
 

                                           

 

 

 

 

 

 

 

 

 

Niko Kangas 

A Comparison of High-Level Synthesis 

and Traditional RTL in Software and 

FPGA Design 

 

 

 

 

 

 

 

 

Technology and Communication 

2020 

 



2 

 

VAASAN AMMATTIKORKEAKOULU 

UNIVERSITY OF APPLIED SCIENCES  

Tietotekniikka 

  

TIIVISTELMÄ  

Tekijä   Niko Kangas 

Opinnäytetyön nimi Korkean tason synteesin ja perinteisen RTL:n vertailu 

ohjelmisto- ja FPGA-suunnittelussa    

Vuosi   2020 

Kieli   englanti 

Pages   89 + 2 liitettä 

Ohjaaja  Santiago Chavez (VAMK), Petri Ylirinne (Vacon Oy) 

 

Tämä opinnäytetyö tehtiin Vacon Oy:lle, joka on osa Danfossin Drives-segmenttiä. 

Opinnäytetyön tarkoituksena oli vertailla uutta Vitis-työkalua nykyisesti käytössä 

oleviin, Vivadoon ja SDK:hon, joilla suunnitellaan FPGA-piirejä sekä ohjelmistoja. 

Työ antaisi puoleettoman näkemyksen kummastakin suunnitteluvuosta, ja auttaisi 

hahmottamaan niiden kustannustehokkuuksia. 

Työssä toteutettiin ledin kirkkauden ohjaus kummallakin vuolla, ja niitä verrattiin 

keskenään. Vertailussa oli tarkoituksena tuoda esille eri toteutuksien koko, tehon-

kulutus, verifioinnin helppous ja käytetty aika.  

Tietoa etsittiin tieteellisistä artikkeleista, julkaisuista sekä ohjelmistojen ja 

laitteiden valmistajan manuaaleista ja dokumentaatiosta.  

Työssä todettiin, ettei Vitis-työkalulla voida toteuttaa tehtävänannon mukaista to-

teutusta. Sen sijaan uudeksi vertailukohteeksi otettiin Vivado HLS-työkalu.  

 

Vertailusta selvisi, että molemmat vuot käyttävät lähes saman verran resursseja ja 

tehoa. Algoritmin verifiointiprosessi on myös helpompaa HLS-vuossa. HLS-to-

teutus kuitenkin tuotti pientä viivettä jatkuvassa ajossa, joten sitä ei pitäisi käyttää 

aikakriittisissä käyttötarkoituksissa. 

 

HLS:llä ei voida täysin korvata perinteistä vuota, mutta se voisi soveltua parem-

minkin käyttökohteisiin, joissa vaaditaan suurta laskentatehoa, eikä vaadi aika-

kriittistä toiminnallisuutta. 
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This thesis was done for Vacon Oy, which is a part of Danfoss's Drives segment. 

The aim of the thesis was to compare the new Vitis tool with those currently in use, 

Vivado and SDK, which are used to design FPGA circuits and software. The thesis 

would give an objective look into both design flows and could help to understand 

their cost-effectiveness. 

The thesis was carried out by creating an LED brightness control program with both 

flows and they were compared to each other. The aim of the comparison was to 

bring up the size of both implementations, the power consumption, the ease of ver-

ification and the time spent.  

Information was sought in scientific articles, publications, and software and hard-

ware manufacturer manuals and documentation. 

During the course of the thesis it was concluded that Vitis cannot be used to imple-

ment the specified functionality. Instead, the Vivado HLS tool was introduced as a 

new benchmark.  

The comparison revealed that both flows use nearly the equal amount of resources 

and power. The algorithm verification process is also easier using the HLS flow. 

However, the HLS implementation introduced a small delay between runs and 

therefore it should not be used in timing-critical applications.  

The traditional flow should not be entirely replaced with HLS, however it could be 

more suitable for intensive mathematical algorithms that do not require time-critical 

functionality. 
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1 INTRODUCTION 

1.1 Background 

There is a rising trend on the market towards increasing abstraction in field-pro-

grammable gate array (FPGA) design. What this means in practice, is that the de-

sign is programmed entirely using a high-level language, for example, in C, C++ or 

Python. The used software tool’s compiler will then translate the code into a register 

transfer level (RTL) implementation automatically, without the need for the user to 

have any knowledge about FPGA design and VHDL, which is a hardware descrip-

tion language. This design flow is called HLS (High-Level Synthesis). Tradition-

ally, all this has been done by first implementing the FPGA block in VHDL on the 

RTL and then programming the controlling software using C or C++. Essentially, 

the HLS design flow enables the developer to do both phases using their preferred 

programming language. 

Xilinx is one of the leading semiconductor and FPGA manufacturers and most im-

portantly, the inventor of the FPGA. On the 1st of October 2019, Xilinx announced 

the Vitis Unified Software Platform, a new, free and open source tool for HLS de-

velopment. One of the main reasons why Xilinx has developed this tool is that they 

want to provide developers the possibility to utilize hardware (HW) with common 

programming languages they understand, because modern computer architectures 

can be difficult to work with, and understanding and utilizing CPUs, GPUs and 

FPGAs well requires a lot of hardware expertise. /1/ 

Every used resource consumes real space on the FPGA chip. Thus, it is clearly im-

portant to optimize the resource usage in the design. When manufacturing an FPGA 

chip out of the implementation designed on an evaluation board, all of the logic not 

in use is stripped from the final product. Therefore, every cent of increased cost 

accumulates into a large amount of money when the number of shipped products is 

in hundreds of thousands, or even millions. In other words: the smaller the chip, the 

more efficient the cost. 
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1.2 Objective of the thesis 

The aim of this thesis is to compare these two workflows for Vacon Oy. The goal 

is to find out what the HLS implementation is like and which of the workflows is 

the most efficient one to use. The factors being compared include the time con-

sumed, ease of verification and the size of the implementation. The comparison is 

done by creating a PWM program, which will be used to control the brightness of 

an LED (Light-emitting diode). It is also important to regard if HLS in fact does not 

require the engineer to have any knowledge about FPGA design. 

The traditional workflow utilizes Xilinx Vivado Design Suite and Xilinx Software 

Development Kit, which are used to design the FPGA block design and the control-

ling software, respectively. 

At first, the objective was to implement the entire HLS implementation using only 

Xilinx’s Vitis tool. After a while of researching it was discovered that it cannot be 

done with Vitis alone. That is because Vitis cannot access the physical hardware 

pins and only manages the data flow between a host software and a kernel on the 

FPGA. This will be explained in more detail in chapter 3.2 Then, the best course 

of action was to research, whether an other Xilinx tool, Vivado HLS, would work.  

According to HLS’s documentation it can be used to develop IPs using C, C++ or 

SystemC. What this means in practice is that HLS replaces the part where develop-

ers would traditionally code the IP in VHDL, with C. HLS also enables the devel-

oper to test the algorithm using a test bench written in C, before needing to perform 

RTL simulation. The rest of the flow including creation of the control software us-

ing Xilinx SDK remains the same. /2/ 

1.3 Structure of the thesis 

The second chapter of the thesis describes the relevant technologies and tools for 

the thesis. The third chapter describes the design flows. The fourth chapter de-

scribes the implementation of the PWM program using both RTL and software, and 
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HLS workflows. The fifth chapter is for comparing these two workflows. The sixth 

chapter includes the conclusions of the thesis and potential research for the future. 

1.4 Danfoss 

Danfoss is a Danish family-owned company founded in 1933, that operates in sev-

eral segments around the world. The segments include expertise in heating, cooling, 

power solutions and drives. Danfoss employs more than 28,000 people and has fac-

tories in over 100 countries. /3/ 

Danfoss Drives is the segment that manufactures frequency converters. Vacon 

(founded 1993 in Vaasa) became a part of Danfoss Drives in December of 2014, 

and the combination has made Drives one of the world’s leading frequency con-

verter manufacturers. The combination of forces also opened new possibilities for 

Vacon to invest further in R&D and sales. /3/ 

 

Figure 1, Danfoss logo /3/ 

1.5 Frequency converter 

Frequency converters, or AC drives, are used to control the speed of an electrical 

motor. This enables the enhancing of process control, energy consumption reduc-

tion, decrease of mechanical stress and optimization of the operation of electric 

motor-controlled applications. 

Frequency converters have multiple uses, including converting energy from the sun, 

wind or tides and transmitting it into the electrical network, combining energy 

sources and storages to create energy management solutions, elevators, pumps and 

cranes. When used in cranes or elevators, they can be equipped with brakes to 

smoothly reduce the controlled motor’s speed. 
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For Danfoss, the environment is a key driver in the development of AC drives. Be-

cause more than 50% of electrical energy consumption comes from the use of elec-

trical motors, AC drives have a key role in reducing global emissions. If AC drives 

were used in every suitable application, global electricity consumption could be 

reduced by up to 10%. While they are barely seen, they contribute a lot at making 

the world more sustainable. /3/ 

 

Figure 2, Danfoss Drives product line /3/ 
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2 RELEVANT TECHNOLOGIES AND TOOLS 

This chapter describes the relevant technologies and tools used in this thesis.  

2.1 FPGA 

FPGAs are semiconductor devices that are constructed around a matrix of configu-

rable logic blocks (CLBs), Digital signal processing units (DSPs), Block RAM 

(BRAM) and Phase-locked loops (PLLs) connected through programmable inter-

connects. FPGAs can be reprogrammed for different purposes and algorithms after 

fabrication. They provide significant cost advantages by making the developers in-

dependent of component manufacturers, because the functionality of an FPGA is in 

the configuration and not in the physical components. Updates and changes can also 

be carried out after the FPGA is delivered to the customer. The time-to-market is 

also much shorter, because the design can be analyzed and troubleshooted at the 

same time as development. Additionally, one of the biggest differences is that 

FPGAs allows for parallel processing of data, instead of ICs’ sequential processing. 

/4, 5/  

When going into more detail, an FPGA is an array of interconnected sub-circuits 

that implement common functions while also offering a very high level on flexibil-

ity. These sub-circuits are the above-mentioned CLBs and they form the core of the 

FPGA’s programmable logic. /6/  

The CLBs include the following elements: 

• Look-up tables (LUT), which perform logic operations 

• Flip-Flops (FF), which stores the results of the LUTs 

However, the CLBs need to interact with each other. For this the FPGA also con-

tains a matrix of programmable wires and input/output (I/O) blocks. The wires con-

nect elements to each other, and the I/O blocks are physical ports to get data in and 

out of the FPGA. /5/  
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An I/O block consists of different components, including pull-up/pull-down resis-

tors, buffers and inverters. The FPGAs program is stored in SRAM cells that define 

the functionality of the CLB. /6/ The combination of these elements form the basic 

FPGA architecture shown in Figure 3 below: 

 

Figure 3. Basic FPGA architecture /5/ 

 

2.1.1 RTL 

Register-transfer level (RTL) is part of digital circuit design, and a typical part in 

modern digital design. It is a design abstraction, which models a circuit regarding 

the flow of data signals between hardware registers and the logical operations exe-

cuted on those signals. RTL abstraction is used in hardware description languages 

(HDLs), such as VHDL and Verilog, to create descriptions of a circuit, from which 

lower-level representations and actual wiring can be derived RTL abstraction is a 

part of the FPGA design flow, which will be demonstrated later. /7/ 
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A synchronous circuit consists of registers, which utilize sequential logic, and com-

binational logic. Registers are the only elements in the circuit to have memory prop-

erties, and they synchronize the circuit’s operation to the clock cycles’ edges. They 

consist of a parallel combination of flip-flops. Combinational logic is a type of dig-

ital logic which is implemented by Boolean circuits, where the output depends en-

tirely on the present input and it typically consists of logic gates  Combinational 

logic then executes all the logical functions in the circuit. /7, 8/ 

In Figure 4, a very simple synchronous circuit is shown. The inverter is connected 

from the register’s output Q to the register’s input D. This creates a circuit which 

changes its state on every rising edge of the clock clk. In addition to the register, 

the combinational logic consists of the inverter /7/. 

 

Figure 4. Example circuit /7/ 

However, when designing real-world digital integrated circuits, the designs are 

commonly written with an HDL at a higher level of abstraction. The engineer de-

clares the registers and describes the combinational logic in HDLs by using if-else 

-like constructs and arithmetic operations. This is the level, which is called the reg-

ister-transfer-level. The term RTL meaning that it focuses on describing the 

stream of the signals between registers. In the case of RTL, registers roughly cor-

respond to variables in programming languages. /7/  

Figure 5 shows the above-mentioned circuit described in VHDL: 
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Figure 5. VHDL description of above-mentioned circuit /7/ 

Additionally, in FPGA design, software is used alongside RTL abstraction. While 

RTL is utilized to describe the functionality of the circuit, a software application 

can be created to complement the FPGA design. The software application can, for 

example, perform more complex calculations and then feed the results to the RTL 

design, and handle communications. 

 

2.1.2 HLS 

Creating a behavioral description of hardware in a high-level programming lan-

guage, like C or C++, forms the basis of HLS. Next the HLS compiler translates the 

created hardware specification code into an RTL implementation. /5/ 

High-level synthesis provides the following benefits: 

• Verification at C-level provides much faster validation of the algorithm than 

RTL verification. 

• Improved system performance for software designers (They can accelerate 

the most intensive parts of their algorithms by compiling on the FPGA.) 

• Creation of different implementations of the source code using optimization 

directives. 

• Developers only need to focus on the algorithm and not the hardware-level 

implementation, which is synthesized automatically. /5/ 

HLS also possesses some limitations: 
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• In more complex designs, the algorithm must be written in a particular style 

to make the synthesis tool utilize parallelism 

o C algorithms should not be directly translated with HLS, because it 

can cause poor performance 

• RTL produced by HLS is very difficult to follow 

o Any problems on the synthesized RTL can be difficult to pinpoint  

 

In the following example, a simple high-level data flow specification is shown. 

Variables x1 and x2 carry the values from the + and – operators to an another + 

operator, which outputs y: 

 

 

Figure 6. An example of a high-level data flow specification /9/ 

In Figure 7, a possible RTL implementation is shown, when the high-level specifi-

cation code is fed into the HLS compiler: 
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Figure 7. An example of a possible RTL implementation of the specification above 

/9/ 

In the above-mentioned RTL example, the following steps have been taken: 

• The variables have been assigned to registers 

• Operations have been assigned to function units  

• The controller schedules the operations to occur on a certain clock cycle. 

2.2 Zynq-7000 SoC 

The Zynq-7000 family is based on the Xilinx System on Chip (SoC) architecture. 

These boards feature an ARM Cortex-A9 based CPU and Xilinx 28nm program-

mable logic in a single device. The evaluation board used in this thesis is the MYIR 

Tech MYC-C7Z020, which is based on the Zynq-7000 SoC. It includes the Xilinx’s 

dual-core Cortex-A9 processor and an Artix-7 FPGA. The Artix-7 family is typi-

cally used in cost-sensitive, low power applications where serial transceivers and 

high DSP and logic throughput is required. /10/ 

The processing system (PS) of the MYIR Tech evaluation board include the fol-

lowing elements: 

• ARM Cortex-A9 dual core processor 

o 677 MHz 
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• On-Chip Memory 

o 1GB DDR3 SDRAM 

o 4GB eMMC 

o 32MB Flash memory 

• Linux 3.15.0 OS support 

• I/O peripherals 

o 10/100/1000M Ethernet 

o LEDs 

o 2x serial ports 

o 2x I2C 

o ADC 

o JTAG 

The programmable logic (PL) includes the following elements: 

• Artix-7 FPGA subsystem 

o 85 000 logic cells 

▪ 53 200 LUTs 

▪ 220 DSPs 

The evaluation board (blue) connected into a Vacon’s base board is shown in Figure 

8: 

 

Figure 8. The evaluation board connected into a base board 
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2.3 PWM 

Pulse width modulation is a type of a digital signal. It is used to create a square 

wave by switching the signal’s state to high and low (on and off). This pattern sim-

ulates voltage values between these two states by changing the amount of time the 

signal spends on versus the time it spends off. The duration of time when the signal 

is “on” or “high”, is called the pulse width, or duty cycle. By changing the pulse 

width, the signal gets varying analog values, the average voltage, between the two 

states. /11/  

For example, if the “high” state is set to 5 Volts and “low” is set to 0 Volts, and 

pulse width is set to 50%, the resulting output voltage value is 2.5V. Correspond-

ingly, by setting the pulse width to 100% the resulting output would be 5 Volts. In 

Figure 9 below, visual representation of different pulse widths, or duty cycles, are 

shown: 

 

Figure 9, 50%, 75% and 25% duty cycle examples /12/ 

 

PWM can be used to control the frequency and voltage supplied to an AC motor. 

2.4 Vivado Design Suite 

Vivado Design Suite is a Xilinx development system for implementing designs into 

Xilinx programmable logic devices. It includes the IP integrator tool, which is used 
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to create embedded hardware. IP integrator is used in this thesis to create a custom 

PWM signal generator block. The PWM block is then configured in VHDL on the 

RTL by setting a fixed frequency of 1000 Hz and connecting the PWM signal to an 

LED. The graphical user interface (GUI) of the Vivado Design Suite is shown in 

Figure 10: 

 

Figure 10. GUI of the Vivado Design Suite 

2.4.1 Main features 

All of the main features are accessible from the starting view. These features in-

clude: 

• IP integrator 

• Simulation 

• Synthesis and implementation 

• Hardware manager 
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The block design view is used to add the Zynq processing system and the PWM 

generator block to the design, and to manage connections. The view is shown in 

Figure 11: 

 

Figure 11. Block design view 

The PWM block is created using the IP integrator’s IP packaging tool, which cre-

ates an AXI IP. An example view in the IP packaging tool is as follows: 

 

Figure 12. Example view of IP packager 
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The simulation tool includes the Waveform window, which can be used to monitor 

signals and analyze simulation results by, for example: 

• Running the simulation to verify the design functionality 

• Adding signals to monitor their status 

• Changing signal and wave properties to review the signals 

• Using markers and cursors to highlight important events in the simulation 

• Using zoom and time measurement functionalities 

An example view of the Waveform window is shown in Figure 13. /12/ 

 

Figure 13. Waveform window in the simulation tool /12/ 

 

The synthesis and implementation tools are used to transform an RTL design into a 

gate-level representation. The tool provides data of the implementation’s use of de-

vice resources, power consumption and timing. /13/ As we can see in Figure 14, the 

generated utilization report shows the utilization of an example implementation, 

including the used LUTs and Flip-Flops:  
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Figure 14. Synthesis utilization report /14/ 

 

2.5 Xilinx SDK 

Xilinx Software Development Kit (SDK) is a tool based on the Eclipse open-source 

framework, and is used to develop software applications for embedded hardware. 

It directly interfaces to the Vivado embedded hardware design environment. In this 

thesis, the SDK is used to develop the software which varies the created PWM gen-

erator’s pulse width. An example view of the SDK’s GUI is shown in Figure 15. 



28 

 

 

Figure 15. Xilinx SDK GUI /15/ 

2.5.1 Basic features 

The Xilinx SDK enables the developer to: 

• Create board support packages 

• Develop applications 

• Debug code 

• Interact with the hardware created in Vivado 

The Xilinx SDK has the integrated development environment (IDE) of Eclipse, 

which is familiar to many software developers. It has the well-known common fea-

tures of Eclipse IDE shown in Figure 16. 
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Figure 16. Example view of Xilinx SDK and some of its features /16/ 

The SDK’s debugging view is shown in Figure 17. 

 

Figure 17. Debugging view in Xilinx SDK /16/ 
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One of the most important features in the SDK for this thesis is that the Vivado 

simulation waveform view can be utilized on the SDK. The developer can set break-

points and force certain values to the variables in the SDK, and set triggers in the 

Vivado Hardware Manager to make the program stop on certain conditions and then 

visualize what is happening on the PL. 

2.6 Xilinx Vitis 

The Xilinx Vitis unified software platform is a tool that unifies every aspect of Xil-

inx software development into a single platform. What this means is that it can be 

used for the same case as the Xilinx SDK is used in this thesis in the embedded 

software development. In addition to this, Vitis also supports application accelera-

tion flow, which enables software developers to accelerate the most performance-

intensive parts on the FPGA. /17/ 

Right at the start it can be seen that the embedded software development flow in-

volves no HLS, because it is designed to replace SDK with Vitis for developing 

software. So, the next course of action was to take a look into the acceleration flow. 

This chapter describes the basics of the IDE itself. The reasons why it was eventu-

ally concluded that it is not possible to create a design entirely in high-level lan-

guage by only using Vitis, are went through in chapter 3. /17/ 

2.6.1 Vitis IDE 

The default view of the Vitis is quite similar to SDK. That is no surprise, because 

Vitis is Eclipse-based aswell. 



31 

 

 

Figure 18. Vitis IDE default perspective /18/ 

The default view basically includes all of the main features: 

• Software emulation 

• Hardware emulation 

• Hardware execution 

• Vitis Analyzer 

The IDE includes the Vitis Analyzer, which is a powerful debugging tool for view-

ing application timelines, waveforms system summaries and guidance on optimiz-

ing the design. Figure 19 shows an example workspace in the Analyzer. 
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Figure 19. Workspace in Vitis Analyzer /18/ 

2.7 Vivado HLS 

Xilinx Vivado HLS is a tool that transforms a C specification into an RTL imple-

mentation which is synthesized into an FPGA. Vivado HLS is also Xilinx’s imple-

mentation of an HLS compiler. It a very similar programming environment as any 

other designed for application development. It shares technology with other proces-

sor compilers for the interpretation, analysis and optimization of C and C++ pro-

grams. The main difference is that the Vivado HLS compiler targets an FPGA as 

the execution fabric. /5/ 

2.7.1 Vivado HLS IDE 

The IDE of Vivado HLS is graphically very straightforward. The software has just 

a couple functions to it, all of which can be accessed from the main screen. A newly 

created project is shown in Figure 20. 
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Figure 20. Vivado HLS GUI /19/ 

The four main features of Vivado HLS are highlighted at the top of the window in 

Figure 20: 

• C-simulation 

• C Synthesis 

• C/RTL cosimulation 

• Export RTL. 

2.8 Advanced eXtensible Interface (AXI) 

AXI is a part of a family of microcontroller buses, ARM AMBA (Advanced Mi-

crocontroller Bus Architecture). It is a widely adopted interface protocol in Xilinx 

products. /20/ 

There are three types of AXI4 interfaces: 

• AXI4 (high-performance memory-mapped requirements) 

• AXI4-Lite (simple, low-throughput communication) 

• AXI4-Stream (high-speed streaming of data). /20/ 
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The major benefit of standardizing on the AXI bus is that developers only need to 

learn a single protocol for IPs. The AXI4-Lite interface is used in this thesis due to 

the lightweight nature of the logic to be implemented, and the Lite interface is the 

simplest of the three. /20/ 

The simplest description of the AXI interface is that it connects a single AXI master 

and AXI slave to each other, which exchange information. In this case, the PWM 

generator IP acts as an AXI slave, and the Zynq PS acts as a master. Data can move 

in both directions between the master and slave simultaneously and data transfer 

sizes can vary. However, AXI4-Lite only allows for one data transfer per transac-

tion, but it is enough, because the only data needed to be transferred is the pulse 

width value. /20/ 

The interface consists of five different channels: 

• Read address channel 

• Write address channel 

• Read data channel 

• Write data channel 

• Write response channel. /20/ 

The separate data and address connections for reads and writes provides simultane-

ous and bidirectional data transfer. 

Figure 21 shows an example write transaction, which includes the write address, 

data and write response channels. 
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Figure 21. Channel architecture of writes /20/ 

The PWM implementation in this thesis only utilizes the write transaction, so let’s 

take a closer look at it. A signal port called WDATA, which resides in the write 

data channel, contains the data that the software sends to the PWM generator mod-

ule. Because this port may contain more data in addition to the pulse width value, 

there are four control signals which indicate that the data inside WDATA port is 

significant /21/: 

• AWREADY (Write address channel) 

o Indicates that the slave is ready to accept an address. 

• WVALID (Write data channel) 

o Indicates that valid write data is available. 

• WREADY (Write data channel) 

o Indicates that the slave can accept the data. 

• BVALID (Write response channel) 

o Indicates that a valid write response is available./21/ 

Figure 22 shows the control signals in action, when the value “70000004” is sent: 
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Figure 22. AXI4-Lite control signals in a write transaction /21/ 

2.8.1 AXI Interconnect 

The AXI Interconnect is a block which connects one or more AXI memory-mapped 

master devices to one or more slave devices. Figure 23 shows the AXI Interconnect 

core block diagram. 

 

Figure 23. AXI Interconnect core diagram, /22/ 

Inside the core, a crossbar core routes traffic between the master and slave inter-

faces. Along each pathway between the interfaces, additional AXI cores can per-

form various conversion and buffering functions. 
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3 DESIGN FLOWS  

The used design flows, including the traditional RTL flow and the newer HLS flow, 

will be described in this chapter. The Vitis tool will also be looked into, and it will 

be explained why it could not be used to create the specified functionality. 

3.1 Vivado design flow 

In the case of the traditional RTL and software flow, the PWM program is split into 

two parts. The following lists includes the two parts and the used tools:  

• Hardware implementation 

o Vivado Design Suite 

• Software 

o Xilinx SDK 

Next, the design is then implemented with HLS: 

• Hardware implementation 

o Vivado HLS  

o Vivado Design Suite  

• Software 

o Xilinx SDK 

The entire Vivado design flow is shown in Figure 24: 
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Figure 24. Xilinx Vivado design flow /23/ 

The first part, hardware implementation, includes creating the PWM generation 

module in VHDL, configuring the processing system, simulating and verifying the 

design, connecting the PWM output signal to an LED and managing other connec-

tions, synthesis and implementation. All of this is done in Vivado. 

Figure 24 also includes “C-Based Design with High-Level Synthesis”. This repre-

sents the development of the PWM module with HLS, which will replace VHDL 

with C-language using the Vivado HLS tool, and the rest of the flow remains nearly 

the same. This will be demonstrated later. 
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3.1.1 Create design 

During the design creation process, the PWM module is created by using the AXI4-

Lite IP creation wizard. The resulting IP is then configured in VHDL to generate a 

PWM signal in accordance with the specification.  

Next, the Zynq PS is added to the block design and configured accordingly. Vivado 

automatically manages most of the connections and adds any required additional 

IPs to aid with the functionality, for example a processor system reset IP and the 

AXI Interconnect. 

3.1.2 Simulate design 

The design is then simulated to verify the functionality of the PWM module using 

the AXI Verification IP. In this case the VIP acts as an AXI master that writes data 

to the PWM module, which acts as an AXI slave.  

3.1.3 Assign design constraints 

Next, the PWM signal output is connected to an LED by assigning a constraint in a 

Xilinx Design Constraints (XDC) file. Timing, placement and synthesis constraints 

can also be assigned at this point to help improve design performance. They can be, 

for example, period constraints for clock signals, placement constraints for each 

type of logic element and synthesis constraints which control how the synthesis tool 

processes and implements FPGA resources. However, in this particular scenario, 

the only constraint needed is the connection between the PWM output signal and 

an LED. /24/ 

3.1.4 Synthesis and implementation 

After that, the design is synthesized from HDL sources into a design netlist, which 

contains both logical design data and constraints. When synthesis is complete, de-

sign implementation can be run, which converts the logical design into a physical 
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bitstream file that can be downloaded on to the FPGA. The resulting implementa-

tion includes timing, resource and power consumption reports. /24/ 

3.1.5 Export to SDK and develop software 

The second part of the PWM program is the software that varies the created signal’s 

pulse width and sends the value to a register’s memory address in the PWM module 

every 10 ms. The software is created in Xilinx SDK. When the hardware bitstream 

is generated and exported to the SDK, the resulting project contains the required 

drivers for the IPs and software libraries, which are a part of the board support 

package (BSP)generated from the bitstream.  

After the software is ready to run, the hardware bitstream is downloaded to the 

FPGA device and the software is run on the board’s ARM processor. The software 

can be stored on the RAM or flash memory. The running implementation can then 

be debugged in Vivado and SDK by utilizing the JTAG connection.  

3.2 Vitis application acceleration flow 

The Vitis acceleration flow provides a framework for software developers to de-

velop applications using their preferred high-level programming language, and to 

accelerate them on an FPGA. The acceleration takes place on a hardware compo-

nent, called kernel, which can be developed on C, C++, OpenCL C or RTL to be 

run on the FPGA. The software component, the host program, runs on an embedded 

processor, for example, the ARM A9 processor on the Zynq board, and is written 

in C or C++. The host program communicates with the kernel using OpenCL API 

calls.  

3.2.1 Features and architecture 

Vitis provides a variety of accelerated libraries, including AI, image processing and 

video transcoding. /18/  

Figure 25 shows the following elements and features of the Vitis platform: 
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Figure 25. Vitis Unified Software Platform elements /18/ 

 

 

• A target platform  

o Such as Xilinx Alveo Data center accelerator cards or Zynq boards, 

on which the kernel is developed. 

• XRT (Xilinx Runime) 

o Connects the host program to the target platform and handles the 

transactions between the program and kernel(s) with an API. 

• Vitis core development kit 

o Provides the tools for the software development. 

• Vitis accelerated libraries 

o Provide FPGA acceleration with common functions of math, statis-

tics, linear algebra and DSP and use specific applications. /18/ 

As mentioned in chapter 2.6.1, three of Vitis’s main features are build targets called 

Software Emulation, Hardware Emulation and Hardware Execution. The two emu-

lation modes are used for validation and debugging, and the system hardware target 

is used to generate the FPGA binary into the device. /18/ 

The features can be seen in Figure 26. 
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Figure 26. Descriptions of the build targets in Vitis /18/ 

The architecture of a Vitis accelerated application is shown in Figure 27: 

 

Figure 27. Architecture of a Vitis accelerated application /18/ 

Figure 27 depicts the functionality between a host program and a kernel. Let’s im-

agine a scenario where the developer has concluded that the software has a partic-

ularly intensive function, which requires to be run faster or is a bottleneck in the 

software. The function is then set to be run on a kernel on the FPGA. /18/  

For example, if this were implemented on the Zynq board, the host program would 

be running on the ARM processor and the kernel on the PL. The execution model 

can be separated into the following steps: 

• Host program writes the data in to the global memory of the device through 

the AXI bus. 

• Host program sets up the kernel with input parameters. 
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• Host program triggers the execution of the kernel on the FPGA. 

• Kernel performs the required function while reading data from global 

memory. 

• Kernel outputs data back to global memory and notifies the host. 

• Host program reads data from global memory and continues processing. /18/ 

3.2.2 Obstacles for using Vitis in FPGA design 

Without going into any more detail on the build process of the application and ker-

nels, let’s go through the obstacles that prevent the use of this flow.  

The target platform, which in this case would be based on the Zynq board, is created 

in Vitis. However, the platform creation requires an XSA hardware specification 

file, which is generated by Vivado, that represents the hardware implementation of 

the block design. Xilinx provides sample platforms for Zynq devices, but the de-

veloper can also create them manually. Nonetheless, this directly contradicts the 

theory that both, the hardware and software, could be created entirely in Vitis only 

using C-language.  

The kernel is created to be run on the hardware platform. While the kernel has in-

puts and outputs, they are used for communicating with the host application through 

the global memory, and not with any external hardware pins. This is the second and 

final obstacle, which led to the conclusion that Vitis alone cannot be used for im-

plementing the specified PWM functionality. The only use case Vitis can be used 

in is to replace SDK as the IDE in software development. /17, 18/ 

Even if it were somehow possible to implement the specified PWM functionality 

with Vitis alone, it would require an unnecessary amount of extra work. First, the 

documentation does not indicate at any point that the Vitis is intended for this kind 

of use, or that it is even possible. Second, Vivado HLS already exists for the purpose 
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of developing IPs with high-level languages and the documentation includes tuto-

rials for this. To summarize, using Vivado HLS is the recommended approach if 

HLS development is required. /9/ 

While Xilinx promotes Vitis as a platform which requires no expertise in hardware 

or FPGA design, this is actually correct, as Vitis does not involve the creation of 

hardware at all. Their statement means that software developers can access the per-

formance of FPGAs and utilize it in the most computation-intensive parts in their 

software, without actually having any technical knowledge about them. /1/ 

3.3 Vivado HLS design flow 

As mentioned in chapter 3.2, the design flow in Vivado HLS remains much the 

same as with the traditional RTL flow. The differences are in creating the IP and 

simulating the design. One must keep in mind however, that synthesis in HLS 

means translating the C code into HDLs, and not synthesizing the design into a 

netlist, which is a step taken in Vivado, and can be confusing. The steps taken in 

Vivado HLS are shown here: 

• The PWM signal generation algorithm is coded entirely in C. 

• The algorithm is tested and simulated with a C testbench. 

• The algorithm is synthesized into an RTL representation. 

• The RTL representation is simulated using C/RTL co-simulation. 

o Verifies the synthesized RTL using the C testbench. 

o Simulation waveforms can be output to Vivado simulator. 

• The finished design can then be exported to Vivado as an IP. /23/ 

 

Additionally, the software side has some differences. Mainly that the IP needs to be 

initialized and started manually using drivers. In any case, Figure 24 in chapter 3.1 

applies to HLS as well. 
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4 IMPLEMENTATION 

In this chapter the PWM program is described, verified and implemented. The tra-

ditional RTL and software flow will be implemented first, and second the HLS 

flow. 

4.1 The PWM program 

The aim of the program is to generate a PWM signal that controls an LED’s bright-

ness with a sweeping pulse width. The PWM signal is configured with a fixed fre-

quency of 1000 Hz, which translates to a 1 millisecond (ms) period. The pulse width 

starts at 0% and is then varied every 10 ms by 1% until it reaches 100%. Then, the 

pulse width starts to decrease by 1% every 10 ms until it reaches 1%. As a result 

the LED appears to have a slow “breathing” effect. 

A period of 1 ms is achieved by creating a counter variable named counter, which 

goes from 0 to a set maximum value and resets after 1 ms. First, the clock frequency 

on the evaluation board is set to 100 MHz, when a clock cycle is performed every 

10 nanoseconds. A millisecond consists of 1 000 000 nanoseconds. The following 

calculation results in the required counter’s maximum value: 

1 000 000 𝑛𝑠 

10 𝑛𝑠
= 100 000 

After the counter’s maximum value is clear, the next step is to simulate the pulse 

width. For example, to achieve a 1% pulse width, a limit variable called pulse_width 

needs to be created with a value of 1% of the counter’s maximum. In this case, it 

would be 1000.  

So, the counter is initialized and set to 0 and the PWM signal output defaults to 

high. When the counter reaches the pulse width limit the program switches the 

PWM signal’s state to low, until the counter reaches its maximum value. Then it 

resets and starts counting again from 0.  
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One of the program’s requirements was to change the pulse width by 1% every 10 

ms, so the pulse_width is increased every 10 ms by 1000. Figure 28 shows a 

flowchart to visualize the PWM program’s operation:  
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Figure 28. A flowchart visualizing the program’s operation. 
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As the program’s requirements state, the pulse width needs to decrease 1% at a time 

after it has reached 100%. This means that the same principle needs to be imple-

mented as with the increasing pulse width, but with the pulse_width variable de-

creasing instead of increasing by 1000 every 10 periods until it reaches 0. Then it 

starts to increase again until 100 and so on.  

4.2 Traditional RTL and software implementation 

At this point the traditional implementation of the PWM program is demonstrated. 

4.2.1 Creating the IP 

The implementation begins with creating the project and selecting the correct part 

which represents the evaluation board. After this is done the project is ready. The 

next step is to create an AXI4-Lite IP, which will become the PWM generator mod-

ule. The AXI IP creation wizard has the following options: 

• Choose between master and slave 

• The type of interface, for example, stream or lite. 

• Number of registers 

 

Figure 29. AXI IP creation wizard 

For this use case only one register is needed, and that is for the pulse width value, 

but the minimum amount of registers is 4 so that is fine. 
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After the IP creation is complete, the wizard directs us to a separate window where 

the programming of the IP happens. The newly created IP includes two source files: 

 

Figure 30. Included design source files 

The top-level file includes all of the physical port descriptions, including the control 

signals included in the AXI interface, and any potentially customizable parameters. 

In this case, only the PWM output port needs to be added.  

The lower-level file includes the description of the PWM generator’s logic, which 

consists of the following things (corresponding signal and variable declarations in-

cluded): 

• A counter from 0 to 100000 

signal counter        : unsigned 

(C_S_AXI_DATA_WIDTH-1 downto 0); 
constant PWM_COUNTER_MAX : integer := 100000; 

 

• PWM output signal and port 

signal pwm          : std_logic := '0'; 
PWM_output          : out std_logic; 

 

• A register called slave register 0 for writing the pulse width data from the 

software 

signal slv_reg0 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 

downto 0); 

 

• Counter handling process 

o Increases the counter value one by one until it reaches its maximum, 

then it is reset 

• Comparator handling process 

o Compares the counter value to the register’s value and sets the PWM 

signal value accordingly 
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The processes are shown here: 

 

Figure 31. Counter and comparator handling processes 

After the PWM generation is written, the IP is ready for packaging, after which the 

IP can be connected to the Zynq PS. From the Package IP tab the newly created 

output port can be seen: 

 

Figure 32. Ports and Interfaces view 
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The software drivers to be created and the source code files can also be viewed in 

the tab: 

 

Figure 33. Included software drivers and source code files 

And finally, the graphical representation of the resulting IP: 

 

Figure 34. Graphical view of the resulting IP 

After packaging of the IP, the address range of the newly created IP can be viewed 

in IP integrator. When the slave registers are created along with the IP, their ad-

dresses are offset every 4 bytes: 0x00, 0x04x, 0x08, 0x12 and so on. Since the used 

register is slave register 0, its address is the first address in the range shown in 

Figure 35, 0x43C00000: 
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Figure 35. Address range of the PWM generator module 

4.2.2 Configuring the PS 

When the IP is packaged, it is ready to be added to the design, along with the Zynq 

PS. The Zynq PS block looks like as shown here: 

 

Figure 36. Zynq PS 

The clock used to control the PWM module is the FCLK_CLK0 as seen in Figure 

35. The clock is connected to the AXI master GP0 clock seen on the left side of the 

PS. As the program’s specification states, the FCLK clock frequency needs to be 

set to 100 MHz:  

 

Figure 37. Zynq’s clock configuration view 
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Another mandatory configuration was to select the correct DDR memory compo-

nent on the PS. 

4.2.3 Managing connections 

After the PS is configured accordingly, the next step is to manage all the connec-

tions, of which the majority is handled automatically by Vivado. The connection 

automation tool connects the Zynq PS to the PWM module with the AXI interface 

while utilizing the AXI Interconnect, which is automatically added to the design in 

case more AXI interfaces are required. The only connection needed to make man-

ually is to create a physical output port for the PWM signal output.  Additionally, 

Vivado adds a PS reset block for reset functionalities. Figure 38 depicts the created 

block design: 

 

Figure 38. Diagram showing the block design 

 

4.2.4 Simulating the design 

At this point the IP is ready for simulation. The simulation is made easy with the 

AXI VIP, which was used by starting the IP creation wizard where instead of choos-

ing the option to edit an IP, the verification of the IP was chosen. This creates a new 

block design which includes the verification IP and a sample AXI IP. The IP can 
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be deleted from the design and replaced with our PWM generator module. The be-

havioral simulation can now be started. The block diagram looks as depicted below: 

 

Figure 39. Block diagram for the simulation 

At this point, a testbench for the VIP could be created. While, the VIP only supports 

SystemVerilog language for the testbench, it was possible to move forward with 

forcing certain pulse width values in the graphical simulator view instead, because 

the only variable that affects the functionality of the PWM signal is the pulse width. 

However, with more complex designs, creating a testbench would simplify the ver-

ification process tremendously. 

First, the simulation is run for 5ms with pulse width set to 50000, which is 50% of 

the counter’s maximum value and it results as a 50% pulse width in the PWM output 

signal. 

 

Figure 40. Functionality of the counter 

From the Figure 40, two things can be seen: 

• Counter works as expected, resetting at its set maximum and starts from 0. 

• PWM output signal is synchronized to clock signal’s rising edges 
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When zooming out a bit, the effect of the set pulse width value can be seen clearly: 

 

Figure 41. Simulation with 50% pulse width 

The program’s specification stated that the period of the PWM signal is 1 ms. In 

Figure 41 above, there are 2 markers set to measure the time the PWM signal is 

high, which is 500 microseconds, or 0,5ms. This seems to be functioning correctly, 

as the pulse width was set to 50%. 

Next, two more things need to be verified: Will the PWM signal go fully low with 

0% pulse width, and fully high with 100% pulse width. First, simulation for 5 ms 

with 0% pulse width: 

 

Figure 42. Simulation with 0% pulse width 

The reason I was concerned about the 0% pulse width is that the PWM generator 

code states that the comparator process first checks if the counter value is lower 

than the pulse width value and primarily wants to set the PWM signal to high, but 

as seen in Figure 42, the PWM signal in fact stays at low state. 

As for the PWM signal’s reaction to 100% pulse width, the simulation with 50% 

pulse width shown in Figure 41 indicates that the PWM signal does not go high 

when the counter is at 0, but when its value is at 1. This something that needs to be 

verified with 100% pulse width, so that the signal truly remains at high state. Below, 

simulation with 100% pulse width is shown: 
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Figure 43. Simulation with 100% pulse width 

As seen in Figure 43, the PWM signal does in fact stay at high state with 100% 

pulse width. When thinking about it, it makes sense, because when the counter 

reaches 99999, the comparator process checks if it is less than the pulse width value, 

which it is, and remains at high. Then the counter is reset to 0 due to being at its 

maximum and the IP continues doing its work. 

The implementation can also be simulated post-synthesis and post-implementation 

to see if the synthesis or implementation result alters the functionality of the design. 

In this scenario it was concluded to be unnecessary, since the design is quite simple. 

It is sufficient to have Vivado only run the timing analysis to see, whether the design 

can be run with the set 100 MHz clock frequency.  

4.2.5 Assigning the PWM output to an LED 

After the design’s functionality is verified by simulation, the PWM output port is 

ready to be connected to an LED. To do this, an XDC file needs to be created with 

the following contents: 

 

Figure 44. XDC file 

The upper row assigns the PWM output port to a pin called L20. This pin is assigned 

to an LED, which I discovered from Vacon’s sample project. The lower row spec-

ifies an I/O standard, which informs the tool what kind of a voltage the pin is using. 

It can also be used to specify the drive strength and slew rate, which determine the 
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output impedance and maximum rate of change of output voltage per unit of time, 

respectively. 

4.2.6 Synthesis and implementation 

Before starting synthesis and implementation, there is one important thing to add to 

the block design. After exporting to SDK and running the pulse width software, the 

traffic between the PS and the PWM module can be viewed in Vivado in the hard-

ware manager’s debugger. To enable this, the debugging IP needs to be added to 

the design. This can be done by right-clicking the connections that need debugging 

and selecting debug. After that the debugging IP appears to the design as sys-

tem_ila0: 

 

Figure 45. Block design with debugging IP included 

In addition to the AXI interface, the PWM output signal is also set to be debugged. 

At this point the design is ready to be synthesized and implemented. First, the 

VHDL files are synthesized into a design netlist as described in chapter 3.2. The 

resulting logical design and constraints are then implemented into a bitstream file, 

which will be later downloaded on the FPGA with SDK. 

The resulting implementation can be viewed in RTL form in the implementation 

menu’s schematic view. The PWM generator module’s result alone is quite expan-

sive, due to most of the components consisting of the AXI functionality. And in this 
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case, it is not useful to examine it thoroughly. The module’s RTL schematic is 

shown in top-down view below: 

 

Figure 46. RTL representation of the PWM generator module 

The implementation’s resource utilization report is as follows: 

 

Figure 47. Utilization report of the implementation 

As we can see from the report, the resulting implementation is quite lightweight. 

Same can be seen from the power consumption estimation report: 
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Figure 48. Power consumption estimate of the implementation 

As the power consumption report indicates, the large majority (95%) of the power 

is used by the PS. Both reports will be compared to the HLS implementations re-

ports in a later chapter. 

The timing report includes a summary of the timing constraints set automatically 

by Vivado, when the clock frequency was set to 100 MHz. The report indicates that 

the design works as expected: 

 

Figure 49. Timing summary of the implementation 

When the bitstream has been generated, the design is ready to be exported to SDK 

for developing the software. 

4.2.7 Developing the software 

After exporting the bitstream to SDK, the BSP is generated, which includes the 

software libraries and device drivers. In this case, the software creation process is 
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quite simple. The PWM generator module requires no manual control or initializa-

tion whatsoever.  

The software that controls the pulse width is simple. It is written in C-language and 

has the following components: 

• Increase and send pulse width value by 1% every 10 ms until it reaches 

100% 

• Decrease and send pulse width value by 1% every 10 ms until it reaches 0% 

Going more into detail, the software has two for loops, one for increasing and the 

other for decreasing the pulse width. When starting the program, the first loop starts 

by sending its default value, 0%, to the slave register’s memory address and then 

waits for 10 ms using a sleep function, after which the pulse width value is increased 

by 1%. Then the process is repeated until the pulse width reaches 100% and then 

the program proceeds to the second loop and executes until it reaches 0%. The code 

can be seen here: 

 

Figure 50. Pulse width control software 
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Because the nature of the entire design is very simple and has only function, the 

software was possible to be made using a sleep function. Essentially, this halts the 

execution of the whole software for 10 ms and nothing else can be executed during 

this time, but this implementation does it job, which is to be simple.  

If there were more functionalities in the design, for example, communications with 

Ethernet or fieldbuses, the LED blinking part of the software would make any of 

the communications impossible, due to the sleep function pausing the entire pro-

gram. If this was indeed a more complex design, the write transaction of the pulse 

width value should be implemented with an interrupt, that interrupts the program to 

send the data every 10 ms and then resumes executing other functions in the soft-

ware. 

Moving on, the next step is to connect the evaluation board into the PC using a 

JTAG-connection, which allows the SDK to program the FPGA with the bitstream 

file and to download the software on the RAM. Additionally, the JTAG-connection 

makes it possible to simultaneously debug the design in Vivado by viewing any 

required signals in a waveform, and in SDK. After the FPGA has been programmed, 

the LED starts pulsing, and the data traffic is then examined in Vivado. The result 

of running the software is shown in Figure 50: 

 

Figure 51. Software cycling the pulse width 

The functionality can be examined closer by setting a fixed pulse width value in 

SDK’s debugger and viewing the write transaction for the pulse width value. For 

example, setting a fixed 35000 pulse width value in SDK results in a 35% pulse 

width. 
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Figure 52. Fixed pulse width value in SDK 

The transaction where this value is sent to the slave register is seen in Vivado: 

 

Figure 53. Hardware debugger view in Vivado 

From Figure 53 it can be seen that the write transaction is successful, by looking at 

the control signals. Comparing to AXI4-Lite’s documentation (Figure 22) they 

seem to be functioning as expected. Lastly, the resulting pulse width’s effect can be 

seen on the LED: 

 

Figure 54. LED with a 35% pulse width 

When comparing to a 5% pulse width, the LED gets visibly dimmer: 
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Figure 55. LED with a 5% pulse width 

From the previously mentioned results it can be stated that the implementation func-

tions as specified. 

4.3 Implementing the design with HLS 

This chapter describes the implementation of the PWM program using Vivado 

HLS, Vivado and SDK. 

4.3.1 Validating the algorithm with a C testbench 

The very first step when starting a design in HLS is to select a part and define a 

clock signal’s period. The clock frequency specified is 100 MHz, so the period 

would be 10 ns.  The next step is to develop the PWM generation algorithm and 

verify its functionality with a C testbench. As mentioned before, this provides a 

much faster verification of the algorithm compared to RTL verification, because 

this way the algorithm can be verified without needing to create the RTL imple-

mentation first. In the traditional flow, the developer also needs to create every sig-

nal and port that is required. 

The algorithm’s general functionality is the same as with the RTL version. A coun-

ter is compared to the pulse width value and PWM signal output is set accordingly. 

If the counter reaches its cap, it is reset to 0. For testing purposes, a result variable 

is created to resemble the resulting pulse width that the algorithm outputs with the 

PWM signal.  

In HLS, the IP to be created is a single function in C code. The function declaration 

includes the inputs and outputs 
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The pulse_width variable acts as an input that sends the pulse width value to the IP. 

The *pwm variable acts as an output port that outputs the PWM signal. In HLS the 

output ports need to be declared as pointers. The above-mentioned result variable 

is returned to the testbench when this function is called. The function is shown here:  

 

Figure 56. PWM signal generation function in Vivado HLS 

The function is now ready for testing. HLS documentation states, that the simula-

tion is considered successful, if the testbench returns 0. Anything else will cause 

the simulation to issue a fail message. /25/  

The testbench used includes the following components: 

o Three pulse width values to be sent to the PWM generator: 0%, 50% and 

100% 

o Three result variables, where the pulse width output by the generator func-

tion is sent 

o An if statement to check if the returning pulse width values are correct 

o Returns 0 if correct 

o Returns anything else than 0 if it fails, in this case, 1 

The testbench code is shown in Figure 57: 
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Figure 57. Test bench code 1 

After running the C simulation, the simulation appears to be successful: 

 

Figure 58. C simulation successful 

 

Vivado HLS documentation also recommends as a good practice to compare test 

bench results with golden data, which is a file that contains the correct results. In 

this kind of a simple design, the testing performed is sufficient. 

4.3.2 Configuring the IP 

The code is almost ready for synthesis. After the algorithm’s functionality is vali-

dated, the last steps to do is to remove the result variable from the code, so that it 

will not consume unnecessary resources, and to configure the IP as an AXI slave. 

The function can also be changed to void function, as there are no return values to 

it. This procedure can be risky, but the changes were minimal, and the simulation 

later showed that the algorithm was working as expected. 
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Additionally, resulting IP needs to be configured as an AXI slave, like the RTL IP 

created before. This can be done by adding the following three pragmas into the 

code: 

 

Figure 59. AXI interface configurations in Vivado HLS 

The first pragma creates the AXI slave port with the relevant control signals. The 

second row creates the PWM signal output port without any protocols. If this row 

were missing, in this case the port would be automatically implemented using 

ap_vld protocol, which includes a valid port to indicate the ready state of the port. 

However, in this case it is not required. The third row implements the pulse width 

input as a register and assigns a memory address to it. 

4.3.3 Synthesis  

Before running synthesis, the test bench code can be altered to better represent the 

software that is used to control pulse width for verification purposes. The new 

testbench is very similar to the one used in chapter 4.2.7, with the difference that 

this test bench updates the pulse width every period, or 1 ms, rather than every 10 

ms. The test bench is shown in Figure 60: 
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Figure 60. Test bench code 2 

Now the design is ready to be synthesized from C to an RTL representation. The 

synthesis process is rather quick, and it generates a report that includes performance 

estimates, utilization estimates and generated interfaces.  

 

Figure 61. Synthesized interfaces 
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As seen in Figure 61, the PWM signal output is correctly set as an output and the 

AXI control signals can be seen. The generated VHDL files include information 

about the registers’ addresses, including the pulse_width register: 

 

Figure 62. Register address information 

The address offset is 0x10 for the pulse width register, which makes the address 

0x43C00010, if the same base address that was used with the RTL IP is used here. 

The addresses include control signals to start the IP and other data signals. How-

ever, these addresses do not necessarily need to be used manually, because the gen-

erated drivers include functions that change these registers’ values. 

4.3.4 C/RTL cosimulation and exporting the IP 

After the synthesis is complete, the design can be simulated using C/RTL cosimu-

lation, which verifies that the synthesized RTL representation matches the C code. 

This simulation also uses the C testbench. When the simulation is complete, the 

logic can be examined in the Analysis tab. This tab helps to visualize what is hap-

pening on the RTL, as the HLS compiler synthesizes the design with complicated 

variable names and the data routes are a bit hard to follow without graphical repre-

sentation. The process of the algorithm can be summarized as follows: 

• Pulse width value is read 
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• A multiplexer handles the increase of the counter and the comparison to its 

maximum and the pulse width value 

 

• The counter value is compared to the read pulse width value and PWM out-

put signal is written 

 

The waveform of the simulation can be viewed in Vivado. When examining the 

waveform, a potential negative effect of HLS synthesis can be seen: 
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Figure 63. C/RTL cosimulation waveform 

An IP that is created using HLS, needs to be manually triggered, or started. When 

the IP reaches the end of execution and the counter is at its maximum, it remains at 

that value until the IP starts the execution again. The small window between the 

end of execution and the start introduces a delay of 360 nanoseconds, which is 

shown in Figure 63. This delay translates to a total of 360 microseconds every 1 

second. When looking at the traditional RTL implementation at Figures 42 and 43, 

this delay is not present. 

When the synthesized VHDL files are examined more closely, it can be seen, that 

the algorithm’s operations are indirectly synchronized to the clock signal’s edges. 

This means that the highlighted signals only change when the signals they depend 

on change: 

 

Figure 64. Synthesized VHDL file 

The C function includes a for-loop that executes until the counter reaches its cap. 

The clock period defined at the beginning of the IP’s creation indicates that the 
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counter increments every 10 nanoseconds. So, when the IP is started, it runs until 

the function has run its required computations, the for-loop, and then stops and re-

quires a restart. All this points to a direction that the HLS might not be suitable for 

this kind of an implementation. A more optimal use case for HLS could be convert-

ing a C calculation function, that does not need to be run every clock cycle, to RTL. 

Despite the delay introduced in the synthesis, the algorithm does it job, which is to 

modify the PWM signal’s pulse width. For example, a 50% pulse width is shown 

in Figure 65: 

 

Figure 65. PWM signal with 50% pulse width 

Looking at the markers in Figure 65, it can be seen, that the time the PWM signal 

spends high is 500 microseconds, or 0,5 ms. When the period is 1 ms, the signal is 

high half of the period, which translates to a pulse width of 50%. 

After the RTL implementation has been verified, the RTL can be exported to an IP 

using the Export RTL option. This packages the design into an IP which can then 

be added to a block design in Vivado. 

4.3.5 Managing connections and configurations 

The flow from this point on is the same as with the traditional flow. The exported 

IP is added to the design in IP integrator and the connections and configurations 

remain the same. In this case the pre-existing RTL IP can be replaced with the newly 

created HLS IP. The main visual difference is the HLS logo on the IP, which helps 



72 

 

at distinguishing the HLS IPs from RTL ones. Figure 66 shows the complete block 

design with the HLS IP included: 

 

 

Figure 66. Block design with the HLS IP 

Since the PWM output port is named a bit differently, the XDC file needs to be 

adjusted accordingly: 

 

Figure 67. XDC file in the HLS block design 

Next, the design is synthesized and implemented the same way the traditional de-

sign was. The generated resource and power reports are as follows: 

 

Figure 68. Utilization of the HLS implementation 
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Figure 69. Power consumption estimate of the HLS implementation 

 

These reports will be compared to the RTL implementation’s reports in chapter 5. 

 

4.3.6 Developing the software 

As stated before in chapter 4.3.4, an HLS IP needs to be started manually. This is 

done by utilizing the IP’s drivers in the control software; therefore, the software 

requires some additional driver functions: 

• Config lookup function 

o Checks if the corresponding device configuration can be found 

• Config initialization function 

o Checks if the device and the configuration can be found and sets the 

IP’s state to ready  

• Function that checks if the IP is ready 

o Checks if the IP is ready for the next input 

• IP start function (included in initialization, start and autorestart functions) 

o Sets the start bit to 1 on the IP if it is ready  

• IP auto-restart function 
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o Sets the auto-restart bit to 1 that automatically restarts execution af-

ter the IP has finished and is ready 

• Set pulse width value function 

o Sends the pulse width value to the IP’s register’s address 

These functions’ prototypes are declared in the driver functions’ header file 

xpwm_module.h and the functions’ implementations themselves are included in Ap-

penix 1 and 2. /19/ 

The software itself has two functions: An initialization function and the main func-

tion. The initialization function includes the lookup and initialization functions. /19/   

The function is shown here: 

 

Figure 70. Module initialization function 

When called inside the main function, it first looks for the device configuration and 

then proceeds to initialize it. Then it returns the status to the main function, where 

the initialization is checked. If the setup was successful, the main function proceeds 

to enable the auto-restart bit in the IP and then starts its execution: 
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Figure 71. Pulse width control function 

As seen from the main function, the while loop functions exactly as with the tradi-

tional flow’s software. The only difference is that the HLS version of the IP pro-

vides a driver function that sends the pulse width data to the register, without the 

need of knowing the address. This can also be done by sending the data to the ad-

dress manually.  

Next the bitstream is downloaded to the FPGA, the software on the RAM, and the 

data flow can be viewed in Vivado’s hardware manager afterwards. By forcing a 

fixed 25000 pulse width value in SDK the result is as follows: 
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Figure 72. Write transaction of 25% pulse width 

The resulting pulse width of 25% is seen on the LED, followed by a pulse width of 

5%: 

 

Figure 73. Pulse width of 25% on the LED 

 

Figure 74. Pulse width of 5% on the LED 

When letting the software cycle the pulse width value automatically, the LED ap-

pears to be pulsing as expected. 

The point made in chapter 4.3.4 was that because the IP needs to be manually 

started, there is a small delay between every period in the PWM signal. Although 

the auto-restart bit can be enabled, the IP still has to wait for the ready bit to go high 

before it can start again. This further reinforces the theory that HLS IPs are more 

suitable for calculations that do not need to be run continuously. 
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As for the statement made at the introduction chapter that HLS does not need any 

knowledge about FPGA design, this is false. This implementation would not be 

possible to design without the knowledge about AXI bus, and the whole Vivado 

design flow, including simulation, verification and configurations. But the case of 

Vitis is a bit different since it does not involve the design of FPGAs themselves but 

accessing their resources to boost the performance of software. 
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5 COMPARING THE TWO WORKFLOWS 

The ultimate goal of this thesis was to find out how an HLS implementation com-

pares to an RTL implementation. The next step is to compare the two implementa-

tions’ resource utilization, power consumption and estimated time consumed. 

5.1 Resource utilization and power consumption 

After both of the designs were synthesized and implemented, Vivado generated re-

source utilization and estimated power consumption reports. Table 1 below shows 

the difference between the usage of resources that were used a different amount in 

the implementations: 

Comparison of resource utilization (pcs) 

  RTL HLS Diff.(%) 

LUT 431 457 6,0 

FF 621 596 -4,0 

 

Table 1. Comparison of resource utilization  

From table 1 it can be seen that the resource utilization of both flows is really close 

to each other, which is quite surprising. HLS automatically implements the RTL 

implementation and it could be believed that it cannot be as efficient as the tradi-

tional RTL implementation. It can also be assumed that with RTL, the implemen-

tation’s efficiency in resource utilization has more to do with the skills of the de-

veloper than with HLS.  

As for the resource usage itself, RTL possibly uses more FFs because the IP created 

in Vivado included four pre-made registers by default, while the HLS IP included 

only the one created manually. HLS’s higher use of LUTs, on the other hand, must 

have something to do with the implementation itself, and the way the synthesized 

RTL implementation handles the algorithm. 
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HLS also includes the possibility of declaring optimization directives that influence 

the resulting RTL implementation. In a design this simple, however, there were no 

suitable spots in the code to optimize. Possible targets of optimization in more com-

plex designs include, for example, function and loop pipelining, which allow the 

operations to be implemented in an overlapping manner, and array partitioning, 

which allows for splitting RAM blocks into multiple smaller arrays. 

As for the estimated power consumption, the component that uses the majority 

(95%) in both implementations is the processing system. Table 2 shows the total 

power consumption difference between the implementations: 

Comparison of estimated power con-

sumption (Watts) 

  RTL HLS Diff.(%) 

Total 1,713 1,714 ~ 0 

Table 2. Comparison of estimated power consumption 

Looking at the results shown in table 2, the difference in power consumption is 

quite negilible. If the design were a hundred or thousand times bigger, the difference 

would undoubtedly be more relevant. When combining the information of both ta-

bles, the HLS implementation performed surprisingly well.  

5.2 Time consumed 

Next, the time consumed between the two flows is compared. The comparison is 

measured in minutes and done by dividing the flows into smaller steps and estimat-

ing the required time to complete those steps. Table 3 represents the differences 

between the design steps and the estimated required time for developing the spec-

ified PWM functionality. Each step is described in more detail after the table: 
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Design step RTL HLS 

Coding the algorithm 60 min 30 min 

Verifying the algorithm 45 min * 10 min 

Verifying the implemen-

tation by simulation 

- 15 min 

Adding the IP to the de-

sign and configuring the 

PS 

15 min 15 min 

Synthesis and implemen-

tation 

5 min 5 min 

Developing software 45 min  60 min 

HW debugging 30 min 30 min 

Total 200 min 165 min 

*includes simulation 

Table 3. Comparison of required time 

In table 3, the first step specified is coding the algorithm. The estimated time re-

quired in this step include possible changes needed in the code. 

The main difference here between the two flows is that with RTL there are simply 

more lines of code. The RTL implementation includes two separate processes for 

handling the PWM signal, and signal and port specifications in two separate files. 

VHDL’s syntax is also much stricter than in C and it can take more time to get 

everything right, for example, matching the data widths and handling type conver-

sions between signals that communicate with each other. 



81 

 

The next step includes the creation of a testbench on the HLS side, simulation on 

the RTL side, and estimated time to make changes to the code after test runs. One 

major benefit of HLS is that it allows the developer to verify the algorithm with a 

C test bench and before RTL simulation. Not only is it much faster to make changes 

to the code after each test run, C is also a more common programming language 

and the RTL simulation is slow. RTL flow does, however, provide the possibility 

of verifying the IP using an HDL test bench, but it would still require RTL simula-

tion of the IP.  

While verifying the HLS design also requires simulating the synthesized RTL im-

plementation, it saves time to verify the algorithm itself beforehand. In table 3, the 

time required at simulation for traditional RTL is included in the second step. The 

next two steps are identical between the two flows, therefore the time required is 

the same in these cases.  

The final step that has differences is software development. In the case of HLS, the 

IP requires more manual control than a traditional RTL one. The IP needs to be 

manually initialized and started for each run by using the driver functions. Fortu-

nately though, all of the control functions include a ready check part inside them, 

so that is handled automatically. Nevertheless, if HLS were used to create an IP that 

performs certain computations and does not run continuously, the developer needs 

to put extra work into managing the IP. 

To summarize, it can be seen from table 3 that the HLS implementation was ap-

proximately 21% faster to develop. The use of resources and power was nearly the 

same with both implementations.  

It could be argued that the HLS flow might prove more useful in a much larger 

implementation. That is because the design cycle is faster, and the gap between the 

two flows could potentially increase as the design gets more complicated. Regard-

less, even though the HLS flow is faster and on par with the RTL flow in resource 
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usage, the delay between executions potentially makes it unsuitable for timing-crit-

ical uses, like controlling an electrical motor’s voltage and speed with PWM.  

To make a secure choice between the two, more research needs to be done with 

HLS, specifically about the use of optimization directives. But with the received 

results so far, I would personally use HLS, as long as the implementation does not 

require timing-critical performance. 

5.3 Migrating designs to an ASIC or other manufacturer’s tools 

One of the possible use cases of FPGAs is to design a circuit and then port the 

design on to an ASIC. Xilinx provides platforms designed for ASIC prototyping, 

and migrating designs created in Xilinx’s tools to ASICs can introduce technical 

challenges, but migrating to other manufacturers’ devices and tools has legal obsta-

cles. 

In the case of the traditional RTL implementation, the VHDL algorithm can be mi-

grated to an ASIC or other manufacturers’ FPGA design tools. There are naturally 

device-specific coding styles among ASICs that require the modification of the 

VHDL code to work on the target device, but no license agreement prevents this. 

Using the code on other manufacturers’ tools is also possible, as long as it is purely 

created by the developer. The developers who created the algorithm have every 

right to use it the way they please. 

However, Xilinx’s use agreement prevents the use of any software or bitstream 

generated by Xilinx tools to develop designs for non-Xilinx devices. This concerns 

RTL code synthesized by Vivado HLS. It does not prevent the developer of porting 

ASIC designs to Xilinx devices for prototyping and verification. /26/ 

Consequently, if someone were to design an algorithm in C language and synthe-

sized it to an RTL implementation using Vivado HLS, the use agreement does not 

allow said RTL code to be used in non-Xilinx tools or devices. The main motivation 

behind this is most likely financial. Xilinx is the largest FPGA circuit manufacturer, 
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and wants to prevent any harm caused to their business. They openly let people use 

their parts and tools as long as they are not used to allow competitors to take poten-

tial business away. Therefore, if one were to use Xilinx’s products to develop de-

signs, they are only to be used with Xilinx’s products. 

These restrictions are further emphasized by the fact that Xilinx’s design tools are 

all free to use, but cannot be used in conjunction with other manufacturers’ devices. 

Their business approach is naturally to generate as much turnover as possible, by 

selling as much devices as possible. Xilinx is also one of the few companies that 

encourages schools to use their parts and tools for studies, but any thesis or paper 

published that includes prohibited use of Xilinx’s tools or devices, while being as-

sociated to a school supported by Xilinx, may result in the removal of said support. 

It is also important to note, that when testing a logic on an FPGA before migrating 

it on an ASIC, one must consider that certain features may not even be available on 

other vendors’ devices.  

In summary, migrating designs between Xilinx devices only introduces technical 

device-specific challenges, until other manufacturers’ devices or tools come into 

the picture. It is possible to use Xilinx’s tools to develop code and use it anywhere, 

as long as it is not generated by Xilinx’s tools in any way. Prototyping ASICs using 

Vivado HLS is also much stricter, as the generated HLS code cannot be used with 

non-Xilinx devices or tools. 
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6 CONCLUSIONS 

The main goal of this thesis was to compare two design flows, RTL and HLS, both 

of which was accompanied by a software. The comparison was done by developing 

an LED controlling PWM program. The factors being compared were use of re-

sources, power consumption, ease of verification and time consumed.  

The implementation using the traditional design flow went relatively smoothly. 

However, the HLS flow was more of an issue, because the Vitis tool was first con-

cluded to be unable to perform the required task. After Vivado HLS was introduced 

as a secondary option, the specified functionality was implemented successfully. 

The used tools were quite complicated at the start and the amount of documentation 

and tutorials is vast. After getting past the initial learning curve, the tools became 

fun and much easier to use. In the case of Vitis, it took quite a long time to accept 

that it might not be suitable for the specified task. 

The comparison resulted in RTL’s favor due to the small delay introduced in the 

HLS implementation, when the IP was run continuously. This result does not take 

away from the fact, however, that HLS is perfectly capable of synthesizing a work-

ing RTL implementation, but for this particular implementation, the RTL version 

is more robust.  

At this point it seems that HLS is designed for translating C code into RTL, when 

a developer already knows how to create an algorithm with C, or it is not worthwhile 

to translate an existing algorithm to VHDL. To verify if HLS can replace RTL in 

more mathematical use cases, more research needs to be done. 

Compared to my personal expectations, the thesis panned out much better than ex-

pected. At first, the assignment felt quite daunting due to the very little amount of 

FPGA courses in our university. However, because there was a practically endless 

amount of documentation available, the only thing to prevent this from succeeding 

was myself. The only way forward was to work hard. 
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Looking back, the terminology, theory and tools are much easier to understand after 

actually implementing the designs. Personally, I consider myself to be a practical 

person and I tend to learn much more by doing things myself. No matter how much 

I read and research, it only matters so much until I get to use that information in 

practice. 

6.1 Potential futher research 

A potential idea for further research could be investigating how HLS IPs can used 

in conjunction with IPs made with traditional RTL. A good point to think about is 

that if it is easier and more efficient to make certain computationally intensive al-

gorithms with HLS and the other parts with RTL that require continuous operation. 

The comparison could also be repeated with a more complicated algorithm to see if 

the faster design cycle difference gets even bigger, and if HLS could potentially 

replace RTL in those scenarios. A particularly interesting matter in HLS is the ef-

fectiveness of the optimization directives. 
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APPENDIX 1. HLS driver initialization function 

// ============================================================== 

// Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC 

v2019.1 (64-bit) 

// Copyright 1986-2019 Xilinx, Inc. All Rights Reserved. 

// ============================================================== 

#ifndef __linux__ 

 

#include "xstatus.h" 

#include "xparameters.h" 

#include "xpwm_module.h" 

 

extern XPwm_module_Config XPwm_module_ConfigTable[]; 

 

XPwm_module_Config *XPwm_module_LookupConfig(u16 DeviceId) { 

    XPwm_module_Config *ConfigPtr = NULL; 

 

    int Index; 

 

    for (Index = 0; Index < XPAR_XPWM_MODULE_NUM_INSTANCES; In-

dex++) { 

        if (XPwm_module_ConfigTable[Index].DeviceId == DeviceId) { 

            ConfigPtr = &XPwm_module_ConfigTable[Index]; 

            break; 

        } 

    } 

 

    return ConfigPtr; 

} 

 

int XPwm_module_Initialize(XPwm_module *InstancePtr, u16 DeviceId) 

{ 

    XPwm_module_Config *ConfigPtr; 

 

    Xil_AssertNonvoid(InstancePtr != NULL); 

 

    ConfigPtr = XPwm_module_LookupConfig(DeviceId); 

    if (ConfigPtr == NULL) { 

        InstancePtr->IsReady = 0; 

        return (XST_DEVICE_NOT_FOUND); 

    } 

 

    return XPwm_module_CfgInitialize(InstancePtr, ConfigPtr); 

} 

 

#endif 
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APPENDIX 2. HLS driver functions 

// ============================================================== 

// Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC 

v2019.1 (64-bit) 

// Copyright 1986-2019 Xilinx, Inc. All Rights Reserved. 

// ============================================================== 

/***************************** Include Files 

*********************************/ 

#include "xpwm_module.h" 

 

/************************** Function Implementation 

*************************/ 

#ifndef __linux__ 

int XPwm_module_CfgInitialize(XPwm_module *InstancePtr, XPwm_mod-

ule_Config *ConfigPtr) { 

    Xil_AssertNonvoid(InstancePtr != NULL); 

    Xil_AssertNonvoid(ConfigPtr != NULL); 

 

    InstancePtr->Axilites_BaseAddress = ConfigPtr->Ax-

ilites_BaseAddress; 

    InstancePtr->IsReady = XIL_COMPONENT_IS_READY; 

 

    return XST_SUCCESS; 

} 

#endif 

 

void XPwm_module_Start(XPwm_module *InstancePtr) { 

    u32 Data; 

 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    Data = XPwm_module_ReadReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_AP_CTRL) & 0x80; 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_AP_CTRL, Data | 0x01); 

} 

 

u32 XPwm_module_IsDone(XPwm_module *InstancePtr) { 

    u32 Data; 

 

    Xil_AssertNonvoid(InstancePtr != NULL); 

    Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    Data = XPwm_module_ReadReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_AP_CTRL); 

    return (Data >> 1) & 0x1; 

} 

 

u32 XPwm_module_IsIdle(XPwm_module *InstancePtr) { 

    u32 Data; 
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    Xil_AssertNonvoid(InstancePtr != NULL); 

    Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    Data = XPwm_module_ReadReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_AP_CTRL); 

    return (Data >> 2) & 0x1; 

} 

 

u32 XPwm_module_IsReady(XPwm_module *InstancePtr) { 

    u32 Data; 

 

    Xil_AssertNonvoid(InstancePtr != NULL); 

    Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    Data = XPwm_module_ReadReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_AP_CTRL); 

    // check ap_start to see if the pcore is ready for next input 

    return !(Data & 0x1); 

} 

 

void XPwm_module_EnableAutoRestart(XPwm_module *InstancePtr) { 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_AP_CTRL, 0x80); 

} 

 

void XPwm_module_DisableAutoRestart(XPwm_module *InstancePtr) { 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_AP_CTRL, 0); 

} 

 

void XPwm_module_Set_pulse_width(XPwm_module *InstancePtr, u32 

Data) { 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_PULSE_WIDTH_DATA, Data); 

} 

 

u32 XPwm_module_Get_pulse_width(XPwm_module *InstancePtr) { 

    u32 Data; 

 

    Xil_AssertNonvoid(InstancePtr != NULL); 

    Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 
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    Data = XPwm_module_ReadReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_PULSE_WIDTH_DATA); 

    return Data; 

} 

 

void XPwm_module_InterruptGlobalEnable(XPwm_module *InstancePtr) { 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_GIE, 1); 

} 

 

void XPwm_module_InterruptGlobalDisable(XPwm_module *InstancePtr) 

{ 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_GIE, 0); 

} 

 

void XPwm_module_InterruptEnable(XPwm_module *InstancePtr, u32 

Mask) { 

    u32 Register; 

 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    Register =  XPwm_module_ReadReg(InstancePtr->Ax-

ilites_BaseAddress, XPWM_MODULE_AXILITES_ADDR_IER); 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_IER, Register | Mask); 

} 

 

void XPwm_module_InterruptDisable(XPwm_module *InstancePtr, u32 

Mask) { 

    u32 Register; 

 

    Xil_AssertVoid(InstancePtr != NULL); 

    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    Register =  XPwm_module_ReadReg(InstancePtr->Ax-

ilites_BaseAddress, XPWM_MODULE_AXILITES_ADDR_IER); 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_IER, Register & (~Mask)); 

} 

 

void XPwm_module_InterruptClear(XPwm_module *InstancePtr, u32 

Mask) { 

    Xil_AssertVoid(InstancePtr != NULL); 
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    Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    XPwm_module_WriteReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_ISR, Mask); 

} 

 

u32 XPwm_module_InterruptGetEnabled(XPwm_module *InstancePtr) { 

    Xil_AssertNonvoid(InstancePtr != NULL); 

    Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    return XPwm_module_ReadReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_IER); 

} 

 

u32 XPwm_module_InterruptGetStatus(XPwm_module *InstancePtr) { 

    Xil_AssertNonvoid(InstancePtr != NULL); 

    Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPO-

NENT_IS_READY); 

 

    return XPwm_module_ReadReg(InstancePtr->Axilites_BaseAddress, 

XPWM_MODULE_AXILITES_ADDR_ISR); 

} 

 

 

 

 

 

 

 

 

 

 



   

 

 

 


