

Huy Bui

ANDROID APPLICATION FOR
STUDENTS’ PERSONAL FINANCES

Bachelor’s thesis

Information Technology

Bachelor of Engineering

2020

Author (authors) Degree title

Time

Huy Bui

Bachelor of
Engineering

May 2020

Thesis title

Android Application for Students’ Personal Finances

58 pages
0 pages of appendices

Commissioned by

Not given

Supervisor

Timo Mynttinen

Abstract

College students often deal with multiple challenges at the same time, from academic
exercises to personal finances. To help students to manage their personal finances, this
thesis aims to create a simple Android application that records and analyses students’ daily
expenses. Unlike commercial finance application on the Google Play Store, the application
created in this thesis is totally free. This is reasonable because students have considerable
need of a high-quality finance management tool, but their budget is too limited to afford
commercial application.

Throughout the theoretical, basic Android components, the Model-View-ViewModel
architecture, dependency injection, and Room library were explained. The outcome
indicated that the Android development is a time-consuming and frustrated process. This
thesis also how a simple Android application is developed with good architecture practices.

Keywords

android, dependency injection, mvvm, kotlin, dagger

https://student.xamk.fi/studies-and-supporting-services/Documents/degree_titles.pdf
https://student.xamk.fi/studies-and-supporting-services/Documents/degree_titles.pdf

CONTENTS

1 INTRODUCTION .. 4

2 THEORECTICAL PART ... 5

2.1 Mobile user experience ... 5

2.2 Activity .. 6

2.3 Fragment .. 10

2.4 The Model-View-ViewModel architecture ... 13

2.4.1 An overview .. 13

2.4.2 The lifecycle of a View Model component ... 15

2.4.3 An example implementation .. 17

2.5 Room library ... 19

2.6 Dependency injection ... 23

2.6.1 An overview .. 23

2.6.2 Dagger library ... 25

3 PRACTICAL PART ... 29

3.1 Design data model .. 30

3.2 Component diagram ... 34

3.3 Dependency injection ... 38

3.3.1 Dagger modules ... 38

3.3.2 The @Binds annotation .. 41

3.3.3 Dagger multi-binding ... 43

3.4 The result .. 49

4 CONCLUSION .. 52

4.1 Android development compared to iOS and cross-platform development 53

4.2 Improvements ... 54

REFERENCES .. 56

4

1 INTRODUCTION

College students often have to spend a fortune for tuition costs. This results in

tight monthly budget which should be enough to pay for good food, study

materials, and other expenses. Choosing what, when and how to buy a product is

a complicated decision. The primary objective of this project is to address the

students' difficulty in making good financial decisions, by creating an Android

application that tracks students' daily purchases, analyses their spending habits,

and proposes good financial decisions.

The motivation for this project is derived from the fact that smart phones,

especially Android, are the must have of college students everywhere.

Apparently, using a mobile application dedicated to finance management is much

more convenient than Microsoft Excel, which is commonly used by students to

record their daily transactions.

A finance application on smart phones is not a new idea. There are already many

applications on the market that serve the same purpose as this project. However,

such applications require monthly subscriptions or in-app purchases to function

properly, which is not affordable for students. This project aims to imitate the

functionalities of finance applications on the market on a single mobile application

and provide it for free.

The rest of this thesis is divided into two parts: Theoretical part and Practical part.

The former part explains the background knowledge of Android development.

This part starts with the concepts of activity and fragment, fundamental Android

components. Followed by these basics are advanced Android libraries such as

Room, Dagger and Live Data. The second part, on the other hand, focuses on

the process of Android development. There are seven sections in this part

corresponding to seven phases of the development process. In each section, the

meaning of each block of code and the application of the theory mentioned in the

Theoretical part will be explained thoroughly.

5

2 THEORECTICAL PART

This chapter introduces the concepts of mobile user experiences, activities,

fragments, the Dagger library, View models, and the Room library. These

concepts are crucial parts of the modern Android development process.

Therefore understanding them will lead to deep and easy comprehension of this

thesis.

2.1 Mobile user experience

It is a common habit that mobile users often interact with multiple applications in

a short period of time. For example, suppose a user wants to take a photo and

share it on a social network such as Facebook. The following task flow usually

happens in such a situation:

1. The user is texting his/her friends on the Messenger application and clicks
“take a photo” button. The Messenger application triggers the default
camera application in the phone and navigates the user to that application.

2. The user takes a photo with the camera application and moves that photo
to a photo editing application, let’s say Adobe, to blur the background of
the photo.

3. Suddenly, a phone call interrupts the process. The user answers the
phone and continues editing the photo.

4. Eventually, the user navigates back to the Messenger application and
shares the photo.

Every application mentioned in the task flow above experiences an interruption,

either expected or unexpected, from another application. The data in those

applications has to be managed carefully so that the user can resume the task

flow he/she has left at any time. This is the reason why the deep understanding

of Android components such as activities and fragments is important. The deeper

understanding of the Android system, the easier developers can optimize the

application. The content of Section 2.2 and 2.3 serves that need where theory,

lifecycle and the implementation of Android activities and fragments are

explained.

6

According to the Android documentation (2020e), a mobile phone is a resource-

constraint machine. This condition of the environment along with the multi-tasking

habit of the users produces a high-pressure resource competition among

applications. Therefore, memory leaks and heavy computing operation will make

the application to crash frequently. To avoid such a terrible situation, good

architecture and programming technique should be taken into account. There are

many approaches for such purpose, but Model-View-ViewModel (Model-View-

ViewModel) and dependency injection are recommended by the Android

community. Overviews of these two concepts will be demonstrated in Section 2.4

and 2.6.

2.2 Activity

A typical Android application is a complex mixture of multiple components,

including activities, fragments, content providers, and broadcast receivers. This

section will give an overview of an Android activity.

According to Android Documentation (2019a), an Android activity displays a

single screen with user interface. It’s likely that the user’s navigation between

screens involves switching from an activity to another. Take Facebook

Messenger as an example. The first screen of the application is a list of past

conversations, which is, behind the scene, rendered by an activity, called

Conversation List Activity. A click on any item of the conversation list would take

the user to a list of messages. This magic is done by replacing Conversation List

Activity (to save memory) with a new activity, called Message List Activity, to

handle message listing and sending.

An Android activity does not stay in the system forever. In fact, it will be removed

from the system, if the user closes the application. According to the Android

documentation (2019a), all processes related to the Android activity that takes

place after the activity is activated and before its termination is called activity

lifecycle. Figure 1 demonstrates all details of the lifecycle of an activity in a

diagram.

7

Figure 1. A simplified illustration of the activity lifecycle (Android Documentation 2019a)

Looking at Figure 1, we can see that the activity will invoke onCreate() method

on its first launch. At this point, the activity has just woken up and does not

display anything on the screen. The process then continues with onStart()

method to render all view components whose functionality and animation are not

8

available until onResume() is called. After these methods finish, the activity

becomes active and ready to serve users' interaction.

From a programmer's perspective, the methods mentioned above are called

lifecycle call-backs and they are responsible for running all the code of an

application. In other words, not a single line of code will be executed unless it is

located in one of the lifecycle call-backs. Due to these crucial reasons, it is

important for programmers to understand the conceptual and implementation

information of each lifecycle call-back. The detailed description of these call-

backs, based on Android Documentation (2019a), will be shown in the following

paragraphs.

onCreate() method: This method is called only once on activity creation. Basic

start-up logic, such as declaring and binding data to the user interface, initializing

variables, must reside in this method. Figure 2 shows an example of onCreate()

implementation.

Figure 2. An example of onCreate() implementation (Android Documentation 2019a)

9

onStart() method: At the end of onCreate(), the activity enters the Started state

and executes the onStart() method very quickly. This method renders user

interface components on the screen and prepares for the activity to enter the

foreground. Unlike onCreate() method, which contains the majority of

development code, onStart() is barely used by programmers. The reason lies on

the short execution time of this call-back. onStart() keeps the activity to stay in

the Started state in which the application is unresponsive. Therefore, the Android

OS attempts to get out of the Started state quickly.

onResume() method: After onStart(), the Android activity continues with

onResume() method, and enters the Resumed state. Having view components

prepared by onStart() method, the activity is now responsive to every user's

interaction. In other words, at the Resumed state, the start-up process of the

activity finally ends. Unlike onStart() callback with the short longevity,

onResume() never ends until an interruptive event occurs. For instance,

onResume() will stop if the user presses on the Back button, or launches a new

activity, or makes a phone call. If the activity returns from these events, it will

enter the Resumed state and execute onResume(). For this reason,

programmers should implement onResume() to assign resources (such as

camera and text files) or to initialize variables.

onPause() method: Whenever an event interrupts a running activity, the

onPause() method is called. This method swipes the activity from the foreground.

Similar to the onPause() method, Android OS executes onPause() briefly. This is

the reason why heavy-load operation, such as network calls and database

transactions, should not occur during onPause().

onStop() method: The system invokes onStop() call-back on the activity's

termination, or the user's navigation to another activity. onStop() is the

recommended place for time-consuming operations. Such operations might be

releasing resources, pausing animations, shutting down CPU-intensive

performance, or saving data to database.

10

onDestroy(): The system invokes this call-back during the activity's termination.

All remaining resources that haven't been released on onStop() should be finally

released here.

Knowing the concept of the Android activity and its call-backs is only one part of

understanding the Android development process. The next concept that we will

focus on is the Android fragment.

2.3 Fragment

This section will introduce the concept of the Android fragment. The information

of this section derives from the Android Documentation (2019b), which is an

overview provided by Google about Android fragments and its applications.

To make it simple, a fragment is a sub-activity. In other words, a fragment has all

methods and behaviours of an activity. The only difference is that the operation of

an activity is managed by the application itself, while a fragment is hosted by an

activity. As a result, the fragment's lifecycle is directly affected by the host activity.

Meaning that, when the activity enters the Paused state, so do all fragments in it;

when the activity is destroyed, so are all fragments in it.

As mentioned before, a fragment contains methods similar to an activity,

including lifecycle call-backs such as onCreate(), onStart(), onPause() and

onStop(). However, there are also lifecycle methods that are specific to the

fragment only, namely onAttach(), onDetach(), onCreateView(),

onDestroyView(), and onActivityCreated() (see also Figure 3).

At a basic level, only onCreate(), onCreateView() and onPause() should be

taken into account due to their significant impacts to the performance of a

fragment. The following paragraphs demonstrate more details about the

implementation and programming recommendations of these methods.

onCreate() method: As the name implied, onCreate() method is where the

initialization of a fragment occurs. Therefore, this method is a good starting point

11

for heavy and non-UI-related operations such as loading data from database,

creating a rich-feature object or fetching user information. It is also recommended

that any component which must be persisted during the entire life of the fragment

should be initialized at onCreate() method.

onCreateView() method: Following onCreate() is the second-important call-

back, onCreateView() upon which the system renders all UI components. It is

common among Android community that variables referencing UI components

are initialized in onCreateView(). Other features of the fragment that requires UI

components should also take place in this method.

onPause() method: This method is an ideal place to save any data and clean up

resources, as the fragment only call this method during its termination.

According to Android Documentation (2019b), besides generic fragments, there

are types of fragments that serve specific needs of users: Dialog Fragment, List

Fragment, and Preference Fragment Compat. Detailed explanation of these

special types of fragments will be shown in the following paragraphs.

Dialog fragment: In an Android application, it is a common user experience that

sometimes a small window appears to issue error messages or asking for the

user's decision on some tasks. The mechanism behind such windows is the

Dialog fragment. This is a helper class that has all behaviours of a fragment plus

fancy animations such as “floating” in the middle of the screen or the ambient blur

around a dialog. A Dialog fragment is recommended for displaying error or

success signal of a process. It is a bad practice to use Dialog fragments for

displaying a progress bar, because the application’s user interface would be

unresponsive, if the operation takes too long.

12

Figure 3. The lifecycle of a fragment while its activity is running (Android Documentation 2019b)

13

List fragment: It is common to see an Android screen with a list of items. A List

fragment is a candidate that supports such behaviour. It displays a list of items

that are managed by an adapter and provides several methods for managing a

list view, such as the onListItemClick() call-back to handle click events.

However, this fragment has become deprecated lately with the birth of Recycler

views. It is a preferred method for displaying a list using a Recycler view instead

of List view. In such cases, a fragment that includes a Recycler view in its layout

should be created.

Preference Fragment Compat: This kind of fragment displays a hierarchy of

Preference objects as a list. This is used to create a settings screen for your

application.

It is the end of Section 2.3 where the basics of the Android development,

meaning the concept of activities and fragments, should be covered. Knowing the

basics, a developer should continue the learning journey with a clean

architecture. One of the most popular architectures used in Android development

is Model-View-ViewModel, or Model-View-ViewModel. The next part of this thesis

will demonstrate the benefits and usage of the Model-View-ViewModel

architecture.

2.4 The Model-View-ViewModel architecture

2.4.1 An overview

According to Google I/O (2017), in the past, Android developers used to create

large activities and fragments. These components are responsible for both

business and UI logic. This reduces the scalability of the application and

complicates testing process.

To be aware of such problems, the Android community has developed many

patterns that divide activities' and fragments' implementation into smaller and

dedicated components. One of the most popular patterns is the Model-View-View

Model architecture.

14

Looking at Figure 4, we can see the overall relationship among components of

the Model-View-ViewModel architecture. It is obvious that the architecture

establishes a layer hierarchy where View is the outside layer, View Model is the

intermediary and Model is the inner layer. (Chugh 2019.) Each layer can only

communicate with the layer next to them. For example, the View component can

transfer data to View Model, but it is not allowed do the same thing to the Model

and vice versa.

Figure 4. Model-View-ViewModel implementation diagram (Chugh 2019)

The following paragraphs explain in detail the operation and implementation of

each component of the Model-View-ViewModel architecture, based on the

information provided by Android Documentation (2019c).

Model components: As the name implied, components of this type define the

data structure across the application. Model components also hold data both in

persistent database and run-time environment.

View components: All layout files are considered View components. They are

often named after the activity or fragment that host it. For example, the layout file

of Conversation List Activity would be activity_conversation_list. View

components convert data from View Models into human-readable and beautiful

graphical artefacts.

15

View Model components: All data operations should take place in View Model

components. These components either fetch data from the Internet and retrieve it

from the database, and then convert it into user-desired data. The result data is

finally inflated by View components. In other words, View Model components act

as links between the Model and the View components. In some cases, View

Model components also use hooks or call-backs to update the View.

On the whole, the components of the Model-View-ViewModel architecture should

work together in the layer-hierarchy manner to provide not only a reactive but

also high-maintenance application. To optimize these benefits of the Model-View-

ViewModel architecture, each Model-View-ViewModel component should have

only one responsibility. Because Model components are supposed to hold data,

they should not be responsible for rendering graphics, or dealing with business

logic. Likewise, View Model components should fulfil their only responsibility

which is collecting and transforming data. View components, on the other hand,

should do nothing but generate the user interface.

It is this end of section 2.4 where we have covered the overview of the Model-

View-ViewModel architecture. It is important to keep in mind the responsibility of

each Model-View-ViewModel component: Model, View Model and View, and how

they work together to enhance the scalability and ease the maintenance process.

2.4.2 The lifecycle of a View Model component

To understand more about Model-View-ViewModel, we need a much more in-

depth explanation for the View Model components. Let's start with the lifecycle of

a View Model component. As we are already familiar with the Android activity, it

is reasonable to compare the lifecycle of a View Model component to that of an

activity (Figure 5).

16

Figure 5. The lifecycle diagram of a View Model component compared to the lifecycle of the
activity hosting it (Android Documentation 2019c)

As we saw in Figure 5, the View Model component is created when its host

activity is launched. However, when the device is rotated, meaning that the host

activity is restarted by the Android operating system, the View Model component

still persists in the memory. This ensures that when the host activity is brought

back (after the rotation) to the exact same state before the rotation. In other

words, any data held by the View Model component will not be lost after device

rotation.

This feature of the View Model has significant impact on the application's

performance. Suppose that our application frequently makes network calls to

fetch heavy data from a web server. Without the View Model, whenever the

17

device is rotated or a phone call arrives, the data you have just downloaded will

be swiped away. It is a waste of resources since the application may have to

reissue the network calls it has already made. On the contrary, with View Model

and Model-View-ViewModel pattern, no additional network calls are required after

device rotation or configuration changes. (Android documentation 2019c.)

The View Model does not live forever, of course. According to the Android

Documentation (2019c), a View Model component remains in memory until the

lifecycle it's scoped to goes away permanently. In other words, if the View Model

is scoped to an activity, it will be destroyed when the activity is finished. In case

of a fragment, the View Model will remain in the memory until the fragment is

detached.

During the View Model's termination, onClear() method is called. To prevent

memory leaks, all network calls and resources binding should be cleaned up in

the onClear() method.

2.4.3 An example implementation

There is an example on Model-View-ViewModel implementation in Android

Documentation (2019c) that we should pay attention to. This section simply

explains that example in more detail using the concept of the View Model

mentioned in Section 2.4.2.

The context of the example is that we are supposed to build a fragment that

displays a list of users. The first thing to do when implementing the Model-View-

ViewModel architecture is to create components, meaning that there should be at

least one file for the View, the View Model, and the Model, as follows:

• UserProfile.java: This is the Model component responsible for defining
data structure of each user's information in database and run-time
environment. The View Model utilizes this file to retrieve data from the
database and to store that data in the memory.

18

• fragment_user_profile.xml: This is the View component which decides
graphical demonstration of data from the View Model component.

• UserProfileFragment.java: This is the fragment, or UI controller that
glues the View and the View Model components together.

• UserProfileViewModel.java: This is the View Model component whose
job is acquiring and keeping the list of users. Figure 6 illustrates the
implementation of this component.

Figure 6. Implementation of UserProfileViewModel.java (Android Documentation 2019c)

When building a View Model component, programmers need to keep in mind that

“A View Model must never reference a view, lifecycle, or any class that may hold

a reference to the activity context”, according to Android Documentation (2019c).

The reason is that any references to the UI controller, meaning the host activity or

fragment, will be lost on configuration changes due to interruption, such as device

rotation or a phone call. In such cases, the Android operating system creates a

new instance of the host activity (or fragment) with new views, lifecycles, and

context. This means that all references to the old UI controller in the View Model

will be invalid. Consequently, the application will crash because of Null Pointer

Exception.

Last but not least, the UI controller needs to know about its View Model

component. The association between the UI controller and its View Model is

created inside onCreate() method using ViewModelProviders (Figure 7).

19

Figure 7. Creating the association between the UI controller and its View Model component
(Android Documentation 2019c)

To summarize, this chapter described the Model-View-ViewModel (Model-View-

ViewModel) architecture, which is one of the most popular patterns used in

Android development. The end of the chapter provided basic knowledge of the

Model-View-ViewModel components and how to implement those components in

a code project.

2.5 Room library

We will use Room library (or Room for short) to store the users’ data in a

structured database. This section gives an overview of Room and how it fits into

the overall Android system. The knowledge in this section derives from the

Android Documentation (2020a).

Room is built on top of SQLite, which is the traditional database structure of

Android applications. To be more detailed, Room provides an abstraction layer

over SQLite to allow fluent, short and efficient database query. Before the release

of Room, programmers have to write long database query as shown in Figure 8.

With the help of Room, on the other hand, that query can be re-written as shown

in Figure 9.

20

Figure 8. Old-fashioned SQLite database query (Android Documentation 2020a)

Figure 9. Writing SQLite database query with the help of Room (Android Documentation 2020a)

There are three major components in Room: Database, Entity and DAO. The

following paragraphs will introduce more details about these components and

how they work together.

Database: This is the main interface that interacts directly to the underlying

SQLite database. Programmers should create a Database component using an

abstract class that inherits from the RoomDatabase class and has the

@Database annotation above the its declaration.

Entity: An entity is a row in SQL language. However, in Room library, an entity is

understood as a single data type. Each instance of a data type is stored as a row

21

in the table that has the same name as that of the data type it serves. All

properties on the entity class are automatically defined as fields (or columns) in

the database. An entity is created by simply annotating a class with @Entity, as

shown in Figure 10. Furthermore, one or more properties of the entity class has

to be annotated with @PrimaryKey to become the primary key of the table.

Figure 10. An example of creating an entity (Android Documentation 2020a)

DAO: Data Access Object, or DAO, is where we define database queries. To

create a DAO, programmers create either an interface or an abstract class, and

annotates it with @DAO, as shown in Figure 11. Any queries inside a DAO,

should be annotated according to its purpose, such as @Insert for adding data,

@Update for modifying data, @Delete for deleting a row, @Query for retrieving

data. It is noted by Google that at least one abstract method that returns a DAO

should be placed in the Database component.

22

Figure 11. An example of creating a DAO (Android Documentation 2020a)

As stated in the Android Documentation 2020a, Room database is created on the

start-up of the Android application. Because this initialization is expensive, it is

recommended that only one instance of Room database be created and that one

should live as long as the application is running. When the Room database is

created, as we can see in Figure 12, the application uses a DAO to query desired

entities from the database. It is then the job of DAO to utilizes the entity to either

get or set values corresponding to the table columns within the database.

23

Figure 12. Room architecture diagram (Android Documentation 2020a)

Room, in short, is awesome and has made Android development more efficient in

the past few years. Having read this section, readers are now familiar with all

concepts and basic usages of this fascinating library. In the practical part of this

thesis, more advanced techniques with Room will be used and explained later.

So that it is important that concepts of this section will be kept in mind for later

comprehension of this thesis.

2.6 Dependency injection

2.6.1 An overview

Dependency injection (DI) is a popular technique in programming that removes

boilerplate code and increases the scalability and performance. The principle of

DI has become an indispensable criterion of reliable applications. Based on the

24

explanation in the Android documentation (2020f), this section provides an

overview of how dependency injection works and how to use it.

In terms of programming, an application is an orchestration of classes and

objects. In other words, we cannot avoid the fact that a class requires references

to other classes. For example, a Tree class might need references to the Root,

or Trunk, or Leaf classes. These references are called dependencies.

There are three ways for a class to get its dependencies, as follows:

1. The class creates the dependency it needs. In the example above, the
implementation of class Tree would include the initialization of a Root or a
Trunk object (Figure 13).

2. All dependencies of the application are created somewhere, and the class
just grabs whatever dependencies it needs. In the example above, a Root
object may be initialized at the start-up process and kept in the memory,
and whenever a Tree is created, it would grab the instance of Root in the
memory to use.

3. The dependencies are supplied as parameters. In the example above,
suppose that a Tree object requires a Root and a Trunk object, then the
Tree’s constructor requires one parameter of type Root and one of type
Trunk.

Figure 13. The Tree class creating dependencies it needs.

The first option is a bad practice because of the following reasons:

• It is difficult to write a unit test for the Tree class because the real
instances of Root or Trunk cannot be mocked.

• Even small changes in the constructor signature of the Root or Trunk
could force the implementation of the Tree class to change as well.
Imagine if this technique is used across the whole application, small
change in one class results in massive modification of other classes,

25

meaning a small bug can cost a significant amount of time and money to
fix.

The second option is better than the first one, because small changes in the

constructors of any dependencies only result in the modification of a single class.

However, initializing all dependencies at once allocates a significant amount of

hardware resources. This is dangerous, because once the system runs out of

hardware resources, the whole application will crash.

The third option is called dependency injection and is the best technique of all.

This approach allows us to mock all dependencies in testing. In the example of

the Tree class, different implementations of Root can be passed into an instance

of Tree without any further changes. Moreover, this approach only initializes

dependencies when they are needed, and swaps those from the memory that are

not in use anymore. In other words, dependency injection makes the code

testable, scalable and reduces the amount of resource allocation.

There are two types of dependency injections: manual dependency injection and

automatic dependency injection. In Android development, manual dependency

injection uses containers as a way to share instances of classes in different parts

of the application (Android Documentation, 2020b). This approach results in

boilerplate and error-prone code. This is where automatic dependency injection

comes into place. In this approach, libraries such as Dagger and Koin

automatically generate containers for dependencies. It is developers’ job to

annotate which classes are dependencies of which.

2.6.2 Dagger library

In section 2.6.2, we cover the definition and motivation of dependency injection.

In this section, we will learn a specific library called Dagger that handles

dependency injection automatically.

According to Android Documentation 2020c, Dagger provides the following

benefits:

26

• Dagger frees you from writing boilerplate and error-prone code by
automatically generating containers for dependencies.

• Dagger allows developers to decide the longevity of dependencies, so that
unused dependencies will be discarded as soon as possible to save
memory space.

• Dagger generates code at the compile time, so that it is traceable and
performant.

Dagger is powerful but very easy to use. Let’s use Dagger to create

dependencies according to Figure 14. In the figure, the UserRepository class

requires two dependencies, one of type UserLocalDataSource and the other is

UserRemoteDataSource. As stated in section Error! Reference source not f

ound., dependencies should be “injected” as parameters to the constructor. With

that in mind, we define UserRepository as shown in Figure 15.

Figure 14. Dependency diagram of the UserRepository class (Android Documentation 2020c)

Notice that there is an @Inject annotation to the constructor of the

UserRepository class. This annotation tells Dagger to inject dependencies that

match the data type of each parameter. In this case, Dagger inject instances of

UserLocalDataSource and UserRemoteDataSource.

Figure 15. The constructor signature of the UserRepository class

With @Inject annotation, Dagger knows how to initialize a UserRepository

instance, but it has no ideas how to create the UserLocalDataSource and

27

UserRemoteDataSource dependencies. Similarly, @Inject annotations should

be placed at the constructor of these classes, as shown in Figure 16.

Figure 16. The constructor signature of the UserLocalDataSource class and the
UserRemoteDataSource class

When all dependencies already has @Inject annotations, it is required to have a

container responsible for creating and injecting these dependencies at run time.

In Dagger, such containers are called graphs. To create graphs, Dagger needs

an interface with @Component annotation as a guidance. It is developers’ job to

create the signature of this interface, as shown in Figure 17.

Figure 17. A sample signature of the interface responsible for creating and injecting dependencies

When generating the graph from the ApplicationGraph interface, Dagger finds

ways to create the dependency that matches the return type of each method in

the interface. For example, in Figure 17, Dagger browses through the entire code

base to find one and only one class with the name of UserRepository, or at least

a subclass of it. Dagger then searches for all dependencies of this class based

on the class’ constructor. Finally, an implementation of repository() abstract

method is created with all required dependencies.

That being said, creating an object with complicated dependency relationship is

resource consuming. It is worse if such objects are reused multiple times across

28

the application. Singleton, “a software pattern that restricts the instantiation of a

class to one single instance” (Wikipedia, 2020), is an approach to solve such

issue. Any classes with @Singleton annotation will be initialized once and kept in

the memory through entire application (Figure 18). Any usage of such classes

does not require initialization anymore but referencing to memory space instead.

Figure 18. Creating a singleton with the @Singleton annotation

Annotation @Singleton actually represents a Dagger scope which is a longevity

of an object (in memory). In Figure 18, the UserRepository class has the same

@Singleton annotation as ApplicationGraph. This means that the lifetime of the

UserRepository instance is bound to that of the ApplicationGraph instance.

Besides @Singleton annotation, custom scope annotations can be created in

form of a class, as shown in Figure 19. In Dagger, every scope annotation has

the same functionality no matter how it is named. The @MyCustomScope

annotation in Figure 19 has the same functionality as the @Singleton annotation

mentioned above. The final output of the application is still the same if the

@Singleton annotation is completely replaced by @MyCustomScope.

29

Figure 19. A custom scope annotation created in form of a class (Android documentation, 2020d)

Figure 20. Replacing the @Singleton annotation by the @MyCustomScope annotation (Android
documentation, 2020d)

In this section, basics of Dagger including Dagger’s benefits in application

development, graphs and annotations are covered briefly. Dagger is the core

library that constructs the architecture of the mobile application in this project, so

it is important that readers get an overview of Dagger. To make the theory part

easy to read, more advanced topic of Dagger such as multi-binding and sub-

component will be explained later in the practical part of this thesis, where more

complicated situation occurs.

3 PRACTICAL PART

This chapter describes the structure and development process of the Android

application called Fitsu which helps student manage their monthly finances. All

concepts involved in this chapter base on or extend those explained in Chapter

Error! Reference source not found.. Therefore, there will be a significant n

umber of references to chapter 2 for brevity.

30

3.1 Design data model

In terms of programming, an application is an orchestration of classes. Classes

are responsible for either holding data (data class) or performing an action on

data. This section describes classes that store data in the Fitsu application,

following the instructions stated in Android documentation 2020e.

There are three data classes in the Fitsu application: Category, Transaction and

Budget. Each class contains an “ID” field, so that an object can be identified

when stored on the local database. The value of this field is generated randomly

by the UUID class. Room annotations such as @PrimaryKey, @Entity and

@ColumnInfo are used to inform Room library about the properties of the class

and how each property should be treated.

The Category class describes the type of purchased goods such as food,

transportation, health care, etc. This class has three properties: id, title and

color, as shown in Figure 21. As the name implies, the title property is the name

of the category, while color is chosen by the user to graphicallly differentiate one

category from the others. All data of type Category is stored in the database

under the table catagories.

Figure 21. The Category model describing details of the purchased goods

As the name implies, Transaction describes the details of a transaction including

purchase price, date of purchase, category of the purchased goods and optional

description. This class has five properties: id, value, createdAt, categoryId and

description. These properties are stored as columns of the table transactions in

31

the local database. Taking each property detail, the value property holds the

transaction cost; the createdAt property reports the conducted date of the

transaction; the categoryId links the transaction to the category (type of the

purchased goods) it belongs to; the description specifies additional information

in the form of text.

Figure 22. Transaction model describing the details of a transaction

It is essential that the categoryId property is the foreign key that forms the one-

to-many relationship between the transactions table and the categories table.

This means that users can bind as many transactions as they want to a single

category, but each transaction can only refer to exactly one category.

One-to-many relationship is often denoted by the ForeignKey constraint, as

show in Figure 23. However, to my experience, this approach dramatically raises

the compilation time, because the compiler has to generate a large set of rules

among properties of the two tables. DatabaseView is my preferred solution to

solve this issue of the ForeignKey constraint. DatabaseView is a data class with

the @DatabaseView annotation that collects and stores information from multiple

tables from the database to the properties of a class. With DatabaseView, no

rules between the categories table and the transaction tables are formed, which

reduces the compilation time (Figure 24).

32

Figure 23. The ForeignKey constraint establishing the relationship between the categories table
and the transactions table

Figure 24 demonstrates how information from both categories and transactions

table is collected in a single class. Methods that conduct the data operation are

generated by the Room library based on the query statement inside the

@DatabaseView annotation. Because the Room library translates text into code,

naming properties does matter. It is the rule that the names of the selected

columns in the SELECT clause must match those of the class properties. For

example, in Figure 24, the categoryTitle column in the SELECT clause has the

same name of the categoryTitle property of the TransactionDetail class.

33

Figure 24. Joining two tables using the @DatabaseView annotation and an SQL query

With the Category and Transaction data class, the Fitsu application is capable

of storing any details of a transaction. Writing methods to calculating and

analysing those transactions is not problematic anymore, because no

complicated network or caching policy are involved. However, those actions

consume a significant amount of time and CPU power. Storing pre-calculated

results is the approach to address that issue in this thesis. To be more accurate,

the total transaction cost of a particular month is stored in the database under the

budgets table.

Figure 25. The Budget class storing the sum of transactions in a month

In the budgets table, the expense column holds the sum of all transactions in

the month specified by the month column. The value of the expense column can

then be subtracted by the user’s budget stored in the value column to find the

monthly balance. Since the expense value is calculated based on transactions,

34

whenever a transaction is added or modified, the expense value gets updated as

well.

On the whole, the Fitsu applicatiion has three data models: Category,

Transaction and Budget. As for the relationship between these models, the

Transaction model depends on the Category model in the form of one-to-many

relationship, while budget is the holder of pre-calculated sum of monthly

transactions.

Having a design for all the data models, we move to the next step of designing

the system structure in Section 3.2.

3.2 Component diagram

This section demonstrates how components communicate to each other in the

Fitsu application. The idea of this section derives from Figure 26, an architecture

recommended by the Android documentation 2020e. Knowledge of Room library

(section 2.5) and Model-View-ViewModel architecture (section 2.4) will be

referenced across the section, therefore readers should review these concepts

before continue.

In Figure 26, each component stays in its layer and only references to the

components one level below it. For example, the Activity/Fragment layer only

references ViewModel components. The Repository or Remote Data Source

components, although reside in the lower layer, are not referenced by the

Activity/Fragment components.

Moreover, each component depends on exactly one component below it. An

activity in the Activity/Fragment layer must depends on one and only one

ViewModel component. The same rule applies for each ViewModel component,

where exactly one repository is referenced. Components in the Repository layer

are the only exceptions. A repository utilizes both the local database (left side of

Figure 26) and remote data source (right side of Figure 26).

35

Figure 26. Recommended architecture by Android documentation 2020e

Components in the Repository act as data managers. They use data in the local

database to display information to the user, while downloading new updates from

the remote backend server. These updates result in a refresh of the user

interface with the help of LiveData. Using this approach, the database serves as

the single source of truth, and other parts of the application access it using the

Repository components.

This architecture has proved its effectiveness by good feedback from users.

Despite of unstable internet connection, the application with this architecture still

allows users to view information that persists locally. Once the Internet is

available, database is updated in background based on data from the remote

backend server. It is also convenient for developers to manage data flow

because only local database is used to display information on the screen.

Figure 27 illustrates an implementation of the architecture mentioned above in

Fitsu application. The BudgetRepositoryImpl resides in the Repository layer

36

(Figure 26) and references to the database for data. As for remote data source, it

is, however, not available yet due to time restriction. This Repository component

also retrieves data from SharedPrefence, a simple and fast storage for key-value

data.

Figure 27. The BudgetRepositoryImpl class using the local database as the data source

Move to the upper level, the ViewModel level, we take the

AddEditCategoryViewModel class as an example (Figure 28). This class has

components in the one-level lower as dependencies, which is

CategoryRepository. A custom coroutine dispatcher is also involved as a

dependency. This dispatcher is a part of the Coroutine library responsible for

redirecting database operation to the background thread.

37

Figure 28. The AddEditCategoryViewModel depending on the CategoryRepository

Finally, at the last layer of the architecture, a ViewModel is injected by Dagger to

the fragment that needs it. In case of Figure 29, the AddEditCategoryFragment

class has an AddEditCategoryViewModel object as a dependency. Unlike a

ViewModel where dependencies are passed as parameters, dependencies are

injected as fields to fragments. Since this section only focuses on the architecture

side, more details about injecting dependencies as fields will be discussed further

in section 3.3.

Figure 29. The AddEditCategoryFragment class with AddEditCategoryViewModel object as a
dependency

On the whole, data is driven from the database to the user interface through four

layers: the Database layer, the Repository layer, the ViewModel layer and

finally the Activities/Fragments layer. Each layer depends on the components

one level below it. Design the application this way produces pleasant user

experience as data is always available for shown.

Some implementations of this design from the Fitsu application are demonstrated

in this section. However, dependency injection, on which this design relies, is not

38

taken into account in this section for cohesion. This topic will be discussed further

in section 3.3.

3.3 Dependency injection

An overview of dependency injection was already introduced in Section 2.6. This

section discusses further the dependency injection in practical situations.

Moreover, advanced concepts such as modules, field injection, multi-binding and

subcomponent will be explained in the real context of the Fitsu application.

3.3.1 Dagger modules

The Dagger module is the first topic taken into account in this section. Figure 30

shows the root Dagger graph of the Fitsu application. The modules property of

the @Component annotation is filled with -Module suffix classes. These classes

are called modules.

As explained in Section 2.6.2 that any classes’ constructors with the @Inject

annotation will be initialized and injected to appropriate places by Dagger.

However, constructors of classes provided by third parties and the Android

framework does not have the @Inject annotation, meaning that Dagger must be

informed of how the objects of these classes are initialized. This is where Dagger

modules come in. A Dagger module is a class that provides object initialization

methods of un-injectable (unable to have the @Inject annotation in the

constructor) classes.

Figure 31 demonstrates an implementation of a Dagger module. Having the

@Module annotation at the declaration, the LocalStorageModule class is

treated as a module by Dagger. In its body, any classes with the @Provides

annotation is considered an initialization method. In this section, such methods

are called provider method for short. As section 2.6.2 introduced, Dagger only

takes the type of a method. The same rule applies for provider methods. When

the application is running, Dagger calls a provider method whenever its type

matches exactly that of the required dependency.

39

Figure 30. The AppComponent class (Dagger graph) with dependencies for the whole Fitsu
application.

It is also important that all modules are included in the Dagger graph. This can be

done by assigning the modules property with the array of the modules’ class

names. In case of missing modules, Dagger will crash the compilation process

and print error messages as shown in Figure 32.

40

Figure 31. The LocalStorageModule class with provision methods of the Room database and
the SharedPreferences object

Figure 32. An error message about the missing provider method for the FitsuDatabase

41

3.3.2 The @Binds annotation

In programming, an interface can be extended by multiple classes or interfaces.

Therefore, it is widely used to group a set of related classes or to define

obligatory properties and methods of some classes. In the Fitsu application,

however, interfaces are used for a more specific reason, that is, creating multiple

versions of an object. For example, suppose we want to use different versions of

a CategoryRepository object: one for the real application and one for testing. To

accomplish this, we create a CategoryRepository interface with two

implementations: the CategoryRepositoryImpl class for the real application and

the FakeCategoryRepository class for testing. The only thing left is to tell

Dagger to inject the CategoryRepositoryImpl version of the

CategoryRepository type in the real application and the

FakeCategoryRepository in the testing environment. This is where the @Binds

annotation comes in.

According to the Dagger documentation (2020b), the @Binds annotation is used

for “abstract methods of a Module that delegate bindings”. For example, to create

the CategoryRepositoryImpl version of a CategoryRepository object, a

module similar to Figure 33 must be used. It is also vital that the

CategoryRepositoryImpl class has the @Inject annotation in its constructor.

The @Binds annotation has many rules that we need to follow. First of all,

annotated methods must be abstract. Secondly, one and only one parameter is

allowed. This parameter must also satisfy the fact that its type is the child class of

the return type of the method. For example, in Figure 33, the type of the repo

parameter is CategoryRepositoryImpl which is a subclass of the

CategoryRepository class.

Regarding testing, the same template is used to create a testing version of a

CategoryRepository object, as shown in Figure 34. Even though the syntax is

the same, the testing version of a CategoryRepository object can only be

created if the FakeRepositoryModule is included in the testing Dagger graph, as

shown in Figure 35.

42

Figure 33. The RepositoryModule class instructing Dagger to create the
CategoryRepositoryImpl version of the CategoryRepository object

Figure 34. The FakeRepositoryModule class instructing Dagger to create a testing version of the
CategoryRepository object

43

Figure 35. The FakeRepositoryModule class included in the TestAppComponent for testing

In short, the @Binds annotation is a powerful tool to instantiate multiple versions

of an object in Dagger. A method that has the @Binds annotation must be

abstract and must have exactly one parameter whose type is a child of the return

type. The @Binds annotation along with @Provides and @Inject provides a

perfect solution for Dagger to create any objects in any situation.

3.3.3 Dagger multi-binding

This section focuses on the multi-binding feature of Dagger. It first explains the

reason of using multi-binding in the Fitsu application and then the usage of this

feature with code base.

Besides removing boilerplate code and increasing the scalability of the

application, Dagger introduces a problem regarding the ViewModel instantiation.

A ViewModel object cannot be instantiated directly by calling its constructor. A

factory class extending the ViewModelProvider.Factory is used instead. It is

apparent that Dagger has no idea about such classes. Multi-binding is one way of

telling Dagger how to instantiate ViewModel objects in this situation.

44

According to Dagger documentation (2020a), the multi-binding feature binds

several objects of the same type to a collection or a map. With this feature,

Dagger is capable of creating a map of all ViewModel objects where keys are

class names and values are the corresponding class providers. This map can

then be injected to the FitsuViewModelFactory class (Figure 36) that uses the

map to create ViewModel objects automatically. The implementation of this class

is forked from the Android Github (2020).

The functionality of the FitsuViewModelFactory class is simple. It implements

the create() method of the ViewModelProvider.Factory interface, which is used

by the Android framework to instantiate a ViewModel object. Using the map of

ViewModel objects injected by Dagger, FitsuViewModelFactory searches for

the provider whose class name matches exactly that stored in the modelClass

parameter. Once the provider is found, FitsuViewModelFactory calls the get()

method to create the desired ViewModel object. If there is no provider that meets

the requirement, FitsuViewModelFactory retries searching. Unlike the first

attempt where the ViewModel’s class name is used as the search key, it finds

the children class of the desired ViewModel instead. After the second attempt, if

no provider is found, FitsuViewModelFactory throws an exception to crash the

application immediately. (Android Github 2020.)

Next, Dagger needs to know how to inject the FitsuViewModelFactory. One

approach is to use the @Binds annotation (Section 3.3.2). The

ViewModelModule class in Figure 37 forces Dagger to inject the Fitsu

application’s version of ViewModelProvider.Factory, which is the

FitsuViewModelFactory class, instead of the default class of the Android

framework.

45

Figure 36. A custom factory that creates ViewModel objects using a map

Figure 37. The ViewModelBuilderModule instructs Dagger to inject a FitsuViewModelFactory
whenever a dependency of type ViewModelProvider.Factory is required

Next, we move to the part where the multi-binding feature shows its potential

capability. As mentioned before multi-binding is used in this application to create

a map of ViewModel objects. This map, just like other maps, is a list of key-value

pair where keys are the ViewModel’s class name and the values are the

corresponding Provider objects. Thanks to the Dagger’s intelligence, developers

only need to specify a unique key for each ViewModel object. Such keys can be

generated automatically using the annotation class in Figure 38. This class

utilizes the class name of the ViewModel object to produce a unique key.

46

Figure 38. The ViewModelKey class generating keys for the ViewModel map based on the
objects’ class name.

Figure 39 demonstrates how the ViewModelKey annotation is used. Upon the

method declaration of a ViewModel is the ViewModelKey annotation with the

class name of the ViewModel as a parameter. It is vital that the parameter must

be nothing than the class name of a ViewModel class, meaning the

ViewModelKey annotation can only be used by the ViewModel classes.

Figure 39. The @ViewModelKey annotation generating a unique key based on the class name of
the AddEditCategoryViewModel class

With the @ViewModelKey annotation, Dagger now fully understands the

instantiation of the map of all ViewModel objects. It is time to attach all

components mentioned above using a component as shown in Figure 40. The

AddEditCategoryComponent interface instructs Dagger to create a graph that

is responsible for creating the AddEditCategoryViewModel object. The body of

the AddEditCategoryComponent interface also has the inject() function for field

injection in the AddEditCategoryFragment class.

47

Figure 40. The AddEditCategoryComponent graph being responsible for creating the
AddEditCategoryViewModel object and inject it into the AddEditCategoryFragment class.

It is time to discuss field injection. This feature of Dagger aims for classes whose

constructor cannot be interfered, meaning the @Inject annotation is unable to be

attached to the constructor’s signature. In the current context, it is the

AddEditCategoryFragment class that needs field injection. Obviously, the

AddEditCategoryFragment class is a fragment where Android OS takes control

of the initialization.

Field injection can be easily achieved using the inject() method (mentioned in

Figure 40) in the AddEditCategoryFragment class, as shown in the onAttach()

method. The length of the Dagger code in the onAttach() method seems to be

long, but the operation behind the scene is simple. The first line grabs the unique

instance of the root Dagger graph, appComponent, then references to the sub-

graph AddEditCategoryComponent in the next two lines, and finally calls the

inject() method to inject dependencies to the fragment. Last but not least, the

@Inject annotation is attached with the public variable viewModelFactory, so

that Dagger knows to which variable the instance of the FitsuViewModelFactory

class needs to be assigned.

48

Figure 41. The FitsuViewModelFactory object injected in the AddEditCategoryFragment class
using field injection

Overall, ViewModel objects are injected into every fragment properly, thanks to

the multi-binding feature of Dagger and a custom ViewModel factory class.

Besides the multi-binding feature, this section also demonstrates how

dependencies can be injected as fields instead of constructor’s parameters.

Moving on to conclude Section 3.3, although this section’s purpose is explaining

the implementation of dependency injection in the Fitsu application, several new

concepts are involved, which may make Dagger library become complicated for

readers. However, from the point of view of a person who tried hard-coded

dependency and manual dependency injection, Dagger does remove a dramatic

amount of boilerplate code. With Dagger, developers are able to view, manage

and maintain the overall dependency graph right in the code base.

49

3.4 The result

The source code of the application can be found on GitHub via this link:

https://github.com/buiquanghuy23103/Fitsu

With the Fitsu application, users are free to add as many transactions as they

want. All details of a transaction from the money value to the date or type of

purchases are taken into account. On the left part of Figure 42, all transactions

are listed neatly with easy-to-read text. Percentage rate of each category with

colors are shown right below the history of all transactions.

Figure 42. Fitsu transaction design

https://github.com/buiquanghuy23103/Fitsu

50

On the Transaction History screen, whenever a transaction is clicked, a form

will appear and allow users to edit every detail of the transaction. These changes

can then be either discarded by simply navigating back or saved to the database

on the Save button click. The transaction can also be deleted on the Delete

button click.

Figure 43. Fitsu category design

Regarding categories of purchases, the Categories screen displays all the

necessary information about them (Figure 43). Each category is distinguished by

colors and names chosen by the users. Users are free to add as many categories

as they want by simply clicking the rounded button at the right-bottom corner of

51

the screen. Behind the scene, clicking this button will create an empty category

and bring users to the Edit category screen for editing.

A click on a certain category will navigate to the form to edit that category.

Similarly, to the edit form of a transaction, every detail of a category can be

modified in the Edit category screen. All changes can be saved by a Save

button click or discarded when navigating back. Deleting a category, however, is

different from doing so with a transaction. Since there may be more than one

transaction belonging to a single category, deleting a category results deleting its

corresponding transactions. Due to the danger of this action, a dialog box will

show up, as shown in Figure 44, to warn the users before any further actions are

taken.

52

Figure 44. A dialog box will warn the users on the attempt of deleting a category

4 CONCLUSION

The goal of this thesis was to build a simple application that helps students

manage their personal finances. Overall, that goal was achieved, meaning that

an application with a few features for finance management was able to run

successfully on real devices.

53

4.1 Android development compared to iOS and cross-platform

development

Throughout the process, I experienced what people have been saying about the

Android development: building and maintaining an Android application is

frustrated and time-consuming. The complications of the Android development

comes from the fact that the Android operating system runs on multiple devices,

screen sizes and platforms. Compared to the iOS development, where target

devices are limited to iPads and iPhones only, the Android development takes

around 30-40% more time, according to Gupta (2019).

Despite long development time, Android platform still attracts developers due to

its large market share. Android platform has beaten the others by 70.68% of the

mobile operating system market share worldwide, at the time of writing, according

to Global Stats (2020a). Regarding Finland only, the number of Android phones

far outweigh its opponents with 72.8% of the market share in April 2020,

according to Global Stats (2020b).

Some might wonder why cross-platforms such as React Native, Xamarin and

Flutter where a single code base can run on both Android and iOS operating

system were not used to deploy this project. To my knowledge, applications

developed by the native approach outweigh those developed by either React

Native, or Xamarin or Flutter in terms of performance. According to InVerita

(2020), when calculating the Borwein algorithm, native Android applications

encounter less CPU stress than Flutter applications by two times and React

Native application by six times (Figure 45).

54

Figure 45. CPU-intensive test (Borwein algorithm) for Android (InVerita, 2020)

Another reason that cross-platform approaches are not taken into account in this

thesis is that iOS development requires the Mac OS X operating system. In other

words, only Apple products such as Macbook, iMac, or Mac mini are suitable for

iOS development. Because such products are unaffordable for a student, I do not

have a chance to run cross-platform code on real devices or emulators.

4.2 Improvements

As previously stated, the Fitsu application is only a simple application to manage

personal finances. However, it can be considered as the foundation for further

developments to achieve a beautiful, stable, high-performance Android

application. There are several improvements that can be taken into account

including the following:

• Unit tests and instrumented tests should be a part of the code base. These
tests automatically check every feature of the application from the user
interface to the business logic. Therefore error-prone modifications on the
code base will be avoided at the highest possibility.

• More animations and transitions should be taken into account. Movements
of graphical object should be both smooth and natural. Although such

55

graphical effects do not contribute to the feature list of the application, they
increase the user experience. According to my observation, most graded
applications are the ones with most satisfied user experience on the
graphical design and movements. Therefore, making the application more
beautiful is not less important than making it useful.

• Adding more custom budget plans might be a good idea. To be more
accurate, there will be a dedicated screen for users to create their budget
plan such as buying a laptop with EUR 500. This budget plan then is taken
into account when calculating monthly expense and savings. Users are
able to know how far their savings toward the desired goal is.

In conclusion, the process of building the Fitsu application included many

complicated concepts, techniques and effort. Quite a significant amount of basic

knowledge about the Android activities, fragments, lifecycles, and database need

to be prepared before taking the first steps into the Android development world.

Following the sequence of Android concepts, several design patterns were

introduced such as the Model-View-ViewModel architecture and dependency

injection. These patterns ensure the stability and scalability of the application.

With guidance of the patterns, libraries such as Room for database and Dagger

for dependency injection were utilised efficiently to reduce the stressfulness of

the development. At the end of the thesis, a new application was born with simple

features for managing the personal finance. Although the application is not

production-qualified, it becomes a firm foundation for further improvements in the

near future due to the good practice of architectures.

56

REFERENCES

Android Documentation, 2019a. Understand the activity lifecycle. WWW
document. Available at:
https://developer.android.com/guide/components/activities/activity-lifecycle
[Accessed 10 December 2019].

Android Documentation, 2019b. Fragments. WWW document. Available at:
https://developer.android.com/guide/components/fragments [Accessed 20
December 2019].

Android Documentation, 2019c. Viewmodel overview. WWW document. Available
at: https://developer.android.com/topic/libraries/architecture/viewmodel#java
[Accessed 31 December 2019].

Android Documentation, 2020a. Save data in a local database using Room.
WWW document. Available at https://developer.android.com/training/data-
storage/room?hl=en [Accessed 1 March 2020]

Android Documentation, 2020b. Manual dependency injection. WWW document.
Available at https://developer.android.com/training/dependency-
injection/manual?hl=en [Accessed 29 April 2020]

Android Documentation, 2020c. Manual dependency injection. WWW document.
Available at https://developer.android.com/training/dependency-injection/dagger-
basics?hl=en [Accessed 29 April 2020]

Android Documentation, 2020d. Dagger basics. WWW document. Available at
https://developer.android.com/training/dependency-injection/dagger-basics?hl=en
[Accessed 30 April 2020]

Android documentation, 2020e. Guide to architecture. WWW document.
Available at https://developer.android.com/jetpack/docs/guide [Accessed 30 April
2020]

Android documentation, 2020f. Dependency injection in Android. Available at
https://developer.android.com/training/dependency-injection [Accessed 30 April
2020]

Android Github, 2020. Android Architecture Blueprints v2. WWW document.
Available at https://github.com/android/architecture-samples/tree/dagger-android
[Accessed 2 May 2020]

Amit Gupta, April 2019. “Android Vs. iOS Development – Which Platform is better
and Why?”. WWW document. Available at https://blog.sagipl.com/android-vs-ios-
development [Accessed 4 May 2020]

https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/fragments
https://developer.android.com/topic/libraries/architecture/viewmodel#java
https://developer.android.com/training/data-storage/room?hl=en
https://developer.android.com/training/data-storage/room?hl=en
https://developer.android.com/training/dependency-injection/manual?hl=en
https://developer.android.com/training/dependency-injection/manual?hl=en
https://developer.android.com/training/dependency-injection/dagger-basics?hl=en
https://developer.android.com/training/dependency-injection/dagger-basics?hl=en
https://developer.android.com/training/dependency-injection/dagger-basics?hl=en
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/training/dependency-injection
https://github.com/android/architecture-samples/tree/dagger-android
https://blog.sagipl.com/android-vs-ios-development
https://blog.sagipl.com/android-vs-ios-development

57

Chugh, 2019. Android Model-View-ViewModel design pattern. WWW document.
Available at: https://www.journaldev.com/20292/android-Model-View-ViewModel-
design-pattern [Accessed 31 December 2019].

Dagger documentation, 2020a. Multibindings. WWW document. Available at
https://dagger.dev/dev-guide/multibindings.html [Accessed 2 May 2020]

Dagger documentation, 2020b. Annotation Type Binds. WWW document.
https://dagger.dev/api/latest/dagger/Binds.html [Accessed 3 May 2020]

Global Stats, May 2020a. Mobile Operating System Market Share Worldwide.
WWW document. https://gs.statcounter.com/os-market-share/mobile/worldwide
[Accessed 4 May 2020]

Global Stats, May 2020b. Mobile Operating System Market Share Finland. WWW
document. https://gs.statcounter.com/os-market-share/mobile/finland [Accessed
4 May 2020]

Google I/O, 2017. Architecture Components – Introduction. WWW document.
https://www.youtube.com/watch?v=FrteWKKVyzI [Accessed 9 May 2020]

InVerita, March 2020. Flutter vs Native vs React-Native: Examining performance.
WWW document. https://medium.com/swlh/flutter-vs-native-vs-react-native-
examining-performance-31338f081980 [Accessed 4 May 2020]

Wikipedia, April 2020. Singleton pattern. WWW document. Available at
https://en.wikipedia.org/wiki/Singleton_pattern [Accessed 20 April 2020]

Waters, D. (ed.) 2016. Global logistics. New directions in supply chain
management. 5th edition. London: Kogan Pane

https://www.journaldev.com/20292/android-mvvm-design-pattern
https://www.journaldev.com/20292/android-mvvm-design-pattern
https://dagger.dev/dev-guide/multibindings.html
https://dagger.dev/api/latest/dagger/Binds.html
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/finland
https://www.youtube.com/watch?v=FrteWKKVyzI
https://medium.com/swlh/flutter-vs-native-vs-react-native-examining-performance-31338f081980
https://medium.com/swlh/flutter-vs-native-vs-react-native-examining-performance-31338f081980
https://en.wikipedia.org/wiki/Singleton_pattern

