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1 INTRODUCTION

1.1 Background

There is a rising trend on the market towards increasing abstraction in field-pro-
grammable gate array (FPGA) design. What this means in practice, is that the de-
sign is programmed entirely using a high-level language, for example, in C, C++ or
Python. The used software tool’s compiler will then translate the code into a register
transfer level (RTL) implementation automatically, without the need for the user to
have any knowledge about FPGA design and VHDL, which is a hardware descrip-
tion language. This design flow is called HLS (High-Level Synthesis). Tradition-
ally, all this has been done by first implementing the FPGA block in VHDL on the
RTL and then programming the controlling software using C or C++. Essentially,
the HLS design flow enables the developer to do both phases using their preferred

programming language.

Xilinx 1s one of the leading semiconductor and FPGA manufacturers and most im-
portantly, the inventor of the FPGA. On the 1% of October 2019, Xilinx announced
the Vitis Unified Software Platform, a new, free and open source tool for HLS de-
velopment. One of the main reasons why Xilinx has developed this tool is that they
want to provide developers the possibility to utilize hardware (HW) with common
programming languages they understand, because modern computer architectures
can be difficult to work with, and understanding and utilizing CPUs, GPUs and
FPGAs well requires a lot of hardware expertise. /1/

Every used resource consumes real space on the FPGA chip. Thus, it is clearly im-
portant to optimize the resource usage in the design. When manufacturing an FPGA
chip out of the implementation designed on an evaluation board, all of the logic not
in use is stripped from the final product. Therefore, every cent of increased cost
accumulates into a large amount of money when the number of shipped products is
in hundreds of thousands, or even millions. In other words: the smaller the chip, the

more efficient the cost.
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1.2 Objective of the thesis

The aim of this thesis is to compare these two workflows for Vacon Oy. The goal
is to find out what the HLS implementation is like and which of the workflows is
the most efficient one to use. The factors being compared include the time con-
sumed, ease of verification and the size of the implementation. The comparison is
done by creating a PWM program, which will be used to control the brightness of
an LED (Light-emitting diode). It is also important to regard if HLS in fact does not

require the engineer to have any knowledge about FPGA design.

The traditional workflow utilizes Xilinx Vivado Design Suite and Xilinx Software
Development Kit, which are used to design the FPGA block design and the control-

ling software, respectively.

At first, the objective was to implement the entire HLS implementation using only
Xilinx’s Vitis tool. After a while of researching it was discovered that it cannot be
done with Vitis alone. That is because Vitis cannot access the physical hardware
pins and only manages the data flow between a host software and a kernel on the
FPGA. This will be explained in more detail in chapter 3.2 Then, the best course

of action was to research, whether an other Xilinx tool, Vivado HLS, would work.

According to HLS’s documentation it can be used to develop IPs using C, C++ or
SystemC. What this means in practice is that HLS replaces the part where develop-
ers would traditionally code the IP in VHDL, with C. HLS also enables the devel-
oper to test the algorithm using a test bench written in C, before needing to perform
RTL simulation. The rest of the flow including creation of the control software us-

ing Xilinx SDK remains the same. /2/
1.3 Structure of the thesis

The second chapter of the thesis describes the relevant technologies and tools for
the thesis. The third chapter describes the design flows. The fourth chapter de-
scribes the implementation of the PWM program using both RTL and software, and
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HLS workflows. The fifth chapter is for comparing these two workflows. The sixth

chapter includes the conclusions of the thesis and potential research for the future.
1.4 Danfoss

Danfoss is a Danish family-owned company founded in 1933, that operates in sev-
eral segments around the world. The segments include expertise in heating, cooling,
power solutions and drives. Danfoss employs more than 28,000 people and has fac-

tories in over 100 countries. /3/

Danfoss Drives is the segment that manufactures frequency converters. Vacon
(founded 1993 in Vaasa) became a part of Danfoss Drives in December of 2014,
and the combination has made Drives one of the world’s leading frequency con-

verter manufacturers. The combination of forces also opened new possibilities for

Vacon to invest further in R&D and sales. /3/

A
ff  ENGINEERING
TOMORROW

Figure I, Danfoss logo /3/

1.5 Frequency converter

Frequency converters, or AC drives, are used to control the speed of an electrical
motor. This enables the enhancing of process control, energy consumption reduc-
tion, decrease of mechanical stress and optimization of the operation of electric

motor-controlled applications.

Frequency converters have multiple uses, including converting energy from the sun,
wind or tides and transmitting it into the electrical network, combining energy
sources and storages to create energy management solutions, elevators, pumps and
cranes. When used in cranes or elevators, they can be equipped with brakes to

smoothly reduce the controlled motor’s speed.
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For Danfoss, the environment is a key driver in the development of AC drives. Be-
cause more than 50% of electrical energy consumption comes from the use of elec-
trical motors, AC drives have a key role in reducing global emissions. If AC drives
were used in every suitable application, global electricity consumption could be
reduced by up to 10%. While they are barely seen, they contribute a lot at making

the world more sustainable. /3/

Figure 2, Danfoss Drives product line /3/
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2 RELEVANT TECHNOLOGIES AND TOOLS

This chapter describes the relevant technologies and tools used in this thesis.
2.1 FPGA

FPGAs are semiconductor devices that are constructed around a matrix of configu-
rable logic blocks (CLBs), Digital signal processing units (DSPs), Block RAM
(BRAM) and Phase-locked loops (PLLs) connected through programmable inter-
connects. FPGAs can be reprogrammed for different purposes and algorithms after
fabrication. They provide significant cost advantages by making the developers in-
dependent of component manufacturers, because the functionality of an FPGA is in
the configuration and not in the physical components. Updates and changes can also
be carried out after the FPGA is delivered to the customer. The time-to-market is
also much shorter, because the design can be analyzed and troubleshooted at the
same time as development. Additionally, one of the biggest differences is that
FPGAs allows for parallel processing of data, instead of ICs’ sequential processing.

4,5/

When going into more detail, an FPGA is an array of interconnected sub-circuits
that implement common functions while also offering a very high level on flexibil-
ity. These sub-circuits are the above-mentioned CLBs and they form the core of the

FPGA’s programmable logic. /6/
The CLBs include the following elements:

e Look-up tables (LUT), which perform logic operations
e Flip-Flops (FF), which stores the results of the LUTs

However, the CLBs need to interact with each other. For this the FPGA also con-
tains a matrix of programmable wires and input/output (I/O) blocks. The wires con-

nect elements to each other, and the I/O blocks are physical ports to get data in and

out of the FPGA. /5/
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An I/O block consists of different components, including pull-up/pull-down resis-
tors, buffers and inverters. The FPGAs program is stored in SRAM cells that define
the functionality of the CLB. /6/ The combination of these elements form the basic

FPGA architecture shown in Figure 3 below:

~ ~

o cLB CLB CcLB CLB B
: CLB CLB CcLB CLB :
: CLB CLB cLB CLB :
: CLB CLB cLB CLB :
_k J_

Figure 3. Basic FPGA architecture /5/

2.1.1 RTL

Register-transfer level (RTL) is part of digital circuit design, and a typical part in
modern digital design. It is a design abstraction, which models a circuit regarding
the flow of data signals between hardware registers and the logical operations exe-
cuted on those signals. RTL abstraction is used in hardware description languages
(HDLs), such as VHDL and Verilog, to create descriptions of a circuit, from which
lower-level representations and actual wiring can be derived RTL abstraction is a

part of the FPGA design flow, which will be demonstrated later. /7/
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A synchronous circuit consists of registers, which utilize sequential logic, and com-
binational logic. Registers are the only elements in the circuit to have memory prop-
erties, and they synchronize the circuit’s operation to the clock cycles’ edges. They
consist of a parallel combination of flip-flops. Combinational logic is a type of dig-
ital logic which is implemented by Boolean circuits, where the output depends en-
tirely on the present input and it typically consists of logic gates Combinational

logic then executes all the logical functions in the circuit. /7, 8/

In Figure 4, a very simple synchronous circuit is shown. The inverter is connected
from the register’s output Q to the register’s input D. This creates a circuit which
changes its state on every rising edge of the clock c/k. In addition to the register,

the combinational logic consists of the inverter /7/.

L e ol

> =l

Combination logic Register

Figure 4. Example circuit /7/

However, when designing real-world digital integrated circuits, the designs are
commonly written with an HDL at a higher level of abstraction. The engineer de-
clares the registers and describes the combinational logic in HDLs by using if-else
-like constructs and arithmetic operations. This is the level, which is called the reg-
ister-transfer-level. The term RTL meaning that it focuses on describing the
stream of the signals between registers. In the case of RTL, registers roughly cor-

respond to variables in programming languages. /7/

Figure 5 shows the above-mentioned circuit described in VHDL:
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1 D <= not

3 proce=ss (clk)
4 begin

5 if rising edge(clk) then
g <= Dy
7 end if;

end process;

Figure 5. VHDL description of above-mentioned circuit /7/

Additionally, in FPGA design, software is used alongside RTL abstraction. While
RTL is utilized to describe the functionality of the circuit, a software application
can be created to complement the FPGA design. The software application can, for
example, perform more complex calculations and then feed the results to the RTL

design, and handle communications.

2.1.2 HLS

Creating a behavioral description of hardware in a high-level programming lan-
guage, like C or C++, forms the basis of HLS. Next the HLS compiler translates the

created hardware specification code into an RTL implementation. /5/
High-level synthesis provides the following benefits:

e Verification at C-level provides much faster validation of the algorithm than
RTL verification.

e Improved system performance for software designers (They can accelerate
the most intensive parts of their algorithms by compiling on the FPGA.)

e (reation of different implementations of the source code using optimization
directives.

e Developers only need to focus on the algorithm and not the hardware-level

implementation, which is synthesized automatically. /5/

HLS also possesses some limitations:
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e In more complex designs, the algorithm must be written in a particular style
to make the synthesis tool utilize parallelism
o C algorithms should not be directly translated with HLS, because it
can cause poor performance
e RTL produced by HLS is very difficult to follow
o Any problems on the synthesized RTL can be difficult to pinpoint

In the following example, a simple high-level data flow specification is shown.
Variables x/ and x2 carry the values from the + and — operators to an another +
operator, which outputs y:

rold example(int a, int b, int X1, int x2, int *vy)

{

x1 = a + b
¥ =b - c;
*y = XK1 + X2
1
a b '
x1 x2
¥

Data flow specification

Figure 6. An example of a high-level data flow specification /9/

In Figure 7, a possible RTL implementation is shown, when the high-level specifi-

cation code is fed into the HLS compiler:
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Figure 7. An example of a possible RTL implementation of the specification above
/9/

In the above-mentioned RTL example, the following steps have been taken:

e The variables have been assigned to registers
e Operations have been assigned to function units

e The controller schedules the operations to occur on a certain clock cycle.
2.2 Zynq-7000 SoC

The Zyng-7000 family is based on the Xilinx System on Chip (SoC) architecture.
These boards feature an ARM Cortex-A9 based CPU and Xilinx 28nm program-
mable logic in a single device. The evaluation board used in this thesis is the MYIR
Tech MYC-C7Z020, which is based on the Zyng-7000 SoC. It includes the Xilinx’s
dual-core Cortex-A9 processor and an Artix-7 FPGA. The Artix-7 family is typi-
cally used in cost-sensitive, low power applications where serial transceivers and

high DSP and logic throughput is required. /10/

The processing system (PS) of the MYIR Tech evaluation board include the fol-

lowing elements:

e ARM Cortex-A9 dual core processor
o 677 MHz



22

e On-Chip Memory
o 1GB DDR3 SDRAM
o 4GB eMMC
o 32MB Flash memory
e Linux 3.15.0 OS support
e [/O peripherals
o 10/100/1000M Ethernet
o LEDs
o 2x serial ports
o 2x12C
o ADC
o JTAG

The programmable logic (PL) includes the following elements:

e Artix-7 FPGA subsystem
o 85000 logic cells

= 53200 LUTs
= 220 DSPs

The evaluation board (blue) connected into a Vacon’s base board is shown in Figure

8:

4998 333333

Figure 8. The evaluation board connected into a base board
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23 PWM

Pulse width modulation is a type of a digital signal. It is used to create a square
wave by switching the signal’s state to high and low (on and off). This pattern sim-
ulates voltage values between these two states by changing the amount of time the
signal spends on versus the time it spends off. The duration of time when the signal
is “on” or “high”, is called the pulse width, or duty cycle. By changing the pulse
width, the signal gets varying analog values, the average voltage, between the two

states. /11/

For example, if the “high” state is set to 5 Volts and “low” is set to 0 Volts, and
pulse width is set to 50%, the resulting output voltage value is 2.5V. Correspond-
ingly, by setting the pulse width to 100% the resulting output would be 5 Volts. In
Figure 9 below, visual representation of different pulse widths, or duty cycles, are

shown:

50% duty cycle

75% duty cycle

4 U UL
25% duty cycle

[

Figure 9, 50%, 75% and 25% duty cycle examples /12/

PWM can be used to control the frequency and voltage supplied to an AC motor.
2.4 Vivado Design Suite

Vivado Design Suite is a Xilinx development system for implementing designs into

Xilinx programmable logic devices. It includes the IP integrator tool, which is used
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to create embedded hardware. IP integrator is used in this thesis to create a custom
PWM signal generator block. The PWM block is then configured in VHDL on the
RTL by setting a fixed frequency of 1000 Hz and connecting the PWM signal to an

LED. The graphical user interface (GUI) of the Vivado Design Suite is shown in
Figure 10:

4" pwm_vhdl_esimerkki - [C:/Users/nikok/pwm_vhd| pwm_vhdl_esimerldd xpr] - Vivado 2019.1 - o x
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=, =] X », B & T 4 Default Layout v

Flow Navigator S0 IS PROJECT MANAGER - pwm_vhal_esimerkki 2 %

v PROJECT MANAGER

Sources 7 _ 0% | Project Summary 200X
£ Settings
Q' T 2 4+ -3 Overview | Dashboard
Add Sources
~ [ Design Sources (1 )
Language Templates
gusge Temd > 1% design_1 (design_1.5a) (1) Settings.  Ecit
1P Catalog > = Constraints Project name: pwm_vhdl_esimerkki
> [= Simulation Sources (1) Project location: CUsersinikokipwm_vhdl_esimerkki
¥ IPINTEGRATOR > = Utility Sources Product family: Zynq-7000
Create Block Design Project part: ZYNQ-7 2C702 Evaluation Board (xc72020¢ig484-1)
Open BlockDesion Top module name: Not defined
o] s s comisians
Generate Block Design Source: orarie; ¢ Order i
+ smuLATION Source File Properties ?_00E X
Board Part
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Figure 10. GUI of the Vivado Design Suite

2.4.1 Main features

All of the main features are accessible from the starting view. These features in-

clude:

e [P integrator
e Simulation
e Synthesis and implementation

e Hardware manager
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The block design view is used to add the Zynq processing system and the PWM

generator block to the design, and to manage connections. The view is shown in

Figure 11:
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v SMULATION Source File Properties ?_0@x
Fun Simulation design_1.6d - o
« RTLANALYSIS ) Enavied 1
> Open Elaboraled Design Location C:Usersinikokipwm_shdl_ssimerkdipwm_vi

» = Simulation Sources (1
» = Uiy Sources

Type: Block Designs
v SYNTHESIS . R ~
< >
P RunSimtnesis
General  Propsrties
> Opens
TelConsole  x Messages  Log | Reports | DesignRuns -0o
¥ MPLEMENTATION > &
QT ¢ 0 B ®E @
B Runimplementaton
18-224] Refreshing IF reposite: ~
» Open Implementsd Design 700] Loaded uoer IF reposi Uasers/nikak/ip_repo/my_pwm_1.0°.
cing license key me
¥ PROGRAM AND DEBUG
" _1/design_1.bd
i Generate Bitsream -
Wi Generate Bitstrea n_L/deasgn_1.bd
> Open Hardware Manager
< >

Figure 11. Block design view

The PWM block is created using the IP integrator’s IP packaging tool, which cre-

ates an AXI IP. An example view in the IP packaging tool is as follows:

Packagig o

Ep—

= son_sa

= b 500_a_adi3 0]
P 200 si_edi20)
— P s00_a_avwmn

] 4 500 s _sersaty

Figure 12. Example view of IP packager
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The simulation tool includes the Waveform window, which can be used to monitor

signals and analyze simulation results by, for example:

e Running the simulation to verify the design functionality

e Adding signals to monitor their status

e (Changing signal and wave properties to review the signals

e Using markers and cursors to highlight important events in the simulation

e Using zoom and time measurement functionalities

An example view of the Waveform window is shown in Figure 13. /12/

testhench_behav.wefg -0 ax

= E R LRI |

Figure 13. Waveform window in the simulation tool /12/

The synthesis and implementation tools are used to transform an RTL design into a
gate-level representation. The tool provides data of the implementation’s use of de-
vice resources, power consumption and timing. /13/ As we can see in Figure 14, the
generated utilization report shows the utilization of an example implementation,

including the used LUTs and Flip-Flops:
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L Project Summary % ) Utilization Report - synth_1 % o x
s C:Projects_Latestjproject_1Lproject_1runs foynth_1Lbft_utieation_synth.mpt Read-only
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Figure 14. Synthesis utilization report /14/

2.5 Xilinx SDK

Xilinx Software Development Kit (SDK) is a tool based on the Eclipse open-source
framework, and is used to develop software applications for embedded hardware.
It directly interfaces to the Vivado embedded hardware design environment. In this
thesis, the SDK is used to develop the software which varies the created PWM gen-

erator’s pulse width. An example view of the SDK’s GUI is shown in Figure 15.
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Figure 15. Xilinx SDK GUI /15/

2.5.1 Basic features
The Xilinx SDK enables the developer to:

e (reate board support packages
e Develop applications
e Debug code

e Interact with the hardware created in Vivado

The Xilinx SDK has the integrated development environment (IDE) of Eclipse,
which is familiar to many software developers. It has the well-known common fea-

tures of Eclipse IDE shown in Figure 16.
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Figure 16. Example view of Xilinx SDK and some of its features /16/

The SDK’s debugging view is shown in Figure 17.
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One of the most important features in the SDK for this thesis is that the Vivado
simulation waveform view can be utilized on the SDK. The developer can set break-
points and force certain values to the variables in the SDK, and set triggers in the
Vivado Hardware Manager to make the program stop on certain conditions and then

visualize what is happening on the PL.
2.6 Xilinx Vitis

The Xilinx Vitis unified software platform is a tool that unifies every aspect of Xil-
inx software development into a single platform. What this means is that it can be
used for the same case as the Xilinx SDK is used in this thesis in the embedded
software development. In addition to this, Vitis also supports application accelera-
tion flow, which enables software developers to accelerate the most performance-

intensive parts on the FPGA. /17/

Right at the start it can be seen that the embedded software development flow in-
volves no HLS, because it is designed to replace SDK with Vitis for developing
software. So, the next course of action was to take a look into the acceleration flow.
This chapter describes the basics of the IDE itself. The reasons why it was eventu-
ally concluded that it is not possible to create a design entirely in high-level lan-

guage by only using Vitis, are went through in chapter 3. /17/
2.6.1 Vitis IDE

The default view of the Vitis is quite similar to SDK. That is no surprise, because

Vitis is Eclipse-based aswell.
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Figure 18. Vitis IDE default perspective /18/

The default view basically includes all of the main features:

e Software emulation
e Hardware emulation
e Hardware execution

e Vitis Analyzer

The IDE includes the Vitis Analyzer, which is a powerful debugging tool for view-
ing application timelines, waveforms system summaries and guidance on optimiz-

ing the design. Figure 19 shows an example workspace in the Analyzer.



32

System Guidance =nfx
fle Bun  Jools Help
=@ | apply_watermark.c x
Q =+ 0% System Guidance L e
apply_watarmark GOOD (Hard: u} —
A
v 7] apply_watermark_GOOD (14 e Threshold  Details Res( o T
System Diagraim oRtAl Sg | yoid apply_watermark (const TYPE *input, TYPE foutput, int width, int height) {
Platform Diagram PS¢ | 5o | spragea HLS INTERFACE m_axi port - imput offset - slave bundle - guon
System Estimate #pragea HLS TNTERFACE n_axi port = output offset = slave bundle - guen
. T #pragna HLS INTERFACE 5_axilite port = input bundle = control
System Guidance v = apply_watermar #pragna HLS INTERFACE s_axilite port = output bundle = control
~ & Looy R
Thing Strmma = | #pragea HLS INTERFACE s axilite port - width bundle - contrel
M & v = Loop + | tpragna HLS INTERFACE s_axilite port - height bundle - control
Utilzation #++¢ Loop Constraint Status: All  Con S | #pragma HLS INTERFACE s_axilite port = return bundle = control
Operation Trace 6 Loop loop constraints were satisfied.  HLS | ¢
o #pragea HLS DATA_PACK variable - input

Logs R #pragea HLS DATA_PACK variable = output
v & Kemel (1)
« @ apply_watermark (Hardwa

« = Kemel
Kerne| Estimate e Estimated Fmax: 411.0ZMHz  Cont | 7, it vaternark [WATERMARK | FELGT] WATERM EoT) - {
Kemel Guidance © Kemel Hs | 7 0.0.0,0,0,00 000,000 0 0 0,
S Syihesis wel | 73 {0, 0x01601, 0, 0, 6, 0, 0, 0, 0, 0, 6, 6, O, 0, Gofafof, o},
ynt = {0, 0. cxofofof, o, o, . 0. 0, 0, oxofofof, 0, o},
Logs v = iterface 75 {0, 0, 0, ox0fofof, o . 0, 0, axofofor, 0, 0, 0}
« = Interface 7 {0 0. 0, 0, 0:0f0fOf, . 0. 0, OXofefof. 0, 0, 0, O},
: Inferring multiple bus burst read  Con: | 7 {0 0. 0. 0. 0, OKBfOfOf, 0. O, 0. 0, OOFOFGR. 0. O, 0, 0, O,
Report Navigator of variable length on port ‘gmem’  HLS. {0 0.0 0. 0. 0. oafofor, o. 0. ouofofar 0. 0. 0. 0. 0. .
(apply watermark.cop:101) uet ] {0. 0.0, 0,0, 0 o oxofmm oxofofof, 0, 0, 0. 0, 0, 0, O},
These data requests might be {0. 0, 0, 0, 0, 0, ofoim 0x0° wwf 0. 0,00 00 o)‘
@ hitaiass further partitioned to muktiple .0 0 0 o o o
requests during RTL generation, 8 . 0. 0. 0 o o o
based on max_read burst length 3 © 0 o
or max_write_burst_length s {0, 0, 0,
settings 5 {0, o
{0. 0 o. o.
Reborts inferring mtple bus burst ke Con | 0. 0.0 00 00 0 0000 0 0 0
of variable length on port ‘gmem’  HLS ;
P Capoly watermarkcppss), e ! Source Code
These data requests might be ” vint wogesize = vidth * height: b
Pa—— further partitioned to multiple * : i
requests during RTL generation
based on max_read burst length I
or max_write_burst_fength 54 uint size = ((inageSize - 1) / DATASIZE) + 1;
settings 55
© 5 SYSLNKL inage
Created top level block diagram ar (ot b = 0, x = 0, y = 0 dx < sizes ++ich) {
¥/ SYSUNKL design dr.bd.tel 5 spragea HLS viveLTHE 111
< > < >

Figure 19. Workspace in Vitis Analyzer /18/

2.7 Vivado HLS

Xilinx Vivado HLS is a tool that transforms a C specification into an RTL imple-
mentation which is synthesized into an FPGA. Vivado HLS is also Xilinx’s imple-
mentation of an HLS compiler. It a very similar programming environment as any
other designed for application development. It shares technology with other proces-
sor compilers for the interpretation, analysis and optimization of C and C++ pro-
grams. The main difference is that the Vivado HLS compiler targets an FPGA as

the execution fabric. /5/
2.7.1 Vivado HLS IDE

The IDE of Vivado HLS is graphically very straightforward. The software has just
a couple functions to it, all of which can be accessed from the main screen. A newly

created project is shown in Figure 20.
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Figure 20. Vivado HLS GUI /19/

The four main features of Vivado HLS are highlighted at the top of the window in
Figure 20:

e C-simulation

e C Synthesis

e C/RTL cosimulation
e Export RTL.

2.8 Advanced eXtensible Interface (AXI)

AXl is a part of a family of microcontroller buses, ARM AMBA (Advanced Mi-
crocontroller Bus Architecture). It is a widely adopted interface protocol in Xilinx

products. /20/
There are three types of AXI4 interfaces:

o AXI4 (high-performance memory-mapped requirements)
e AXI4-Lite (simple, low-throughput communication)

e AXI4-Stream (high-speed streaming of data). /20/
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The major benefit of standardizing on the AXI bus is that developers only need to
learn a single protocol for IPs. The AXI4-Lite interface is used in this thesis due to
the lightweight nature of the logic to be implemented, and the Lite interface is the
simplest of the three. /20/

The simplest description of the AXI interface is that it connects a single AXI master
and AXI slave to each other, which exchange information. In this case, the PWM
generator IP acts as an AXI slave, and the Zynq PS acts as a master. Data can move
in both directions between the master and slave simultaneously and data transfer
sizes can vary. However, AXI4-Lite only allows for one data transfer per transac-
tion, but it is enough, because the only data needed to be transferred is the pulse

width value. /20/
The interface consists of five different channels:

e Read address channel
e Write address channel
e Read data channel
e Write data channel

e  Write response channel. /20/

The separate data and address connections for reads and writes provides simultane-

ous and bidirectional data transfer.

Figure 21 shows an example write transaction, which includes the write address,

data and write response channels.
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Figure 21. Channel architecture of writes /20/

The PWM implementation in this thesis only utilizes the write transaction, so let’s
take a closer look at it. A signal port called WDATA, which resides in the write
data channel, contains the data that the software sends to the PWM generator mod-
ule. Because this port may contain more data in addition to the pulse width value,
there are four control signals which indicate that the data inside WDATA port is

significant /21/:

e AWREADY (Write address channel)

o Indicates that the slave is ready to accept an address.

e WVALID (Write data channel)

o Indicates that valid write data is available.

e WREADY (Write data channel)

o Indicates that the slave can accept the data.
e BVALID (Write response channel)

o Indicates that a valid write response is available./21/

Figure 22 shows the control signals in action, when the value “70000004” is sent:
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Figure 22. AXI4-Lite control signals in a write transaction /21/
2.8.1 AXI Interconnect
The AXI Interconnect is a block which connects one or more AXI memory-mapped

master devices to one or more slave devices. Figure 23 shows the AXI Interconnect

core block diagram.

AXI Interconnect
Sl Hemisphere MI Hemisphere
T T Crossbar CTTT TTTT
Master 0 1 Coupler —— Coupler —— ——— Coupler L—; Coupler L Slave 0
Lot ___2 —d !
. .
L ] L]
TTTTT Tt CTTT T
Master 1 : Coupler |—= Coupler ———— ——— Coupler |—| Coupler F Slave 1
| 1 ] 1
e R L L——e L_——
Slavelnterfaces Masterinterfaces

Figure 23. AXI Interconnect core diagram, /22/

Inside the core, a crossbar core routes traffic between the master and slave inter-
faces. Along each pathway between the interfaces, additional AXI cores can per-

form various conversion and buffering functions.
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3 DESIGN FLOWS

The used design flows, including the traditional RTL flow and the newer HLS flow,
will be described in this chapter. The Vitis tool will also be looked into, and it will

be explained why it could not be used to create the specified functionality.
3.1 Vivado design flow

In the case of the traditional RTL and software flow, the PWM program is split into

two parts. The following lists includes the two parts and the used tools:

e Hardware implementation
o Vivado Design Suite

e Software

o Xilinx SDK
Next, the design is then implemented with HLS:

e Hardware implementation
o Vivado HLS
o Vivado Design Suite
e Software
o Xilinx SDK

The entire Vivado design flow is shown in Figure 24:
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Figure 24. Xilinx Vivado design flow /23/

The first part, hardware implementation, includes creating the PWM generation
module in VHDL, configuring the processing system, simulating and verifying the
design, connecting the PWM output signal to an LED and managing other connec-

tions, synthesis and implementation. All of this is done in Vivado.

Figure 24 also includes “C-Based Design with High-Level Synthesis”. This repre-
sents the development of the PWM module with HLS, which will replace VHDL
with C-language using the Vivado HLS tool, and the rest of the flow remains nearly

the same. This will be demonstrated later.
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3.1.1 Create design

During the design creation process, the PWM module is created by using the AXI4-
Lite IP creation wizard. The resulting IP is then configured in VHDL to generate a

PWM signal in accordance with the specification.

Next, the Zynq PS is added to the block design and configured accordingly. Vivado
automatically manages most of the connections and adds any required additional
IPs to aid with the functionality, for example a processor system reset [P and the

AXTI Interconnect.
3.1.2 Simulate design

The design is then simulated to verify the functionality of the PWM module using
the AXI Verification IP. In this case the VIP acts as an AXI master that writes data
to the PWM module, which acts as an AXI slave.

3.1.3 Assign design constraints

Next, the PWM signal output is connected to an LED by assigning a constraint in a
Xilinx Design Constraints (XDC) file. Timing, placement and synthesis constraints
can also be assigned at this point to help improve design performance. They can be,
for example, period constraints for clock signals, placement constraints for each
type of logic element and synthesis constraints which control how the synthesis tool
processes and implements FPGA resources. However, in this particular scenario,
the only constraint needed is the connection between the PWM output signal and

an LED. /24/
3.1.4 Synthesis and implementation

After that, the design is synthesized from HDL sources into a design netlist, which
contains both logical design data and constraints. When synthesis is complete, de-

sign implementation can be run, which converts the logical design into a physical
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bitstream file that can be downloaded on to the FPGA. The resulting implementa-

tion includes timing, resource and power consumption reports. /24/
3.1.5 Export to SDK and develop software

The second part of the PWM program is the software that varies the created signal’s
pulse width and sends the value to a register’s memory address in the PWM module
every 10 ms. The software is created in Xilinx SDK. When the hardware bitstream
is generated and exported to the SDK, the resulting project contains the required
drivers for the IPs and software libraries, which are a part of the board support

package (BSP)generated from the bitstream.

After the software is ready to run, the hardware bitstream is downloaded to the
FPGA device and the software is run on the board’s ARM processor. The software
can be stored on the RAM or flash memory. The running implementation can then

be debugged in Vivado and SDK by utilizing the JTAG connection.
3.2 Vitis application acceleration flow

The Vitis acceleration flow provides a framework for software developers to de-
velop applications using their preferred high-level programming language, and to
accelerate them on an FPGA. The acceleration takes place on a hardware compo-
nent, called kernel, which can be developed on C, C++, OpenCL C or RTL to be
run on the FPGA. The software component, the host program, runs on an embedded
processor, for example, the ARM A9 processor on the Zynq board, and is written
in C or C++. The host program communicates with the kernel using OpenCL API

calls.
3.2.1 Features and architecture

Vitis provides a variety of accelerated libraries, including Al, image processing and

video transcoding. /18/

Figure 25 shows the following elements and features of the Vitis platform:
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compilers analyzers debuggers

Vitis drivers & runtime

Vitis target platform

Figure 25. Vitis Unified Software Platform elements /18/

e A target platform

o Such as Xilinx Alveo Data center accelerator cards or Zynq boards,

on which the kernel is developed.

e XRT (Xilinx Runime)

o Connects the host program to the target platform and handles the

transactions between the program and kernel(s) with an API.

e Vitis core development kit

o Provides the tools for the software development.

e Vitis accelerated libraries

o Provide FPGA acceleration with common functions of math, statis-

tics, linear algebra and DSP and use specific applications. /18/

As mentioned in chapter 2.6.1, three of Vitis’s main features are build targets called

Software Emulation, Hardware Emulation and Hardware Execution. The two emu-

lation modes are used for validation and debugging, and the system hardware target

is used to generate the FPGA binary into the device. /18/

The features can be seen in Figure 26.
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Software Emulation Hardware Emulation Hardware Execution

Host application runs with a C/C++ or OpenCL | Host application runs with a simulated RTL model of the Host application runs with actual hardware implementation
model of the kernels. kernels. of the kernels

Used to confirm functional correctness of the | Test the host / kernel integration, get performance Confirm that the system runs correctly and with desired
system. estimates. performance.

Fastest build time supports quick design Best debug capabilities, moderate compilation time with Final FPGA implementation, long build time with accurate
iterations. increased visibility of the kernels. (actual) performance results

Figure 26. Descriptions of the build targets in Vitis /18/

The architecture of a Vitis accelerated application is shown in Figure 27:

Host Processor Programmabie Logic
e r
| Custom Application : Custom Kemels :
v [ . I

XRT/OpenCL AR AXl Interfaces
XRT Global Memory
Dnvers DMA

Figure 27. Architecture of a Vitis accelerated application /18/

Figure 27 depicts the functionality between a host program and a kernel. Let’s im-
agine a scenario where the developer has concluded that the software has a partic-
ularly intensive function, which requires to be run faster or is a bottleneck in the

software. The function is then set to be run on a kernel on the FPGA. /18/

For example, if this were implemented on the Zynq board, the host program would
be running on the ARM processor and the kernel on the PL. The execution model

can be separated into the following steps:

e Host program writes the data in to the global memory of the device through

the AXI bus.

e Host program sets up the kernel with input parameters.
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e Host program triggers the execution of the kernel on the FPGA.

e Kernel performs the required function while reading data from global
memory.

e Kernel outputs data back to global memory and notifies the host.

e Host program reads data from global memory and continues processing. /18/
3.2.2 Obstacles for using Vitis in FPGA design

Without going into any more detail on the build process of the application and ker-

nels, let’s go through the obstacles that prevent the use of this flow.

The target platform, which in this case would be based on the Zynq board, is created
in Vitis. However, the platform creation requires an XSA hardware specification
file, which is generated by Vivado, that represents the hardware implementation of
the block design. Xilinx provides sample platforms for Zynq devices, but the de-
veloper can also create them manually. Nonetheless, this directly contradicts the
theory that both, the hardware and software, could be created entirely in Vitis only

using C-language.

The kernel is created to be run on the hardware platform. While the kernel has in-
puts and outputs, they are used for communicating with the host application through
the global memory, and not with any external hardware pins. This is the second and
final obstacle, which led to the conclusion that Vitis alone cannot be used for im-
plementing the specified PWM functionality. The only use case Vitis can be used
in is to replace SDK as the IDE in software development. /17, 18/

Even if it were somehow possible to implement the specified PWM functionality
with Vitis alone, it would require an unnecessary amount of extra work. First, the
documentation does not indicate at any point that the Vitis is intended for this kind

of'use, or that it is even possible. Second, Vivado HLS already exists for the purpose
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of developing IPs with high-level languages and the documentation includes tuto-
rials for this. To summarize, using Vivado HLS is the recommended approach if

HLS development is required. /9/

While Xilinx promotes Vitis as a platform which requires no expertise in hardware
or FPGA design, this is actually correct, as Vitis does not involve the creation of
hardware at all. Their statement means that software developers can access the per-
formance of FPGAs and utilize it in the most computation-intensive parts in their

software, without actually having any technical knowledge about them. /1/
3.3 Vivado HLS design flow

As mentioned in chapter 3.2, the design flow in Vivado HLS remains much the
same as with the traditional RTL flow. The differences are in creating the IP and
simulating the design. One must keep in mind however, that synthesis in HLS
means translating the C code into HDLs, and not synthesizing the design into a
netlist, which is a step taken in Vivado, and can be confusing. The steps taken in

Vivado HLS are shown here:

e The PWM signal generation algorithm is coded entirely in C.

e The algorithm is tested and simulated with a C testbench.

e The algorithm is synthesized into an RTL representation.

e The RTL representation is simulated using C/RTL co-simulation.
o Vertifies the synthesized RTL using the C testbench.
o Simulation waveforms can be output to Vivado simulator.

e The finished design can then be exported to Vivado as an IP. /23/

Additionally, the software side has some differences. Mainly that the IP needs to be
initialized and started manually using drivers. In any case, Figure 24 in chapter 3.1

applies to HLS as well.
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4 IMPLEMENTATION

In this chapter the PWM program is described, verified and implemented. The tra-
ditional RTL and software flow will be implemented first, and second the HLS

flow.
4.1 The PWM program

The aim of the program is to generate a PWM signal that controls an LED’s bright-
ness with a sweeping pulse width. The PWM signal is configured with a fixed fre-
quency of 1000 Hz, which translates to a 1 millisecond (ms) period. The pulse width
starts at 0% and is then varied every 10 ms by 1% until it reaches 100%. Then, the
pulse width starts to decrease by 1% every 10 ms until it reaches 1%. As a result

the LED appears to have a slow “breathing” effect.

A period of 1 ms is achieved by creating a counter variable named counter, which
goes from 0 to a set maximum value and resets after 1 ms. First, the clock frequency
on the evaluation board is set to 100 MHz, when a clock cycle is performed every
10 nanoseconds. A millisecond consists of 1 000 000 nanoseconds. The following

calculation results in the required counter’s maximum value:

1000000 ns

= 100000
10 ns

After the counter’s maximum value is clear, the next step is to simulate the pulse
width. For example, to achieve a 1% pulse width, a limit variable called pulse width
needs to be created with a value of 1% of the counter’s maximum. In this case, it

would be 1000.

So, the counter is initialized and set to 0 and the PWM signal output defaults to
high. When the counter reaches the pulse width limit the program switches the
PWM signal’s state to low, until the counter reaches its maximum value. Then it

resets and starts counting again from 0.
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One of the program’s requirements was to change the pulse width by 1% every 10
ms, so the pulse width is increased every 10 ms by 1000. Figure 28 shows a

flowchart to visualize the PWM program’s operation:
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Figure 28. A flowchart visualizing the program’s operation.
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As the program’s requirements state, the pulse width needs to decrease 1% at a time
after it has reached 100%. This means that the same principle needs to be imple-
mented as with the increasing pulse width, but with the pulse width variable de-
creasing instead of increasing by 1000 every 10 periods until it reaches 0. Then it

starts to increase again until 100 and so on.

4.2 Traditional RTL and software implementation
At this point the traditional implementation of the PWM program is demonstrated.
4.2.1 Creating the IP

The implementation begins with creating the project and selecting the correct part
which represents the evaluation board. After this is done the project is ready. The
next step is to create an AXI4-Lite IP, which will become the PWM generator mod-

ule. The AXI IP creation wizard has the following options:

e Choose between master and slave
e The type of interface, for example, stream or lite.

e Number of registers

Enable Interrupt Support + - Name S00_AXI

Interfaces Interface Type Lite v
S00_AXI
Interface Mode Slave ~
Data Width (Bits 32 ~
< <| Memory Size (Bytes:

Number of Registers |4 [4.512)

| = s00_ax
i b b

myipd_w1.0

Figure 29. AXI IP creation wizard

For this use case only one register is needed, and that is for the pulse width value,

but the minimum amount of registers is 4 so that is fine.
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After the IP creation is complete, the wizard directs us to a separate window where

the programming of the IP happens. The newly created IP includes two source files:

W besign Sources [2}|

~ @ 5 pwm_generator_v1_0({arch_imp) (pwm_generator_v1_0

@ pwm_generator_v1_0_S00_AXl_inst: pwm_generator

Figure 30. Included design source files

The top-level file includes all of the physical port descriptions, including the control
signals included in the AXI interface, and any potentially customizable parameters.

In this case, only the PWM output port needs to be added.

The lower-level file includes the description of the PWM generator’s logic, which
consists of the following things (corresponding signal and variable declarations in-

cluded):

A counter from 0 to 100000

signal counter :
(C_S AXI DATA WIDTH-1 downto 0);
constant PWM COUNTER MAX : integer := ;

unsigned

e PWM output signal and port
signal pwm : std logic := '0"';
PWM output : out std logic;
e A register called slave register 0 for writing the pulse width data from the

software

signal slv reg0 :std logic vector(C_S AXI DATA WIDTH-
downto 0) ;
e Counter handling process
o Increases the counter value one by one until it reaches its maximum,
then it is reset
e Comparator handling process
o Compares the counter value to the register’s value and sets the PWM

signal value accordingly
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The processes are shown here:

—— Process for handling the counter
period_counter : process(5_AXI_ ACLE)
begin
if (rising edge (5_RXI_RACLE)) then
if (5_AXI ARESETN = "0') then
counter <= (others =»> "0");
else
—- Increase counter by 1 if not capped, otherwise set to 0
if (counter < to unsigned(PWM_COUNTER_MAX - 1, counter'length)) then
counter <= counter + 1;
else
counter <= (others =»> "0");
end if:
end if:
end if;
end process pericd counter;

—- Process for handling the comparator
pulse_width comparator @ process(S_RXI ACLK)

begin
if (rising edge (5_RXI_ACLK)) then
if (5_ARXI_RRESEIN = "0') then
pwm <= '0";
else
—— Compare counter wvalue to the pulse width wvalue stored in slave register 0
—— Set pwm ocutput value to high if counter is less than pulse width values, otherwise set to 0
if (counter < unsigned(slv_regl)) then
pwm <= "1';
else
pwm <= '0';
end if;
end if:
end if:

end process pulse_width comparator:
pwm_output <= pwn;

Figure 31. Counter and comparator handling processes

After the PWM generation is written, the IP is ready for packaging, after which the
IP can be connected to the Zynq PS. From the Package IP tab the newly created

output port can be seen:

Project Summary x| PackageIP-pwm_generator  x pwm_generator_v1_0_S00_AXLvhd  x oo

Packaging Steps Ports and Interfaces

~/ Identification Q + & C A

N Interface Enablement Is Access Access Direct Driver Size Size Size Left Size Right Type
+ Compatibility Sme Mode Dependency Declaration Handle  Type IeCON  yalue  Left  Right Dependency Dependency Name
v Fle Groups > @ S00_AXI slave m]

> Clock and Reset Signals O
' Customization Parameters ] PWI_output (] ref aut std_logic

+~/ Ports and Interfaces
'  Addressing and Memory
~/ Customization GUI

~  Review and Package

Figure 32. Ports and Interfaces view
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The software drivers to be created and the source code files can also be viewed in

the tab:

Packaging Steps
+  Identification

+  Compatibility

~/ File Groups

+/  Customization Parameters
+ Ports and Interfaces

+/  Addressing and Memory
+ Customization GUI

~ Review and Package

Figure 33. Included software drivers and source code files

File Groups
Q = £ 2+ C
A~ Library
1
Name Name
e Advanced

>

Block Diagram (1
Software Driver (G
drivers/pwm_generator_v1_0/dataipwm_generator.mdd
drivers/pwm_generator_v1_O/dataipwm_generator.idl
drivers/pwm_generator_v1_Oisrciakefile
drivers/pwm_generator_v1_0/srcipwm_generator.c
@ drivers/pwm_generator_v1_0/srcipwim_generator.n
drivers/pwm_generator_v1_0/srcipwm_generator_selflest.c
Ul Layout (1
VHOL Simulation (2
@ hdlipwm_generator_vi_0.vhd
@ hdlipwm_generator_vi_0_S00_AXlvhd
VHDL Synthesis (2.
@ hdlipwm_generator_vi_0.vhd
® ndlipwm_generator_v1_0_S00_AXlvhd
Standard

Type

mdd driver_mdd
telSource driver_tcl
driver_src

cSource driver_src
cSource driver_src

cSource driver_src

vhdiSource

vhdiSource

vhdiSource

vhalSource

Is UsedIn
Include  Constant

File Group
Name

xiline_softwa
xilink_softwa
xilinx_softwa
xiline_softwa
xilinx_softwa

xiline_softwa

siline_vhdibe

xilinx_vhdloe

xilinx_vhdlsyr

xiling_vhdisyr

And finally, the graphical representation of the resulting IP:

Packaging Steps

~/ Identification

+/  Compatibility

+/  File Groups

~  Ports and Interfaces
Addressing and Memaory
+/ Customization GUI

Review and Package

+/ Customization Parameters

Customization GUI

Layout Preview
> a »
Q I 2+ Show disabled ports
O window
Component Name
hd Page 0

[ Hidden Parameters

C 500 AXI DATAWIC
C 500 AXI ADDR WII
C 500 AXI BASEADC
C 800 AXI HIGHADC

S s00_sx
00_axi_aclk
Q s00_axi_aresein

P _output

Component Name pwm_generator_0

C S00 AXIDATAWIDTH | 32

C 500 AXI ADDR WIDTH 4

C 500 AXI BASEADDR

C 500 AXI HIGHADDR

Figure 34. Graphical view of the resulting IP

Model Name

pwm_generator_v1_0

pwm_generator_vi_0

OXFFFFFFFF

0x00000000

After packaging of the IP, the address range of the newly created IP can be viewed

in IP integrator. When the slave registers are created along with the IP, their ad-

dresses are offset every 4 bytes: 0x00, 0x04x, 0x08, 0x12 and so on. Since the used

register is slave register 0, its address is the first address in the range shown in

Figure 35, 0x43C00000:
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Diagram »  Address Editor *

Q = =
Cell Slave Interface  Base Mame Offset Address  Range High Address
hd processing_system7_0
b Data (32 address bits : 0x40000000 [1G 1)
pwm_generator_0 S00_AxI S00_AX_reg 0x43C0_0000 G4K * 0x43C0_FFFF

Figure 35. Address range of the PWM generator module

4.2.2 Configuring the PS

When the IP is packaged, it is ready to be added to the design, along with the Zynq
PS. The Zynq PS block looks like as shown here:

processing_system?_1

DDR + ||

- FIXED_IO + ||

M_AXLGPOACLK 7V N|() M ;éifz{ig
FCLK_RESETO_N

ZYNQT Processing System

Figure 36. Zynq PS

The clock used to control the PWM module is the FCLK CLKO as seen in Figure
35. The clock is connected to the AXI master GPO clock seen on the left side of the

PS. As the program’s specification states, the FCLK clock frequency needs to be
set to 100 MHz:

Component Clock Source Requested Frequ Actual Frequency(. Range(MHz)
Clock Configuration

> ProcessorMemory Clocks
DDR Configuration > 10 Peripheral Clocks

~ PL Fabric Clocks
SMC Timing Calculation

[+ FCLK_CLK0 IOPLL  ~ 100 100.000000 0100000 : 250.000000
Interrupts () FCLK_CLK1 10 PLL 50 10.000000 0100000 : 250.000000
() FCLK_CLK2 10 PLL 50 10.000000 0100000 : 250.000000
[C) FCLK_CLK32 10 PLL 50 10.000000 0100000 : 250.000000

System Debug Clocks

Timers

Figure 37. Zynq’s clock configuration view
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Another mandatory configuration was to select the correct DDR memory compo-

nent on the PS.
4.2.3 Managing connections

After the PS is configured accordingly, the next step is to manage all the connec-
tions, of which the majority is handled automatically by Vivado. The connection
automation tool connects the Zynq PS to the PWM module with the AXI interface
while utilizing the AXI Interconnect, which is automatically added to the design in
case more AXI interfaces are required. The only connection needed to make man-
ually is to create a physical output port for the PWM signal output. Additionally,

Vivado adds a PS reset block for reset functionalities. Figure 38 depicts the created

block design:
rst_ps7_0_100M
ps7_0_axi_periph

slowest_sync_clk mb_resel m ]

ext_resel_in bus_struct_resel[0:0] p—ii|-+ S00_AXI
4 au_reset_in peripheral_reset[0:0] pal ACLK pwm_generator_0
= mb_debug_sys_rst ARESETN .Y. -
= dem_locked peripheral S00_ACLK EEW Moo AXI + [

u

S00_ARESETN g
MOD_ACLK
MOO_ARESETN

+:|+ S00_AXI
S00_axi_ack PWN_output PWM_output
s00_axi_aresetn

pwm_generator_v1.0 (Pre-Production)

)

Processor System Reset

T

processing_system7_0 AXI| Interconnect

DOR +E:: {> DDR
FIXED_IO + |} [ FIXED_IO
UART 0 + |||

\ 8
R ZYNQ M_AXI GPO + i

FCLK CLKO —
FCLK _RESETO_N

ZYNQ7 Processing System

Figure 38. Diagram showing the block design

4.2.4 Simulating the design

At this point the IP is ready for simulation. The simulation is made easy with the
AXI VIP, which was used by starting the [P creation wizard where instead of choos-
ing the option to edit an IP, the verification of the IP was chosen. This creates a new

block design which includes the verification IP and a sample AXI IP. The IP can
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be deleted from the design and replaced with our PWM generator module. The be-

havioral simulation can now be started. The block diagram looks as depicted below:

ACLK
master_0_axi_periph

. @

+ S00_AXI

ARESETN

ACLK pwm_generator 0

ARESETN .Y. i
S00_ACLK EEW Moo_AXI + 4 s00_AXI
so0 AresE™N g Xm $00_axi_ack PWM_output PWM_output
MOO_ACLK 00_axi_aresetn
MOO_ARESETN
pwm_generator_v1.0 (Pre-Production)
AXI Interconnect

Figure 39. Block diagram for the simulation

At this point, a testbench for the VIP could be created. While, the VIP only supports
SystemVerilog language for the testbench, it was possible to move forward with
forcing certain pulse width values in the graphical simulator view instead, because
the only variable that affects the functionality of the PWM signal is the pulse width.
However, with more complex designs, creating a testbench would simplify the ver-

ification process tremendously.

First, the simulation is run for Sms with pulse width set to 50000, which is 50% of
the counter’s maximum value and it results as a 50% pulse width in the PWM output

signal.

2,000,195.000 ns

Figure 40. Functionality of the counter

From the Figure 40, two things can be seen:

e Counter works as expected, resetting at its set maximum and starts from 0.

e PWM output signal is synchronized to clock signal’s rising edges
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When zooming out a bit, the effect of the set pulse width value can be seen clearly:

50001

Figure 41. Simulation with 50% pulse width

The program’s specification stated that the period of the PWM signal is 1 ms. In
Figure 41 above, there are 2 markers set to measure the time the PWM signal is
high, which is 500 microseconds, or 0,5ms. This seems to be functioning correctly,

as the pulse width was set to 50%.

Next, two more things need to be verified: Will the PWM signal go fully low with
0% pulse width, and fully high with 100% pulse width. First, simulation for 5 ms
with 0% pulse width:

3,000,195.000 ns

Figure 42. Simulation with 0% pulse width

The reason I was concerned about the 0% pulse width is that the PWM generator
code states that the comparator process first checks if the counter value is lower
than the pulse width value and primarily wants to set the PWM signal to high, but

as seen in Figure 42, the PWM signal in fact stays at low state.

As for the PWM signal’s reaction to 100% pulse width, the simulation with 50%
pulse width shown in Figure 41 indicates that the PWM signal does not go high
when the counter is at 0, but when its value is at 1. This something that needs to be
verified with 100% pulse width, so that the signal truly remains at high state. Below,

simulation with 100% pulse width is shown:
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Figure 43. Simulation with 100% pulse width

As seen in Figure 43, the PWM signal does in fact stay at high state with 100%
pulse width. When thinking about it, it makes sense, because when the counter
reaches 99999, the comparator process checks if it is less than the pulse width value,
which it is, and remains at high. Then the counter is reset to 0 due to being at its

maximum and the IP continues doing its work.

The implementation can also be simulated post-synthesis and post-implementation
to see if the synthesis or implementation result alters the functionality of the design.
In this scenario it was concluded to be unnecessary, since the design is quite simple.
It is sufficient to have Vivado only run the timing analysis to see, whether the design

can be run with the set 100 MHz clock frequency.
4.2.5 Assigning the PWM output to an LED

After the design’s functionality is verified by simulation, the PWM output port is
ready to be connected to an LED. To do this, an XDC file needs to be created with

the following contents:

set property PRCERGE PIN L20 [get ports FWM ocutput]
set property IOSTRNDRRD LVCMOS33 [get ports PWM ocutput]

Figure 44. XDC file

The upper row assigns the PWM output port to a pin called L20. This pin is assigned
to an LED, which I discovered from Vacon’s sample project. The lower row spec-
ifies an I/O standard, which informs the tool what kind of a voltage the pin is using.

It can also be used to specify the drive strength and slew rate, which determine the
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output impedance and maximum rate of change of output voltage per unit of time,

respectively.
4.2.6 Synthesis and implementation

Before starting synthesis and implementation, there is one important thing to add to
the block design. After exporting to SDK and running the pulse width software, the
traffic between the PS and the PWM module can be viewed in Vivado in the hard-
ware manager’s debugger. To enable this, the debugging IP needs to be added to
the design. This can be done by right-clicking the connections that need debugging
and selecting debug. After that the debugging IP appears to the design as sys-

tem_ila0:

rst_ps7_0_100M

ps7_0_axi_periph

slawest_sync_clk mb_reset | )
ext_resel in bus_struct resel(0:0] [+ soo_axt
aux_reset_in peripheral_reset[0:0] m = ACLK
mb_debug sys rst i aresetn[0:0] ARESETN -7-
dem_locked peripheral_aresetn[0:0] f—= S00_AGLK BEW Moo_AXI + [ pwm_generator_0
L j+—— S00_ARESETN .ﬁ. -

Processor System Reset f—=t MOO_ACLK L.+ s00_AXI

MO0_ARESETN 500_axi_aclk Py _output s[> PWM_output
T 500_axi_aresetn
processing_system7_0 AXl Interconnect {
pwm_generator_v1.0 (Pre-Production)
DDR +|| {O> DDR
FIXED_IO +|| [ FIXED_IO
M_AXI_GPO_ACLK ZYNQ‘ " A“):RGTPE j: !__ system_lla_0
FCLK_RESETO_N @— :kSLOT o

probe0(0:0]

ZYNQT Processing System
resetn

FOLK_CLKO pm—f—

System ILA

Figure 45. Block design with debugging IP included

In addition to the AXI interface, the PWM output signal is also set to be debugged.

At this point the design is ready to be synthesized and implemented. First, the
VHDL files are synthesized into a design netlist as described in chapter 3.2. The
resulting logical design and constraints are then implemented into a bitstream file,

which will be later downloaded on the FPGA with SDK.

The resulting implementation can be viewed in RTL form in the implementation
menu’s schematic view. The PWM generator module’s result alone is quite expan-

sive, due to most of the components consisting of the AXI functionality. And in this
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case, it is not useful to examine it thoroughly. The module’s RTL schematic is

shown in top-down view below:

liild oo P PP P
e ————

Figure 46. RTL representation of the PWM generator module

The implementation’s resource utilization report is as follows:

Resource Utilization Available Utilization %

LUT 431 53200 0.81
LUTRAM 60 17400 0.34
FF 621 106400 0.58
(o] 1 125 0.80
BUFG 1 32 313

Figure 47. Utilization report of the implementation

As we can see from the report, the resulting implementation is quite lightweight.

Same can be seen from the power consumption estimation report:



59

Power
Dynamic: 16587 W (92%)
Clocks: 0015w (1%)
Signals: 0.003W (=1%)
Logic: 0.002W (=1%)
92% I BRAM: 0.004W (=1%)
W =0.001 W
M Ps7: 1,562 W
Static: 0.146 W (8%)

178 100% PL Static: 0.146W (100%)

Figure 48. Power consumption estimate of the implementation

As the power consumption report indicates, the large majority (95%) of the power
is used by the PS. Both reports will be compared to the HLS implementations re-

ports in a later chapter.

The timing report includes a summary of the timing constraints set automatically
by Vivado, when the clock frequency was set to 100 MHz. The report indicates that

the design works as expected:

Design Timing Summary

Setup Hold Pulse Width
Worst Negative Slack (WNS). 3,850 ns Waorst Hold Slack (WHS): 0037 ns Worst Pulse Width Slack (WPWS): 3750ns
Total Megative Slack (TNS) 0,000 ns Total Hold Slack (THS): 0,000 ns Total Pulse Width Megative Slack (TPWS): 0,000 ns
Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0
Total Mumber of Endpoints: 7445 Total Number of Endpoints: 7429 Total Mumber of Endpoints: 4183

All user specified timing constraints are met.

Figure 49. Timing summary of the implementation

When the bitstream has been generated, the design is ready to be exported to SDK

for developing the software.
4.2.7 Developing the software

After exporting the bitstream to SDK, the BSP is generated, which includes the

software libraries and device drivers. In this case, the software creation process is
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quite simple. The PWM generator module requires no manual control or initializa-

tion whatsoever.

The software that controls the pulse width is simple. It is written in C-language and

has the following components:

e Increase and send pulse width value by 1% every 10 ms until it reaches
100%

e Decrease and send pulse width value by 1% every 10 ms until it reaches 0%

Going more into detail, the software has two for loops, one for increasing and the
other for decreasing the pulse width. When starting the program, the first loop starts
by sending its default value, 0%, to the slave register’s memory address and then
waits for 10 ms using a sleep function, after which the pulse width value is increased
by 1%. Then the process is repeated until the pulse width reaches 100% and then
the program proceeds to the second loop and executes until it reaches 0%. The code

can be seen here:

#define PWM @x43C00000
#define MIN @

#define MAX 168080
#define STEP leaad increase pulse width in 1¥ steps
#define DELAY 12860 /7 18 ms delay in ps

{ slv_reg® memory address
min 8%

int main()

1
int pulse_width = @;
while(1)
{
//increase pulse width by 1% and send the value to slv_reg@ every 18ms until lee¥
for(; pulse_width < MAX; pulse_width += STEP)
Xil Out32(PWM, pulse_width});
usleep(DELAY);
//decrease pulse width by 1% and send the value to slv_reg@ every 1@ms until 8%
for(; pulse_ width > MIN; pulse width -= STEP)
Xil_Out32(PWM, pulse_width};
usleep(DELAY);
¥
¥

Figure 50. Pulse width control sofiware
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Because the nature of the entire design is very simple and has only function, the
software was possible to be made using a sleep function. Essentially, this halts the
execution of the whole software for 10 ms and nothing else can be executed during

this time, but this implementation does it job, which is to be simple.

If there were more functionalities in the design, for example, communications with
Ethernet or fieldbuses, the LED blinking part of the software would make any of
the communications impossible, due to the sleep function pausing the entire pro-
gram. If this was indeed a more complex design, the write transaction of the pulse
width value should be implemented with an interrupt, that interrupts the program to
send the data every 10 ms and then resumes executing other functions in the soft-

warc.

Moving on, the next step is to connect the evaluation board into the PC using a
JTAG-connection, which allows the SDK to program the FPGA with the bitstream
file and to download the software on the RAM. Additionally, the JTAG-connection
makes it possible to simultaneously debug the design in Vivado by viewing any
required signals in a waveform, and in SDK. After the FPGA has been programmed,
the LED starts pulsing, and the data traffic is then examined in Vivado. The result

of running the software is shown in Figure 50:

Name Value

> W|slol_0 : ps7_0_axi_periph_MDD_AXI : WDATA

Figure 51. Software cycling the pulse width

The functionality can be examined closer by setting a fixed pulse width value in
SDK’s debugger and viewing the write transaction for the pulse width value. For
example, setting a fixed 35000 pulse width value in SDK results in a 35% pulse
width.
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(%)= Variables £ | 9 Breakpoints i} Registers [l XSCT Console |Gl Emulation Console &), Modules

Name Type Value
(9= pulse_width int 35000

Figure 52. Fixed pulse width value in SDK

The transaction where this value is sent to the slave register is seen in Vivado:

Waveform - hw_ila_1
a + e » BB @ 6 H o« I +T »

ILA Status: Idle

& slot_0: i_periph_M

Figure 53. Hardware debugger view in Vivado

From Figure 53 it can be seen that the write transaction is successful, by looking at
the control signals. Comparing to AXI4-Lite’s documentation (Figure 22) they
seem to be functioning as expected. Lastly, the resulting pulse width’s effect can be

seen on the LED:

Figure 54. LED with a 35% pulse width

When comparing to a 5% pulse width, the LED gets visibly dimmer:
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Figure 55. LED with a 5% pulse width

From the previously mentioned results it can be stated that the implementation func-

tions as specified.
4.3 Implementing the design with HLS

This chapter describes the implementation of the PWM program using Vivado
HLS, Vivado and SDK.

4.3.1 Validating the algorithm with a C testbench

The very first step when starting a design in HLS is to select a part and define a
clock signal’s period. The clock frequency specified is 100 MHz, so the period
would be 10 ns. The next step is to develop the PWM generation algorithm and
verify its functionality with a C testbench. As mentioned before, this provides a
much faster verification of the algorithm compared to RTL verification, because
this way the algorithm can be verified without needing to create the RTL imple-
mentation first. In the traditional flow, the developer also needs to create every sig-

nal and port that is required.

The algorithm’s general functionality is the same as with the RTL version. A coun-
ter is compared to the pulse width value and PWM signal output is set accordingly.
If the counter reaches its cap, it is reset to 0. For testing purposes, a result variable
is created to resemble the resulting pulse width that the algorithm outputs with the

PWM signal.

In HLS, the IP to be created is a single function in C code. The function declaration

includes the inputs and outputs
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int pwm_module (int32 pulse width, intl *pwm);

The pulse width variable acts as an input that sends the pulse width value to the IP.
The *pwm variable acts as an output port that outputs the PWM signal. In HLS the
output ports need to be declared as pointers. The above-mentioned result variable

is returned to the testbench when this function is called. The function is shown here:

int pwm_module (int32 pulse_width, intl *pwm)
{

static int32 counter;

int result = 8;

state:for(counter = @; counter < PWM_COUNTER_MAX - 1; counter++)

if (counter < pulse_width)

1
Fpwm = 1;
result ++;
}
else
*pwm = @;

}

return result;

Figure 56. PWM signal generation function in Vivado HLS

The function is now ready for testing. HLS documentation states, that the simula-
tion is considered successful, if the testbench returns 0. Anything else will cause

the simulation to issue a fail message. /25/
The testbench used includes the following components:

o Three pulse width values to be sent to the PWM generator: 0%, 50% and
100%
o Three result variables, where the pulse width output by the generator func-
tion is sent
o An if statement to check if the returning pulse width values are correct
o Returns 0 if correct

o Returns anything else than 0 if it fails, in this case, 1

The testbench code is shown in Figure 57:
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int main()

{

intl pwm

int
int
int
int
int
int

83

pw_@ = @;

pw_58 = S@888;
pw_l@@ = leessa;
result_ 8 = 8;
result 58 = @;
result_166 = @;

result @ = pwm_module(pw_©, Zpwm);
result 58 = pwm_module(pw_5@, &pwm);
result 188 = pwm_module(pw_186, &pwm);

printf("¥d\n", result_e);
printf("%d\n", result_5@);
printf("#d\n", result 18e);

if ((result @ == @) &% (result_5@ == 5@0@8) &% (result_18@ == 99999))

else

return @;

return 1;

Figure 57. Test bench code 1

After running the C simulation, the simulation appears to be successful:

]
seeee
99999
INFO:
INFO:

[SIM 211-1] C5im done with @ errors.
[SII“ 211_3] EEE R E L L L e st CsSIM -Finish Fkkkkkkk kR Rk

Finished C simulation.

Figure 58. C simulation successful

Vivado HLS documentation also recommends as a good practice to compare test

bench results with golden data, which is a file that contains the correct results. In

this kind of a simple design, the testing performed is sufficient.

4.3.2 Configuring the IP

The code is almost ready for synthesis. After the algorithm’s functionality is vali-

dated, the last steps to do is to remove the result variable from the code, so that it

will not consume unnecessary resources, and to configure the IP as an AXI slave.

The function can also be changed to void function, as there are no return values to

it. This procedure can be risky, but the changes were minimal, and the simulation

later showed that the algorithm was working as expected.
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Additionally, resulting IP needs to be configured as an AXI slave, like the RTL IP
created before. This can be done by adding the following three pragmas into the
code:

#pragma HLS INTERFACE s_axilite port=return

#pragma HL> INTERFACE ap_none port=pwm
#pragma HLS INTERFACE s_axilite port=pulse_width

Figure 59. AXI interface configurations in Vivado HLS

The first pragma creates the AXI slave port with the relevant control signals. The
second row creates the PWM signal output port without any protocols. If this row
were missing, in this case the port would be automatically implemented using
ap_vld protocol, which includes a valid port to indicate the ready state of the port.
However, in this case it is not required. The third row implements the pulse width

input as a register and assigns a memory address to it.
4.3.3 Synthesis

Before running synthesis, the test bench code can be altered to better represent the
software that is used to control pulse width for verification purposes. The new
testbench is very similar to the one used in chapter 4.2.7, with the difference that
this test bench updates the pulse width every period, or 1 ms, rather than every 10

ms. The test bench is shown in Figure 60:
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#define MIN @ /7 min 8%
#define MAX 108088 J/ max 180%
#define STEP 1868 // increase pulse width in 1% steps

int main()

{
int32 pulse_width = @&;
intl pwm = 8;
//increase pulse width by 1¥ every period
for(; pulse_width < MAX; pulse_width += STEP)
puwm_module (pulse_width, &pwm);
b
//decrease pulse width by 1¥ every period
for(; pulse_width > MIN; pulse width -= STEP)
pumn_module (pulse_width, &pwm};
b
return @;
b

Figure 60. Test bench code 2

Now the design is ready to be synthesized from C to an RTL representation. The
synthesis process is rather quick, and it generates a report that includes performance

estimates, utilization estimates and generated interfaces.

Interface
= Summary
RTL Ports Dir | Bits | Protocol Source Object C Type
s_axi_AXILiteS_AWVALID in 1 5_axi AXILiteS scalar
s axi_AXILiteS_AWREADY | out 1 5_axi AXILiteS scalar
s axi_AXILiteS_AWADDR in 5 5_axi AXILiteS scalar
= axi_AXILiteS_WVALID in 1 5_axi AXILiteS scalar
s_axi_AXILiteS_WREADY out 1 5_axi AXILiteS scalar
s_axi_AXILiteS_WDATA in 32 5_axi AXILiteS scalar
s_axi_AXILiteS_WSTRB in 4 s_axi AXILiteS scalar
s_axi_AXILiteS_ARVALID in 1 5_axi AXILiteS scalar
s axi_AXILiteS_ARREADY | out 1 5_axi AXILiteS scalar
= _axi_AXILiteS_ARADDR in 5 5_axi AXILiteS scalar
s_axi_AXILiteS_RVALID out 1 5_axi AXILiteS scalar
s_axi_AXILiteS_RREADY in 1 s_axi AXILiteS scalar
s_axi_AXILiteS_RDATA out 32 s_axi AXILiteS scalar
s_axi_AXILiteS_RRESP out 2 s_axi AXILiteS scalar
s_axi_AXILiteS_BVALID out 1 5_axi AXILiteS scalar
= axi_AXILiteS_BREADY in 1 5_axi AXILiteS scalar
=_axi_AXILiteS_BRESP out 2 5_axi AXILiteS scalar
ap_clk in 1| ap_ctrl_hs pwm_medule | return value
ap_rst_n in 1| ap_ctrl_hs pwm_module | return value
interrupt out 1| ap_ctrl_hs | pwm_module | returnvalue
pwm out 1 ap_none pwm pointer

Figure 61. Synthesized interfaces
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As seen in Figure 61, the PWM signal output is correctly set as an output and the
AXI control signals can be seen. The generated VHDL files include information

about the registers’ addresses, including the pulse width register:

-- @x@@ : Control signals

-- bit 8@ - ap_start (Read/Write/COH)

-- bit 1 - ap_done (Read/COR)

-- bit 2 - ap_idle (Read)

-- bit 3 - ap_ready (Read)

-- bit 7 - auto_restart (Read/Write)

-- others - reserved

-- @x@4 : Global Interrupt Enable Register

-- bit @ - Global Interrupt Enable (Read/Write)
-- others - reserved

-- @x@88 : IP Interrupt Enable Register (Read/Write)
-- bit @ - Channel @ (ap_done)

-- bit 1 - Channel 1 (ap_ready)

-- others - reserved

-- @x@c : IP Interrupt Status Register (Read/TOW)
-- bit @ - Channel @ (ap_done)

-- bit 1 - Channel 1 (ap_ready)

-- others - reserved

-- @xl@ : Data signal of pulse_width

-- bit 31~® - pulse_width[31:8] (Read/Write)
-- @xl4 : reserved

-- (5C = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

Figure 62. Register address information

The address offset is 0x10 for the pulse width register, which makes the address
0x43C00010, if the same base address that was used with the RTL IP is used here.
The addresses include control signals to start the I[P and other data signals. How-
ever, these addresses do not necessarily need to be used manually, because the gen-

erated drivers include functions that change these registers’ values.
4.3.4 C/RTL cosimulation and exporting the IP

After the synthesis is complete, the design can be simulated using C/RTL cosimu-
lation, which verifies that the synthesized RTL representation matches the C code.
This simulation also uses the C testbench. When the simulation is complete, the
logic can be examined in the Analysis tab. This tab helps to visualize what is hap-
pening on the RTL, as the HLS compiler synthesizes the design with complicated
variable names and the data routes are a bit hard to follow without graphical repre-

sentation. The process of the algorithm can be summarized as follows:

e Pulse width value is read
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Operation\Control Step

pulse_width_read(read)

w state -~ ctate
counter_load(phi_mux)
icmp_In15(icmp)
add_In13(+)
icmp_In17(icmp)
pwrn_write_ln19(write)

e A multiplexer handles the increase of the counter and the comparison to its

maximum and the pulse width value

Operation\Control Step | 0 | 1 |

pulse_width_read(read)

1
1
w state i - state
counter_load(phi_mux) :;?
icmp_In15(icmp) =
add_In15(+) %
icmp_In17{icmp) :
1
1

pwm_write_In19(write)

e The counter value is compared to the read pulse width value and PWM out-

put signal is written

Operation\Control Step

pulse_width_read(read)

w state - state
counter_load(phi_muzx)
icmp_In15{icmp)
add_In15(+)
icmp_In17{icmp)
pwm_write_In19{write)

4

The waveform of the simulation can be viewed in Vivado. When examining the

waveform, a potential negative effect of HLS synthesis can be seen:
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71,025,945.000 ns

71000

Figure 63. C/RTL cosimulation waveform

An IP that is created using HLS, needs to be manually triggered, or started. When
the IP reaches the end of execution and the counter is at its maximum, it remains at
that value until the IP starts the execution again. The small window between the
end of execution and the start introduces a delay of 360 nanoseconds, which is
shown in Figure 63. This delay translates to a total of 360 microseconds every 1
second. When looking at the traditional RTL implementation at Figures 42 and 43,

this delay is not present.

When the synthesized VHDL files are examined more closely, it can be seen, that
the algorithm’s operations are indirectly synchronized to the clock signal’s edges.
This means that the highlighted signals only change when the signals they depend
on change:

egin | eiEpree ¢ process(spra

ap_rst_n_inv <= not(ap_rst_n);
end process;

icmp_lni6_fu_66_p2 <= "1" when (counter_load_reg 51 = ap_const lwvl7 1869F) else "8";

pwm <= "1" when (signed(zext_lnl6_fu_82_pl) < signed(pulse_width_read_reg_84)) else "8";

zext_lnle_fu_62_pl <= std logic_wvector(IEEE.numeric_std.resize(unsigned{counter load reg 51),32));
end behav:

Figure 64. Synthesized VHDL file

The C function includes a for-loop that executes until the counter reaches its cap.

The clock period defined at the beginning of the IP’s creation indicates that the
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counter increments every 10 nanoseconds. So, when the IP is started, it runs until
the function has run its required computations, the for-loop, and then stops and re-
quires a restart. All this points to a direction that the HLS might not be suitable for
this kind of an implementation. A more optimal use case for HLS could be convert-

ing a C calculation function, that does not need to be run every clock cycle, to RTL.

Despite the delay introduced in the synthesis, the algorithm does it job, which is to
modify the PWM signal’s pulse width. For example, a 50% pulse width is shown
in Figure 65:

150,554 225000 us

~ % Design Top Signals

pwi

~ B8 pwm[0:0]

:
> W counter_load_reg_51[16:0]
> M pulse_width[31:0]

Figure 65. PWM signal with 50% pulse width

Looking at the markers in Figure 65, it can be seen, that the time the PWM signal
spends high is 500 microseconds, or 0,5 ms. When the period is 1 ms, the signal is

high half of the period, which translates to a pulse width of 50%.

After the RTL implementation has been verified, the RTL can be exported to an IP
using the Export RTL option. This packages the design into an IP which can then
be added to a block design in Vivado.

4.3.5 Managing connections and configurations

The flow from this point on is the same as with the traditional flow. The exported
IP is added to the design in IP integrator and the connections and configurations
remain the same. In this case the pre-existing RTL IP can be replaced with the newly

created HLS IP. The main visual difference is the HLS logo on the IP, which helps
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at distinguishing the HLS IPs from RTL ones. Figure 66 shows the complete block
design with the HLS IP included:

rst_ps7_0_100M
ps7_0_axi_periph
slowest_sync_ck mb_reset = 0
ext_reset_in bus_stuct_resetf0:0] — |+ s00_AxI

< aux_reset_in peripheral_resetf0:0) = 1~ acik

= mb_debug_sys_sst i _aresetn(0:0] ARESETN I?l B

= dem_locked peripheral _: S00_AGLK B W Moo_sxi + (2 pwm_module_0

b——— 500 ARESETN giig B
Processor System Reset #—= Moo_ACLK 20+ 5 ai_AXiLites [ meso-ns R
T e 22:::,.‘ P pumio:0) b PWM_output{0:0]
processing_system?_0 AXI Interconnect
Pwm_module (Pre-Production)
DOR +|| > DDR
FIXED_IO +|| [ FIXED_ IO
= UART_0 +
M_AX|_GPO_ACLK ZYNO M_AKL G0 & ‘ system_ila_0
FCLK_CLKO =—1—
FCLK_RESETO_N @— i EUSLO5T
dk
ZYNQ7 Processing System prot=nl)
© resotn
System ILA

Figure 66. Block design with the HLS IP

Since the PWM output port is named a bit differently, the XDC file needs to be
adjusted accordingly:

set property PRCERGE_PIN L20 [get ports PWM output*]
set property IOSTRNDARD LWVCMOS33 [get ports {PWM output[0]}]

Figure 67. XDC file in the HLS block design

Next, the design is synthesized and implemented the same way the traditional de-

sign was. The generated resource and power reports are as follows:

Resource Utilization Available Utilization %

LUT 457 53200 0.86
LUTRAM G0 17400 0.34
FF 596 106400 0.56
10 1 125 0.80
BUFG 1 iz 313

Figure 68. Utilization of the HLS implementation
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Power
Dynamic: 1593 W (92%)
Clocks: 0.018WwW 1
Signals: 0.005' W 1
Logic: 0.003W  (=1%)
92% I BRAM: 0.004 W 1
110: =0.001'W 1
W P57 1662W (95%)
Static: 01468 W (8%)
a% 100% PL Static: 0146 W (100%)

Figure 69. Power consumption estimate of the HLS implementation

These reports will be compared to the RTL implementation’s reports in chapter 5.

4.3.6 Developing the software

As stated before in chapter 4.3.4, an HLS IP needs to be started manually. This is
done by utilizing the IP’s drivers in the control software; therefore, the software

requires some additional driver functions:

e Config lookup function
o Checks if the corresponding device configuration can be found
e Config initialization function
o Checks if the device and the configuration can be found and sets the
IP’s state to ready
e Function that checks if the IP is ready
o Checks if the IP is ready for the next input
e [P start function (included in initialization, start and autorestart functions)
o Sets the start bit to 1 on the IP if it is ready

e [P auto-restart function



74

o Sets the auto-restart bit to 1 that automatically restarts execution af-
ter the IP has finished and is ready
e Set pulse width value function

o Sends the pulse width value to the IP’s register’s address

These functions’ prototypes are declared in the driver functions’ header file
xpwm_module.h and the functions’ implementations themselves are included in Ap-

penix 1 and 2. /19/

The software itself has two functions: An initialization function and the main func-

tion. The initialization function includes the lookup and initialization functions. /19/

The function is shown here:

XPwm_madule pwm_module;
int pwm_module_init(XPwm_module *pwm_modulePtr)
1

XPwm_module_Config *cfgPtr;

int status;

cfgPtr = XPwm_module_LookupConfig(XPAR_XPWM_MODULE_@_DEVICE_ID);

//get module configuration
if (!cfgPtr)
i

print("ERROR: Lockup of pwm module configuration failed.\n\r");
return X5T_FATLURE;

status = XPwm_module CfgInitialize(pwm medulePtr, cfgPtr);
//set module to ready state
if (status !'= XST_SUCCESS)
print("ERROR: Could not initialize pwm module.n\r");
return X5T_FATILURE;

}

return status;

Figure 70. Module initialization function

When called inside the main function, it first looks for the device configuration and
then proceeds to initialize it. Then it returns the status to the main function, where
the initialization is checked. If the setup was successful, the main function proceeds

to enable the auto-restart bit in the IP and then starts its execution:
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int main()

int pulse width = @;
int status;

/fverify that the pwm IP's setup succeeded
status = pwm_module_init(&pwm_module);
if(status != XST_SUCCESS)
print("HLS peripheral setup failed\n\r");
exit(-1);

}

XPwm_module_EnableAutoRestart(&pwm_module);
XPwm_module_start(&pwm_module);

while(1})
1

/fincrease pulse width by 1% and send the value to slv_reg@ every 1@ms until 1@
for(; pulse_width < MAX; pulse_width += STEP)

XPwm_module_Set_pulse width(&pwm_module, pulse_width);
usleep(DELAY);

//decrease pulse width by 1% and send the value to slv_reg@ every 18ms until 8%
for(; pulse_width > MIN; pulse_width -= STEP)

XPwm_module_Set_pulse_width(&pwm_module, pulse_width);
usleep(DELAY);

Figure 71. Pulse width control function

As seen from the main function, the while loop functions exactly as with the tradi-
tional flow’s software. The only difference is that the HLS version of the IP pro-
vides a driver function that sends the pulse width data to the register, without the
need of knowing the address. This can also be done by sending the data to the ad-

dress manually.

Next the bitstream is downloaded to the FPGA, the software on the RAM, and the
data flow can be viewed in Vivado’s hardware manager afterwards. By forcing a

fixed 25000 pulse width value in SDK the result is as follows:
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Figure 72. Write transaction of 25% pulse width

The resulting pulse width of 25% is seen on the LED, followed by a pulse width of
5%:

Figure 74. Pulse width of 5% on the LED

When letting the software cycle the pulse width value automatically, the LED ap-

pears to be pulsing as expected.

The point made in chapter 4.3.4 was that because the IP needs to be manually
started, there is a small delay between every period in the PWM signal. Although
the auto-restart bit can be enabled, the IP still has to wait for the ready bit to go high
before it can start again. This further reinforces the theory that HLS IPs are more

suitable for calculations that do not need to be run continuously.
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As for the statement made at the introduction chapter that HLS does not need any
knowledge about FPGA design, this is false. This implementation would not be
possible to design without the knowledge about AXI bus, and the whole Vivado
design flow, including simulation, verification and configurations. But the case of
Vitis is a bit different since it does not involve the design of FPGAs themselves but

accessing their resources to boost the performance of software.
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5 COMPARING THE TWO WORKFLOWS

The ultimate goal of this thesis was to find out how an HLS implementation com-
pares to an RTL implementation. The next step is to compare the two implementa-

tions’ resource utilization, power consumption and estimated time consumed.
5.1 Resource utilization and power consumption

After both of the designs were synthesized and implemented, Vivado generated re-
source utilization and estimated power consumption reports. Table 1 below shows
the difference between the usage of resources that were used a different amount in

the implementations:

Comparison of resource utilization (pcs)
RTL | HLS | Diff.(%)
LUrT 431 457 6,0
FF 621 596 -4,0

Table 1. Comparison of resource utilization

From table 1 it can be seen that the resource utilization of both flows is really close
to each other, which is quite surprising. HLS automatically implements the RTL
implementation and it could be believed that it cannot be as efficient as the tradi-
tional RTL implementation. It can also be assumed that with RTL, the implemen-
tation’s efficiency in resource utilization has more to do with the skills of the de-

veloper than with HLS.

As for the resource usage itself, RTL possibly uses more FFs because the IP created
in Vivado included four pre-made registers by default, while the HLS IP included
only the one created manually. HLS’s higher use of LUTs, on the other hand, must
have something to do with the implementation itself, and the way the synthesized

RTL implementation handles the algorithm.
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HLS also includes the possibility of declaring optimization directives that influence
the resulting RTL implementation. In a design this simple, however, there were no
suitable spots in the code to optimize. Possible targets of optimization in more com-
plex designs include, for example, function and loop pipelining, which allow the
operations to be implemented in an overlapping manner, and array partitioning,

which allows for splitting RAM blocks into multiple smaller arrays.

As for the estimated power consumption, the component that uses the majority
(95%) in both implementations is the processing system. Table 2 shows the total

power consumption difference between the implementations:

Comparison of estimated power con-
sumption (Watts)

RTL |HLS | Diff.(%)
Total 1,713 | 1,714 | ~0

Table 2. Comparison of estimated power consumption

Looking at the results shown in table 2, the difference in power consumption is
quite negilible. If the design were a hundred or thousand times bigger, the difference
would undoubtedly be more relevant. When combining the information of both ta-

bles, the HLS implementation performed surprisingly well.
5.2 Time consumed

Next, the time consumed between the two flows is compared. The comparison is
measured in minutes and done by dividing the flows into smaller steps and estimat-
ing the required time to complete those steps. Table 3 represents the differences
between the design steps and the estimated required time for developing the spec-

ified PWM functionality. Each step is described in more detail after the table:
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Design step RTL HLS
Coding the algorithm 60 min 30 min
Verifying the algorithm | 45 min * 10 min
Verifying the implemen- | - 15 min
tation by simulation

Adding the IP to the de- | 15 min 15 min
sign and configuring the

PS

Synthesis and implemen- | 5 min 5 min
tation

Developing software 45 min 60 min
HW debugging 30 min 30 min
Total 200 min 165 min

*1ncludes simulation

Table 3. Comparison of required time

In table 3, the first step specified is coding the algorithm. The estimated time re-

quired in this step include possible changes needed in the code.

The main difference here between the two flows is that with RTL there are simply

more lines of code. The RTL implementation includes two separate processes for

handling the PWM signal, and signal and port specifications in two separate files.

VHDL’s syntax is also much stricter than in C and it can take more time to get

everything right, for example, matching the data widths and handling type conver-

sions between signals that communicate with each other.
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The next step includes the creation of a testbench on the HLS side, simulation on
the RTL side, and estimated time to make changes to the code after test runs. One
major benefit of HLS is that it allows the developer to verify the algorithm with a
C test bench and before RTL simulation. Not only is it much faster to make changes
to the code after each test run, C is also a more common programming language
and the RTL simulation is slow. RTL flow does, however, provide the possibility
of verifying the IP using an HDL test bench, but it would still require RTL simula-
tion of the IP.

While verifying the HLS design also requires simulating the synthesized RTL im-
plementation, it saves time to verify the algorithm itself beforehand. In table 3, the
time required at simulation for traditional RTL is included in the second step. The
next two steps are identical between the two flows, therefore the time required is

the same in these cases.

The final step that has differences is software development. In the case of HLS, the
IP requires more manual control than a traditional RTL one. The IP needs to be
manually initialized and started for each run by using the driver functions. Fortu-
nately though, all of the control functions include a ready check part inside them,
so that is handled automatically. Nevertheless, if HLS were used to create an IP that
performs certain computations and does not run continuously, the developer needs

to put extra work into managing the IP.

To summarize, it can be seen from table 3 that the HLS implementation was ap-
proximately 21% faster to develop. The use of resources and power was nearly the

same with both implementations.

It could be argued that the HLS flow might prove more useful in a much larger
implementation. That is because the design cycle is faster, and the gap between the
two flows could potentially increase as the design gets more complicated. Regard-

less, even though the HLS flow is faster and on par with the RTL flow in resource
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usage, the delay between executions potentially makes it unsuitable for timing-crit-

ical uses, like controlling an electrical motor’s voltage and speed with PWM.

To make a secure choice between the two, more research needs to be done with
HLS, specifically about the use of optimization directives. But with the received
results so far, I would personally use HLS, as long as the implementation does not

require timing-critical performance.
5.3 Migrating designs to an ASIC or other manufacturer’s tools

One of the possible use cases of FPGAs is to design a circuit and then port the
design on to an ASIC. Xilinx provides platforms designed for ASIC prototyping,
and migrating designs created in Xilinx’s tools to ASICs can introduce technical
challenges, but migrating to other manufacturers’ devices and tools has legal obsta-

cles.

In the case of the traditional RTL implementation, the VHDL algorithm can be mi-
grated to an ASIC or other manufacturers’ FPGA design tools. There are naturally
device-specific coding styles among ASICs that require the modification of the
VHDL code to work on the target device, but no license agreement prevents this.
Using the code on other manufacturers’ tools is also possible, as long as it is purely
created by the developer. The developers who created the algorithm have every

right to use it the way they please.

However, Xilinx’s use agreement prevents the use of any software or bitstream
generated by Xilinx tools to develop designs for non-Xilinx devices. This concerns
RTL code synthesized by Vivado HLS. It does not prevent the developer of porting
ASIC designs to Xilinx devices for prototyping and verification. /26/

Consequently, if someone were to design an algorithm in C language and synthe-
sized it to an RTL implementation using Vivado HLS, the use agreement does not
allow said RTL code to be used in non-Xilinx tools or devices. The main motivation

behind this is most likely financial. Xilinx is the largest FPGA circuit manufacturer,
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and wants to prevent any harm caused to their business. They openly let people use
their parts and tools as long as they are not used to allow competitors to take poten-
tial business away. Therefore, if one were to use Xilinx’s products to develop de-

signs, they are only to be used with Xilinx’s products.

These restrictions are further emphasized by the fact that Xilinx’s design tools are
all free to use, but cannot be used in conjunction with other manufacturers’ devices.
Their business approach is naturally to generate as much turnover as possible, by
selling as much devices as possible. Xilinx is also one of the few companies that
encourages schools to use their parts and tools for studies, but any thesis or paper
published that includes prohibited use of Xilinx’s tools or devices, while being as-

sociated to a school supported by Xilinx, may result in the removal of said support.

It is also important to note, that when testing a logic on an FPGA before migrating
it on an ASIC, one must consider that certain features may not even be available on

other vendors’ devices.

In summary, migrating designs between Xilinx devices only introduces technical
device-specific challenges, until other manufacturers’ devices or tools come into
the picture. It is possible to use Xilinx’s tools to develop code and use it anywhere,
as long as it is not generated by Xilinx’s tools in any way. Prototyping ASICs using
Vivado HLS is also much stricter, as the generated HLS code cannot be used with

non-Xilinx devices or tools.
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6 CONCLUSIONS

The main goal of this thesis was to compare two design flows, RTL and HLS, both
of which was accompanied by a software. The comparison was done by developing
an LED controlling PWM program. The factors being compared were use of re-

sources, power consumption, ease of verification and time consumed.

The implementation using the traditional design flow went relatively smoothly.
However, the HLS flow was more of an issue, because the Vitis tool was first con-
cluded to be unable to perform the required task. After Vivado HLS was introduced

as a secondary option, the specified functionality was implemented successfully.

The used tools were quite complicated at the start and the amount of documentation
and tutorials is vast. After getting past the initial learning curve, the tools became
fun and much easier to use. In the case of Vitis, it took quite a long time to accept

that it might not be suitable for the specified task.

The comparison resulted in RTL’s favor due to the small delay introduced in the
HLS implementation, when the IP was run continuously. This result does not take
away from the fact, however, that HLS is perfectly capable of synthesizing a work-
ing RTL implementation, but for this particular implementation, the RTL version

is more robust.

At this point it seems that HLS is designed for translating C code into RTL, when
adeveloper already knows how to create an algorithm with C, or it is not worthwhile
to translate an existing algorithm to VHDL. To verify if HLS can replace RTL in

more mathematical use cases, more research needs to be done.

Compared to my personal expectations, the thesis panned out much better than ex-
pected. At first, the assignment felt quite daunting due to the very little amount of
FPGA courses in our university. However, because there was a practically endless
amount of documentation available, the only thing to prevent this from succeeding

was myself. The only way forward was to work hard.
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Looking back, the terminology, theory and tools are much easier to understand after
actually implementing the designs. Personally, I consider myself to be a practical
person and I tend to learn much more by doing things myself. No matter how much
I read and research, it only matters so much until I get to use that information in

practice.
6.1 Potential futher research

A potential idea for further research could be investigating how HLS IPs can used
in conjunction with IPs made with traditional RTL. A good point to think about is
that if it is easier and more efficient to make certain computationally intensive al-

gorithms with HLS and the other parts with RTL that require continuous operation.

The comparison could also be repeated with a more complicated algorithm to see if
the faster design cycle difference gets even bigger, and if HLS could potentially
replace RTL in those scenarios. A particularly interesting matter in HLS is the ef-

fectiveness of the optimization directives.
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APPENDIX 1. HLS driver initialization function

// ===================s===s==s=sss=s=sss==ss==ss==ss==ss==ss==s==========
// Vivado (TM) HLS - High-Level Synthesis from C, C++ and SystemC
v2019.1 (64-bit)

// Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.

// ===================s===s==s=sss=s=sss==ss==ss==ss==ss==ss==s==========

#ifndef  linux
#include "xstatus.h"
#include "xparameters.h"
#include "xpwm module.h"

extern XPwm module Config XPwm module ConfigTable[];

XPwm_module Config *XPwm module LookupConfig(ul6 DeviceId) {
XPwm_module Config *ConfigPtr = NULL;

int Index;

for (Index = 0; Index < XPAR XPWM MODULE NUM INSTANCES; In-
dex++) {
if (XPwm module ConfigTable[Index].Deviceld == Deviceld) {
ConfigPtr = &XPwm module ConfigTable[Index];
break;

}

return ConfigPtr;

int XPwm module Initialize(XPwm module *InstancePtr, ul6 DeviceId)
XPwm_module Config *ConfigPtr;
Xil AssertNonvoid(InstancePtr != NULL);
ConfigPtr = XPwm module LookupConfig(DeviceId) ;
if (ConfigPtr == NULL) {

InstancePtr->IsReady = 0;
return (XST DEVICE NOT FOUND) ;

}

return XPwm module CfgInitialize(InstancePtr, ConfigPtr);

}

#endif
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APPENDIX 2. HLS driver functions

// ===================s===s==s=sss=s=sss==ss==ss==ss==ss==ss==s==========
// Vivado (TM) HLS - High-Level Synthesis from C, C++ and SystemC

v2019.1 (64-bit)

// Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.

// ===================s===s==s=sss=s=sss==ss==ss==ss==ss==ss==s==========
/***************************** Include Files

*********************************/

#include "xpwm module.h"

/************************** Function Implementation
*************************/
#ifndef  linux
int XPwm module CfgInitialize(XPwm module *InstancePtr, XPwm mod-
ule Config *ConfigPtr) {

Xil AssertNonvoid(InstancePtr != NULL);

Xil AssertNonvoid(ConfigPtr != NULL);

InstancePtr->Axilites BaseAddress = ConfigPtr->Ax-
ilites BaseAddress;
InstancePtr->IsReady = XIL COMPONENT IS READY;

return XST SUCCESS;
}
#endif

void XPwm module Start (XPwm module *InstancePtr) {

u32 Data;
Xil AssertVoid(InstancePtr != NULL);
Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-

NENT IS READY) ;

Data = XPwm module ReadReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR AP CTRL) & 0x80;

XPwm module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM_MODULE AXILITES ADDR AP CTRL, Data | 0x01);
}

u32 XPwm module IsDone (XPwm module *InstancePtr) {

u32 Data;
Xil AssertNonvoid(InstancePtr != NULL);
Xil AssertNonvoid(InstancePtr->IsReady == XIL COMPO-

NENT IS READY) ;

Data = XPwm module ReadReg(InstancePtr->Axilites BaseAddress,
XPWM_MODULE AXILITES ADDR AP CTRL);

return (Data >> 1) & 0x1l;
}

u32 XPwm module IsIdle(XPwm module *InstancePtr) {
u32 Data;
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Xil AssertNonvoid(InstancePtr != NULL);
Xil AssertNonvoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY) ;

Data = XPwm module ReadReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR AP CTRL) ;

return (Data >> 2) & ;
}

u32 XPwm module IsReady (XPwm module *InstancePtr) ({

u32 Data;
Xil AssertNonvoid(InstancePtr != NULL);
Xil AssertNonvoid(InstancePtr->IsReady == XIL COMPO-

NENT IS READY) ;

Data = XPwm module ReadReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR AP CTRL) ;

// check ap start to see if the pcore is ready for next input

return ! (Data & )

}

void XPwm module EnableAutoRestart (XPwm module *InstancePtr) {
Xil AssertVoid(InstancePtr != NULL);
Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY);

XPwm_module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM_MODULE AXILITES ADDR AP CTRL, ) ;

}

void XPwm module DisableAutoRestart (XPwm module *InstancePtr) {
Xil AssertVoid(InstancePtr != NULL);
Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY);

XPwm module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM_MODULE_AXILITES ADDR AP CTRL, 0);

}

void XPwm module Set pulse width(XPwm module *InstancePtr, u32
Data) {

Xil AssertVoid(InstancePtr != NULL) ;

Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY);

XPwm module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM_MODULE AXILITES ADDR PULSE WIDTH DATA, Data);

}

u32 XPwm module Get pulse width (XPwm module *InstancePtr) {

u32 Data;
Xil AssertNonvoid(InstancePtr != NULL);
Xil AssertNonvoid(InstancePtr->IsReady == XIL COMPO-

NENT IS READY) ;
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Data = XPwm module ReadReg(InstancePtr->Axilites BaseAddress,
XPWM_ MODULE AXILITES ADDR PULSE WIDTH DATA) ;
return Data;

}

void XPwm module InterruptGlobalEnable (XPwm module *InstancePtr) {
Xil AssertVoid(InstancePtr != NULL);
Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY);

XPwm_module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR GIE, 1);

}

void XPwm module InterruptGlobalDisable (XPwm module *InstancePtr)
{

Xil AssertVoid(InstancePtr != NULL);

Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY);

XPwm_module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR GIE, 0);

}

void XPwm module InterruptEnable (XPwm module *InstancePtr, u32
Mask) {
u32 Register;

Xil AssertVoid(InstancePtr != NULL);
Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY) ;

Register = XPwm module ReadReg(InstancePtr->Ax-
ilites BaseAddress, XPWM MODULE AXILITES ADDR IER);

XPwm module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR IER, Register | Mask);
}

void XPwm module InterruptDisable (XPwm module *InstancePtr, u32
Mask) {
u32 Register;

Xil AssertVoid(InstancePtr != NULL);
Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY) ;

Register = XPwm module ReadReg(InstancePtr->Ax-
ilites BaseAddress, XPWM MODULE AXILITES ADDR IER);
XPwm_module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR IER, Register & (~Mask));
}

void XPwm module InterruptClear (XPwm module *InstancePtr, u32
Mask) {
Xil AssertVoid(InstancePtr != NULL);
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Xil AssertVoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY) ;

XPwm module WriteReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR ISR, Mask);
}

u32 XPwm module InterruptGetEnabled(XPwm module *InstancePtr) {
Xil AssertNonvoid(InstancePtr != NULL);
Xil AssertNonvoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY);

return XPwm module ReadReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR_IER) ;

}

u32 XPwm module InterruptGetStatus (XPwm module *InstancePtr) {
Xil AssertNonvoid(InstancePtr != NULL);
Xil AssertNonvoid(InstancePtr->IsReady == XIL COMPO-
NENT IS READY) ;

return XPwm module ReadReg(InstancePtr->Axilites BaseAddress,
XPWM MODULE AXILITES ADDR ISR) ;

}






