Details of the device can be studied by clicking on the name of the device. 

 

 

Figure 33. Untrusted interlocking container. 

 

The last trust decision is displayed in the details in Figure 34. The correct system 

measurements rule has failed validation in the figure, this means some of the 

PCR values are not considered trusted. 

 



 

 

Figure 34. Last Trust Decision. 

 

By opening the PCR values as displayed in Figure 35, the operator can spot that 

the issue is generated from an untrusted value in PCR 1. This relates back to the 

flipped inputs and outputs. Even if the operator do not identify the source of the 

problem he identify at which software level the mitigation has to start. 

 

 

Figure 35. Host Platform measurements untrusted. 

 

The attestation trust view could be propagated onto the traffic management 

control UI. This could show device integrity failures immediately when the 

attestation service spots them and would not require the operator to open a 

different UI. 

 

Continuing operations without spotting an integrity failure presented, the train 

would most probably derail at V311 or crash into the other train on track block 

302. This would depend on the speed of the train and the length of the V311 

turnout. 

 



 

Turnouts can have a lower speed limit than the one on the main track when 

turning the train to another track. Depending on the length of the turnout the 

speed limit can be as low as 35km per hour. The main track in the presented 

scenario could still support speeds up to 160km per hour. (Kantamaa & Sorsimo 

2018.) 

 

There are previous incidents where train accidents have happened due to flipped 

analog signals. Without integrity monitoring, only the train driver can spot the 

turnout fault introduced in this study. (Hidden 1989) 

 

8.3 Mitigation 

Mitigation of an integrity failure of a device depends on the security procedure. 

When a device fails the rule check a strict protection policy could be put in place 

to only allow manually controlled movement. However, the attestation feature 

introduced in this study could provide a tool to impose finer policies on failure. 

 

Testing and verifying that certain elements can provided sufficient protection 

even with a certain failure, could speed up traffic movement during mitigation. 

 

The TPM approach never leaves the device inoperable even if integrity tests fail, 

this is the opposite of what PKI verification provides. This is especially an 

advantage for remotely located devices, which still could be updated remotely 

and attested after failure. 

 

9 CONCLUSION 

Presented in this chapter are the answers to the thesis questions: 

• How can a firmware integrity failure in the security system lead to a 
dangerous situation in the rail environment? 

• How can a railway traffic operator validate the firmware integrity of 
the security system? 

 

The questions aim to find a solution for the problem on noticing and mitigating 

integrity failures in ICS-systems. The first question seeks answers of the 



 

necessity in integrity measurements in the rail environment. The second question 

seeks a solution for noticing integrity failures and help in mitigation of the 

problem. 

 

Indications can be made by studying the attacks presented in the background 

literature, that there is a need for firmware integrity monitoring in the ICS layer. In 

the case of Stuxnet and Triton, it would have provided an indication of a deviation 

from the normal software. 

 

In the simulation an attack similar to Stuxnet were implemented into the rail 

environment, this changed interface mappings in the firmware before the 

protective software is executed. Even if the protective applications integrity would 

be monitored and intact, the cyber-physical functionality would have changed. 

This indicates that the integrity monitoring should be implemented in the lowest 

level possible. 

 

The simulation results show that by manipulating the firmware, in the railway 

security system dangerous interlocking outputs can be produced. These can be 

discovered by the implemented TPM and attestation solution. This only considers 

checking the integrity during device start up, no dynamic checking is 

implemented in this study. 

 

By restricting firmware and software changes to only take affect after a reboot, 

integrity monitoring with the presented solution will work without dynamic integrity 

monitoring. ICS devices mostly function in a predefined which fits the static TPM 

measurements. 

 

Validation and maintenance of trusted values was omitted from this thesis. In the 

study the operator was monitoring trusted values that were established by 

reasoning. It is not the optimal way to establish trust, but it still provides means of 

discovering tampering and it can be extended later to reflect on trusted values 

reported by developers or manufacturers. 

 



 

Additional personnel could be alerted to evaluate the trust state of a device which 

validation fails against the device ruleset. By using attestation, the devices that 

fail integrity checks are noticed, it can even pinpoint the software level where 

integrity have degraded. This helps alerting the right maintenance for mitigation. 

 

10 DISCUSSION 

A discussion on the general success of the study, reliability analysis and some 

feedback on the theory studied in this thesis are included in this chapter. 

Future research and study topics conclude this chapter.  

 

Combining all pieces together for this study was a challenging task, Trusted 

Computing and the TPM alone includes a large amount of information. 

Implementing the TPM to the rail environment simulated in this thesis is possible 

but going forward needs more insights from the industry. The interaction with the 

assigner of the work and the railway industry was crucial for this work to succeed.  

 

10.1 Reliability analysis and feedback 

Interlocking devices were studied in a general aspect in this thesis. The 

tampering procedure where implemented with background information from 

previous ICS attacks and PC platform knowledge from the UEFI specification. 

Therefore, it is not known how many interlocking devices could be affected by an 

attack aiming for changing interface mappings. 

 

Additional security implementations than the interlocking system were not 

simulated, these could provide features that would mitigate the dangerous 

situation presented in this study. However, the interlocking system is complex 

and can consist of hundreds of inputs and outputs. Changes or failures in the 

firmware or software can most probably in some case present an unwanted  

 

Publications on ICS attacks could state more clearly the affected layer, in most 

cases it is unclear if the firmware level where compromised or only controlled 

through the IT layer. This tendency can make companies, industries and 



 

organizations focus on wrong security implementations. The ICS kill chain can be 

used to describe the compromised layer in detail (Assante & Lee 2015). 

 

10.2 Suggestions for further study 

Extensions on this thesis could include: 

• Availability of TPM implementations in interlocking devices 

• Simulation with TPM implementation in a real rail simulator 

 

First the TPM availability should be studied of the devices in the industry, if there 

are no implementations the following studies could be done. 

 

One study could be conducted to explore if existing equipment could be replaced 

by other including a TPM. Another study could be made where the measurement 

method would be changed from the TPM to another model supporting attestation. 

 

Once hardware with needed features are acquired, simulating the integrity 

measurements with equipment in a proper rail simulator could be studied. 

Railway interlocking simulators exist and are a part of the software logic 

verification and testing procedures. If the TPM exist in some of the equipment this 

study could easily be made. 

 

When the measurements are technically possible to do on a device in the rail 

environment next steps could be considered: 

• Evaluating the effectiveness of static firmware measurements on 
interlocking devices software stack 

• Communication method for value reporting 

• Procedure for establishing trusted values in the rail industry 

• Trust policy generation and mitigation procedures 

 

The first study should evaluate the protection provided by the measurements. If 

the logic can be tampered with during runtime, additional tools are needed to 

protect the integrity. 

 



 

Reporting the measurements requires a communication method. As shown in this 

study, reporting does not need additional security it is protected by the attestation 

key. If IP connectivity is provided, measurements can be reported to an 

attestation server. 

 

Establishing trusted values is a larger task which expands back to the supply 

chain and most probably includes many different vendors. These are all 

responsible for different stages of production and software development. 

Establishing trust backwards to the supply chain will probably take time. A study 

could be made on considerations for a fully trusted supply chain. Another study 

could evaluate the options today, for establishing a trust state without 

considerations on the supply chain. From these two studies a third could be 

made to outline the steps from today to acquire a fully trusted software stack with 

values provided from vendors in the supply chain. 

 

By being able to pinpoint the integrity measurement in a certain device and a 

certain layer of software, different mitigations could be established for different 

situations. This could span into different restriction levels depending on the 

failure. Traffic flow would not be restricted in a minor failure to the same extent as 

in a major one. This requires however an extensive amount of study and testing 

to be able to assure secure implementation. 
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