

Microsegmentation as part of organi-

zation's network architecture
Investigating VMware NSX for vSphere

Juha Koskinen

Master’s thesis
May 2020
School of Technology
Master’s Degree Programme in Information Technology
Cyber Security

Description

Author(s)

Koskinen, Juha
Type of publication

Master’s thesis
Date

May 2020

Language of publication:
English

Number of pages

89
Permission for web publi-

cation: x

Title of publication

Microsegmentation as part of organization’s network architecture
Investigating VMware NSX for vSphere

Degree programme

Master ś Degree Programme in Information Technology, Cyber Security

Supervisor(s)

Karo Saharinen, Tero Kokkonen

Assigned by

Petri Kiiskilä, Finnish Defence Forces Logistics Command

Abstract

The rise of cloud computing and services needed for digitalization has brought organiza-
tions from simple centralized mainframe and self-hosted type of environments to complex,
distributed and networked systems which are ever harder to secure and manage. The
number of networked devices and connected services has exponentially increased. As
more systems are exposed to a wider audience, and data contains more value for people
and organizations, the need for security has risen. Implementing and managing systems se-
curity, however, has never been a simple problem to solve.

Software based revolution is taking place in the industry and it is disrupting how we build,
scale, maintain, upgrade the systems in organizations. Hardware is becoming increasingly
more generic, and the abstraction layer between hardware and end systems is becoming
more sophisticated in being able to serve systems on top while management is efficient
and the underlying hardware layer is hidden. The ultimate end goal for data centers will
likely be just generic server hardware with necessary compute, storage capacity and inter-
faces, which then can be programmed to be part of a clustered pool of resources and
made to serve multiple functionalities dynamically and in a distributed fashion.

The thesis looks critically at the problems faced with networked computer security and
how different implementation models can have contrasting approach angles with distinc-
tive architectural and management outcomes. The research explored how technological
transformation of network segmentation implementation with a modern solution can ben-
efit most organizations with certain kinds of computing environments. Microsegmentation
was found to have several benefits for technical environments from management, com-
plexity, adaptability and security perspectives.

 Keywords/tags

Software defined networking, network segmentation, microsegmentation, virtualization

Miscellaneous

Kuvailulehti

Tekijä(t)

Koskinen, Juha
Julkaisun laji

Opinnäytetyö, ylempi AMK
Päivämäärä

Toukokuu 2020

Sivumäärä

89
Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Mikrosegmentointi osana organisaation verkkoarkkitehtuuria
VMware NSX for vSphere tutkinnassa

Tutkinto-ohjelma

Master ś Degree Programme in Information Technology, Cyber Security

Työn ohjaaja(t)

Karo Saharinen, Tero Kokkonen

Toimeksiantaja(t)

Petri Kiiskilä, Puolustusvoimien logistiikkalaitos

Tiivistelmä

Kasvava pilvilaskenta ja sen palvelut digitaalisaation tarpeisiin ovat tuoneet meidät
yksinkertaisista keskitetyistä keskustietokoneista ja itse ylläpidetyistä ympäristöistä kohti
monimutkaisempia, hajautetumpia ja verkotetumpia järjestelmiä, joita on yhä vaikeampi
turvata ja hallita. Verkottuneiden laitteiden ja palveluiden määrä on eksponentiaalisesti
lisääntynyt. Kun yhä useammat järjestelmät altistuvat laajemmalle yleisölle ja tiedolla on
enemmän arvoa ihmisille ja organisaatioille, on turvallisuuden tarve kasvanut.
Järjestelmäturvallisuuden toteuttaminen ja hallinta ei kuitenkaan ole koskaan ollut
yksinkertainen ongelma ratkoa.

Ohjelmistopohjainen vallankumous on tapahtumassa alalla, ja se on häiritsevä voima siinä,
kuinka teemme järjestelmien rakentamista, laajentamista, ylläpitämistä ja päivittämistä.
Laitteistosta tulee yhä yleisempiä. Laitteistojen ja loppujärjestelmien välinen
abstraktiokerros kehittyy entistä hienostuneemmaksi, kun pystytään palvelemaan päällä
olevia järjestelmiä tehokkaasti ja piilottamaan alla oleva laitteistokerros. Palvelinkeskukset
tulevat loputtua todennäköisesti koostumaan laitteistoista, jossa tarvittava laskenta-,
tallennuskapasiteetti rajapintojen avulla voidaan ohjelmoida osaksi klusteroitua
”resurssiallasta” ja tuottamaan useita toimintoja dynaamisesti ja hajautetulla tavalla.

Työssä on tarkasteltu kriittisesti verkottuneen tietoturvan ongelmia ja sitä, kuinka erilaisilla
ratkaisumalleilla voi olla erottuvat lähestymiskulmat arkkitehtuurisesti ja hallinnollisesti
eroavilla tuloksilla. Tutkimuksessa selvitettiin, kuinka verkkosegmentoinnin teknologinen
muutos nykyaikaisella ratkaisulla pystyy hyödyntämään organisaatioita, joilla on
tietyntyyppisiä ympäristöjä. Mikrosegmentoinnista löydettiin selviä hyötyjä ympäristön
hallinnan, monimutkaisuuden, muuntautumisen ja turvallisuuden näkökulmista.

Avainsanat

Ohjelmisto-ohjatut verkot, verkkosegmentointi, mikrosegmentointi, virtualisointi

Muut tiedot

1

Contents

1 Introduction ... 6

1.1 Background .. 6

1.2 Data as valuable resource ... 7

1.3 Defence perimeters ... 8

1.4 The need for a change in networking ... 9

2 Research basis .. 11

3 Infrastructure virtualization .. 14

3.1 Software-defined infrastructure ... 14

3.2 Compute virtualization .. 15

3.3 Network virtualization ... 16

3.3.1 Software defined networking ... 18

3.3.2 VMware NSX ... 20

4 Network segmentation ... 25

4.1 Challenges in segmentation .. 25

4.2 Designing secure networks ... 27

4.3 Traditional segmentation .. 29

4.4 Zero trust model .. 31

4.5 Microsegmentation ... 34

4.6 Segmentation policy .. 38

5 Research... 44

5.1 Test environment .. 44

5.2 Test scenarios .. 46

5.2.1 Scenario A - Traditional segmentation with external firewall 47

5.2.2 Scenario B - NSX microsegmentation with flat logical network 48

2

5.2.3 Unused alternative scenarios ... 49

5.3 Test methods ... 51

5.3.1 Method 1 - Security control.. 51

5.3.2 Method 2 - Network performance ... 51

5.3.3 Method 3 - Application performance ... 52

5.4 Test results .. 53

5.5 Analysis of results .. 56

6 Conclusions .. 58

6.1 Outcome of results .. 58

6.2 Promising potential ... 59

6.3 Organizational readiness ... 60

6.4 Reflection and further research .. 64

References ... 66

Appendices .. 70

Appendix 1. Test scenario VM networks and IP addressing 70

Appendix 2. SRX firewall rule configuration .. 71

Appendix 3. Test run output - nmap .. 71

Appendix 4. Test run output - qperf .. 72

Appendix 5. Test run output - sysbench .. 74

Appendix 6. Test virtual machine specifications and DRS rule 84

Appendix 7. Test virtual machine network cards and memberships 85

Appendix 8. SRX firewall rule management .. 85

Appendix 9. NSX firewall rule management .. 85

Appendix 10. NSX network trace between VMs through a logical switch 86

3

Figures

Figure 1. Simplified separation of management, control and data planes with SDN

implementation .. 19

Figure 2. NSX microsegmentation in a datacenter .. 22

Figure 3. NSX context-aware firewall policy .. 23

Figure 4. East-west traffic patterns for traditional and NSX implementations 24

Figure 5. Flat network of hosts segmented with Virtual LANs 29

Figure 6. Private VLAN port types and allowed data flow ... 30

Figure 7. Multi-tenancy enabled with virtualization of routing by VRF 31

Figure 8. Microsegmentation can be used to protect both flat and VLAN & VRF

enabled networks ... 37

Figure 9. Network topology for simple 3-tiered internet accessible web system 39

Figure 10. Example of using virtual machine tags to define security groupings 42

Figure 11. Test environment network topology .. 46

Figure 12. Layer 2 data path between VMs with traditional segmentation 47

Figure 13. Layer 2 data path between VMs with virtualized networking 48

Figure 14. Layer 2 data path between VMs inside same hypervisor host 49

Figure 15. Layer 2 data path between VMs with virtual firewall 50

Figure 16. Layer 2 path between VMs and through virtual firewall on same host 51

Figure 17. TCP & UDP bandwidth test results .. 54

Figure 18. TCP & UDP latency test results.. 55

Figure 19. Database benchmarking throughput results .. 55

Figure 20. Database benchmark latency results .. 56

Tables

Table 1. Traditional firewall ruleset using IP addressing ... 40

Table 2. Firewall ruleset using object groups ... 40

Table 3. Security group definitions and criteria rules for tiered web system.............. 41

Table 4. Definition of security groups and tag use for multi-environment system 42

Table 5. Summation of results from all test methods.. 53

4

Acronyms

API Application Programming Interface

CMDB Configuration Management Database

CPU Central Processing Unit

DDoS Distributed Denial of Service

DFW Distributed Firewall

DHCP Dynamic Host Configuration Protocol

DLR Distributed Logical Routing

DNS Domain Name System

DRS Distributed Resource Scheduler

ECMP Equal-Cost Multi-Path

ESG Edge Services Gateway

HA High Availability

I/O Input/Output

ICT Information and Communication Technology

IDFW Identity Firewall

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPS Intrusion Prevention System

IT Information Technology

L2VPN Layer 2 Virtual Private Network

LAN Local Area Network

MAC Media Access Control

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NFV Network Function Virtualization

NGFW Next Generation Firewall

NIC Network Interface Card

NIST National Institute of Standards and Technology

NVGRE Network Virtualization using Generic Routing Encapsulation

OFDMA Orthogonal Frequency-Division Multiple Access

OLTP Online Transaction Processing

OSI Open Systems Interconnection

PCI DSS Payment Card Industry Data Security Standard

RAM Random Access Memory

SaaS Software as a Service

SDLC Software Development Life Cycle

TDM Time-Division Multiplexing

vCPU Virtual Central Processing Unit

VLAN Virtual Local Area Network

VM Virtual Machine

VPLS Virtual Private LAN Service

VPN Virtual Private Network

5

VRF Virtual Routing and Forwarding

VTEP VXLAN Tunnel Endpoint

VXLAN Virtual Extensible LAN

WAN Wide Area Network

WDM Wavelength-Division Multiplexing

6

1 Introduction

1.1 Background

The importance of information and communication technology in our modern

society and economy has grown remarkably as the everyday living and critical

infrastructure are more reliant on computer networks and systems. (Jang-Jaccard

2014) These complex solutions of digital era have made businesses and lives easier,

cost-effective and empowered. Computers enable their users in many ways;

however, as these systems have become more important to people - logically their

value and power to influence has too increased. For example, information about

people’s lifestyles and behaviours are collected at a massive scale, and these data

stores have become very valuable business tools for purposes such as marketing,

influencing and predicting globally.

The Finnish Defence Forces Logistics Command is responsible for acquisitions of

defense material for the Defence Forces including its availability, support and

management of technical life cycle. The Logistics Command, as a subordinate to the

Defence Command, is tasked to ensure operational capability and effectiveness of

troops and systems in national and international environments. The Joint Systems

Centre, as a unit of the Logistics Command, employs approriately 500 people and is

responsible for procurement preparations, life cycle management, maintenance

management and technical inspections of the Defence Forces’ systems and

equipment. (Finnish Defence Forces.)

Research and development of information systems and underlying technical

platforms to support the Defence Forces is a vital part of increasing military

efficiency and capability. Evaluating new technologies is critical part of this.

Microsegmentation and network virtualization is researched and evaluated to

provide understanding of the phenomenon and how it could be utilized in the

Defence Forces.

Investigating microsegmentation with NSX originated from an actual work

assignment from the Finnish Air Force Command for the Logistics Command to

explore if the technology could be used to provide security and operational

7

enhancements into virtualized compute environments used by the Air Force. This

preceding investigation included implementing an actual full-scale Proof of Concept

lab environment to explore benefits and usage of NSX with real military command

and control systems deployed on top and attempting to utilize NSX features to

improve deployment and operation of systems. This thesis work is an extension of

this aforementioned assignment in order to gain more comprehensive understanding

into organizational benefits for benefit of the assigner and broader audience in the

industry. The knowledge and conclusions gained from this thesis will be used to

support the technical evaluation of the NSX solution for the Air Force.

1.2 Data as valuable resource

For most of the industries data has become the lifeblood for organizations, and it is a

very valued merchandise for the criminal underground. Europol reports in their

Internet Organized Crime Threat Assessment (IOCTA) report of 2018 that over 55% of

EU member states have investigated some form of network attack, other than DDoS,

and attacks are being reported more frequently. Data is often acquired through

these network intrusions and used for a number of purposes based on the type of

the data stolen. A multitude of tactics is utilized; however, most common are

different forms of hacking and malware usage usually delivered through malicious

email. (IOCTA 2018, 22)

In 2019 report of IOCTA, Europol highlights data being the key element in all

cybercrime that year. Data security and regulations is made more important as

organizational and personal consumer data is being targeted by cyber criminals.

(IOCTA 2019, 6) Ransomware exists as the leading threat even with decreased

volume; however, attacks are being increasingly targeted for resulting more profits

and greater economic damage (IOCTA 2019, 15).

Gartner, a global research and advisory firm, estimates worldwide IT security spend-

ing will have hit over $124 billion in year 2019, which is a 9% increase to previous

year. Over half of that spending is measured to end up in Security Services market

segment with Infrastructure Protection and Network Security Equipment segments

coming second and third respectively. Based on a Gartner survey, top three drivers

8

for spending to security are security risks, business needs and industry changes. As

organizations are going through their digital transformation journeys, security will be

a key factor in that process as data is more regulated, critical operations and intellec-

tual property need to be protected while utilizing new frontiers such as public cloud,

SaaS solutions and Internet of Things devices. (Gartner Forecasts Worldwide Infor-

mation Security Spending to Exceed $124 Billion in 2019; 2018)

Traditionally organizations have implemented perimeter defense strategy which puts

a wall around all the assets and protects from unwanted outside access. The perime-

ter defense is technically most often built with a firewall and intrusion prevention

system. The whole concept relies on having assets and access node groups seg-

mented into their own silos and access control is then implemented by forcing net-

work traffic to go through the centralized perimeter mechanisms which allows for in-

terception and examination. This defense model has been generally favored due to

its ease of implementation and for low cost of securing large volume of systems or

networks. Other access control mechanisms are usually implemented on top of indi-

vidual assets or systems in addition to perimeter defense if more security presence is

required. (Jang-Jaccard 2014.)

In March 2019, one of the world’s largest aluminum producing company based in

Oslo suffered a major ransomware attack. The systems for office IT and factory

equipment went dark. Operations had to fallback to manual procedures which

slowed or halted production. Business was severely impacted. The malware was able

to spread easily inside the company’s infrastructure that was not hardened enough

and not patched. The CEO of a New York-based cybersecurity firm commented on

the case as follows: “The incident also underscores the need to keep critical systems

isolated from one another.” (Korolov 2019.)

1.3 Defence perimeters

As cyber threats and tools have evolved and become more sophisticated, attacks

have found loopholes to bypass these perimeter defenses. In addition, people’s

environment, habits, tools and have evolved as well, which has opened new

opportunities for exploitation to get around the perimeter defense. One example is

9

the rise of mobile way of working where the endpoint device can move freely in and

out of the perimeter. (Jang-Jaccard 2014.)

In modern data centers the perimeter defense strategy has been deemed lacking by

most enterprise IT professionals. Once the perimeter has been breached, an attacker

is able to move around from system to system with small effort and access internal

resources. Lateral movement inside the network or system is made possible when

there are no adequate network controls implemented inside the perimeter to pro-

tect individual assets. (Micro-Segmentation Builds Security into Your Data Center’s

DNA 2016.)

As threats get more sophisticated and grow uncontrollably in volume every day, the

cost of data breaches is rising and in July 2019 Ponemon Institute with IBM Security

reported global average cost of $3,92 million with malicious attacks as the leading

cause for breaches. (Ponemon 2019.)

Breakthroughs in recent years have made it possible to enforce finer control over

data center security allowing creation of automated and distributed security policies

that can separate workloads and safeguard them individually or as a logically

grouped segment. This security model is most often called microsegmentation, it is

constructed in software and it enables more effective workload segmentation in en-

terprise networks. (Micro-Segmentation Builds Security into Your Data Center’s DNA

2016.)

The advancement of technology is continuous, cyclical, non-linear and is based
on previous innovations. Nothing is created from scratch; instead every
technology has its history. Technology is related to its time, a phenomenon is
utilized by technology, when the maturity of a certain technology is at right
level. (Translated by the author.) (Lehto 2014, 157.)

1.4 The need for a change in networking

In a article about healthcare cybersecurity a vice president and CISO of a hospital in

Florida states that they have setup a dedicated virtual LAN for medical devices

separate from the production network but that they also have implemented mini-

firewall like network devices in front of each medical device. This implementation of

10

microsegmentation is needed since devices are otherwise vulnerable for attacks that

have not been patched or cannot be replaced without costing millions of dollars. The

acceleration of cyber related threats against healthcare data and IT security is forcing

organizations to re-think how they approach device segmentation to reduce the risks

related to increasing threat vectors such as malware. However, the majority of

healthcare IT is still behind and carrying out manually costly and ineffective

traditional segmentation. Software-defined configuration or networking is called to

answer these problems in terms of speed and policy-driven enforcement access

controls. In cases like these, a managing consultant from CyberEdge Group company

recommends a granular approach for segmentation where policies are defined in

terms of application concepts rather than network constructs such as IP addresses,

subnets and VLANs. Abstraction of underlying infrastructure and focusing on

application concepts creates dynamic policy that can be automated and rapidly

deployed. (Hagland 2018.)

The requirements and methods of operating in today’s digitally networked world

have changed for businesses and end users. Traditionally built network architectures

are no longer able to properly meet the new requirements. (Software-Defined Net-

working: The New Norm for Networks 2012, 2.)

The new trends, and thus driving forces of change, in the networking industry include

rapidly growing phenomena such as smart mobile devices and applications, server

virtualization and cloud service adoption. Conventionally networks were designed for

a different age with needs and a usage profile fitting that. Those designs made sense

back then; however, they resulted in a static architecture not able to adapt to new

needs demanded by the industry. The client-server computing was very dominant

before and is still heavily utilized; yet, modern computing and storage systems are

dynamic in their nature and require the networking platform to support that. (Soft-

ware-Defined Networking: The New Norm for Networks 2012, 3.)

Traffic patterns have changed inside data centers. Previously most of the communi-

cation took place between one client and one server in “north-south” type of pat-

tern. In today’s networked and distributed applications communication takes place

between multiple different servers (machine-to-machine) creating a great amount of

“east-west” traffic. Users also expect to access these applications from multiple types

11

of devices, from anywhere in the world and at any time. Availability requirements

have changed drastically during the computer age. Compared to the old terminal

workstation and mainframe server type of computing the expectations have changed

a great deal. The cloud computing trend also has brought the industry new ways of

operating and matters to consider. Enterprises either have already considered or will

need to consider usage of private cloud, public cloud or hybrid model, which will also

affect traffic patterns and can result in increased exposure of network traffic through

public networks. Although usage of cloud services brings agility and efficiency with

on-demand IT resources to enterprises, it will also add complexity to planning with

increased requirements in security, compliance and auditing. Businesses are also

more dynamic, and assumptions can change overnight with reorganizations, consoli-

dations and mergers of businesses. (Software-Defined Networking: The New Norm

for Networks 2012, 3-4.)

In short, the limits of current technologies that have been in use for decades already

are already reached. New solutions have been built on top of old standards and pro-

tocols; however, the networking platforms and the way of thinking have not yet been

fully transformed to the next level to better meet today’s business needs.

2 Research basis

Due to the assigner specifications of this thesis work, the research scope is aimed at

a single product named VMware NSX. The NSX solution offers a network

virtualization and security platform in-line with VMware’s Software-Defined Data

Center umbrella model. NSX greatly expands the capabilities of the existing

virtualization platform and enables several new features such as allowing

microsegmentation, virtualized network functions and automation of operational

tasks in the virtualizated infrastructure. NSX for vSphere offers easy first step into the

SDN world and its benefits without the complexities of full-on deployment

retransforming the whole network infrastructure. The ease of deployment and ability

to co-exist with the old environment enables painless migrations and allows the use

of many primary features of NSX without making changes to the infrastructure.

12

Following problems have been identified from traditional segmentation

implementations in the past. This identification is based on the researcher’s industry

knowledge and observations from the assigner environments including conversations

with people responsible for infrastructure platforms (servers and networking) and

deployed systems on the platforms.

1. Segmentation of workloads for high security environments with traditional
methods is difficult to implement and maintain, is complex and is not cost-
effective.

2. Traditional network architecture is static and adapts poorly to new needs.

3. Network changes require man hours for planning and configuration of each
individual network device with different feature sets and management interfaces.

4. Traditional segmentation is a compromise between security, resources,
complexity and ease of management.

These can roughly be summarized to be a problem of ease of implementing

segmentation to improve security and operations. The research question thus is: can

an organization use microsegmentation implemented with NSX to introduce

security and operational improvements for workload segmentation without

meaningful loss of performance?

The objective of this research is to provide an informational overview and

understanding of how microsegmentation enabled by software defined networking

solution can be utilized to improve security management and agility of an

organization operating a datacenter or suitable virtualization platform. The study

relies on comparisons to current segmentation practices in the industry as they are

applied to secure different types of workloads most commonly seen at enterprise

environments.

Due to the problems identified for this research being both subjective and partly

difficult to quantify, both qualitative and quantative research approaches were

chosen for this thesis work.

Case study research strategy is used to acquire a stronger understanding of the

researched phenomenon with narrow focus on single case to gain detailed

information on the subject. Surrounding processes and structures around the

13

phenomenon can be explored to recognize their impact. The flexiblity offered by the

case study framework is very approriate for this applied research since it is difficult

to achieve pragmatic and productive results with other research strategies with this

subject. (Routio 2007.)

Action research methodology is used to improve existing activity by researcher

proposing improvements and then carrying out an investigation. It is known to be

effective for handling complicated issues in working environments and to solve

problems faced by the community. Action is executed and results are evaluated on

the effects. Distance is taken to reflect afterwards for understanding on why the

process or situation is now as it is. (Routio 2007.)

The aim is to explore interaction with microsegmentation phenomenon in a technical

environment using action research method. Two primary viewpoints are deducted

from aforementioned research problems, security and operational performance.

Policy management would have been interesting to study as well; however, this was

not practically achievable in the researching environment available. Research data

collection will be done via unstructured behavioral observations by the researcher

while investigating the phenomenon and controlled lab experiments. Observations

will not be recorded or documented as these cannot be so strictly defined, instead

subjective interpretations are reported in conclusions and reflections with a critical

attitude.

When observations for data collection are made in a natural setting without pre-

defined plans and instruments to guarantee standardization and precision, it is called

uncontrolled observation method and enables the researcher to obtain natural

impromptu views of the research subject often for more complete picture. Subjective

interpretation is fundamental drawback of this method in contrast to strictly

controlled observation and can raise uncertainty to results. For this reason,

controlled lab exams are also made here to support credibility in research outcomes.

(Kothari 2004, 97.)

The plan is to investigate the microsegmentation and software-defined networking

phenomonen on theoretical plane in relation to the aforementioned research

problems and test out the capabilities of the implemented solution in practice. The

14

effectiveness of segmentation security can be studied with simple technical auditing

tools. The operational impact of the phenomonen can be examined with use of

assessment software from which key performance metrics can be analyzed to

provide an informational basis for evaluating the technological solution.

3 Infrastructure virtualization

3.1 Software-defined infrastructure

The networking field is currently in the middle of transformative revolution similar to

what server virtualization has made to computing services. In a similar fashion,

networking is moving from hardware to software mode and solutions. (Pujolle 2015,

ix.)

The solutions based on software defined networking are currently quite promising

especially for enterprise and carrier networks. As an example of one such prominent

open standard SDN based technology is OpenFlow and according to the non-profit

industry consortium the Open Networking Foundation (Software-Defined Network-

ing: The New Norm for Networks 2012, 2-3), its benefits include:

1. Centralized management and control for multi-vendor network devices

2. Common APIs are used to improve automation and management by abstracting
the underlying networking details

3. Enabling faster innovation with new network services and capabilities with less
dependency on device vendor and need for device configurations

4. Programmability is allowing new opportunities for multiple parties to implement
new solutions to drive revenue and differentiation

5. Centralized management, device automation and enforced uniform policies in-
crease the reliability and security of network with fewer configuration errors

6. Increased granularity in network control policies allowing separation of individual
sessions, users, devices and applications

7. Improved user-experience as applications have awareness of network state and
have capability to make adjustments based on user needs

8. Dynamic network architecture that future-proofs the network for future invest-
ments and is able to adapt quickly to changes in requirements

15

One significant commercial approach has been taken by the virtualization giant

VMware with its Software-Defined Data Center (SDDC) concept where higher utiliza-

tion of software is being used to abstract, pool and automate data center resources

and services. VMware is stating that the current mobile and cloud enabled era is

bringing new challenges to IT organizations and to answer this, organizations would

need to virtualize more of the data center infrastructure services in order to gain

cost-efficiency, security benefits and improve management. In SDDC enabled clouds

compute, storage and network resources are provisioned and managed automati-

cally by policies defined by the organization and thus providing efficiency and agility

for IT operations. The SDDC concept combines VMware’s multiple software-defined

products into a package with high level of integration and automation, software de-

fined networking being one significant component of that resulting solution. SDDC

products work on any x86 server and any IP transport network. (VMware SDDC.)

The main components of SDDC consist of the following products:

1. Compute virtualization with vSphere

2. Storage virtualization with vSAN

3. Network virtualization with NSX

4. Cloud management with vCenter and various vRealize products
(VMware SDDC.)

3.2 Compute virtualization

Virtualization has been a disruptive technology that has transformed the way

computing services are provided for consumers and businesses. At the core of these

services is the technological ability to abstract physical components into scalable,

elastic and lean virtualized objects. By means of virtualizing an object, more utility is

gained out of the resource produced by the object. (Portnoy 2016, 1-2.)

For datacenters around the world, virtualization has enabled to consolidate physical

servers into fewer servers running virtual machines and utilization of computational

resources at much higher rate. This has allowed companies to decommission large

portions of their physical servers and thus cut down costs on many aspects such as

16

hardware maintenance, administrative tasks and physical expansion. (Portnoy 2016,

10-11.)

Virtualization is a fundamental technology for enabling cloud-based services as it

pools multiple hardware systems into a shared platform of compute resources such

as networking, CPU, memory and storage. At the same time, abstracting the hard-

ware and complexity of running computing platform while providing ease of scalabil-

ity and built-in multi-tenancy isolation through software-based virtualization.

(Dawoud, Takouna & Meinel 2010, 4.)

When talking about virtualization in the scope of IT infrastructure, for most compa-

nies and professionals it often refers to “x86 server hardware virtualization” provided

by multiple different commercial and open source products, the best known solution

in the industry is VMware’s vSphere. Virtualization of compute resources allows the

OS and applications once tied to physical hardware to share the same resource com-

ponents with others through hypervisor’s resource management such as CPU sched-

uling, memory management, I/O for storage and networking. Each application and

service and its OS reside in an isolated virtual machine object created in software and

thereupon abstracted from direct access to the hardware. (Mitchell & Keegan 2011.)

3.3 Network virtualization

The concept of network virtualization is similar to server virtualization, in that the

aim is to create components or functions in software that were previously physical

and thus in the process make it more cost efficient, secure, scalable and even auto-

mated. Network components such as switches, routers, firewalls, load balancers, net-

work cards/adapters, logical ports and connections can all be implemented in soft-

ware without any additional hardware or manual labor, assuming a supported and

configured virtualization platform exists in the environment.

The most prominent network “virtualization” technology currently has been IEEE

802.1Q enabled virtual LANs (VLANs) that are used to partition Ethernet networks for

the purpose of performance and security as multiple isolated logical network seg-

ments can co-exist within the same physical networking infrastructure. For many or-

ganizations VLANs create flexibility in work environments as same cabling can be

17

used for different types of employee roles and needs, otherwise lot of unnecessary

extra cabling would be required for each case.

VLANs were first introduced in 1993 with two major drivers to justify their implemen-

tation; lowering cost of change management and improving performance of client-

server applications. As the technology started to gain momentum, in 1996 Virtual

LANs were already a hot topic in the industry and businesses contemplated on decid-

ing if virtualizing their organizations’ networks made sense. LAN switching was com-

pared to slower frame transfer speeds of “router-based LAN microsegmentation”.

The value of virtualized LANs with shared medium was rather questionable for peo-

ple as different conflicting methodologies for implementations existed in the net-

working field during that time. Application fingerprinting was considered essential to

guide decision-making. (Business communication review 1996)

The use of VLANs makes network design easier and supports businesses in their ad-

aptation to growth and changes. The use of VLANs include benefits such as (Cisco

Networking Academy's Introduction to VLANs 2014.):

1. Security, through separating computers with sensitive data from rest of the net-
work

2. Cost reduction is gained from more efficient use of existing network hardware
and uplinks

3. Better performance when layer 2 broadcast segments are divided into multiple
logical workgroups which reduces unnecessary network-wide traffic

4. Limit failure domain when a logical network fails or causes disturbance

5. Simplify management for projects and applications when these can be logically
grouped together

For most enterprises and cloud service operators with large networks, further isola-

tion is required to separate customers or departments from each other. Most com-

monly private IP space is overlapped between so-called tenants of shared infrastruc-

ture, which leads traditionally to separation of layer 3 routing space. Without virtual-

ization capabilities this would mean additional clustered physical router hardware for

each instance of the needed routing space. Various enterprise routers and firewalls

18

have supported creating virtual routing instances with separate routing and forward-

ing information tables through technology called Virtual Route Forwarding (VRF). VRF

combined with VLANs allows tenants to have multiple logical network segments that

have no knowledge of other tenant networks. VRF functionality is entirely created in

software that is part of the physical router operating system. (Virtual Route Forward-

ing Design Guide 2008.)

The use of virtualized firewalls has risen in data centers as they do not carry some of

the disadvantages and limitations of physical firewalls. They share compute, storage

and network resources with other virtual machines within the deployed virtualization

infrastructure and can scale easily with expansion of the platform. There are two

types of virtual firewalls. Subnet-level firewall operates on a dedicated VM with mul-

tiple virtual NICs, each connected to a different virtual segment. These operate much

like physical firewalls but the hardware is just virtualized. Kernel-level virtual firewall

instead functions inside the virtualization hypervisor operating system as loadable

module and can directly intercept every packet entering or leaving the protected

VM. The actual traffic filtering can also be offloaded from kernel to a dedicated VM

for more fine-grained policy processing or monitoring/logging purposes. (Chandra-

mouli 2016, 15-18.)

3.3.1 Software defined networking

In the last decade, the software defined networking (SDN) field grew substantially in

the industry, and it has already seen production-ready products deployed to many

big customers. Most of these early adopters are large telco or cloud provider

organizations with much to gain from taking their services to the next level and

improving their competitive edge.

SDN is built to use application programming interfaces (APIs) to allow software

developers and networkers to easily configure devices, services and applications in

the network. In traditional networking, network components are managed and

controlled individually, i.e. the control plane is distributed in each network device. In

software defined networking, the control of the networking infrastructure is

transfered to a separate centralized control plane where SDN controllers dictate data

plane actions and interface with network services and business applications.

19

Capabilities and features come from controllers and services instead of the individual

hardware devices inside the network. Figure 1 illustrates the difference between

traditional and software-defined implementations where data, control and

management planes are separated from individual devices to a centralized location.

SDN based network infrastructure will act as a platform for various functions and

allows new kind of implementations in the areas of automation, security and service

insertion. One of the most sought early benefits from SDN is the ability to do

dynamic network segmentation and overlay networking. (Kirkpatrick 2013, 1-3.)

Figure 1. Simplified separation of management, control and data planes with SDN im-
plementation

Virtualization of the network infrastructure through SDN enables efficient mi-

crosegmentation implementations and integration of applications to provide various

services. Applications can be programmed to instruct the network on how to func-

tion and run optimizations for optimal application performance. (Jaworski 2017, 9-

10.)

20

Software-defined approach to implementing network security posture can facilitate

modern Software Development Life Cycle (SDLC) practices such as DevOps and new

deployment methods for applications and services when the application can interact

with the network and hence be optimized to serve it better. Adaptive microsegmen-

tation can automatically and dynamically change based on the workload and allow or

deny specific traffic patterns. The security policy is attached to the workload, not to

network, and thus follows it when moved and gets removed neatly when not needed

anymore at the end of application lifecycle. Automation and microsegmentation im-

plementations create value for application deployments by increasing efficiency and

level of security. (Shackleford 2019, 5-8.)

3.3.2 VMware NSX

VMware currently has two overlapping NSX products for datacenters due to them

first developing their own vCloud based network virtualization for vSphere platform

and later acquiring a company named Nicira in 2012 to procure a network

virtualization platform independent of underlying infrastructure. The first product is

named NSX-V or NSX for vSphere and depends on VMware’s virtualization platform;

it is also more robust and mature with features. The latter is called NSX-T or NSX for

Transformers and it can be considered to be more extensive SDN solution as it is

meant to be implemented further into enterprise network infrastructure than just

virtualization platforms. NSX-V currently enjoys a quite painless and non-intrusive

deployment method into a new or existing vSphere environment making it very

attractive for organizations in need for its unique features. In the terms of

microsegmentation implementation, both products are mostly identical in how they

operate and are managed; yet, in practice only NSX-V is used in this thesis and will be

refered to NSX in this thesis. In addition to scalable software-based

microsegmentation firewalling, switching, routing, load balancing and VPN tunneling,

NSX encompasses unique advantages such as allowing extending networks across

physical networks with VXLAN overlay networking and enabling smooth

management of security controls across multiple cloud platforms for unified policy

and monitoring. (The History of NSX and the Future of Network Virtualization 2016.)

21

According to VMware’s NSX whitepaper, NSX can be deployed non-distruptively on

any hypervisor connected to physical network infrastructure and supports network

fabric implementations from any vendor. The existing networking, applications and

workloads require no changes. NSX allows incremental implementation of virtual

networks and security policy at organization’s own pace. The solution requires less

from the physical networking hardware as its functionality and processing is

offloaded to virtualization servers, thus reducing need for expensive networking

equipment and feature licencing. It is easier and faster to acquire new features and

bandwidth capacity and scale down/up as networking occurs at the hypervisor and

closer to the workloads, e.g. increasing switching and routing capacity to tens and

hundreds of Gbps in virtual networking is likely easier and cheaper than getting

equivalent throughput from traditional networking. NSX also allows integrations with

multiple cloud providers and cloud management solutions. (The VMware NSX

Network Virtualization Platform 2013, 6-12.)

VMware is claiming that their NSX solution provides true microsegmentation to cases

where east-west traffic needs to be protected without need for additional hardware.

Traditionally in these cases traffic has been forced through an inspection point which

most often is deployed separately, needing traffic to pass multiple network hops just

to turn around and come back, hence incurring unnecessary use of underlying

infrastructure when there is a more direct path available between the endpoints. (Ja-

worski 2017, 10.)

In the distributed firewall (DFW), NSX utilizes a grouping system that allows inclusion

or exclusion of virtual machines by variety of static or dynamic factors. Instead of just

relying on network constructs (MAC/IP addressing, interfaces) and payload inspec-

tion (application identification), the system allows referencing to various logical ob-

jects of the virtual infrastructure such as VM name, OS name, object location (vApp,

resource pool etc.), user-set security tags and network membership. As presented in

Figure 2, this allows for distinctively different logical segmentation results. (Jaworski

2017, 13)

22

Figure 2. NSX microsegmentation in a datacenter

The distributed firewall of NSX allows for context-aware microsegmentation and ena-

bles application and user identification with its built-in context-engine as seen in Fig-

ure 3. Every connection has tracked context attributes that can be used in mapping

to filter rules of a security policy. Packet payloads of application flows are matched to

pattern signatures enabling OSI Layer 7 firewalling capability. Context awareness en-

ables full visibility into application network flows inside the perimeter. (Vanveerde-

ghem 2018.)

23

Figure 3. NSX context-aware firewall policy

Identity firewall is enabled through either using Guest Introspection feature of NSX

or scraping Active Directory logs and with the use of VMware Tools Thin Agent inside

the virtual machine, user information is mapped to connection flows. The Security

Identifiers (SIDs) of a user is inserted directly to the data plane of hypervisors where

the filtering rules are enforced. (Vanveerdeghem 2018.)

Implementing NSX with microsegmentation will lead to more efficient traffic patterns

and eliminate overprovisioning resulting from downsides of physical security imple-

mentations such as hair-pinning. With NSX the traffic never leaves the physical server

and thus consumes zero bandwidth capacity of the physical network infrastructure.

(Micro-Segmentation Builds Security Into Your Data Center’s DNA 2016, 6)

Figure 4 illustrates the implementation difference in communication path for virtual

machines communicating via same hypervisor host or between two different hosts.

In both cases the distributed logical routing (DLR) functionality of NSX also enables

the same effect in routing as hair-pinning is not needed. DLR is also built as hypervi-

sor kernel module like DFW; however, it includes a control VM to provide routing

protocol peering with neighboring routers. With firewalling and routing (DFW & DLR)

24

both implemented in distributed way, the traffic pattern for east-west communica-

tions in the network infrastructure effectively changes and becomes more direct be-

tween endpoints while segmentation is enforced strongly.

Figure 4. East-west traffic patterns for traditional and NSX implementations

As certain abstraction and simplicity is achieved with SDN solutions, they generally

hide rather complex architectures and technologies under the hood. In November

2016, VMware employee, architect and owner of their highest level of certification

VCDX (VMware Certified Design Expert), Chris Mutchler tweeted “I like #NSX, but

sometimes I think it adds a little too much complexity for operational simplicity.

#vExpert #VCDX #KeepItSimple” while illustrating a level of complexity for a topology

of possible NSX implementation. (Mutchler 2016.) The rich feature set and scalability

of NSX platform is powerful but it can become complex to build and manage.

25

4 Network segmentation

4.1 Challenges in segmentation

Providing proper segmentation is a dynamic challenge. New applications, networks,

users and devices are deployed. Business, partnerships, staff and ways of working

change while access to resources needs to be securily available and adapted

efficiently to new status quo. The adaptation to changes needs to be operationally

lightweight and least distruptive to business. (Terranova 2018.)

Application architectures have changed much from monolithic client-to-server to

multiple tiered server-to-server with increased traffic volumes and for this purpose

workload segmentation is ever more important. (Santana 2017, 74) The current

standard practice of workload segmentation and controlling network level access

involves distributing machines into separate multiple network segments with a

firewall controlling access policy on the perimeter between segments. Inside the

segment network hosts are able to freely traverse unless further limited or filtered

by additional access controls such as local firewall or application level control

mechanisms. Free movement inside or between segments would enable lateral

movement by potential attackers. Most of the traffic in these segments takes place

within the datacenter or as the industry calls it east-west type of traffic pattern.

Local access control relies entirely on the machine’s operating system and the

security software available for it. Some machines do not even have any capability for

controlling access. There is also the burden and complexity of managing all these

access control policies on different decentralized management interfaces. Although

with added layer of automation it is possible to have better management, but it is

rarely close to an optimal solution. Visibility into one’s global access control policy

and dynamic management does not automatically exist and is often built on top of

legacy software.

For every new customer, a system or application in a shared infrastructure new

instance of segmentation will likely need to be built or configured each time. This

usually involves multiple teams and a change management process including the

actual tasks such as reserving numbered network resources (VLAN and IP space),

26

configuring network devices (switches, routers, firewalls, load balancers), configuring

a virtualization platform, creating a firewall policy for the segment and documenting

changes. Much of this work is assigned to the network team and for most part they

just replicate a configuration that already exists in the current infrastructure.

Possible even a separate security team needs to be involved depending on the

organization. This work needs to be scheduled, planned and perhaps executed

repeatedly with each new addition. In summary – the required work and complexity

for simple segmentation using traditional methods can be really costly and difficult to

manage. The constructs and standards for computer networks built by the industry

have become an hindrance for some security needs. New solutions have been are

needed for security features such as microsegmentation of workloads.

Ultimately companies are working with systems that are fully built of different pieces

of software (networking, virtualization, storage, firmware, operating systems,

applications); however, in order for everything to work together for most parts

industry standards have to be adhered to and compability ensured. Isolated solutions

have been built with standardized compability layers between different type of

solutions; however, as new technologies are stacked on top and new previously

unthinkable ways of utilizing these solutions are found, new problems emerge when

the underlying solutions were not made to serve these new purposes.

One notable example is the TCP/IP stack built in almost every network device, which

was originally designed for end-to-end connection between computers and assumed

network to be stateless and simple. Good willing cooperation between participants

of the global network was assumed and security mechanisms were left out originally.

Network middle boxes and functions such as firewalls, proxies, network address

translators compelled to alter design principles. (Blumenthal & Clark 2001, 2-5.)

However, in theory one could do anything one wanted to with the software if one

just had the capabilities for it; however, the problem often comes when one’s

systems need to interface outside of themselves, and this is where those standards

are needed as protocol on how to talk between systems or even directly with

hardware. However, inside one’s own world one can do whatever one wants as long

as you can translate and interface that to the outside world if required. Not many,

however, have the resources or interest in programming one’s own security platform

27

and logic; nevertheless, an organization such as Google has done this at a global scale

with their in-house software defined networking solution. (Salisbury 2013)

There is clearly a need for a higher level of security, automation and better

management in the environments where the workloads and critical data exist,

however, at the same time most organizations do not have the resources to deal

with the increasing complexity that comes with it. The advancement of technology

has driven companies to certain kind of implementations where one has stacked new

solutions on top of each other and laid out the infrastructure in a certain way. When

building new solutions or features on top of existing systems, one most often ends

up with sub-optimal end results with a plenty of complexity. Sometimes efficient

problem solving requires changing one’s viewpoint or doing things differently.

Software based microsegmentation as a concept is a driving force for thinking

differently how networks are provisioned and connectivity between systems is

established. Instead of building a segmentation based on network constructs, the

focus could be on the things that actually need protection, i.e. the workloads and

data itself. This way of thinking is part of what VMware is attempting to promote

with their NSX mindset. To think about what is possible to create and change without

having to be limited to traditional constraints.

4.2 Designing secure networks

Network design is used to provide a blueprint for how the network is laid out and

how the assets are protected againts a variety of network threats. The design can

help block attacks altogether, mitigate some and in some cases shut down or fail

appropriately in a predictable manner. Network segmentation is used as defense in

depth strategy to prevent lateral movement by potential attackers inside an

organization’s network. Segmentation of the network is considered one of the

primary tools for establishing control mechanisms in an environment as it forces

traffic flows through controlled perimeter points in the network, where security

controls such as firewalls and intrusion prevention systems can be implemented. In

addition to security benefits, segmentation is also used for performance gains and

limiting technical issues to a specific part of the network which helps when

attempting to pinpoint issues. (Andress 2011.)

28

Network level traffic separation can be achieved in different layers of OSI model with

virtualization technologies (Virtual Route Forwarding Design Guide 2008.):

1. Physical (OSI Layer 1) segmentation can be implemented by the medium, i.e.
cabling or wireless radio. Virtual segmentation of shared medium can be
achieved with time, frequency and wavelength division multiplexer techniques
such as TDM, WDM, OFDMA etc.

2. Datalink (OSI Layer 2) segmentation always involves active network device such
as Ethernet switch or router with specific capabilities. Virtualization is created
with technologies such as VLANs, L2VPN/VPLS, tunneling/overlays e.g. NVGRE
and VXLAN etc.

3. Network (OSI Layer 3) segmentation always involves a device with routing
capabilities since it needs to be part of it. Network virtualization is done with
VRFs, VPNs, generic tunneling protocols, MPLS etc.

Partitioning a network to segments limit’s a potential attacker’s ability to move

around the network and access important assets or resources, forcing attacks to

actively attempt crossing between segments and thus becoming easier to detect as

they pass monitored control points. (Wagner, Sahin, Winterrose, Riordan, Pena,

Hanson & Streilein 2016, 1-2.)

The approach to implementing networking segmentation and policy enforcement

can vary depending on the organizations’ security objectives, cost-benefit

estimations and technical complexity. The most commonly used segmentation

approaches are as follows:

1. Per role – hosts with similar function, such as databases, are grouped together
and policies are defined between these groups. Communication inside the group
is not controlled by the network.

2. Per system – hosts are grouped together based on what system or service they
belong to. For example e-commerce system would be one group where all the
necessary web, app and database hosts reside together. Communication inside
the system group is trusted and policy is defined between system groupings.

3. Per data classification – hosts or whole systems are grouped based data
requirements and security compliance such as PCI DSS or classification of
sensitive information.

4. Mixing all of the above – when more segmenation is required. The resulting
number of segmentation groups and complexity of security policy management
will often become a problem with this method.

29

4.3 Traditional segmentation

Traditional segmentation relies mainly on creating choke points or hair-pinning traffic

through one or more security device, usually a firewall appliance. Partitioning the

network into segments is often accomplished with VLANs or physical cabling. The

hair-pinning firewall does the job of an inter-VLAN routing that forwards traffic be-

tween segments. This is also sometimes referred to as router-on-a-stick configura-

tion. (Inter-VLAN Routing.)

Sometimes Access Control Lists (ACLs) are also used on routers or L3 switches if Layer

3 routing is implemented before firewalls to break up too large segments. ACLs offer

much less granularity and are complex to manage without a centralized solution. (Ja-

worski 2017.)

An example of simplified segmentation of a flat network with VLANs and hair-pinning

firewall can be seen in Figure 5 with different VLAN memberships on access links and

all-inclusive trunk between switch and firewall on shared medium.

Figure 5. Flat network of hosts segmented with Virtual LANs

Private VLAN (PVLAN), also known as port isolation, is also sometimes used in

switches and augment VLANs with more isolation options as detailed in Figure 6. It is

a fair example of how the use of existing technology has been extended beyond its

original design by software implementation. Although it is not common feature for

30

switches and interoperability with other switches not great. Management and scala-

bility of PVLAN is considered poor; however, it can serve adequately in some specific

cases such as hotels and offices where multiple organizations share the infrastruc-

ture and some devices such as printers.

PVLANs enforces a total isolation of hosts by using different types of configurations

on switch ports that change how communication between those ports can take

place, e.g. hosts behind “isolated” type ports are unable to see each other while they

exist in the same VLAN and IP subnet; however, they are still able to communicate to

a network gateway located behind a “promiscuous” port. (VandenBrink 2010.)

Figure 6. Private VLAN port types and allowed data flow

For environments with shared physical infrastructure, where multiple customers or

tenants exist, proper segmentation is a key factor for security and compliance. At this

level, virtualization of routing infrastructure is needed and traditionally has been

solved with VRF. Figure 7 shows a simplified example of multi-tenant network with

two tenants separated from each other using a combination of VLAN segments and

VRF routing instances.

31

Figure 7. Multi-tenancy enabled with virtualization of routing by VRF

Taking into consideration the operational practice and steps required to create new

or make changes to workload segmentation in a traditional datacenter, usually

multiple tasks are partly or fully needed. Usually the request comes from a person

responsible for an application or project, the requestee needs to involve

organization’s teams responsible for security, network and virtualization - with

change management process likely in the mix. Following steps are common for most

organizations when making changes to segmentation:

1. Reserving and documenting a new VLAN and IP subnet

2. Configuring VLAN into physical switches and virtual switches in hypervisors

3. Configuring Layer 3 gateway VLAN interface into firewall/router

4. Configuring firewall rules for inter-segment communication

4.4 Zero trust model

Zero trust model of information security described by Forrester Research Inc. is

based on a simple philosophy: stop trusting packets and networks. The point is to

phase out the idea of trusted internal and untrusted external networks. In the zero

trust model all network traffic is untrusted, inspected and logged. Instead, the access

32

to resources is verified, secured and strictly enforced by access control. (Kindervag

2010, 2.)

Legacy networks were commonly built from outside in, with infrastructure rather

than data in mind. Network professionals would begin building networks at the edge

of Internet connectivity and start laying out the core infrastructure (routing protocols

and switching) inwards while mostly unconcerned for placement or security of

individual resources or data. The zero trust model proposes to instead first protect

the data and then secondly work out how to build the networking to enable

communications. Getting things connected is easy; however, making them secure is

hard. (Kindervag 2010, 2-3.)

Users, devices, applications and data in today’s increasingly digitally transformed

world are moving out from the relative safety of enterprise networks and zones

protected by perimeters and security controls - according to major cloud service

provider Akamai Technologies. The “Trust, but verify” model where the user was

admitted access to resources if a request came from inside the perimeter or has just

user credentials is no longer considered an option where targeted and increasingly

advanced threats are able to penetrate corporate perimeters. Perimeter is needed at

every point where applications, data, users and devices exist. Trust and

authentication is end-to-end, not in a network or location. Akamai describes the

zero-trust model with the following concepts. (Terranova 2018.)

1. Never trust, always verify

2. Least privilege and default deny

3. Full visibility and inspection

4. Centralized management

Akamai states that one approach to zero-trust architecture is microsegmentation of

the network which expands the traditional firewall setup with next generation

firewall (NGFW) features and slicing networks into even smaller micro-segments. This

is based on a vision by Forrester of a new type of device called segmentation

gateway which would implement all the necessary security capability for different

types of network hosts. (Terranova 2018.)

33

Forrester Research report lists five steps to redesigning network security for zero

trust model through data centric model (Balaouras, Cunningham & Cerrato 2018, 4-

9.):

1. Identification of sensitive data

1. Sensitive data must be identified and classified using appropriate data
security and control framework. This will determine how data is to be
protected.

2. Creation of microsegments is based on data sensitivity.

2. Mapping flows of sensitive data

1. A map of data flows should exist that illustrates connections and
interactions between resources, applications and users. The map will
expose where sensitive data is accessed, possible weak points might exist
and could help optimize flow of data.

2. The application flow is also useful for revealing dependencies on systems
and helps in planning for disaster recovery.

3. Define microsegmentation perimeters

1. Once the application flow map around sensitive data is defined, it can be
used to identify points where protection should exist and thereupon have
microperimeter to protect it.

2. Microperimeters can be enforced with physical or virtual security controls
such as NGFW appliances from various vendors or software-defined
microsegmentation solutions such as VMware NSX.

3. Access policy needs to be defined for the perimeter based on the flow
map. If possible, automation and dynamic rulesets should be used to help
with the management and ease operations as long as they do not
compromise the policy for malicious actors to exploit.

4. Monitor and analyze all traffic for malicious activity and improvement

1. Security information can be obtained from multiple sources such as logs,
networks, applications, endpoints, data loss prevention and identity
access management systems.

2. Security analytics can be carried out with various kinds of solutions from
different vendors. Optimal deployment model also depends on how the
company operates and does business. Cloud, on-premises or hybrid
solutions exist and they have significant differences.

5. Embrace policy-driven security automation

1. New technology is progressively more automated; however, many
security tasks in organizations still rely on manual processes with slow
breach detection and response times.

34

2. Automation should be made use of decisively with policies established by
defined business principles of the organization.

Google transitioned from the usual corporate network design to a device and user

centric security model where each one is authenticated individually regardless of the

network location. The network itself is not trusted; however, the device and user are

if authenticated and predetermined conditions match. Access control to enterprise

resources and applications is fine-grained and specificly based on each user and

device. Every device can thus be considered to be isolated in its individual segment

which can be described as microsegmentation. Google’s approach removes trust

from the network and places it into user credentials and device states. Google

publicly promotes this security model as BeyondCorp. The implementation for

segmentation is technically very different from datacenters; nevertheless, it shows

trend and value for zero-trust and microsegmentation philosophies also in the end

user computing sector. (Ward & Beyer 2014, 6-7.)

Implementing infrastructure similar to Google’s approach however can be too high

cost and complex for most organizations with current technologies and solutions

available. Although if an organization has fully transitioned to cloud apps or SaaS

solutions, this can already be a built-in infrastructure service from the cloud provider

and therefore allows making use of zero-trust enabling technological benefits with

lower cost of implementation. Cloud platforms from Google and Microsoft already

support this and also provide identity and device solutions to support services hosted

outside datacenters and on-premises. However, transitioning fully to zero-trust

model in on-premises or traditional datacenter can be very costly; yet, this

predicament is likely to change in the future as more advances and innovations are

made. (Wagner et al. 2016, 2-3.)

4.5 Microsegmentation

Microsegmentation is used to lower the level of security risk and strenghten security

posture for modern data centers by utilizing following functionality to achieve the

following results (Holmes 2017.):

35

1. Stateful distributed firewall enables protection on individual application level
and scales effortlessly with the compute capacity from the virtualization
infrastructure.

2. Segmentation independent of topology allows for protection agnostic of the
underlying network topology.

3. Centralized policy management makes creation and provisioning of security
policy easy from single glass-plane with straightforward API access for
automation and integrations.

4. Granular policy controls for identifying each application by different type of
static and dynamic constructs provided by network and virtualization
infrastructure.

5. Extensibility of the platform for integrating new capability and services to
provide new functionality and added value for microsegmentation.

The demand for microsegmentation comes from the need to protect hosts inside the

same security zone (IP subnet, VLAN or broadcast domain) where communication

directly with each other is possible without passing through a security control. (Ja-

worski 2017, 9-10.)

Microsegmentation can benefit organization’s by (Micro-Segmentation Builds

Security Into Your Data Center’s DNA 2016, 4.):

1. Halting the spread of malware inside the data center by prevention of lateral
movement between hosts

2. Speeding up deployment of network and security services

3. Providing higher level of automation and adaptation capability to answer
changing business needs and security posture

In March 2016, the Computer Security Division of NIST made recommendations for

secure virtual networks of protected virtual machines based on their findings and

analysis for special publication 800-125B. One of the network segmentation related

recommendations for large data center networks is to use overlay-based virtual

networking techniques for scaling purposes in order to maintain segmentation

guarantees. (Chandramouli 2016, 10-11.)

NIST recommends using virtual firewalls for virtualized environments with VMs

running delay-sensitive or I/O intensive applications. Kernel-based filtering is

36

especially suggested for the latter. It is also desired that the virtual firewall is

integrated with the virtualization platform instead of separate management console

for unified management of multiple firewall instances. Use of higher-level

abstractions such as groups in addition to basic network constructs is preferred.

(Chandramouli 2016, 14-18.)

When VMware presented the microsegmentation security concept for data centers

in 2014 with their NSX product, they pointed out that the idea of using network

based microsegmentation for controlling lateral movement is not anything new, but

until now it was not practical at all from cost-efficiency and operational viewpoints.

Microsegmentation built completely with network-centric approach cannot deliver

thorough security at a scale to data centers and cloud environments. As computing

service operations have evolved from simple client-server model to today’s dynamic,

distributed and heterogeneous interconnected applications and systems, the

implementation of network chokepoint enforcement model is getting even more

complex and difficult to scale when new network services such as traffic steering and

service-chaining are being added on top. (Cohen 2017.)

An important distinction to be made is that traditional original segmentation model

based on forcing traffic through a control points or centralized chokepoint firewall is

essentially only based on specifically built network constructs. Segmentation rules

are purely based on information provided by the networking plane such as

addressing and I/O interface. The network level processing is very objective and from

a single inspection point. The firewall really has no solid information about origins or

context of the traffic passing through it. It does not know from which device, user or

application really constructed it; instead it relies on network constructs that have

been purposefully designed to create these logical constraints to flow packets

between segments. The resulting security policy depends on the trust provided by

networking infrastructure. (Cohen 2017.)

When granularity is needed in building security segmentation, even modern NGFW

appliances struggle as they attempt to increase granularity through building features

such as application detection and user identification on top of the traditional firewall

capability. A network based firewall alone can only offer limited means for

implementation of security segmentation. A more granular approach requires policy

37

that can make decisions on information from software instead of network, thus

software-centric approach is appropriate for achieving efficient microsegmentation

as seen example of in Figure 8. (Cohen 2017.)

Figure 8. Microsegmentation can be used to protect both flat and VLAN & VRF ena-
bled networks

Due to the isolating ability enabled by microsegmentation, networks can be

drastically simplified and flattened to reduce complexity and management overhead

without compromizing security or performance. (The VMware NSX Network

Virtualization Platform 2013, 9.)

Implementing a strong security policy with microsegmentation requires a clear

visibility into how applications work and communicate. This visibility is most often

gained from a process called application dependency mapping and it cannot be fully

built based on only monitoring network activity. The mapping should be real-time in

order to stay relevant to currently enforced security policy. In real world applications

there are so many dependencies and connections between different entities that

manual application mapping and policy rules will be unless paired with automation

and intelligent processing in order to build functioning dynamic rulesets. (Cohen

2017.)

For implementing microsegmentation in organizations, most face the obvious

problem of where to begin. Microsegmentation is not something that can be just

38

turned on and involves more than just technological aspects. Usually several people

need to get involved and planning is essential. Following list explains the common

steps for starting out. (Wilmington 2019.)

1. Understand the application, how it works and what dependencies it has.

2. Define methodology for approaching security policy e.g. what constructs (IP
addressing, VM objects, virtual network segments and groupings) to use to
simplify management for overall security.

3. Break the application to tiers. Typically, applications consists of processes, con-
tainers or servers fulfilling a certain role, service or function. In the eyes of secu-
rity these have different requirements for connectivity.

4. Document methodologies, rationales, application breakdowns for straightfor-
ward reference when examined by existing and future employees.

5. Apply security policy to the application. Test functionality and refine process.

4.6 Segmentation policy

In most cases of segmentation, full isolation is not wanted, but instead what is

needed is access based on definable control rules also known as security policy. The

segmentation method, in addition to how rulesets are created and managed, can

affect efficiency and complexity of the resulting security policy. Static rules require

administrators to keep them updated and handle their removal at the end of the

lifecycle. Dynamic rules can at best manage themselves after the policy is defined.

Automated policy management through dynamic properties can adapt to changes,

such as scaling, in the compute environment or be network-agnostic in nature.

Figure 9 illustrates a typical 3-tier web application, such as e-commerce system,

which is being scaled out by adding additional host for each tier to compensate for

increased loads. This example can be considered a cutoff from an environment

where multiple similar systems co-exist, meaning that in real world scenarios there

usually exists hundreds of hosts with same roles (web, app and db) belonging to

different systems.

39

Figure 9. Network topology for simple 3-tiered internet accessible web system

Traditional security policies based on network constructs mostly employ rules using

static source and destination IP addressing as seen example of in Table 1

representing collection of firewall rules for the scenario of Figure 9 with new

additions highlighted. The expansion of an environment requires a policy change that

modifies every relevant rule in order to add new host addresses; nevertheless, one

could use subnet criteria to match the whole segment in this example; however, in

real world cases this is not often possible or prudent.

40

Table 1. Traditional firewall ruleset using IP addressing

Source IP Destination IP Destination Port Action

(Internet) 1.0.0.1

1.0.0.2

1.0.0.3

TCP/443 (HTTPS) Accept

1.0.0.1

1.0.0.2

1.0.0.3

2.0.0.1

2.0.0.2

2.0.0.3

TCP/8080 (HTTP-ALT) Accept

2.0.0.1

2.0.0.2

2.0.0.3

3.0.0.1

3.0.0.2

3.0.0.3

TCP/3306 (MySQL) Accept

Any Any Any Block

In contrast to traditional static firewall rules, microsegmentation presents a different

kind of approach through dynamic object based management. Table 2 presents the

firewall ruleset based on objects for the aforementioned example scenario.

Although modern NGFW appliances already offer object based management, these

are actually in most cases very static unless integrated with external source of

information (such as virtualization platform manager) to provide dynamic group

memberships to objects.

Table 2. Firewall ruleset using object groups

Source Destination Service Action

(Internet) SG_WEB HTTPS Accept

SG_WEB SG_APP HTTP-8080 Accept

SG_APP SG_DB MySQL Accept

Any Any Any Block

Using NSX, security groups are used as group object mechanism and can be defined

as presented in Table 3, which demonstrates use of multiple different dynamic

criteria available for defining which hosts belong to the security group. Web hosts

are grouped by membership to a logical segment dedicated for this role. Application

group is defined by the virtual machine name prefix which exposes the role as well.

In many cases database hosts are attached to logical pools of compute resources,

which ensure performance; this information can be utilized for security group

selection criteria aswell.

41

Table 3. Security group definitions and criteria rules for tiered web system

Security Group Criteria for Selection Resultant Pool of VMs

SG_WEB Member of WEB Logical Switch VM-WEB1

VM-WEB2

VM-WEB3

SG_APP VM name begins with “VM-APP” VM-APP1

VM-APP2

VM-APP3

SG_DB Member of “DB” Resource Pool VM-DB1

VM-DB2

VM-DB3

In a real world scenario, a different solution would be more approriate; however, this

is just an example to highlight possible usage. The result of using this type of policy

and dynamic groups results in automated policy management for many cases such as

scaling out as presented in this example. New hosts are automatically included in the

groups and since the policy does not need to change, no firewall configuration

changes are needed.

The possibilities for the use of security groups are many depending on the technical

environment and needs. Security tags are a user managed feature to give additional

context to VM objects. Figure 10 illustrates the use of security tags to define which

environment hosts belong to. This can be used to create environment specific

security groups. Tagging can also be carried out by an automated system such as IPS

and then used to automate response from the virtualization platform, such as to

quarantine workload from other hosts in case of suspected infection.

42

Figure 10. Example of using virtual machine tags to define security groupings

In this example, each VM is given a security tag based on the type of environment

(development, testing or production) it belongs to. The same model can be applied

to classify a department of an organization (HR, finance etc.), data sensitivity (for e.g.

compliance), security state (e.g. unpatched system, malware detected). VMs in this

example are also named according to their role (Web, App, DB). Table 4 presents an

example of group definitions by just using security tag and VM name information to

achieve all inclusive role and environment groups and then creating environment

specific role based groups for explicit use in security policy.

Table 4. Definition of security groups and tag use for multi-environment system

Security Group Criteria for Selection Resultant Pool of VMs

SG_DEV_ENV Security Tag contains ”DEV_ENV” DEV-WEB

DEV-APP

DEV-DB

SG_TEST_ENV Security Tag contains ”TEST_ENV” TEST-WEB

TEST-APP

TEST-DB

SG_PROD_ENV Security Tag contains ”PROD_ENV” PROD-WEB

PROD-APP

43

PROD-DB

SG_ALL_WEB VM name contains ”WEB” DEV-WEB

TEST-WEB

PROD-WEB

SG_ALL_APP VM name contains ”APP” DEV-APP

TEST-APP

PROD-APP

SG_ALL_DB VM name contains ”DB” DEV-DB

TEST-DB

PROD-DB

SG_DEV_WEB Member of ”SG_DEV_ENV” and

“SG_ALL_WEB” Security Groups

DEV-WEB

SG_DEV_APP Member of ”SG_DEV_ENV” and

“SG_ALL_APP” Security Groups

DEV-APP

SG_DEV_DB Member of ”SG_DEV_ENV” and

“SG_ALL_DB” Security Groups

DEV-DB

SG_TEST_WEB Member of ”SG_TEST_ENV” and

“SG_ALL_WEB” Security Groups

TEST-WEB

SG_TEST_APP Member of ”SG_TEST_ENV” and

“SG_ALL_APP” Security Groups

TEST-APP

SG_TEST_DB Member of ”SG_TEST_ENV” and

“SG_ALL_DB” Security Groups

TEST-DB

SG_PROD_WEB Member of ”SG_PROD_ENV” and

“SG_ALL_WEB” Security Groups

PROD-WEB

SG_PROD_APP Member of ”SG_PROD_ENV” and

“SG_ALL_APP” Security Groups

PROD-APP

SG_PROD_DB Member of ”SG_PROD_ENV” and

“SG_ALL_DB” Security Groups

PROD-DB

In systems such as NSX, the dynamic nature of security groups also abstracts security

policy definitions, which allows the use of the same policy for multiple systems. For

example one could have a security policy defined where the rules for the

aforementioned 3-tier system are defined as listed previously in Table 2, and that

same policy could be used for each separate environment with just linked groups

differing. This allows for a smaller policy footprint where multiple identical

environments or cases exist of the same system or similar policy needs occur. In NSX

this feature is called Service Composer and allows the separation of security policies

and security groups.

44

5 Research

5.1 Test environment

The research conducted in this thesis seeks to examine the technical suitability from

the workload perspective of the researched phenomen (NSX microsegmentation) as

a replacement for a traditionally built network architecture which most organizations

currently own and maintain. If the new implementation performs well and similarly

compared to traditional segmentation, the conclusion can be expected to be

favorable for microsegmentation.

The research consists of a test environent created in lab facilities that is mostly on

par with a modern production datacenter environment with both its hardware and

software. Some notable exceptions include hypervisor network cards being limited to

1 Gbps ports instead of 10 Gbps or higher, and storage system having spinning disks

instead of full flash array. Two testing scenarios were constructed for which three

tests were executed on.

The test environment resembles minimal and relevant part of a typical datacenter

virtualization environment to research the effects of microsegmentation compared

to a traditional segmentation with external firewall appliances. The environment de-

scription is simplified, and the hardware specifications cannot be detailed in this

study; however, it should be considered to be high-end and very consolidated. The

components and topology presented here are just one limited part of a larger lab en-

vironment that is not relevant to this study; this however, can affect the results.

The testing environment presented here consists of the following components.

1. Two firewall appliances (Juniper SRX) in active-passive cluster

2. Two core switches (HPE) in a stacked configuration

3. Two access switches (HPE) in a stacked configuration

4. Two VMware ESXi 6.7 hypervisor hosts (HPE) in a cluster

5. VM-APP with CentOS 7.7.1908 OS and necessary testing tools (detailed later) in-
stalled

6. VM-DB with CentOS 7.7.1908 OS and PostgreSQL 9.2.24 database engine in-
stalled

45

7. APP and DB VLANs connected to respective VMs (appendix 7) and to external
firewall cluster acting as IP gateway

8. Unrouted internal VXLAN logical switch (overlay network) existing only inside
both hypervisor hosts

The hypervisor cluster is enabled with HA and DRS with NSX-V 6.4.3 implemented on

top. The hosts include redundant physical NIC connectivity to the switch fabric, and

the network topology is tiered full-mesh.

Both virtual machines reside on separate hypervisor hosts with 100% reserved CPU

and RAM resources of 2 vCPU 2.4 GHz cores and 8 GB memory respectively as seen

on the output presented in Appendix 6. The resource reservation is made to ensure a

more stable performance and test results.

In relation to the tests of this research, the VXLAN implementation to provide logical

segment for the VMs is effectively the same as a single VLAN would provide. VXLAN

has different kind of overhead and behavior, which might affect the results; how-

ever, this is intentionally included as it also represents a replacement for VLAN.

Detailed network interface and IP addressing information of the virtual machines can

be seen in Appendix 1.

The full topology of the test environment is illustrated in Figure 11.

46

Figure 11. Test environment network topology

5.2 Test scenarios

Two small test scenarios were chosen to highlight and test the differences between

the very common traditional segmentation implementation and the proposed new

implementation utilizing microsegmentation without VLANs.

47

In terms of utilizing action research method here, the scenarios represent before and

after states of taking action to implement microsegmentation architechture. The

tests highlight different workload operational aspects of segmentation: effective

security and performance penalties. The test participants are two virtual machines

with application and database roles. The effect of segmentation implementation is

tested by different methods between these two VMs.

The differing scenarios aim to present the same outcome for security state with

problems of segmentation difficulty and managebility solved through new kind of

implementation method.

5.2.1 Scenario A - Traditional segmentation with external firewall

The first scenario represents a traditional implementation with hosts segmented to

separate VLANs based on roles and security control enabled by external firewall ap-

pliance through inter-VLAN routing. Security policy is enforced when the traffic hits

firewall interfaces as illustrated in Figure 11 with policy enforcement points. The rule

enforcement configuration needed in this scenario is presented in Appendix 2 in its

configuration format and in Appendix 8 from the policy management interface point

of view.

As the traffic between two endpoints needs to be hair-pinned through the firewall,

network packets need to pass through multiple virtual and physical network compo-

nents as illustrated in Figure 12. Every NIC, switch and layer 3 device such as the fire-

wall on the data path incurs latency from processing and consumes link bandwidth.

This type of implementation most often leads to the firewall being the bottleneck for

net-to-net traffic passing through it.

Figure 12. Layer 2 data path between VMs with traditional segmentation

48

5.2.2 Scenario B - NSX microsegmentation with flat logical network

The second scenario introduces an implementation where the segmentation is imple-

mented in the virtual network layer without passing through a firewall appliance or

any layer 3 device. The VMs are connected through a single unrouted logical network

segment. The actual security policy is applied to hypervisor hosts and enforced at the

virtual switch ports thus allowing for VM level microsegmentation and use of a sim-

ple flat network structure. In addition to microsegmentation itself, this scenario

demonstrates the capability to design logical segments more efficiently and disasso-

ciate them from security zone type of thinking. In addition, the security policy, illus-

trated in Appendix 9, is always simple to change compared to re-designing logical

network architecture when protection requirements shift.

Figure 13 illustrates the data path between the VMs, and security enforcement can

be seen to take place directly after leaving the virtual NIC. As the traffic needs hair-

pinning through any physical appliance, its path is as direct as possible, and it only

traverses through the necessary switching fabric from one hypervisor to another.

This data path topology was verified with NSX network trace tool and its result is evi-

dent in appendix 10. The same data path would also apply if NSX distributed logical

routing (DLR) was used as it is also kernel level functionality of the SDN platform.

With DLR, if separate VXLAN logical segments or VLANs were used as in scenario A, it

would make no difference in the data path presented here.

Figure 13. Layer 2 data path between VMs with virtualized networking

49

5.2.3 Unused alternative scenarios

Other alternative scenarios of course exist that were chosen to not be included in the

tests of this research. Few of these should be examined in order to recognize their

existence and understand why they were left out.

The first alternative scenario is the same as the microsegmentation scenario B, but

with VMs existing on same the hypervisor host and thus packets not hitting physical

network at any point. As seen Figure 14, this would always be the most optimal situa-

tion in terms of performance; however, realistically most of the time workloads are

distributed across different hypervisor hosts for load balancing and high availability.

However, one could force VMs to stay together on the same host. Due to this being

uncommon case, it was left out.

Figure 14. Layer 2 data path between VMs inside same hypervisor host

As mentioned in the Network Virtualization chapter (3.3), subnet-level virtual fire-

walls also have existed before microsegmentation was made possible by kernel-

based virtual firewall inside virtualization hypervisor. They still serve a purpose and

functionality; however, one can predict their number of implementations to de-

crease in infrastructure areas where a transformation to SDN takes place, as their

performance has been sub-par compared to kernel-based hypervisor functions.

Figure 15 depicts a scenario where virtual firewall appliance VM is deployed on the

third hypervisor host. Usually and according to best practices, virtualized networking

appliances are to be deployed on separate hypervisor cluster/host other than the

ones hosting general VMs. In this scenario, a traditional segmentation with VLANs is

50

enabled; however, physical network hops are decreased compared to scenario A.

However, unnecessary hair-pinning of traffic and numerous logical hops still take

place resulting usually in a performance penalty. This is a more common implemen-

tation used as a compromise to allow firewall scalability and multi-tenancy by virtual-

ization for service providers who have not yet jumped to SDN or been unable, unwill-

ing to utilize it for this purpose or implemented these before SDN was mature

enough. It should be noted that even with microsegmentation capability on NSX, this

type of virtual firewall appliance functionality is still provided and currently necessary

for other layer 3+ functionality such as routing, NAT, load balancing, VPN, DHCP and

DNS relay. So realistically one would not be able to jump to solely use kernel-based

firewall in one’s datacenter; at least yet.

Figure 15. Layer 2 data path between VMs with virtual firewall

Virtual firewall could also be used inside the same hypervisor host as seen in Figure

16, and that would be more optimal in terms of performance; yet, realistically a very

unlikely scenario.

51

Figure 16. Layer 2 path between VMs and through virtual firewall on same host

5.3 Test methods

5.3.1 Method 1 - Security control

In order to validate segmentation security controls in place, port scanning is used to

demonstrate that only explicitly allowed connections between VMs are possible. The

purpose of this test was to establish in practice what has been covered so far in the-

ory. The main purpose of segmentation after all is to provide security for protected

systems. The tool for this port scan test is the network scanner and mapping soft-

ware nmap.

Nmap is used to perform basic TCP SYN port scan on SSH (22), HTTP (80), HTTPS (443)

and PostgreSQL (5432) ports. Only the latter should be open, and rest closed. The re-

ported result is simply PASS/FAIL for this test based on if the aforementioned condi-

tions are met thoroughly.

5.3.2 Method 2 - Network performance

To explore network performance effects of segmentation implementation,

specialized performance software is used to benchmark two very important metrics

affected by network design and implementation. Qperf tool is used to measure both

TCP and UDP bandwidth and latencies between the nodes in both of the

aforementioned scenarios. Each test is run sequentially five times with one minute

runtime. The individual tests are as follows.

52

1. TCP bandwidth - 64 KiB message size

2. TCP latency - one byte message size

3. UDP bandwidth - 1400 byte message size

4. UDP latency - one byte message size

The results are reported in MB/s for bandwidth throughput and in microseconds (μs)

for communication latency. Some firewall exceptions are temporarily added for this

test to be completed.

5.3.3 Method 3 - Application performance

The database server will be hosting a madeup test database. Database benchmarking

software Sysbench is run from application server to simulate different kind of

workloads and to illustrate any possible application level performance differences

between the two segmentation implementations.

Sysbench has several tests available for benchmarking purposes and of these five are

used to intensively emulate common transaction operations (select, delete, insert,

update) separately and lastly with an OLTP test profile which resembles common

real-life usage. The testing tool in this method simulates a highly optimized

application as there is no application processing and database is directly hit.

In relational data management Online Transaction Processing (OLTP) refers to how

most businesses facilitate information processing in transactional applications such

as online client-server based systems where transactions need to be atomic and

consistent. OLTP applications have a high throughput and are intensive in

insert/update operations. (OLTP 2019.)

Five different benchmarking profiles (SELECT, DELETE, INSERT, UPDATE INDEX, OLTP)

are run for five minutes each with 32 processing threads. The target database has 24

tables with 100000 table size limit. Benchmarking statistics are set to exclude first 30

seconds of runtime.

Essential result metrics are transactions throughput per second and average latency

from the whole run. Transaction throughput is an obvious performance metric which

53

could be affected by segmentation implementation. It is not uncommon to have in-

ternal direct network between application and database servers to optimize perfor-

mance by bypassing routing and firewall processing. Latency is another metric that

affects how application usage is perceived by the end-user but will be considered as

secondary here. Low database latency does not really matter if throughput is cata-

strophically bad.

The whole test suite is run at least couple of times during different occasions in order

to invalidate any skewed results due to incidental technical circumstances, such as

network congestion or processing spikes, in the lab environment that might affect

the results. However, results are only picked from a single complete run of all tests

executed on the same occasion sequentially.

5.4 Test results

The summary of results from each test method is shown in Table 5. The actual

command lines and full raw output are available in Appendixes 3-5 from each test

method respectively.

Port scanning with nmap showed only database port open and rest closed in both

scenarios.

Table 5. Summation of results from all test methods

Test Results - Scenario A Results - Scenario B

nmap (PASS/FAIL) PASS PASS

TCP-BW (5 runs MB/s) 115/115/115/115/115 112/112/112/112/112

TCP-LAT (5 runs avg μs) 168/181/163/172/171 166/165/174/171/172

UDP-BW (5 runs MB/s) 116/116/117/112/116 113/113/112/112/113

UDP-LAT (5 runs avg μs) 165/172/165/171/167 162/159/163/157/153

SB - SELECT (trans/s) 17198 17190

SB - DELETE (trans/s) 17010 17500

SB - INSERT (trans/s) 4779 4878

SB - UPDATE INDEX (trans/s) 15495 15816

54

SB - OLTP (trans/s) 623 625

SB - SELECT (min/avg/max ms) 0.32/1.86/1113.35 0.29/1.86/217.89

SB - DELETE (min/avg/max ms) 0.29/1.88/270.57 0.29/1.83/398.56

SB - INSERT (min/avg/max ms) 0.76/6.69/199.40 0.82/6.55/189.53

SB - UPDATE (min/avg/max ms) 0.31/2.06/295.74 0.28/2.02/229.42

SB - OLTP (min/avg/max ms) 15.02/15.35/416.00 13.22/51.17/346.27

Network performance tests showed near line rate transfer speeds for the bandwidth

as illustrated in Figure 17.

Figure 17. TCP & UDP bandwidth test results

The combined average latency ranged from 153 to 181 microseconds as seen in Fig-

ure 18.

55

Figure 18. TCP & UDP latency test results

Benchmarking the database throughput performance over network resulted in re-

sults as charted in Figure 19.

Figure 19. Database benchmarking throughput results

Latency results from database benchmark is seen in Figure 20.

56

Figure 20. Database benchmark latency results

5.5 Analysis of results

It should be noted that testing was not conducted in time of network congestion and

the firewall ruleset was not large like in a typical enterprise but these were not the

targets of investigation in this research. Obviously multiple similar systems often

exist in the shared environment, and high resource usage can cause problems related

to each segmentation design. Most of the performance issues, however, raise from

the capacity or processing bottlenecks common in centralized single active path

designs of traditional networks.

Nmap port scanning results are as expected, and there is not much to analyze other

than to determine that the policy applied is in effect and segmentation is happening.

The traditional scenario A resulted in being a slightly faster network throughput with

2.8 MB/s of difference in UDP and 3.0 MB/s in TCP. This is comparatively a rather

negligible difference between the scenarios and might vary more with different kind

of network usage and congestion cases. Direct hardware processing is also almost al-

ways faster than with software abstraction layers and emulation in play. Results are

as expected from unoptimized sender/receiver nodes with protocol overhead.

The microsegmentation (with VXLAN logical segment) scenario B appeared to be

faster only by 1.4 microseconds with TCP but made 9.2 microseconds of difference in

57

UDP latency test. The difference of latency between these scenarios is not remarka-

ble for most usage scenarios but shows that shorter data path with less devices to

pass through results in smaller delay in transmission.

The database throughput benchmark showed very similar results between the both

scenarios, as combined transactions per second difference averaged only at around

1.4 % in favor of the microsegmentation scenario and thus should be considered ra-

ther inconsequential.

As illustrated previously on Figure 28, the reported latency of each performance test

followed the same pattern as throughput with only 1.4 % of difference in combined

average; however, in this case in favor of traditional segmentation scenario. This can

be expected as higher processing throughput usually incurs more latency. Overall,

this is also a rather trivial variation, and not much consideration should be put into

the latency if it is within reasonable limits while good throughput is maintained.

The use of normalized bulk benchmark profiles does not represent actual real world

usage, but acts as raw performance metric in this case. The individual firewalls under

each testing scenario were also not under realistic policy configuration for

throughput testing; however, firewall rule processing was not under investigation

here but rather the segmentation implementation architecturally.

Exploring the quantitative results here in relation to the research question indicate

that no meaningful performance loss incurred and segmentation was effective. Thus

objectively operational and security effectiveness is assured from workload perspec-

tive. How the phenomenon affects processes and people, was not part of this, but

will be discussed in conclusions based on theoretical basis and unstructured undocu-

mented behavioral observations.

58

6 Conclusions

6.1 Outcome of results

The results portray that the microsegmentation implementation in this case does not

have a meaningful effect on workload performance, and software based solution is

quite on-par with hardware based appliance. The performance problems usually rise

from bottlenecks in network design, to which the distributed nature of

microsegmentation implemented by NSX offers software based scalability and

spreading security control processing on the whole virtualization platform instead of

a designated centralized point of network. The increasing distributed nature of

workloads in cloud environments is better supported with similarly scalable and

distributed platform security services.

Microsegmentation implemented with a hypervisor-level kernel-based firewall is a

worthy option for securing workloads on virtualization platforms and clouds. It

enables dynamic load distribution of firewalling, more options for policy definition,

integrated into the platform, flexibility to adapt to changes, security boundaries

independent of network segments and design, workload mobility and in some cases

migration from traditional segmentation nondistruptively without having to change

underlying infrastructure.

The test scenario for microsegmentation implementation demonstrates that to

provide security into the environment and workloads, there is no absolute need for

external firewall solutions. NSX and microsegmentation succesfully reduce the need

for physical networking hardware and functionality provided in those thus cutting

costs; however, at the same time NSX licencing itself could get pricy for some

organizations. Organizations need to evaluate for themselves how they can best

utilize NSX and if they can get operational benefits, needed security improvements,

equipment cost and man hour savings from moving to software defined

infrastructure. If the feature-set from NSX is not fully utilized, one is likely paying

both network hardware vendor or virtualization vendor partly for similar features;

just implemented and operated differently.

59

However, for smaller deployments and static environments, the benefit of

microsegmentation and NSX is even more questionable from the cost perspective.

Traditional segmentation design can still adequately serve the needs for many. The

situation will likely change when technology advances and different

microsegmentation enabling solutions become more common and accessible.

Answering directly the research question, an organization can see multiple benefits

for security and operations as described in conclusions here, when NSX is used to

implement microsegmentation. However, it does not come without a cost from

different factors that should be considered before decision to implement is made.

6.2 Promising potential

NSX allows security policy to be defined from the same unified virtualization platform

management interface and enables shifting system related policy management work

from network or security administrators to virtualization or system administrators,

who usually are more familiar and responsible with the systems affected by most of

the policy definitions affect. This allows for more self-service operation of granular

policy management while keeping big picture network zone policy in the hands of

network admins.

In terms of hardware utilization, the software based approach to network services

allows for better use of virtualization capacity and scalability through it. Also, without

need to hair-pin traffic through a external hardware appliance, the path between

endpoint systems is shorter and more optimal. Scaling out virtualization platforms

with common server x86 hardware and fast network cards supporting speeds such as

40 and 100 Gbps is often more cost-effective than scaling physical high throughput

firewall appliances.

Microsegmentation enabled by NSX allows creation of dynamic security policy that

can be quickly adapted to new needs without changes to existing network

infrastructure, e.g. segmentation is created logically in virtualized network platform,

not necessarily in creation of logical network segments such as VLAN and subnet

pairs that require more configuration work.

60

The industry has for a long time worked with the idea that network boundaries are

synonym to security boundaries and it can be difficult to change this mindset of

people. Change of mindset is critical in reaping the full benefits of the capabilities

which these new technologies offer. The cultural shift always drags behind the

technological one. With many new momentary innovations and gimmicks introduced

almost on a weekly basis in the field, it’s difficult for most industry professionals to

keep up and to grasp true value behind things such as network virtualization -

especially as it has been accustomed to characterize multitude of different

networking technologies used for decades.

Microsegmentation is only one of the many features of NSX and other SDN solutions

that will change how networking is carried out in the industry during the following

years as the level of adoption rises and the technology advances. What SDN and

similarly tilting software based solutions that can be developed more rapidly in favor

of pre-defined hardware appliances allow is a game changer for the industry. The

peak of global network transformation is still yet to come; however, some forward-

looking organizations can already benefit from these solutions as early adopters.

6.3 Organizational readiness

Microsegmentation is not something an organization can just simply slap on the

existing infrastructure and reap the benefits. The implementation work should not

be underestimated if the organization plans to actually make use of the technology

benefitting the business. The organization might not even be very suitable or have

the readiness required to capitalize from it.

The author has introduced a few recommendations from his personal experience and

acquired knowledge for organizations considering utilizing microsegmentation,

VMware NSX or other SDN solutions. Firstly the author would advocate caution and

suggest looking at the technical environment and how the business operates

currently and in the near future. It is not definitively guaranteed that one’s

organization can really make the best use of these solutions even if an technical

admin can see some value in some features provided, especially if one believes the

61

fancy marketing. The organization should also evaluate its readiness for network

virtualization transformation from the technical point of view.

The following paragraphs discuss matters to consider in the current and future state.

Number and hardware configuration of virtualization hypervisors

NSX licencing is mostly based on number of the CPU sockets. There might also be

options for VM-quantity based pricing model. Assuming the usual CPU based

licensing, it is not very cost-efficient to licence clusters with low core counts and high

socket quantities. Instead, highly consolidated and powerful hypervisor hosts would

have significantly better return on investment for the organization. The price tag for

licencing virtualization related software from everything on top can easily outweigh

the price of the underlying hardware. Scalability is also better supported with

balanced hypervisor hosts and common server hardware when dealing with SDN

solutions.

Aggregate site topology and L2/L3 fabric connectivity

The relevant layout of the entire combined operational virtual platform, including all

clusters, sites and clouds, will affect how well the technology in question can be

utilized. NSX and other SDNs can be used to create connectivity between on-

premises sites and cloud platforms through overlay networking or L2VPN-solutions.

Microsegmentation in itself might not provide much value in cross-site scenarios

except in special cases, but can provide global security management across managed

multi-site virtual platforms.

Segmentation, multi-tenancy, compliance requirements

Business needs and requirements drive policy definition for end-user applications

and systems deployed on the platform. The more granular the segmentation needs

are, the more benefit can be gained from microsegmentation.

Static/dynamic nature of security state, networking, systems/apps

If the environment is very static and does not change much after the initial

deployment, there is not much benefit from agility gained through the dynamic

nature of SDN solution. The situation is different if adaptability is needed and the

62

environment is targeted with higher rate of changes. There are also cases where the

environment can be static and does not need to adapt later but will need SDN to

deliver some features critical for development of the business.

Will it replace any existing solution or eliminate the need for it?

One’s organization might benefit from reducing external solutions or simplifying the

network architecture. If the virtualization platform uses shared networking

infrastructure such as switching fabric and firewalls with other separate platforms,

one might not be able to cut these from the environment and could end up with

redundant solutions taking unnecessary rack space and costing money. Additional

compute capacity is needed when implementing software based features such as

microsegmentation on the virtualization platform. Best practices with NSX dictate

that separate network virtualization cluster should be implemented, resulting in

more used rack space.

Will it reduce work hours needed and time to complete changes?

If one believes the marketing, then yes. In the worst case, it might have the opposite

effect. It is another complex technology stack requiring e.g. separate training, know-

how, maintenance. If the environment and processes can fully utilize the technology,

then the organization can see benefit from it. Then it should be evaluated if the

gained benefit is worth the price in the long run. Can for example the time of

specialists and engineers be freed-up for other tasks after the implementation?

Delegating application specific firewall management to virtualization layer can be

very beneficial and provide agility to organizations.

Identity and role based access use cases

With microsegmentation and NSX, organizations can see benefits if the environment

includes multi-role end-user virtual desktops or applications (eg. VDI, RDSH, Citrix).

Microsegmentation can be utilized in identity firewall way to create user-specific

access policies and reduce segmentation complexity provided in traditional

networking segmentation. It can also reduce the number of virtual machine

templates and simplify provisioning when one does not need to have differentiating

pools of machines connected to different network security segments. Access to

63

resources can be granted when a user is logged into desktop or application and

limited for the duration of session.

Organizational structure

Can the organizational boundaries be adapted to best utilize new technology in

collaboration and shared goals and responsibilities? These solutions step on multiple

teams; at very least networking, security and virtualization people are involved.

Convergence of responsibilities and skills follows as solutions become more

concentrated. Strong silos between departments ideally should disappear for optimal

outcome. More agile and streamlined environment with less inherited infrastructure

can profit from microsegmentation usage.

Mindset and call to action

What microsegmentation and SDN solutions offer are vastly different from the

traditional type of thinking of how an infrastructure is built and security managed for

systems. Infrastructure, services and applications can be built and protected in very

new ways not limited by constraints of traditional hardware-centric model.

Technological debt and capability for transformation

What kind of legacy infrastructure and systems does one need to support and how

easily can they be transformed into new software defined environment? Adapting to

a new type of security policy management and networking infrastructure can take its

toll. Systems will likely require some kind of migration projects. Migrating a large

security policy from an old firewall to a new distributed firewall properly can take a

great amount of work without a clear business benefit for the organization.

Early adopter’s risk

The SDN solutions are still under very active development with a plenty of issues still

unclear and changing. The NSX-V product investigated here has already become

superseded as its vastly different brother product NSX-T has reached feature parity

and will be the dominant recommended SDN product going forward in case of

VMware. Existing customers of NSX-V are facing a migration project to NSX-T as

support will end in a few years and feature development ceases.

64

Understanding of one’s systems and applications

Segmentation is efficiently built when one understands the environment including

connections and dependencies, and what kind of groupings or labels can be built for

the creation of security policy. Labeling can utilize the existing information from

CMDB, application flow mappings or other information systems.

Unfamiliarity with microsegmentation, NSX and SDN solutions makes them easy for

misplaced decision making. It is a new transformative technology providing very

enticing business benefits; however, with high price point for many and operational

caveats not so well marketed. Even the majority of technical professionals are

unaware of these concepts including how, when and where these should be

appropriate to use. Proof of concept tests with these kind of technologies should be

considered to be mandatory before making these leaps. Ultimately, an organization

should decide if it is suitable and able to adapt to technological changes of such as

dynamic and agile nature of microsegmentation or will it end up as unmanaged and

unplanned implementation with an increased burden for operating the business.

6.4 Reflection and further research

The theoretical basis in this thesis was based on multiple different online sources au-

thored by respected industry veterans and organizations. Plenty of these information

sources are expected to be biased and influenced as true motivations of authors can-

not be ascertained. The search for information sources was heavily geared towards

technical testimonials rather than marketing materials. Businesses that benefit finan-

cially from adopting products such as NSX are obviously motivated to invest in mar-

keting and hyping up the technology.

The credibility of what was claimed by the sources used in this research was consid-

ered to be accurate based on the experiences of the author while investigating the

subject and from previous knowledge acquired professionally in the industry. How-

ever, this perceived insight by the author into the researched subject is not compre-

hensive and the author at this point of time has not yet acquired experience from

use of microsegmentation implemented by NSX in production usage which would en-

65

tail more assured perspective into how it affects an organization. However, the au-

thor has long-term experience from designing and managing similar segmentation

implementations in production environments where benefits of NSX microsegmenta-

tion would have been considered very advantageous.

The operational benefits would have been better brought up by exploring the tech-

nology when it was implemented into production environment and was in actual use

where change management and other operational procedures would be used for

some period of time. Afterwards personnel could have been interviewed with how it

has affected their procedures and workflows. Organizational perspective into the

subject could be retrieved from people in leadership positions.

As microsegmentation and SDN solutions enables one to build security policies very

differently compared to current traditional approach, it could be worth researching

more into. Especially as further advances are made in software-based workload and

network security, one can expect to have even more options available on how work-

load security can be defined and policy strategy approached. Also similarly research-

ing organizational suitability and benefits of microsegmentation implementations by

other SDN solutions currently available would be beneficial for the industry.

The NSX-T product from VMware will likely offer more elements for future research

from different viewpoints as it integrates deeper into the network infrastructure and

not just virtualization layer. Also for further security research, the recently released

NSX-T 3.0 includes interesting security features such as distributed IDS/IPS, mi-

crosegmentation (with DFW) for physical Linux and Windows workloads and integra-

tion with Kubernetes containers. (Mahajan 2020)

66

References

Andress, J. 2011. The Basics of Information Security: Understanding the
Fundamentals of InfoSec in Theory and Practice. Accessed on 9 August 2019.
Retrieved from https://janet.finna.fi/PrimoRecord/pci.els_bookB978-1-59749-653-
7.00008-6

Balaouras, S., Cunningham, C., & Cerrato, P. 2018. Five Steps To A Zero Trust
Network. Accessed on 28 August 2019. Retrieved from
https://www.optiv.com/sites/default/files/2019-
01/Forrester%20Five%20Steps%20To%20A%20Zero%20Trust%20Network%20Oct%2
02018.pdf

Blumenthal, M., & Clark, D. 2001. Rethinking the design of the Internet: The end to
end arguments vs. the brave new world. Accessed on 17 February 2020. Retrieved
from https://www.csd.uoc.gr/~hy558/papers/Rethinking_2001.pdf

Chandramouli, R. 2016. Secure Virtual Network Configuration for Virtual Machine
(VM) Protection. Accessed on 21 September 2019. Retrieved from
http://dx.doi.org/10.6028/NIST.SP.800-125B

Cisco Networking Academy's Introduction to VLANs. 2014. Accessed on 6 September
2019. Retrieved from
http://www.ciscopress.com/articles/article.asp?p=2181837&seqNum=4

Cohen, A. 2017. The Truth About Micro-Segmentation (Part 2). Accessed on 9 August
2019. Retrieved from https://www.securityweek.com/truth-about-micro-
segmentation-part-2

Cohen, A. 2017. The Truth About Micro-Segmentation: It's Not About the Network
(Part 1). Accessed on 9 August 2019. Retrieved from
https://www.securityweek.com/truth-about-micro-segmentation-its-not-about-
network-part-1

Dawoud, W., Takouna, I., & Meinel C. 2010. Infrastructure as a service security:
Challenges and solutions. Accessed on 9 August 2019. Retrieved from
https://janet.finna.fi/PrimoRecord/pci.ieee_s5461732

Gartner Forecasts Worldwide Information Security Spending to Exceed $124 Billion in
2019. 2018. Accessed on 8 August 2019. Retrieved from
https://www.gartner.com/en/newsroom/press-releases/2018-08-15-gartner-
forecasts-worldwide-information-security-spending-to-exceed-124-billion-in-2019

Hagland, M. 2018. A New Era in Network Segmentation? Accessed on 27 August
2019. Retrieved from
https://www.hcinnovationgroup.com/cybersecurity/article/13029865/a-new-era-in-
network-segmentation

Holmes, W. 2017. VMware NSX® Micro-segmentation Day 1. Accessed on 20 June
2019. Retrieved from
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products
/nsx/vmware-nsx-microsegmentation.pdf

67

Inter-VLAN Routing. N.d. Accessed on 9 September 2019. Retrieved from
https://www.ccnablog.com/inter-vlan-routing/

Internet Organised Crime Threat Assessment (IOCTA). 2018. Accessed on 8 August
2019. Retrieved from https://www.europol.europa.eu/internet-organised-crime-
threat-assessment-2018

Internet Organised Crime Threat Assessment (IOCTA). 2019. Accessed on 18 February
2020. Retrieved from https://www.europol.europa.eu/activities-services/main-
reports/internet-organised-crime-threat-assessment-iocta-2019

Jang-Jaccard, J., & Nepal S. 2014. A survey of emerging threats in cybersecurity.
Accessed on 8 August 2019. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0022000014000178

Jaworski, S. 2017. Does Network Micro-segmentation Provide Additional Security?
Accessed on 9 August 2019. Retrieved from https://www.sans.org/reading-
room/whitepapers/networksecurity/paper/38030

Kindervag, J. 2010. Build Security Into Your Network’s DNA: The Zero Trust Network
Architecture. Accessed on 28 August 2019. Retrieved from
http://www.virtualstarmedia.com/downloads/Forrester_zero_trust_DNA.pdf

Kirkpatrick, K. 2013. Software Defined Networking. Accessed on 6 September 2019.
Retrieved from https://janet.finna.fi/PrimoRecord/pci.acm2500473

Korolov, M. 2019. What We Can Learn from the Ransomware Attack That Crippled
Norsk Hydro. Accessed on 9 October 2019. Retrieved from
https://www.datacenterknowledge.com/security/what-we-can-learn-ransomware-
attack-crippled-norsk-hydro

Kothari, C.R. 2004. Research Methodology : Methods and Techniques. New Age
International Ltd.

Kybertaistelu 2020. 2014. Accessed on 20 June 2019. Retrieved from
http://www.doria.fi/handle/10024/103034

Logistics Command Finland - The Finnish Defence Forces. N.d. Accessed on 8 April
2020. Retrieved from https://puolustusvoimat.fi/en/about-us/logistics-command

Mahajan U. 2020. VMware Delivers NSX-T 3.0 with Innovations in Cloud, Security,
Containers, and Operations. Accessed on 17 April 2020. Retrieved from
https://blogs.vmware.com/networkvirtualization/2020/04/nsx-t-3-0.html/

Micro-Segmentation Builds Security Into Your Data Center’s DNA. 2016. Accessed on
10 September 2019. Retrieved from
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutionb
rief/partners/intel/vmware-micro-segmentation-builds-security-into-your-data-
centers-white-paper.pdf

Mitchell, D., & Keegan, T. 2011. VMware vSphere for Dummies. FD; 2 edition

Morency, J., & Torti, T. 1996. Do VLANs make sense in your network? Accessed on 22
August 2019. Retrieved from
https://janet.finna.fi/PrimoRecord/pci.gale_ofg17975809

68

Mutchler, C. 2016. Accessed on 11 September 2019. Retrieved from
https://twitter.com/chrismutchler/status/800885500517023745

Online transaction processing (OLTP). 2019. Accessed on 19 February 2020. Retrieved
from https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-
data/online-transaction-processing

Ponemon, L. 2019. What’s New in the 2019 Cost of a Data Breach Report. Accessed
on 18 September 2019. Retrieved from
https://securityintelligence.com/posts/whats-new-in-the-2019-cost-of-a-data-
breach-report/

Portnoy, M. 2016. Virtualization Essentials. Accessed on 2 July 2019. Retrieved from
https://janet.finna.fi/Record/nelli14.3710000000829230

Pujolle, G. 2015. Software Networks: Virtualization, SDN, 5G and Security. Accessed
on 3 July 2019. Retrieved from
https://janet.finna.fi/Record/nelli14.3710000000459379

Routio, P. 2007. Case Study. Accessed on 9 April 2020. Retrieved from
http://www2.uiah.fi/projects/metodi/171.htm

Routio, P. 2007. Developing an Activity. Accessed on 9 April 2020. Retrieved from
http://www2.uiah.fi/projects/metodi/120.htm#toimtutk

Salisbury, B. 2013. Inside Google's Software-Defined Network. Accessed 5 April 2020.
Retrieved from https://www.networkcomputing.com/networking/inside-googles-
software-defined-network

Santana, G., 2017. VMware NSX® Network Virtualization Fundamentals. Accessed on
18 February 2020. Retrieved from
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products
/nsx/vmware-network-virtualization-fundamentals-guide.pdf

Shackleford, D. 2019. Evolving Micro-Segmentation for Preventive Security: Adaptive
Protection in a DevOps World. Accessed on 17 September 2019. Retrieved from
https://www.sans.org/reading-room/whitepapers/analyst/membership/38760

Software-Defined Networking: The New Norm for Networks. 2012. Accessed on 11
September 2019. Retrieved from
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-
papers/wp-sdn-newnorm.pdf

Terranova, A. 2018. Zero Trust Security Architectures - Network Micro-Segmentation.
Accessed on 9 August 2019. Retrieved from https://blogs.akamai.com/2018/09/zero-
trust-security-architectures---network-micro-segmentation.html

The History of NSX and the Future of Network Virtualization. 2016. Accessed on 26
August 2019. Retrieved from https://www.vmware.com/radius/history-nsx-future-
network-virtualization/

The VMware NSX Network Virtualization Platform. 2013. Accessed on 20 June 2019.
Retrieved from
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepap
er/products/nsx/vmware-nsx-network-virtualization-platform-white-paper.pdf

69

VMware SDDC. N.d. Accessed on 20 June 2019. Retrieved from
https://code.vmware.com/sddc-getting-started

VandenBrink, R. 2010. Layer 2 Security - Private VLANs. Accessed on 11 September
2019. Retrieved from
https://isc.sans.edu/forums/diary/Layer+2+Security+Private+VLANs+the+Story+Conti
nues/8785/

Vanveerdeghem, S. 2018. Context-Aware Micro-segmentation – an innovative
approach to Application and User Identity Firewall. Accessed on 10 September 2019.
Retrieved from https://blogs.vmware.com/networkvirtualization/2018/02/context-
aware-micro-segmentation-innovative-approach-application-user-identity-
firewall.html/

Virtual Route Forwarding Design Guide. 2008. Accessed on 6 September 2019.
Retrieved from
https://www.cisco.com/c/en/us/td/docs/voice_ip_comm/cucme/vrf/design/guide/v
rfDesignGuide.html

Wagner, N., Sahin, C., Winterrose, M., Riordan, J., Pena, J., Hanson, D. & Streilein, W.
2016. Towards automated cyber decision support: A case study on network
segmentation for security. Accessed on 9 August 2019. Retrieved from
https://janet.finna.fi/PrimoRecord/pci.ieee_s7849908

Ward, R., & Beyer, B. 2014. BeyondCorp - A New Approach to Enterprise Security.
Accessed on 24 August 2019. Retrieved from
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive
/43231.pdf

Wilmington, G. 2017. VMware NSX® Micro-segmentation Day 2. Accessed on 20 June
2019. Retrieved from
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products
/nsx/vmware-micro-segmentation-day-2.pdf

Wilmington, G. 2019. Overcoming the Barriers to Micro-segmentation. Accessed on
17 September 2019. Retrieved from
https://blogs.vmware.com/networkvirtualization/2019/10/overcoming-barriers-to-
micro-segmentation.html/

Zero Trust Security. N.d. Accessed on 26 August 2019. Retrieved from
https://www.akamai.com/us/en/solutions/security/zero-trust-security-model.jsp

70

Appendices

Appendix 1. Test scenario VM networks and IP addressing

[root@JKMT-APP ~]# ip -4 addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
2: ens192: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 inet X.X.X.171/23 brd X.X.X.255 scope global noprefixroute ens192
 valid_lft forever preferred_lft forever
3: ens224: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 inet 192.168.42.10/24 brd 192.168.42.255 scope global noprefixroute
ens224
 valid_lft forever preferred_lft forever
4: ens256: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 inet 1.0.0.1/24 brd 1.0.0.255 scope global noprefixroute ens256
 valid_lft forever preferred_lft forever
[root@JKMT-APP ~]# ip route show
default via X.X.X.1 dev ens192 proto static metric 100
1.0.0.0/24 dev ens256 proto kernel scope link src 1.0.0.1 metric 102
192.168.42.0/24 dev ens224 proto kernel scope link src 192.168.42.10 metric
103
192.168.43.0/24 via 192.168.42.1 dev ens224 proto static metric 103
X.X.X.0/23 dev ens192 proto kernel scope link src X.X.X.171 metric 100

[root@JKMT-DB ~]# ip -4 addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
2: ens192: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 inet X.X.X.172/23 brd X.X.X.255 scope global noprefixroute ens192
 valid_lft forever preferred_lft forever
3: ens224: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 inet 192.168.43.10/24 brd 192.168.43.255 scope global noprefixroute
ens224
 valid_lft forever preferred_lft forever
4: ens256: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 inet 1.0.0.2/24 brd 1.0.0.255 scope global noprefixroute ens256
 valid_lft forever preferred_lft forever
[root@JKMT-DB ~]# ip route show
default via X.X.X.1 dev ens192 proto static metric 100
1.0.0.0/24 dev ens256 proto kernel scope link src 1.0.0.2 metric 102
192.168.42.0/24 via 192.168.43.1 dev ens224 proto static metric 103
192.168.43.0/24 dev ens224 proto kernel scope link src 192.168.43.10 metric
103
X.X.X.0/23 dev ens192 proto kernel scope link src X.X.X.172 metric 100

71

Appendix 2. SRX firewall rule configuration

##Global address book configurations##
set security address-book global address TESTI-JKMT-DB_joku1 description
"JKMT-APP palvelin"
set security address-book global address TESTI-JKMT-DB_joku1
192.168.43.10/32
set security address-book global address TESTI-JKMT_APP-joku1 description
"JKMT-DB palvelin"
set security address-book global address TESTI-JKMT_APP-joku1
192.168.42.10/32
##Applications##
set applications application qperf term qperf-tcp destination-port 19765-
19766
set applications application qperf term qperf-tcp protocol tcp
set applications application qperf term qperf-udp destination-port 19765-
19766
set applications application qperf term qperf-udp protocol udp
##Security Firewall Policy : X-jkmt-app - X-jkmt-db##
set security policies from-zone X-jkmt-app to-zone X-jkmt-db policy TESTI-
JKMT-APP_to_DB match application postgres
set security policies from-zone X-jkmt-app to-zone X-jkmt-db policy TESTI-
JKMT-APP_to_DB match application qperf
set security policies from-zone X-jkmt-app to-zone X-jkmt-db policy TESTI-
JKMT-APP_to_DB match destination-address TESTI-JKMT-DB_joku1
set security policies from-zone X-jkmt-app to-zone X-jkmt-db policy TESTI-
JKMT-APP_to_DB match source-address TESTI-JKMT_APP-joku1
set security policies from-zone X-jkmt-app to-zone X-jkmt-db policy TESTI-
JKMT-APP_to_DB then log session-close
set security policies from-zone X-jkmt-app to-zone X-jkmt-db policy TESTI-
JKMT-APP_to_DB then log session-init
set security policies from-zone X-jkmt-app to-zone X-jkmt-db policy TESTI-
JKMT-APP_to_DB then permit

Appendix 3. Test run output - nmap

[root@JKMT-APP ~]# nmap -p 22,80,443,5432 -sS -T3 -Pn 192.168.43.10

Starting Nmap 6.40 (http://nmap.org) at 2020-02-13 13:09 EET
Nmap scan report for 192.168.43.10
Host is up (0.00081s latency).
PORT STATE SERVICE
22/tcp filtered ssh
80/tcp filtered http
443/tcp filtered https
5432/tcp open postgresql

Nmap done: 1 IP address (1 host up) scanned in 1.28 seconds
[root@JKMT-APP ~]# nmap -p 22,80,443,5432 -sS -T3 -Pn 1.0.0.2

Starting Nmap 6.40 (http://nmap.org) at 2020-02-13 13:13 EET
Nmap scan report for 1.0.0.2
Host is up (0.00072s latency).
PORT STATE SERVICE
22/tcp closed ssh
80/tcp closed http
443/tcp closed https
5432/tcp open postgresql
MAC Address: 00:50:56:B3:CF:80 (VMware)

72

Nmap done: 1 IP address (1 host up) scanned in 0.11 seconds

Appendix 4. Test run output - qperf

[root@JKMT-APP ~]# host=192.168.43.10; for i in 1 2 3 4 5; do qperf $host -
ip 19766 -t 60 -m 1400 udp_bw; sleep 10; echo "------"; done
udp_bw:
 send_bw = 116 MB/sec
 recv_bw = 115 MB/sec

udp_bw:
 send_bw = 115 MB/sec
 recv_bw = 114 MB/sec

udp_bw:
 send_bw = 117 MB/sec
 recv_bw = 116 MB/sec

udp_bw:
 send_bw = 116 MB/sec
 recv_bw = 116 MB/sec

udp_bw:
 send_bw = 117 MB/sec
 recv_bw = 117 MB/sec

[root@JKMT-APP ~]# host=1.0.0.2; for i in 1 2 3 4 5; do qperf $host -ip
19766 -t 60 -m 1400 udp_bw; sleep 10; echo "------"; done
udp_bw:
 send_bw = 113 MB/sec
 recv_bw = 112 MB/sec

udp_bw:
 send_bw = 113 MB/sec
 recv_bw = 113 MB/sec

udp_bw:
 send_bw = 113 MB/sec
 recv_bw = 113 MB/sec

udp_bw:
 send_bw = 113 MB/sec
 recv_bw = 113 MB/sec

udp_bw:
 send_bw = 113 MB/sec
 recv_bw = 112 MB/sec

[root@JKMT-APP ~]# host=192.168.43.10; for i in 1 2 3 4 5; do qperf $host -
ip 19766 -t 60 -m 64k tcp_bw; sleep 10; echo "------"; done
tcp_bw:
 bw = 115 MB/sec

tcp_bw:
 bw = 115 MB/sec

tcp_bw:
 bw = 115 MB/sec

tcp_bw:

73

 bw = 115 MB/sec

tcp_bw:
 bw = 115 MB/sec

[root@JKMT-APP ~]# host=1.0.0.2; for i in 1 2 3 4 5; do qperf $host -ip
19766 -t 60 -m 64k tcp_bw; sleep 10; echo "------"; done
tcp_bw:
 bw = 112 MB/sec

tcp_bw:
 bw = 112 MB/sec

tcp_bw:
 bw = 112 MB/sec

tcp_bw:
 bw = 112 MB/sec

tcp_bw:
 bw = 112 MB/sec

[root@JKMT-APP ~]# host=192.168.43.10; for i in 1 2 3 4 5; do qperf $host -
ip 19766 -t 60 -m 1 tcp_lat udp_lat; sleep 10; echo "------"; done
tcp_lat:
 latency = 168 us
udp_lat:
 latency = 165 us

tcp_lat:
 latency = 181 us
udp_lat:
 latency = 172 us

tcp_lat:
 latency = 163 us
udp_lat:
 latency = 165 us

tcp_lat:
 latency = 172 us
udp_lat:
 latency = 171 us

tcp_lat:
 latency = 171 us
udp_lat:
 latency = 167 us

[root@JKMT-APP ~]# host=1.0.0.2; for i in 1 2 3 4 5; do qperf $host -ip
19766 -t 60 -m 1 tcp_lat udp_lat; sleep 10; echo "------"; done
tcp_lat:
 latency = 166 us
udp_lat:
 latency = 162 us

tcp_lat:
 latency = 165 us
udp_lat:
 latency = 159 us

74

tcp_lat:
 latency = 174 us
udp_lat:
 latency = 163 us

tcp_lat:
 latency = 171 us
udp_lat:
 latency = 157 us

tcp_lat:
 latency = 172 us
udp_lat:
 latency = 153 us

Appendix 5. Test run output - sysbench

[root@JKMT-APP ~]# for thost in "192.168.43.10" "1.0.0.2"; do
> for sbtest in select delete insert update_index oltp; do
> echo ">>>>> RUNNING ${sbtest} TO ${thost}"
> sysbench --warmup-time=30 --threads=32 --db-driver=pgsql
--oltp-table-size=100000 --oltp-tables-count=24 --pgsql-host=${thost} --
pgsql-user=postgres --pgsql-password=Password1 --pgsql-db=sbtest --time=300
--report-interval=30 /usr/share/sysbench/tests/include/oltp_leg-
acy/${sbtest}.lua run
> sleep 60
> done
> done
>>>>> RUNNING select TO 192.168.43.10
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 16584.89 qps: 16584.89 (r/w/o: 16584.89/0.00/0.00)
lat (ms,95%): 3.13 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 17794.42 qps: 17794.42 (r/w/o: 17794.42/0.00/0.00)
lat (ms,95%): 3.13 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 16243.58 qps: 16243.58 (r/w/o: 16243.58/0.00/0.00)
lat (ms,95%): 3.55 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 17507.30 qps: 17507.30 (r/w/o: 17507.30/0.00/0.00)
lat (ms,95%): 3.19 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 16544.88 qps: 16544.88 (r/w/o: 16544.88/0.00/0.00)
lat (ms,95%): 3.43 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 18288.99 qps: 18288.99 (r/w/o: 18288.99/0.00/0.00)
lat (ms,95%): 2.97 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 17383.74 qps: 17383.74 (r/w/o: 17383.74/0.00/0.00)
lat (ms,95%): 3.25 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 16971.70 qps: 16971.70 (r/w/o: 16971.70/0.00/0.00)
lat (ms,95%): 3.30 err/s: 0.00 reconn/s: 0.00

75

[270s] thds: 32 tps: 17724.18 qps: 17724.18 (r/w/o: 17724.18/0.00/0.00)
lat (ms,95%): 3.13 err/s: 0.00 reconn/s: 0.00
[300s] thds: 32 tps: 16950.31 qps: 16950.31 (r/w/o: 16950.31/0.00/0.00)
lat (ms,95%): 3.36 err/s: 0.00 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 5159982
 write: 0
 other: 0
 total: 5159982
 transactions: 5159982 (17198.00 per sec.)
 queries: 5159982 (17198.00 per sec.)
 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0293s
 total number of events: 5159982

Latency (ms):
 min: 0.32
 avg: 1.86
 max: 1113.35
 95th percentile: 3.25
 sum: 9587266.26

Threads fairness:
 events (avg/stddev): 161249.4375/1055.80
 execution time (avg/stddev): 299.6021/0.01

>>>>> RUNNING delete TO 192.168.43.10
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 15734.95 qps: 15734.95 (r/w/o: 0.00/1027.83/14707.12)
lat (ms,95%): 4.33 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 17342.08 qps: 17342.08 (r/w/o: 0.00/424.41/16917.67)
lat (ms,95%): 3.62 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 17099.95 qps: 17099.95 (r/w/o: 0.00/370.33/16729.62)
lat (ms,95%): 3.55 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 16515.13 qps: 16515.17 (r/w/o: 0.00/322.77/16192.40)
lat (ms,95%): 3.82 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 16540.83 qps: 16540.79 (r/w/o: 0.00/283.37/16257.43)
lat (ms,95%): 3.75 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 17636.40 qps: 17636.40 (r/w/o: 0.00/272.49/17363.90)
lat (ms,95%): 3.43 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 16578.95 qps: 16578.95 (r/w/o: 0.00/231.04/16347.91)
lat (ms,95%): 3.62 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 17369.84 qps: 17369.84 (r/w/o: 0.00/225.43/17144.40)
lat (ms,95%): 3.43 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 16884.67 qps: 16884.67 (r/w/o: 0.00/199.07/16685.60)
lat (ms,95%): 3.49 err/s: 0.00 reconn/s: 0.00

76

[300s] thds: 32 tps: 18405.78 qps: 18405.78 (r/w/o: 0.00/201.90/18203.88)
lat (ms,95%): 3.07 err/s: 0.00 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 0
 write: 106765
 other: 4996603
 total: 5103368
 transactions: 5103368 (17009.94 per sec.)
 queries: 5103368 (17009.94 per sec.)
 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0186s
 total number of events: 5103368

Latency (ms):
 min: 0.29
 avg: 1.88
 max: 270.57
 95th percentile: 3.62
 sum: 9587507.71

Threads fairness:
 events (avg/stddev): 159480.2500/4832.51
 execution time (avg/stddev): 299.6096/0.01

>>>>> RUNNING insert TO 192.168.43.10
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 5035.56 qps: 5035.56 (r/w/o: 0.00/5035.56/0.00) lat
(ms,95%): 12.98 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 4894.02 qps: 4894.02 (r/w/o: 0.00/4894.02/0.00) lat
(ms,95%): 13.70 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 4719.94 qps: 4719.94 (r/w/o: 0.00/4719.94/0.00) lat
(ms,95%): 14.21 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 4868.74 qps: 4868.74 (r/w/o: 0.00/4868.74/0.00) lat
(ms,95%): 13.95 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 4728.64 qps: 4728.64 (r/w/o: 0.00/4728.64/0.00) lat
(ms,95%): 14.21 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 4788.28 qps: 4788.28 (r/w/o: 0.00/4788.28/0.00) lat
(ms,95%): 13.95 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 4635.15 qps: 4635.15 (r/w/o: 0.00/4635.15/0.00) lat
(ms,95%): 14.73 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 4521.99 qps: 4521.99 (r/w/o: 0.00/4521.99/0.00) lat
(ms,95%): 15.00 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 4958.12 qps: 4958.12 (r/w/o: 0.00/4958.12/0.00) lat
(ms,95%): 13.70 err/s: 0.00 reconn/s: 0.00
[300s] thds: 32 tps: 4646.74 qps: 4646.74 (r/w/o: 0.00/4646.74/0.00) lat
(ms,95%): 14.46 err/s: 0.00 reconn/s: 0.00

77

SQL statistics:
 queries performed:
 read: 0
 write: 1433974
 other: 0
 total: 1433974
 transactions: 1433974 (4778.92 per sec.)
 queries: 1433974 (4778.92 per sec.)
 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0579s
 total number of events: 1433974

Latency (ms):
 min: 0.76
 avg: 6.69
 max: 199.40
 95th percentile: 13.95
 sum: 9595109.44

Threads fairness:
 events (avg/stddev): 44811.6875/252.97
 execution time (avg/stddev): 299.8472/0.02

>>>>> RUNNING update_index TO 192.168.43.10
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 13780.42 qps: 13780.42 (r/w/o: 0.00/147.32/13633.11)
lat (ms,95%): 4.18 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 15511.12 qps: 15511.12 (r/w/o: 0.00/164.69/15346.43)
lat (ms,95%): 3.68 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 14862.87 qps: 14862.87 (r/w/o: 0.00/159.27/14703.60)
lat (ms,95%): 3.96 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 16037.23 qps: 16037.27 (r/w/o: 0.00/172.01/15865.25)
lat (ms,95%): 3.49 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 16240.69 qps: 16240.66 (r/w/o: 0.00/178.42/16062.24)
lat (ms,95%): 3.43 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 15399.25 qps: 15399.25 (r/w/o: 0.00/162.57/15236.68)
lat (ms,95%): 3.68 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 16272.49 qps: 16272.49 (r/w/o: 0.00/177.97/16094.52)
lat (ms,95%): 3.36 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 14714.33 qps: 14714.33 (r/w/o: 0.00/155.70/14558.63)
lat (ms,95%): 3.96 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 15703.39 qps: 15703.39 (r/w/o: 0.00/168.37/15535.02)
lat (ms,95%): 3.68 err/s: 0.00 reconn/s: 0.00
[300s] thds: 32 tps: 16433.34 qps: 16433.34 (r/w/o: 0.00/174.85/16258.49)
lat (ms,95%): 3.30 err/s: 0.00 reconn/s: 0.00
SQL statistics:
 queries performed:

78

 read: 0
 write: 49837
 other: 4598884
 total: 4648721
 transactions: 4648721 (15494.98 per sec.)
 queries: 4648721 (15494.98 per sec.)
 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0129s
 total number of events: 4648721

Latency (ms):
 min: 0.31
 avg: 2.06
 max: 295.74
 95th percentile: 3.68
 sum: 9588656.39

Threads fairness:
 events (avg/stddev): 145272.5312/6356.37
 execution time (avg/stddev): 299.6455/0.01

>>>>> RUNNING oltp TO 192.168.43.10
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 741.04 qps: 14835.77 (r/w/o:
10386.73/1363.76/3085.28) lat (ms,95%): 68.05 err/s: 0.10 reconn/s: 0.00
[60s] thds: 32 tps: 679.65 qps: 13595.82 (r/w/o: 9517.75/1851.57/2226.51)
lat (ms,95%): 69.29 err/s: 0.07 reconn/s: 0.00
[90s] thds: 32 tps: 660.50 qps: 13211.96 (r/w/o: 9248.70/2035.87/1927.40)
lat (ms,95%): 68.05 err/s: 0.10 reconn/s: 0.00
[120s] thds: 32 tps: 602.67 qps: 12050.43 (r/w/o:
8434.88/1939.94/1675.60) lat (ms,95%): 86.00 err/s: 0.07 reconn/s: 0.00
[150s] thds: 32 tps: 630.47 qps: 12613.89 (r/w/o:
8829.74/2072.64/1711.51) lat (ms,95%): 74.46 err/s: 0.17 reconn/s: 0.00
[180s] thds: 32 tps: 653.22 qps: 13067.43 (r/w/o:
9148.27/2165.52/1753.65) lat (ms,95%): 66.84 err/s: 0.17 reconn/s: 0.00
[210s] thds: 32 tps: 544.05 qps: 10884.43 (r/w/o:
7618.84/1810.01/1455.57) lat (ms,95%): 87.56 err/s: 0.07 reconn/s: 0.00
[240s] thds: 32 tps: 576.91 qps: 11540.39 (r/w/o:
8078.69/1924.33/1537.37) lat (ms,95%): 82.96 err/s: 0.13 reconn/s: 0.00
[270s] thds: 32 tps: 561.29 qps: 11223.74 (r/w/o:
7856.39/1870.83/1496.52) lat (ms,95%): 94.10 err/s: 0.00 reconn/s: 0.00
[300s] thds: 32 tps: 580.50 qps: 11613.10 (r/w/o:
8129.55/1944.21/1539.34) lat (ms,95%): 84.47 err/s: 0.13 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 2617636
 write: 569455

79

 other: 552329
 total: 3739420
 transactions: 186944 (623.03 per sec.)
 queries: 3739420 (12462.32 per sec.)
 ignored errors: 30 (0.10 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0542s
 total number of events: 186944

Latency (ms):
 min: 15.02
 avg: 51.35
 max: 416.00
 95th percentile: 78.60
 sum: 9599936.92

Threads fairness:
 events (avg/stddev): 5842.0000/29.56
 execution time (avg/stddev): 299.9980/0.02

>>>>> RUNNING select TO 1.0.0.2
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 16956.34 qps: 16956.34 (r/w/o: 16956.34/0.00/0.00)
lat (ms,95%): 3.25 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 17348.63 qps: 17348.63 (r/w/o: 17348.63/0.00/0.00)
lat (ms,95%): 3.25 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 17556.71 qps: 17556.71 (r/w/o: 17556.71/0.00/0.00)
lat (ms,95%): 3.07 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 17313.49 qps: 17313.49 (r/w/o: 17313.49/0.00/0.00)
lat (ms,95%): 3.19 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 15950.10 qps: 15950.10 (r/w/o: 15950.10/0.00/0.00)
lat (ms,95%): 3.62 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 17903.94 qps: 17903.94 (r/w/o: 17903.94/0.00/0.00)
lat (ms,95%): 3.07 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 17275.92 qps: 17275.92 (r/w/o: 17275.92/0.00/0.00)
lat (ms,95%): 3.19 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 17356.44 qps: 17356.44 (r/w/o: 17356.44/0.00/0.00)
lat (ms,95%): 3.25 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 17680.62 qps: 17680.62 (r/w/o: 17680.62/0.00/0.00)
lat (ms,95%): 3.19 err/s: 0.00 reconn/s: 0.00
[300s] thds: 32 tps: 16564.20 qps: 16564.20 (r/w/o: 16564.20/0.00/0.00)
lat (ms,95%): 3.43 err/s: 0.00 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 5157320
 write: 0
 other: 0
 total: 5157320

80

 transactions: 5157320 (17189.85 per sec.)
 queries: 5157320 (17189.85 per sec.)
 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0173s
 total number of events: 5157320

Latency (ms):
 min: 0.29
 avg: 1.86
 max: 217.89
 95th percentile: 3.25
 sum: 9587694.19

Threads fairness:
 events (avg/stddev): 161166.2500/2076.02
 execution time (avg/stddev): 299.6154/0.01

>>>>> RUNNING delete TO 1.0.0.2
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 16463.40 qps: 16463.40 (r/w/o: 0.00/988.89/15474.51)
lat (ms,95%): 4.03 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 14049.14 qps: 14049.14 (r/w/o: 0.00/293.44/13755.70)
lat (ms,95%): 4.33 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 18693.38 qps: 18693.38 (r/w/o: 0.00/344.70/18348.68)
lat (ms,95%): 3.13 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 18978.02 qps: 18978.02 (r/w/o: 0.00/303.20/18674.81)
lat (ms,95%): 2.97 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 17177.35 qps: 17177.35 (r/w/o: 0.00/241.73/16935.62)
lat (ms,95%): 3.68 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 17887.13 qps: 17887.13 (r/w/o: 0.00/230.70/17656.43)
lat (ms,95%): 3.30 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 17679.91 qps: 17679.91 (r/w/o: 0.00/206.70/17473.21)
lat (ms,95%): 3.43 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 18272.98 qps: 18272.98 (r/w/o: 0.00/194.64/18078.34)
lat (ms,95%): 3.13 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 17243.33 qps: 17243.33 (r/w/o: 0.00/169.33/17074.00)
lat (ms,95%): 3.49 err/s: 0.00 reconn/s: 0.00
[300s] thds: 31 tps: 18566.98 qps: 18566.98 (r/w/o: 0.00/166.80/18400.18)
lat (ms,95%): 3.07 err/s: 0.00 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 0
 write: 94217
 other: 5156324
 total: 5250541
 transactions: 5250541 (17500.52 per sec.)
 queries: 5250541 (17500.52 per sec.)

81

 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0181s
 total number of events: 5250541

Latency (ms):
 min: 0.29
 avg: 1.83
 max: 398.56
 95th percentile: 3.49
 sum: 9586669.22

Threads fairness:
 events (avg/stddev): 164079.4062/947.18
 execution time (avg/stddev): 299.5834/0.02

>>>>> RUNNING insert TO 1.0.0.2
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 4956.31 qps: 4956.31 (r/w/o: 0.00/4956.31/0.00) lat
(ms,95%): 13.46 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 4872.91 qps: 4872.91 (r/w/o: 0.00/4872.91/0.00) lat
(ms,95%): 13.70 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 4767.24 qps: 4767.24 (r/w/o: 0.00/4767.24/0.00) lat
(ms,95%): 14.21 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 5012.59 qps: 5012.59 (r/w/o: 0.00/5012.59/0.00) lat
(ms,95%): 13.22 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 4979.81 qps: 4979.81 (r/w/o: 0.00/4979.81/0.00) lat
(ms,95%): 13.46 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 5008.07 qps: 5008.07 (r/w/o: 0.00/5008.07/0.00) lat
(ms,95%): 12.98 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 4801.47 qps: 4801.47 (r/w/o: 0.00/4801.47/0.00) lat
(ms,95%): 13.95 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 4754.89 qps: 4754.89 (r/w/o: 0.00/4754.89/0.00) lat
(ms,95%): 14.21 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 4867.62 qps: 4867.62 (r/w/o: 0.00/4867.62/0.00) lat
(ms,95%): 13.70 err/s: 0.00 reconn/s: 0.00
[300s] thds: 32 tps: 4770.83 qps: 4770.83 (r/w/o: 0.00/4770.83/0.00) lat
(ms,95%): 13.95 err/s: 0.00 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 0
 write: 1463815
 other: 0
 total: 1463815
 transactions: 1463815 (4878.40 per sec.)
 queries: 1463815 (4878.40 per sec.)
 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

82

General statistics:
 total time: 300.0568s
 total number of events: 1463815

Latency (ms):
 min: 0.82
 avg: 6.55
 max: 189.53
 95th percentile: 13.70
 sum: 9595302.67

Threads fairness:
 events (avg/stddev): 45744.2188/470.76
 execution time (avg/stddev): 299.8532/0.02

>>>>> RUNNING update_index TO 1.0.0.2
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 14789.51 qps: 14789.51 (r/w/o: 0.00/132.31/14657.21)
lat (ms,95%): 3.82 err/s: 0.00 reconn/s: 0.00
[60s] thds: 32 tps: 16373.26 qps: 16373.26 (r/w/o: 0.00/140.70/16232.56)
lat (ms,95%): 3.30 err/s: 0.00 reconn/s: 0.00
[90s] thds: 32 tps: 14310.97 qps: 14310.97 (r/w/o: 0.00/124.60/14186.37)
lat (ms,95%): 4.18 err/s: 0.00 reconn/s: 0.00
[120s] thds: 32 tps: 15531.57 qps: 15531.57 (r/w/o: 0.00/133.90/15397.67)
lat (ms,95%): 3.62 err/s: 0.00 reconn/s: 0.00
[150s] thds: 32 tps: 15114.49 qps: 15114.49 (r/w/o: 0.00/132.64/14981.85)
lat (ms,95%): 3.68 err/s: 0.00 reconn/s: 0.00
[180s] thds: 32 tps: 16128.20 qps: 16128.20 (r/w/o: 0.00/140.93/15987.27)
lat (ms,95%): 3.43 err/s: 0.00 reconn/s: 0.00
[210s] thds: 32 tps: 16432.14 qps: 16432.14 (r/w/o: 0.00/138.93/16293.21)
lat (ms,95%): 3.25 err/s: 0.00 reconn/s: 0.00
[240s] thds: 32 tps: 16163.38 qps: 16163.38 (r/w/o: 0.00/140.83/16022.55)
lat (ms,95%): 3.30 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 16170.07 qps: 16170.07 (r/w/o: 0.00/138.47/16031.60)
lat (ms,95%): 3.55 err/s: 0.00 reconn/s: 0.00
[300s] thds: 32 tps: 17158.72 qps: 17158.72 (r/w/o: 0.00/148.73/17009.99)
lat (ms,95%): 3.02 err/s: 0.00 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 0
 write: 41162
 other: 4704125
 total: 4745287
 transactions: 4745287 (15816.35 per sec.)
 queries: 4745287 (15816.35 per sec.)
 ignored errors: 0 (0.00 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:

83

 total time: 300.0201s
 total number of events: 4745287

Latency (ms):
 min: 0.28
 avg: 2.02
 max: 229.42
 95th percentile: 3.55
 sum: 9588195.49

Threads fairness:
 events (avg/stddev): 148290.2188/687.80
 execution time (avg/stddev): 299.6311/0.01

>>>>> RUNNING oltp TO 1.0.0.2
sysbench 1.0.9 (using system LuaJIT 2.0.4)

Running the test with following options:
Number of threads: 32
Report intermediate results every 30 second(s)
Initializing random number generator from current time

Initializing worker threads...

Threads started!

[30s] thds: 32 tps: 727.57 qps: 14563.39 (r/w/o:
10196.01/1317.81/3049.57) lat (ms,95%): 69.29 err/s: 0.03 reconn/s: 0.00
[60s] thds: 32 tps: 662.12 qps: 13245.60 (r/w/o: 9272.30/1779.54/2193.76)
lat (ms,95%): 77.19 err/s: 0.20 reconn/s: 0.00
[90s] thds: 32 tps: 630.00 qps: 12602.14 (r/w/o: 8821.52/1910.37/1870.24)
lat (ms,95%): 77.19 err/s: 0.07 reconn/s: 0.00
[120s] thds: 32 tps: 594.80 qps: 11898.28 (r/w/o:
8329.59/1903.23/1665.46) lat (ms,95%): 82.96 err/s: 0.07 reconn/s: 0.00
[150s] thds: 32 tps: 630.50 qps: 12611.69 (r/w/o:
8828.42/2054.37/1728.90) lat (ms,95%): 78.60 err/s: 0.07 reconn/s: 0.00
[180s] thds: 32 tps: 612.29 qps: 12247.97 (r/w/o:
8573.67/2028.55/1645.75) lat (ms,95%): 80.03 err/s: 0.17 reconn/s: 0.00
[210s] thds: 32 tps: 605.91 qps: 12120.69 (r/w/o:
8484.77/2005.79/1630.13) lat (ms,95%): 78.60 err/s: 0.10 reconn/s: 0.00
[240s] thds: 32 tps: 593.56 qps: 11871.77 (r/w/o:
8310.48/1981.65/1579.65) lat (ms,95%): 75.82 err/s: 0.00 reconn/s: 0.00
[270s] thds: 32 tps: 538.57 qps: 10770.88 (r/w/o:
7538.92/1796.91/1435.04) lat (ms,95%): 97.55 err/s: 0.13 reconn/s: 0.00
[300s] thds: 32 tps: 656.60 qps: 13134.34 (r/w/o:
9194.29/2190.05/1750.01) lat (ms,95%): 69.29 err/s: 0.10 reconn/s: 0.00
SQL statistics:
 queries performed:
 read: 2626680
 write: 569145
 other: 556519
 total: 3752344
 transactions: 187592 (625.19 per sec.)
 queries: 3752344 (12505.55 per sec.)
 ignored errors: 28 (0.09 per sec.)
 reconnects: 0 (0.00 per sec.)

General statistics:
 total time: 300.0504s
 total number of events: 187592

84

Latency (ms):
 min: 13.22
 avg: 51.17
 max: 346.27
 95th percentile: 78.60
 sum: 9599855.42

Threads fairness:
 events (avg/stddev): 5862.2500/192.37
 execution time (avg/stddev): 299.9955/0.01

Appendix 6. Test virtual machine specifications and DRS rule

85

Appendix 7. Test virtual machine network cards and memberships

Appendix 8. SRX firewall rule management

Appendix 9. NSX firewall rule management

86

Appendix 10. NSX network trace between VMs through a logical switch

