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Context-free grammar is a fundamental tool in software technologies. It is present in almost 
all aspects of software developments, from construction of software in programming lan-
guages and compilers to applications such as data transmission, storage and presentation. 
This thesis aims to introduce context-free grammar and parsing context-free language to 
beginners by answering three questions – what context-free grammars are, what parsing 
context-free language means and how to parse context-free languages. 
 
The motivation for context-free grammar is shown through its ordinary usages in daily signs, 
forms and numerical formulae. Having established that context-free grammar is used to de-
scribe structured information, its ability to do so is showcased further through examples in 
numerical expressions and programming languages. 
 
Concrete examples and detailed illustrations are provided to show what parsing context-free 
language means and how to do so. To complete the introduction to parsing context-free 
language, an example parsing algorithm is provided. The algorithm is constructed on the 
idea of simulating left-most reduction on an input string and its implementation is based on 
a procedure called the DK-test, which is meant for determining if a context-free grammar is 
deterministic. This example parsing algorithm is rudimentary and limited in power, but it in-
corporates ideas adaptable to more advanced parsing algorithms, making it an ideal starting 
point for the study of parsing context-free languages. 

Keywords parsing, context-free language, context-free grammar, intro-
duction to parsing 
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1 Introduction 

This thesis aims at providing a full fundamental overview on how to parse context-free 

language, from motivation to minimal example implementation. Context-free language 

and context-free grammar may have faded into the background of modern software tech-

nologies, but they are the backbone of software development today. Almost all modern 

programming languages at the time of writing are described using context-free grammar 

either entirely or only for the context-free part of the language. 

One of the most widely used programming languages – the programming language C – 

has its syntax described by a context-free grammar. Fundamental questions encoun-

tered when reading a piece of programming code in C, such as what is a number, string 

or whitespace. Which concepts are high-level compared to raw bits or plain text, can be 

answered by the syntax of the language [1], providing a well-defined and intuitive struc-

ture to interpret the language. 

The same method is applied to describe other languages such as Java [2] and Haskell 

[3], which have even higher-level concepts than numbers and strings, such as functions, 

classes and modules. In addition, there are many other concepts in programming lan-

guages such as data declaration, function call, inheritance declaration, pattern matching 

etc. that need to be expressible by text and fit into their larger language semantically. 

Otherwise,  today’s programming practice would not have been so effortless.  Another 

software facilitator constructed with context-free grammar is the data format JSON, 

which allows expressing structured data of record types in text. In fact, JSON is entirely 

described by a context-free grammar [4]. Compared to raw binary data, JSON is much 

more intuitive. JSON is widely used in web application and other applications for data 

storage and formatting, an example of which is glTF 2.0, a format for carrying 3D scenes 

and models utilizing JSON [5]. 

Context-free grammar brings a higher level of abstraction to the fundamental tools of 

software technology such as programming languages and data formats. Without context-

free grammar, high-level programming would not have been possible because imple-

menting high-level programming languages would have been much more difficult if not 

impossible. How can ideas such as “function”, “class” and “module” be expressed in text? 

How can strings of digits be distinguished from strings of punctuations and still fit into the 

meaningful scheme of the larger language? And most importantly, how can the answers 
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to these questions be documented in a well-defined structure so that they can easily be 

consumed and developed further? Context-free grammar is one answer to these ques-

tions. The goal of this thesis is to explain what context-free grammar is and produce a 

rudimentary algorithm to parse context-free language for learning purposes. 

2 Motivation for context-free grammar 

This section introduces context-free grammar through three examples. The first example 

is an opening hour sign, which contains only text but can tell a reader on which day of 

the week and during what time a shop is open. What gives meaning to the sign is not 

only the text but also the structure of the text. Figure 1 shows an example opening hour 

sign. 

 

Figure 1. Example of an opening hour sign 

In figure 1, the opening hour sign has three lines with similar structure. The structure can 

be described as follows. Each line starts with a range of days of the week or just one day 

(where the days are MON, TUE, WED, THU, FRI, SAT, SUN) followed by a colon, fol-

lowed by a range of hours in the day or the word closed (where the hours are 00, 01, 

02, 03, 04, 05, 06, 07, 08, 08, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23). 

Because of this known structure, the opening hour of the shop is known. 

The second example is an application form detailing the applicant's name, age and ad-

dress, shown in figure 2. 
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Figure 2. Example of application form detailing applicant's name, age and address 

The subtle difference between this application form and the opening hour sign in figure 

1 is that the latter is finite in length, but the former is potentially infinite. Name, age and 

address are arbitrary depending on customs, countries and cultures, having no fixed 

length. In contrast, the opening hour sign described cannot have a line exceeding a cer-

tain length because of the fixed possible patterns for days of the week, hours of the day 

and the fixed structure which glues them together into ranges. 

The potential growth in length of a name in the application form can be expressed by 

saying: a name is a sequence of characters. This is not clear in terms of being ex-

plicit―what is a sequence, are empty names allowed? Establishing that the application 

form does not allow undisclosed name or address but allows undisclosed age, their syn-

tax is as follows. Name is a sequence of at least one character. A sequence of at least 

one character is either a single character or a single character followed by a sequence 

of at least one character. This is rather lengthy―a more notational description could be 

employed [6, p.103]. 

𝑁 → 𝑆 

𝑆 → 𝐶 

𝑆 → 𝐶𝑆 

𝑤ℎ𝑒𝑟𝑒 𝑁 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑎𝑚𝑒, 𝑆 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑎𝑛𝑑 

𝐶 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛𝑦 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 

Figure 3 illustrates this syntax on the name in the application form from figure 2. 
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Figure 3. Structure of “a sequence of at least one character” (each circle represents a sequence 
of at least one character, which includes “z” because it is a sequence of one character)  

This definition of character sequence is recursive, allowing its length to potentially grow 

to infinity from one. Figure 3 illustrates this on a sequence of seven characters, Abc Xyz, 

which is the character A followed by a sequence of characters starting with b and is 

followed by another sequence of characters starting with c and so on, ending with the 

sequence of a single character z. Because the applicant’s name is a sequence of at least 

one character, empty name is not allowed. In contrast, empty age is allowed, therefore, 

age can be described as a sequence of zero or more digits. Figure 4 illustrates this syn-

tax of optional age on the age from figure 2. 

 

Figure 4. Structure of “a sequence of zero or more digits” (each circle represents a sequence of 
zero or more digits, ɛ denotes empty sequence) 
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The syntax of age and name are similar, except that an age can be empty while a name 

must have at least one character. Figure 4 shows this difference when compared to fig-

ure 3 through the position of ɛ compared to the position of the dot under character z. 

The last example for context-free grammar is the simple numerical expression 3 ∗ 5 +

6 ∕ (4 ∗ 8 + 2) . At first glance this seems more structurally complex than the opening 

hour sign and application form in figure 1 and figure 2. The observed complexity comes 

from unclear grouping of the symbols. In figure 1 and figure 2, there is clear structuring 

of symbols into lines and left-right sections relative to the colons. One way to interpret 

3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) similarly is to dissect it with the same principle in mind―so that the 

components are clearly separated instead of lumping together in one line by considering 

3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) an addition of two terms: 3 ∗ 5 and 6 ∕ (4 ∗ 8 + 2). 

+ 

 3 ∗ 5 

6 ∕ (4 ∗ 8 + 2) 

This agrees with the convention of operator precedence where ∗ and ∕ bind more 

strongly than +, or in another word, have higher precedence over +. This means, math-

ematically, 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) is equivalent to (3 ∗ 5) + (6 ∕ (4 ∗ 8 + 2)), and not 

equivalent to 3 ∗ (5 + 6) ∕ (4 ∗ 8 + 2). By the same convention, ∗ and ∕ have equal prec-

edence and parentheses, ( ), denote grouping. This leads to the full detailed structuring 

of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) in figure 5. 
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Figure 5. Structure of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) considering operator precedence and parentheses 
grouping 

A pattern emerges in figure 5. Operands of + are either multiplications, divisions or num-

bers. Operands of ∗ or ∕ are either numbers or expressions in parentheses. These ob-

servations help define the syntax of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2). However, this description 

does not account for typical numerical expressions―for example, it does not say that 

operands of + can also be numbers and other numerical expressions. Listing 1 shows 

an improved description, written in a similar style as the description of names in the ap-

plication form, with the addition of the symbol ‘|’ to express alternatives. 

𝐸 → 𝑇 + 𝑇 | 𝐹 

𝑇 → 𝐴 ∗ 𝐴 | 𝐴 𝐴⁄  | 𝐴 

𝐴 → 𝑁 | (𝐸) 

𝑁 → 𝐷 | 𝐷𝑁 

𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

𝑤ℎ𝑒𝑟𝑒 

𝐸 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 

𝑇 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑛𝑑 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛, 

𝐴 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑛𝑑 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛, 

𝑁 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟, 

𝐷 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑑𝑖𝑔𝑖𝑡 

Listing 1. A symbolic description of a possible grammar for 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) 
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Listing 1 shows a symbolic description of the grammar for 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) where 

the grammatical components involved are denoted by capital letters (left-hand sides of 

the arrows) and the vertical bars separate the alternative forms of one grammatical com-

ponent [6, p.109]. The rule for 𝑇 ― 𝑇 → 𝐴 ∗ 𝐴 | 𝐴 𝐴⁄  | 𝐴 ― says it is either a multiplication, 

a division or an 𝐴, which is either a number or an expression in parentheses. An 𝐴 is 

indivisible. This means that when reading 9109 + 6 or 6 / (8 + 4), mathematically, one 

does not interpret them as 910(9 + 6) or (6/8) + 4 respectively. (𝐴 could be thought of 

as “atom” for this indivisibility.) Finally, a number 𝑁 is one or more decimal digits, and 

multiplication or division is only between two atoms. Applying this grammar on 3 ∗ 5 +

6 ∕ (4 ∗ 8 + 2) gives an illustration of its structure in figure 6. 

 

 

Figure 6. Structure of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) following the grammar in listing 1 

By structuring 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) as illustrated in figure 6, the numerical expression is 

"understood" because figure 6 shows exactly what the numbers are in the expression, 

what operations are done on them, what operations are done on the results of those 

operations. 

These three examples show that three different "languages" – strings that tell opening 

hours of a shop, strings carrying an applicant's information and strings that express sim-

ple numerical operations – can be described similarly using what is called context-free 
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grammar [6, p.102-106]. Context-free grammar is intuitive, simple in description and 

powerful in application (as the three examples hinted at). Various programming lan-

guages can be described and are described at the time of writing by the principal of 

context-free grammar. Context-free grammar is complex enough to express complex 

programs, human-readable enough to be written and read by humans but also explicit 

enough to be interpreted and compiled by computers. 

3 Expressiveness of context-free grammar 

This section showcases the expressiveness of context-free grammar through two differ-

ent mocked-up languages: a simple type of numerical expression found in calculators 

and functional expressions such as f(a, g(b), f(g)). By demonstrating the expressiveness 

of context-free grammar through these example languages, the components of a con-

text-free grammar are informally introduced in their natural habitats. 

3.1 Numerical expression 

This section shows how numerical expressions with operator precedence can be de-

scribed by a context-free grammar [6, p.103-106]. The type of numerical expression we 

aim to describe are numerical expressions with only integers, parenthesized expres-

sions, exponentiation, negation, multiplication, division, addition, and subtraction. The 

simplest numerical expression is a positive integer such as 101, which we will custom-

arily call a number in this section. In the grammar, negative integers such as -101 are 

treated specially, as a negation of a number, not directly a number. 

Example 1. A few example numerical expressions are 

(1) 101 

(2) −101 

(3) 101 + 101 

(4) 1 + 2 + 3 

(5) (1 + 2) ∗ 3 − 4 
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The numerical expressions in example 1 (from (1) to (5)) increase in complexity. The key 

to seeing their structure is constructing them from a number and building up to a com-

pound expression. For example, (1) is a number, 101, the simplest kind of numerical 

expression. (2) is a negated number, −101, which consists of a minus sign followed by 

a number. (3) is an addition between two numbers, which consists of a number followed 

by a + sign, followed by another number. Addition can also be between other numerical 

expressions; this is hinted at by (5) showing a multiplication between parenthesized ex-

pressions (1 + 2) and the number 3. A typical numerical expression is a compound ex-

pression made of sub-expressions combined by operators. 

Employing a similar strategy, the key to constructing a grammar for numerical expression 

is to start with describing primitive expressions such as numbers and then describe how 

expressions can be combined into larger compound expressions, thus completing the 

description of all desired numerical expressions. However, to describe numerical expres-

sions in this way, we must define what are “primitive” expressions. In fact, this “primitive” 

concept is a special case of operator precedence or binding strength. To clarify this, we 

examine the numerical expression 1 ∗ 3 + 4, which is interpreted as (1 ∗ 3) + 4 but not 

1 ∗ (3 + 4). In mathematical convention, the multiplication operator ∗ has a higher prec-

edence than the addition operator +. Another way of interpreting this is that the multipli-

cation expression 1 ∗ 3 binds more strongly than the addition expression 3 + 4, which is 

why the addition cannot “take” the operand 3 from the multiplication, hence 1 ∗ 3 + 4 is 

interpreted as (1 ∗ 3) + 4 but not 1 ∗ (3 + 4).  With this, the grammar can be outlined by 

defining expressions with higher binding strength (precedence) such as numbers and 

numerical expressions in brackets first, then defining compound expressions with in-

creasing precedence level such as exponentiation, negation, multiplication/division, ad-

dition/subtraction. 

Numbers are written with digits, specifically we choose decimal digits 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9. In the grammar, a number is represented by a symbol or variable 

𝑁 [6, p.102-104]. Later, when other components of numerical expression such as nega-

tion and multiplication etc. are described, they will be represented with their own varia-

bles. One interpretation for the word “variable” is that a number could be 

1, 2, 100000292, 0, 123 or any possible string of digits; similarly, if 𝑀 represents any mul-

tiplication, it represents any possible multiplication expression. Under this interpretation, 

the word “variable” is an apt name for the symbols that represent a grammatical compo-

nent in a grammar. A decimal digit is denoted by 𝐷. 
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𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

This means a digit can be 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. The vertical bar ‘|’ expresses alterna-

tives. The arrow ‘→’ expresses the idea that given a variable 𝐷, 𝐷 can expand to or derive 

0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 [6, p.104]. With this, a number 𝑁 as a single digit or multiple digits 

is described by 

𝑁 → 𝐷 | 𝐷𝑁 

We can demonstrate the structure of a number according to 𝑁 → 𝐷 | 𝐷𝑁 by deriving a 

number from the variable 𝑁. In derivation, 𝐴 ⟹ 𝐵 means the string 𝐴 derives the string 

𝐵. 𝐴 and 𝐵 may contain any number of variables and other symbols, for example, 12𝑁 ⟹

120𝑁 because 𝑁 ⟹ 0𝑁. [6, p.102] 

𝐴 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑁 ⟹ 31415 

⟹𝑁 

⟹𝐷𝑁 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 31415 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑖𝑔𝑖𝑡) 

⟹ 3𝑁 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 31415 𝑠𝑡𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑑𝑖𝑔𝑖𝑡 3) 

⟹ 3𝐷𝑁 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑁 → 𝐷𝑁) 

⟹ 31𝑁 

⟹ 314𝑁 

⟹ 3141𝑁 

⟹ 3141𝐷 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 31415 ℎ𝑎𝑠 𝑜𝑛𝑙𝑦 5 𝑑𝑖𝑔𝑖𝑡𝑠 𝑎𝑛𝑑 𝑁 → 𝐷) 

⟹ 31415 

Representing digits with 𝐷, numbers with 𝑁 and other types of expressions with variables 

related to their precedence such as 𝐴 for addition and subtraction collectively and 𝐸 for 

any numerical expression, ordering the derivation rules of the variables by precedence 

from lowest to highest, the context-free grammar of numerical expression is constructed 

in listing 2. 
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𝐸 → 𝐴 

𝐴 → 𝐴 +𝑀 | 𝐴 − 𝑀 | 𝑀 

𝑀 → 𝑀 ∗ 𝑂 | 𝑀 ∕ 𝑂 | 𝑂 

𝑂 → −𝑂 | 𝑃 

𝑃 → 𝑊 ^ 𝑃 | 𝑊 

𝑊 → 𝑁 | (𝐸) 

𝑁 → 𝐷 | 𝐷𝑁 

𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 

𝐸 → 𝑃1 

𝑃1 → 𝑃1 + 𝑃2 |  𝑃1 − 𝑃2 | 𝑃2  

𝑃2 → 𝑃2 ∗ 𝑃3 |  𝑃2 ∕ 𝑃3 | 𝑃3  

𝑃3 → −𝑃3 | 𝑃4 

𝑃4 → 𝑃5 ^ 𝑃4 | 𝑃5 

𝑃5 → 𝑁 | (𝐸) 

𝑁 → 𝐷 | 𝐷𝑁 

𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  

 

Listing 2. Grammar of numerical expression capturing operator precedence (𝐸 represents a nu-
merical expression) presented in two versions. On the left, the types of expressions 
are denoted by operators. On the right, they are denoted by precedence levels. 

Per outline of the grammar for numerical expression in listing 2, the most strongly binding 

or highest precedence type of expression is placed at the bottom, the least at the top 

and a gradient of precedence in between. The two columns – left and right of listing 2 – 

present the same grammar with different sets of corresponding variables. The left is use-

ful for the idea that each type of numerical expression is constructed with an operator in 

mind and capturing their precedence is capturing the precedence of the operators. The 

right column is useful for the idea that each type of expressions has a precedence without 

concerning the operators or their mathematical meaning. Together, the left and right col-

umns capture the idea of operator precedence in numerical expressions. In addition, the 

right column shows that expression precedence or binding strength of arbitrary sense, 

not necessarily related to operators, can be captured in this type of grammar as well. 

The key to seeing how listing 2 captures operator precedence is to ask what variable can 

derive what variable, and therefore, seeing what types of numerical expression can be 

operands of a specific operator and what types could not [6, p.105-106]. For example, 

knowing that unbracketed additions, such as 3 + 4 cannot be operands of multiplication, 

helps explain why 1 ∗ 3 + 4 is interpreted as (1 ∗ 3) + 4 and not 1 ∗ (3 + 4).  We express 

the “can derive” relationship of the variables in listing 2 through a diagram in listing 3, 

using the set of variables from right column of listing 1 because they are more prece-

dence-related than those in the left column. 
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𝐸 → 𝑃1 → 𝑃2 → 𝑃3 → 𝑃4 → 𝑃5 𝑜𝑟 𝑊 → 𝑁 → 𝐷 

𝑊 → 𝐸 𝑜𝑛𝑙𝑦 𝑎𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑏𝑟𝑎𝑐𝑘𝑒𝑡𝑠 (𝐸) 

Listing 3.  “Can derive” relationship of variables in grammar of listing 1, right column, where 𝑉𝑎 →
𝑉𝑏 reads “𝑉𝑎 can derive 𝑉𝑏” 

From listing 3, a variable representing expressions of precedence level 𝑎 can only derive 

expressions of higher than or equal precedence level to 𝑎. In addition, all rules except 

that of 𝑊 are similar to 𝑃1 → 𝑃1 ∗ 𝑃2 |  𝑃1 ∕ 𝑃2 | 𝑃2 in that their operators only accept ex-

pressions of equal or higher precedence levels. These two facts are combined to show 

that an operator at precedence 𝑎 can only accept expressions of precedence levels 

greater or equal to 𝑎. For example, operators of precedence 2 (𝑃2) are ∗ and ∕. They 

only accept expressions of higher or equal precedence because their operands, which 

are 𝑃2 and 𝑃3 in 𝑃2 → 𝑃2 ∗ 𝑃3 |  𝑃2 ∕ 𝑃3 | 𝑃3, can only be 𝑃2, 𝑃3, 𝑃4, 𝑃5 but never 𝑃1, because 

𝑃2 and 𝑃3 can never derive 𝑃1 according to listing 2 and listing 3. This means operands 

of multiplication and division cannot be additions or subtractions that are not in brackets. 

The same applies to other operators, completely capturing operator precedence in nu-

merical expression. 

In addition to operator precedence, there is the concept of associativity such as the idea 

that without parentheses, the expression 1 + 2 + 3 + 4 + 5 is interpreted as (((1 + 2) +

3) + 4) + 5. Although this section (section 3.1) chose to focus on operator precedence, 

the grammar in listing 2 captures an associativity convention as well. However, this is 

different from the mathematical associativity of binary operators in mathematics, which 

is not captured by the grammar in listing 2. For example, it does not capture the equality 

1 + 2 + 3 + 4 + 5 = (((1 + 2) + 3) + 4) + 5 

= 1 + (2 + (3 + (4 + 5))) 

According to listing 2 (aided by listing 3), addition is left-associative, not right-associative. 

That is, for example, 1 + 2 + 3 is an addition expression plus the number 3, not the num-

ber 1 plus an addition expression. The associativity captured in the grammar is purely 

grouping, right-associativity or left-associativity, not mathematical associativity namely, 

(𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐) where ∘ denotes some binary operator. In listing 2, addition, 
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subtraction, multiplication, division (+, −, ∗, ∕) are left-associative while exponentiation 

(^) is right-associative. 

3.2 Functional expression 

This section gives a context-free grammar for mocked-up functional expressions such 

as f(a, g(b), f(g)) and introduces a few concepts and conventions of context-free grammar 

in the process. The structure of this kind of function expression is simple and less com-

plex than that of numerical expressions described in section 3.1. However, applications 

of these functional expressions are various in practice; one example is the programming 

language Lisp [7]. 

The type of functional expressions to be captured in a context-free grammar in this ex-

ample are those such as 

𝑓(𝑎) 

 𝑏(23, 𝑇𝑟𝑢𝑒) 

 𝑔𝑘𝑖(𝑓(𝑏𝑐𝑠), 𝑐𝑜𝑢𝑛𝑡(𝑛𝑠)) 

Defining a language through listing all strings in that language is one way to define a 

language. One of the definitions for “a language” is a set of strings. The set of all strings 

conforming to the grammar is the language of that grammar [6, p.103-104]. By giving a 

context-free grammar of functional expressions (listing 4), the set containing all of these 

functional expressions is captured. 

𝐹 → 𝐼(𝐴) 

𝐴 → 𝑆 | 𝑆, 𝐴 

𝑆 → 𝐹 | 𝐼 | 𝐿 

𝐼 → 𝐶 | 𝐶𝐼 

𝐿 → 𝑁 | 𝑇𝑟𝑢𝑒 

𝐶 → 𝑎|𝑏|𝑐|𝑑|𝑒|𝑓|𝑔|ℎ|𝑖|𝑗|𝑘|𝑙|𝑚|𝑛|𝑜|𝑝|𝑞|𝑟|𝑠|𝑡|𝑢|𝑣|𝑤|𝑥|𝑦|𝑧 

𝑁 → 𝐷 | 𝐷𝑁 

𝐷 → 0|1|2|3|4|5|6|7|8|9 

 

𝑇ℎ𝑒 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝐹. 
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𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 𝑖𝑠 {(, ), 𝑐𝑜𝑚𝑚𝑎, 𝑇, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛, 𝑜, 𝑝,

𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. 

𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑠 {𝐹, 𝐼, 𝐴, 𝑆, 𝐿, 𝐶, 𝑁, 𝐷}. 

Listing 4. Grammar of mocked-up functional expressions such as 𝑔𝑘𝑖(𝑓(𝑏𝑐), 𝑐𝑜𝑢𝑛𝑡(𝑛𝑠), 2, 𝑇𝑟𝑢𝑒) 

The grammar of function expression in listing 4 looks more verbose than the grammar of 

numerical expression in listing 2, with extra elements such as the language variable, the 

set of terminals and the set of variables. All strings derived from the language variable 

(e.g. 𝐹 in listing 4) form the language of the grammar. The set of terminals is usually 

called the alphabet of the language. It contains all the symbols composing the strings in 

the language. For a context-free grammar 𝐺 with the set of terminals 𝑇, given any string 

𝑠 in the language of 𝐺, the only symbols present in 𝑠 are the symbols in 𝑇 and only the 

symbols in 𝑇. The set of terminals states precisely what symbols make up any string in 

the language. An example from a simplified English language is the set of symbols con-

taining the English alphabet and punctuation marks. All words and sentences in this sim-

plified English language are made up of symbols from this set and only symbols from 

this set; for example, “aesthetic” and “Hello, everyone!” contain only letters and punctu-

ation marks. [6, p.102-106] 

By convention, a context-free grammar is often specified by only stating its rules (see 

listing 2). All variables are identifiable by looking at the symbols on the left-hand side of 

the rules. After that, by elimination, knowing all the variables and the auxiliary symbols 

to structure the rules – the arrow and the vertical bar to denote substitution and alterna-

tives, respectively – all terminals are known. Finally, the rule for the language variable 

(or start variable) is placed at the top as the first rule (top-to-bottom). The set of varia-

bles/non-terminals details all the variables used to represent components of the context-

free grammar, thereby distinguishing between the symbols in the alphabet and the sym-

bols for the variables, eliminating any ambiguity arising from the use of symbols to denote 

both terminals and variables in writing. The choice of the names “terminal” and “non-

terminal” arises from the fact that terminal symbols such as 𝑎, 0, 𝑥 in listing 4’s grammar 

are not expandable to anything else, while variables such as 𝐹,𝑁, 𝐿 are expandable to 

strings of terminals and non-terminals. This property of non-terminals is the key to de-

scribing languages by a context-free grammar. For the remainder of this thesis, non-

terminals will be called variables. [6, p.102-106] 
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If the grammar in listing 4 is put into words, the description is as follows. A functional 

expression is composed of an identifier followed by a list of arguments in parentheses. 

An identifier is a string of at least one character where the set of possible characters is 

the English alphabet. A list of arguments is either a single argument or multiple argu-

ments separated by commas. A single argument can be any of three things: a functional 

expression, an identifier, or a literal. A literal is either a number or the string 𝑇𝑟𝑢𝑒. A 

number is a natural decimal number. (The variables’ names are chosen to reflect what 

they represent, e.g. 𝐼 for identifier, 𝐴 for argument; however, their names are irrelevant, 

only what they expand to matters.) 

The grammar in listing 4 describes a mocked-up type of functional expressions (the lit-

erals and the identifiers are limited). However, it is easy to see how it can be extended 

to capture more useful types of functional expressions (for example, the rules for literals 

can be extended to include string literals, numerical expressions, complete Boolean val-

ues).  
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4 Context-free grammar 

4.1 Definition of context-free grammar 

A context-free language 𝐺 is a 4-tuple (𝑉, 𝐴, 𝑅, 𝑆) where 

1. 𝑉 is the set of variables 

2. 𝐴 is the set of terminal symbols 

3. 𝑅 is the set of rules where each rule is a pair (𝑣, 𝑠), 𝑣 is a variable in 𝑉 and 𝑠 is a 

string of variables and terminals. 

4. 𝑆 ∈ 𝑉 is the language variable. All strings derivable from 𝑆 form the language of 

context-free grammar 𝐺. 

4.2 Derivation and reduction 

The key idea to parsing context-free language in this thesis is to reduce a string bit by 

bit, step by step through a series of small reductions, reducing sub-strings to variables 

so as classify portions of the string by variables of the grammar [6, p.135-137]. A way to 

imagine this process is to imagine deriving a string from a variable through a series of 

intermediate derivations, then view the derivation in reverse to obtain the corresponding 

reduction. Every time, a variable 𝑣 is expanded into a string 𝑤 of variables and terminals 

in the derivation direction is when the string 𝑤 is reduced to the variable 𝑣 in the reduction 

direction [6, p.135-136]. This information can be represented pictorially and logically with 

a parse tree [6, p.102-103]. Parsing a string in a context-free language is to determine a 

parse tree involving that string and the language variable. The rest of this thesis will use 

a variant of parse diagram (see figure 7) to illustrate derivations and reductions. 
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Figure 7. Derivations and their corresponding reductions 

Figure 7 shows two strings being derived and then reduced. In a derivation, a variable s 

expanded to form a string. This is comparable to a noun deriving any noun such as “car”, 

“water”, “bird”, etc. In a reduction, a string and areas of that string are reduced to varia-

bles, effectively classifying them as those variables. This is comparable to “bright” being 

classified as an adjective, “cars” being classified as a noun or “run” being classified as a 

verb. Furthermore, the combination of a noun and a verb can form a sentence, such as 

“cars run” is a sentence. This is shown in figure 7 by repeated reductions. For example, 

the reduction process on the right half of figure 7 shows the substring “a(5)” in “b(a(5))” 

being classified as “a(N)”, which in turn is classified as “I(F)”, which in turn is classified 

as F, effectively classifying “a(5)” in “b(a(5))” as F. This is what parsing a string against 

a context-free grammar means – classifying areas of a string with variables from the 

context-free grammar until no area is left unclassified. This thesis shows how to achieve 

this classification process by simulating reductions. 

However, for the purpose of parsing as a concrete algorithm, the general concept of 

reduction is not specific enough. Since there is generally more than one way to derive a 

string by a context-free grammar, there is generally more than one way to reduce a string 

in a context-free grammar (figure 8). [6, p.107-108] This leads to a problem when using 

reduction to parse a string. The interpretation of a string may vary depending on how it 

is reduced (figure 8). 



18 

 

 

 

Figure 8. Two examples showing that interpretation of a string may vary depending how it is 
reduced 

Some context-free grammars allow ambiguity in parsing. This means the information 

obtained from a string can vary based on how it is reduced to the language variable. In 

some cases, interpretation of portions of the string may change (figure 8, top). In some 

other cases, the meaning of the string may change entirely (figure 8, bottom). 

Choosing to commit to a certain reduction scheme simplifies parsing context-free lan-

guage. For this reason, this thesis deals with only one type of reduction: left-most reduc-

tion. This does not mean that parsing can only be done with one type of reduction. This 

only means that this thesis commits to one type of reduction for the sake of producing 

an example parsing algorithm. For comparison, figure 9 illustrates both left-most and 
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right-most reductions. Left-most reduction is shown on the left of figure 9 and right-most 

reduction on the right of figure 9. 

 

Figure 9. Left-most reduction of a string (left) and right-most reduction of the same string for 
comparison (right) 

A left-most reduction is a right-most derivation in reverse. Figure 9 demonstrates this 

relationship. It also shows that reducing the left-most reduceable substring does not nec-

essarily succeed in producing a correct reduction. In short, from this point forward, left-

most reduction refers only to the reduction corresponding to a right-most derivation (fig-

ure 9).  
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Left-most reduction bears similar pattern to scanning a string from left to right and reduc-

ing the first reduceable sub-string. Therefore, we choose it as a simulation target to pro-

duce an example parsing algorithm. This pattern of reduction also suggests relevance to 

certain practical problems such as parsing from a stream where parsing must occur upon 

receiving input symbols without knowing when the input stream ends. [6, p.135-146]. 

5 Parsing context-free language by simulating left-most reduction 

Parsing a string against a context-free grammar is to achieve two goals: determining if 

the string reduces to the language variable and determining what variables the areas of 

the string reduce to. The first goal answers whether the string belongs to the language 

or, in another word, is grammatically correct. Examples in practice include verifying that 

a piece of source code in a programming language is not malformed (without syntax 

error). The second goal extracts the meaning of the string by reducing the areas of the 

string to variables, effectively assigning them meaning. An example of this is shown in 

figure 10 through the parsing of a piece of pseudo code “int_add(int_a,_int_b)_{_re-

turn_a_+_b_}”. 

 

Figure 10. An example of “parsing is to produce a parse tree” 

Figure 10 shows two things: reduction of the areas of “int_add(int_a,_int_b)_{_re-

turn_a_+_b_}” to variables, and reduction of the whole string “int_add(int_a,_int_b)_{_re-

turn_a_+_b_}” to F. If interpreted as a process, this process interprets the meaning of 

the substrings “int”s, “add”, “return”, “a”s, “b”s, “+” to be T’s, I, R, I’s, I’s, S respectively, 

and determines that “int_add(int_a,_int_b)_{_return_a_+_b_}” conforms to the grammar 

(by successfully reducing it to the language variable F). A counter-example of this is the 
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string “int_add(int_a,_int_b)__return_a_+_b_}” which cannot be reduced to F in any way 

due to the missing left brace ‘{‘. 

While figure 10 demonstrates a process of parsing, it does not show how parsing can be 

done in detail when receiving the symbols one-by-one, left-to-right, instead of having the 

entire string available at all time during parsing and human-level pattern recognition to 

reduce the sub-strings. For learning purposes, this thesis presents an algorithm to parse 

a stream of input symbols by simulating left-most reduction. The input of the algorithm is 

a context-free grammar and a string of terminal symbols to be parsed, the output of the 

algorithm is zero or more parse trees of that string in the given context-free grammar. 

This algorithm is based on a procedure called the DK-test meant for determining if a 

context-free grammar is a deterministic context-free grammar [6, p.139-146]. 

5.1 Illustration of the parsing algorithm 

The workings of the algorithm will be shown through an illustration in figure 11, 12, 13 

before the algorithm is defined explicitly. Figure 11, 12, 13 illustrate parsing of the string 

“int_add(int_a,_int_b)_{_return_a_+_b_}” against the grammar G from figure 10. The 

functioning principle of the parsing algorithm is simple. The algorithm starts with a set of 

theories. When presented with a new piece of information, it discards the theories that 

are wrong and pursues the theories that are supported. The total outcome of these pur-

suits is the outcome of the algorithm. 

In more details, the illustration is a diagram starting in figure 11 with a box containing a 

set of theories and the input string. The theories are denoted by what are called tracking 

rules (or dotted rules as they are called in [6, p.139-146]). Since the purpose of parsing 

is to determine the meaning of the string and its substrings, the purpose of a tracking 

rule is to theorize about the meaning of the string portion being read. If the string portion 

being read supports any theory in the box, it advances the tracking rule of that theory to 

pursue the theory further. Sometimes, multiple theories are supported at the same time, 

in which case, the diagram branches to pursue all of them (figure 12). Once a theory on 

the meaning of the string portion is confirmed, that string portion is assigned that mean-

ing, that is, the string portion is reduced to a variable. The process goes on until all areas 

of the string have been assigned meaning or until no more theory is supported (figure 

13). 
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Figure 11. Illustration of parsing “int_add(int_a,_int_b)_{_return_a_+_b_}” up to the first reduc-
tion, “int” to T 

Figure 11 walks through the steps of parsing “int_add(int_a,_int_b)_{_return_a_+_b_}” 

up to the first reduction (“int” to T). Each box in figure 11 (also in figure 12, 13) is a self-

contained packet of information that can determine the next box in the diagram. Specifi-

cally, each box, with its tracking rules and bookmarked string, completely determines the 

next box (using information from grammar G in figure 10). There are three types of box 

in figure 11 (determined by their border): bold box, dotted box and dashed box. The bold 

boxes hold those situations where the entire string in question is suspected to corre-

spond to the language variable. The dashed boxes hold those situations when one or 

more theories have been confirmed and a reduction is identified. The dotted boxes hold 

in-progress analyses where a theory is being investigate but has not been confirmed. 

These types of boxes are classifiable by the box content alone (by the set of tracking 
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rules and bookmarked string). The rendering – bold, dotted, dashed – are only for ease 

of reference. 

Parsing of “int_add(int_a,_int_b)_{_return_a_+_b_}” against grammar G continues be-

yond figure 11. Figure 12 shows branching when multiple tracking rules are advanceable 

and failure when no tracking rule is advanceable. 

 

Figure 12. Parsing of “int_add(int_a,_int_b)_{_return_a_+_b_}” after the first reduction up to the 
second reduction, showing branching and failure 

Figure 12 continues from figure 11. It shows the situation where multiple branches of 

computation can exist because a box can pursue multiple theories. The output of a 

branch of computation is a set of parse trees (because that branch may branch into more 

branches). When a branch fails due to unsupported theories, it returns an empty set. The 

union output of all branches forms the output of the algorithm. Figure 12 shows a failing 

branching returning the empty set but does not show any successful branches. Figure 

13 continues from figure 12 but skipping ahead to the end of the evaluation to show a 

successful branch (the only successful branch in the parsing of 
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“int_add(int_a,_int_b)_{_return_a_+_b_}”). In addition, figure 13 also demonstrates the 

usage of the > caret in the bookmarked string more clearly than figure 11 and 12. 

 

Figure 13. Parsing of ““int_add(int_a,_int_b)_{_return_a_+_b_}” producing a parse tree 

Figure 13 highlights two things: that the output of the algorithm is a set of parse trees 

and that the algorithm constructs the parse tree incrementally. The output is a set of 

parse trees because sometimes parsing fails due to invalid input, and sometimes parsing 
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produces more than one parse tree if the grammar permits left-most reduction to do so. 

The algorithm is a chain of reasoning where deduction works to produce a parse tree. 

Each link in the chain consumes a piece of information (a variable or terminal from the 

bookmarked strings) to make a deduction, contributing a piece to the final image of the 

parse tree. 

The parsing algorithm is defined by capturing the patterns in figure 11, 12, 13 and will be 

stated by two functions. However, in order to capture the algorithm, two key elements 

must first be discussed. The first element is a method to denote parse trees. The second 

element is a method to denote the tracking rules and their properties. Although both 

elements are already illustrated in figure 11, 12 and 13, to state the parsing algorithm, 

they require concrete notational methods. 

5.2 The parsing algorithm 

A tracking rule of a rule 𝑉 → 𝑥1𝑥2…𝑥𝑛 is any in the sequence (𝑉 →> 𝑥1𝑥2…𝑥𝑛, 𝑉 → 𝑥1 >

𝑥2…𝑥𝑛, 𝑉 → 𝑥1𝑥2 > 𝑥3…𝑥𝑛, … , 𝑉 → 𝑥1𝑥2…𝑥𝑛−1 > 𝑥𝑛, 𝑉 → 𝑥1𝑥2…𝑥𝑛 >). The purpose 

of a tracking rule is to manage suspected possible reduction and the expected symbol 

that will reinforce and advance the suspicion (e.g. 𝑥2 immediate on the right of > in 𝑉 →

𝑥1 > 𝑥2…𝑥𝑛 is the expected symbol that will advance this tracking rule to the next form, 

𝑉 → 𝑥1𝑥2 > 𝑥3…𝑥𝑛). A tracking rule of 𝑉 → 𝑥1𝑥2…𝑥𝑛 is said to be completed or com-

pletes when it takes on the last form in the sequence, 𝑉 → 𝑥1𝑥2…𝑥𝑛 >, where the caret 

> has advanced to the end of the right-hand side. This indicates that a reduction from 

𝑥1𝑥2…𝑥𝑛 to 𝑉 is available (see figure 11, 12, 13, the dashed boxes). Lastly, it is important 

to note that when a tracking rule expects a variable (as opposed to expecting a terminal), 

it also makes the algorithm expect that variable’s content. That is, if a grammar has three 

rules 𝐻 → 𝐴𝑏𝑐 and 𝐴 → 𝑎 | 𝑥𝑦 (𝐴 → 𝑎 | 𝑥𝑦 is counted as two rules 𝐴 → 𝑎 and 𝐴 → 𝑥𝑦), 

when the algorithm expects 𝐻 → > 𝐴𝑏𝑐, it must also expect 𝐴 →> 𝑎 and 𝐴 →> 𝑥𝑦 (see 

figure 11, 12, 13). The tracking rule set for the expectation of variable 𝐻 is {𝐻 → > 𝐴𝑏𝑐,

𝐴 →> 𝑎, 𝐴 →> 𝑥𝑦} and is denoted as 𝐸𝑥𝑝𝑒𝑐𝑡(𝐻). If 𝑥 is a terminal, 𝐸𝑥𝑝𝑒𝑐𝑡(𝑥) = ∅. This 

notation will be used in the statement of the parsing algorithm later, so it is defined here. 



26 

 

 

𝐸𝑥𝑝𝑒𝑐𝑡(𝑥) =

{
  
 

  
 

∅, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

{𝑉 →> 𝑝1, … , 𝑉 →> 𝑝𝑛} ∪ ( ⋃ 𝐸𝑥𝑝𝑒𝑐𝑡(𝑓𝑖𝑟𝑠𝑡 𝑠𝑦𝑚𝑏𝑜𝑙 𝑜𝑓 𝑝)

𝑝=𝑝1,…,𝑝𝑛

)

𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑉 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒𝑠 𝑉 → 𝑝1, … , 𝑉 → 𝑝𝑛,
𝑤ℎ𝑒𝑟𝑒 𝑝1, … , 𝑝𝑛 𝑎𝑟𝑒 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.

, 

The parsing algorithm must return some result. The result of parsing is captured in a 

parse tree. A parse tree is a tree and is not to be confused with the graphical variant of 

parse trees used to demonstrate derivation and reduction in figure 7, 8, 9. These graph-

ical variants are not trees. Moreover, in figure 11, 12, 13, even though the trees and tree 

elements depicted are meant to represent trees, they are subjected to visual interpreta-

tion and creativity, thus, unreliable as a source of tree definition. 

The definition of trees used here is specialized for the purpose of expressing parse trees. 

Given a context-free grammar 𝐺 = (𝑉, 𝐴, 𝑅, 𝑆), where 𝑉 is the set of variables and 𝐴 is 

the set of terminals (see section 4.1), trees are members of the set denoted by 𝑡(𝑉, 𝐴) 

which consists of two parts: leaves of the trees and nodes (branches) of the trees. The 

leaves are formed by terminals in the alphabet 𝐴 and a node is a variable in 𝑉 linked with 

a string of other leaves and nodes. By this construction, a node captures a reduction, 

where a string of terminals and variables reduces to a variable. 

𝑡(𝑉, 𝐴) =  𝐴 ∪  { (𝑣, 𝑡1𝑡2…𝑡𝑛) | 𝑣 ∈ 𝑉 𝑎𝑛𝑑 𝑡1, 𝑡2, … , 𝑡𝑛 ∈ 𝑡(𝑉, 𝐴)} 

As an example, the tree  from figure 10 is concretely denoted (𝐸, (𝐼,

𝑎)_(𝑆, +)_(𝐼, 𝑏)). As a larger, more complex example, the entire parse tree from figure 

10 is denoted (𝐹, (𝑇, 𝑖𝑛𝑡)_(𝐼, 𝑎𝑑𝑑)′(′(𝑇, 𝑖𝑛𝑡)_(𝐼, 𝑎), _(𝑇, 𝑖𝑛𝑡)_(𝐼, 𝑏)′)′_{_(𝑅,

𝑟𝑒𝑡𝑢𝑟𝑛)_(𝐸, (𝐼, 𝑎)_(𝑆, +)_(𝐼, 𝑏))_}) where the parentheses that are terminal symbols are 

surrounded by apostrophes ′ to be distinguished from parentheses used for the tree 

notation. 

The statement of the parsing algorithm will sacrifice rigorousness for simplicity in some 

places. Some notational convenience will be used, such as notation of a set of strings 

formed by an alphabet (i.e. a set of all strings where each character in a string comes 

from another set) or considering a tree node such as 𝑡 = (𝑇, 𝑖𝑛𝑡) as the variable symbol 
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𝑇 in phrases such as “𝑡 is not expected by tracking rule 𝑆 → 𝑎 > 𝑏𝑐” or “𝑡 is expected by 

𝑆 →> 𝑇𝑏𝑥”, even though 𝑡 is a tree instead of the variable it wraps. 

The concept of lists, sequences and strings is useful for describing the inputs of the two 

functions describing the algorithm. Given a set 𝑋, 𝑋∗ denotes the set of all strings 𝑥1…𝑥𝑛 

where 𝑥1, … , 𝑥𝑛 ∈ 𝑋 including the empty string denoted by 𝜀, that is, 𝑋∗ =

{𝑥1…𝑥𝑛|𝑥1, … , 𝑥𝑛 ∈ 𝑋} ∪ {𝜀}. Since strings, lists and sequences are isomorphic, the same 

notation is used to refer to set of lists and set of sequences from a given set. This will be 

useful when stating the algorithm where the boxes in figure 11, 12, 13 are characterized. 

The parsing algorithm is defined by two functions. The first function, 𝑆𝑇𝐸𝑃, captures the 

box evolution in figure 11, 12, 13 including the branching mechanism and the return 

mechanism (in figure 12 and 13). The second function, 𝑃𝐴𝑅𝑆𝐸, uses the first function to 

satisfy the desired input and output requirement of the parsing algorithm. The 𝑆𝑇𝐸𝑃 func-

tion does the bulk of the work. 

The first step to constructing 𝑆𝑇𝐸𝑃 is to characterize a box in figure 11, 12, 13. Each box 

contains two elements: a set of tracking rules and a bookmarked string. While the parse 

tree elements and unread terminal stream have been provided enough notational de-

vices such as 𝑡(𝑉, 𝐴) for trees and 𝑋∗ for strings, lists or sequences from set 𝑋, nothing 

has been provided for the group of tracking rules. 

To represent any group of tracking rules in a context-free grammar 𝐾, which is, for ex-

ample, defined by two rules 𝑆 → 𝑎𝑏𝑐, 𝑈 → 𝑢𝑘, 𝑇𝑟(𝐾) is used. This means 𝑇𝑟(𝐾) denotes 

any subset of all the tracking rules of 𝐾 which is the set {𝑆 →> 𝑎𝑏𝑐, 𝑆 → 𝑎 > 𝑏𝑐, 𝑆 →

𝑎𝑏 > 𝑐, 𝑆 → 𝑎𝑏𝑐 >, 𝑈 →> 𝑢𝑘, 𝑈 → 𝑢 > 𝑘, 𝑈 → 𝑢𝑘 >}. Since 𝑇𝑟(𝐾) is used to represent 

any group of 𝐾’s tracking rules, it is also used to denote the set containing all groups of 

𝐾’s tracking rules. Expanding this to any context-free language 𝐺, 𝑇𝑟(𝐺) represents any 

group of tracking rules formed from the rules of 𝐺. Another way to define 𝑇𝑟(𝐺) is with 

the concept of power set – the set containing all subsets of a set. If 𝒫(𝐴) denotes the set 

containing all subsets of the set 𝐴, 𝑇𝑟(𝐺) can be defined as 

𝒫(𝑎𝑙𝑙 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑜𝑓 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 𝐺). 

Now that all the necessary pieces to represent the elements of a box in figure 11, 12, 13 

are available, a box can be represented by 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗ where 𝐺 =

(𝑉, 𝐴, 𝑅, 𝑆) is the context-free grammar and × denotes the Cartesian product. To simplify, 
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in the expression 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗, the 𝑇𝑟(𝐺) portion stands for the group 

of tracking rules, the first 𝑡(𝑉, 𝐴)∗ portion stands for the partially constructed parse tree 

elements left of the > caret, the second 𝑡(𝑉, 𝐴)∗ portion stands for the tree elements 

between the > caret and the ╿ caret (figure 11, 12, 13). The combined 

𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗ portion represents the bookmarked string in each box. This is 

how 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗ represents a box in figure 11, 12, 13. 

The example parsing algorithm is presented in listing 5 and 6. The 𝑃𝐴𝑅𝑆𝐸 function is 

listed first in listing 5 and the 𝑆𝑇𝐸𝑃 function is listed in listing 6. For simplicity, the algo-

rithm assumes the context-free grammar being used, so that the functions need not in-

clude the grammar in their inputs. 

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 − 𝑓𝑟𝑒𝑒 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 𝐺 = (𝑉, 𝐴, 𝑅, 𝑆) 

𝑃𝐴𝑅𝑆𝐸(𝑙): 

𝐼𝑛𝑝𝑢𝑡: 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙 ∈ 𝐴∗ 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑠𝑒 𝑡𝑟𝑒𝑒𝑠 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆 𝑜𝑟 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑜𝑓 𝐺 

𝑃𝐴𝑅𝑆𝐸(𝑙) = 𝑆𝑇𝐸𝑃(𝐸𝑥𝑝𝑒𝑐𝑡(𝑆), 𝜀, 𝜀, 𝑙) 

Listing 5. The interface of the example parsing algorithm 

The 𝑃𝐴𝑅𝑆𝐸 function in listing 5 admits a string (and a context-free grammar) as input. It 

parses the input string by initiating the box transition with the 𝑆𝑇𝐸𝑃 function from a box 

expecting the language variable and the input string bookmarked at the beginning (figure 

11, the top bold box). From then on, the 𝑆𝑇𝐸𝑃 function goes through the necessary steps 

to produce an output (listing 6). 
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𝑆𝑇𝐸𝑃(𝑇, 𝑟1, 𝑟2, 𝑟3): 

𝐼𝑛𝑝𝑢𝑡: 𝑎 𝑠𝑡𝑒𝑝 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗ 

𝑇 ∈ 𝑇𝑟(𝐺) 𝑖𝑠 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝐺. 

𝑟1 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡𝑟𝑒𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 > 𝑐𝑎𝑟𝑒𝑡. 

𝑟2 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡𝑟𝑒𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 > 𝑐𝑎𝑟𝑒𝑡 𝑎𝑛𝑑 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 ╿ 𝑐𝑎𝑟𝑒𝑡. 

𝑟3 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 ╿ 𝑐𝑎𝑟𝑒𝑡. 

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑠𝑒 𝑡𝑟𝑒𝑒𝑠 𝑜𝑟 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝜀, 𝜀, 𝜀) = ∅ 

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝑟1 = 𝑡1…𝑡𝑘, 𝜀, 𝑟3 = 𝑠1𝑠2…𝑠𝑥) (illustration. 𝑡1… 𝑡𝑘 > ╿𝑠1𝑠2…𝑠𝑥) 

{
 
 
 
 
 

 
 
 
 
 
1. 𝑓𝑎𝑖𝑙 𝑐𝑎𝑠𝑒.  𝑖𝑓 𝑛𝑜 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒 𝑖𝑛 𝑇 𝑒𝑥𝑝𝑒𝑐𝑡𝑠 𝑠1, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ∅
2. 𝑎𝑑𝑣𝑎𝑛𝑐𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑎𝑛𝑑/𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔).

      𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑎, … , 𝑇𝑗  𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑐𝑡 𝑠1, 𝑡ℎ𝑒𝑛

            𝐴 = ⋃ 𝑆𝑇𝐸𝑃(𝑡+,

𝑡=𝑇𝑎,…,𝑇𝑗

𝑡1…𝑡𝑘𝑠1, 𝜀, 𝑠2…𝑠𝑥), 𝑒𝑙𝑠𝑒 𝐴 = ∅;

      𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑟 , … , 𝑇𝑧 𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑛𝑑 𝑎𝑔𝑟𝑒𝑒 𝑤𝑖𝑡ℎ 𝑟1

            𝑅 = ⋃ 𝑆𝑇𝐸𝑃(𝐸𝑥𝑝𝑒𝑐𝑡(𝑆), 𝜀, [𝑟1 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝](𝑋, 𝑝), 𝑟3) 𝑤ℎ𝑒𝑟𝑒 (𝑋, 𝑝) ∈ 𝑡(𝑉, 𝐴)

(𝑋→𝑝>)=𝑇𝑟,…,𝑇𝑧

,

            𝑒𝑙𝑠𝑒 𝑅 = ∅;
𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝐴 ∪ 𝑅 

 

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝜀, 𝑟2 = 𝑡1𝑡2…𝑡𝑘 , 𝑟3) (illustration. > 𝑡1𝑡2…𝑡𝑘╿𝑟3) 

{
  
 

  
 
1. 𝑓𝑎𝑖𝑙 𝑐𝑎𝑠𝑒.  𝑖𝑓 𝑛𝑜 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒 𝑖𝑛 𝑇 𝑒𝑥𝑝𝑒𝑐𝑡𝑠 𝑡1, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ∅

2. 𝑎𝑑𝑣𝑎𝑛𝑐𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔).

𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑎, … , 𝑇𝑗  𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑐𝑡 𝑡1, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ⋃ 𝑆𝑇𝐸𝑃(𝑡+,

𝑡=𝑇𝑎,…,𝑇𝑗

𝑡1, 𝑡2… 𝑡𝑘, 𝑟3)

3. 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑝𝑎𝑟𝑠𝑖𝑛𝑔.  𝑖𝑓 𝑟2 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑛𝑜𝑑𝑒 𝑡1 = (𝑆,… ), 𝑡ℎ𝑒 𝑝𝑎𝑟𝑠𝑒 𝑡𝑟𝑒𝑒 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒,

𝑟𝑒𝑡𝑢𝑟𝑛𝑠 {(𝑆, … )}

 

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝑟1 = 𝑡1… 𝑡𝑖 , 𝑟2 = 𝑡ℎ𝑡𝑘 …𝑡𝑞 , 𝑟3) (illustration. 𝑡1…𝑡𝑖 > 𝑡ℎ𝑡𝑘 … 𝑡𝑞╿𝑟3) 

{
 
 
 
 
 

 
 
 
 
 
1. 𝑓𝑎𝑖𝑙 𝑐𝑎𝑠𝑒.  𝑖𝑓 𝑛𝑜 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒 𝑖𝑛 𝑇 𝑒𝑥𝑝𝑒𝑐𝑡𝑠 𝑡ℎ, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ∅

2. 𝑎𝑑𝑣𝑎𝑛𝑐𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑎𝑛𝑑/𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔).
      𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑎 , … , 𝑇𝑗  𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑐𝑡 𝑡ℎ, 𝑡ℎ𝑒𝑛

            𝐴 = ⋃ 𝑆𝑇𝐸𝑃(𝑡+,

𝑡=𝑇𝑎,…,𝑇𝑗

𝑡1…𝑡𝑖𝑡ℎ, 𝑡𝑘 …𝑡𝑞 , 𝑟3), 𝑒𝑙𝑠𝑒 𝐴 = ∅;

      𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑟 , … , 𝑇𝑧 𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑛𝑑 𝑎𝑔𝑟𝑒𝑒 𝑤𝑖𝑡ℎ 𝑟1

            𝑅 = ⋃ 𝑆𝑇𝐸𝑃(𝐸𝑥𝑝𝑒𝑐𝑡(𝑆), 𝜀, [𝑟1 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝](𝑋, 𝑝)𝑡ℎ𝑡𝑘 …𝑡𝑞 , 𝑟3) 𝑤ℎ𝑒𝑟𝑒 (𝑋, 𝑝) ∈ 𝑡(𝑉, 𝐴)

(𝑋→𝑝>)=𝑇𝑟,…,𝑇𝑧

,

            𝑒𝑙𝑠𝑒 𝑅 = ∅;
𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝐴 ∪ 𝑅

 

Listing 6. The core function (𝑆𝑇𝐸𝑃) of the example parsing algorithm (the grammar 𝐺 =
(𝑉, 𝐴, 𝑅, 𝑆) is assumed) 
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The 𝑆𝑇𝐸𝑃 function (listing 6) is listed with the aid of some minor notations. For ad-

vancements of a tracking rule 𝑡 = 𝑉 → 𝑥1… > 𝑥𝑘𝑥𝑘+1…𝑥𝑛, the set of tracking rules ob-

tained by advancing 𝑡 is denoted by 𝑡+ = {𝑉 → 𝑥1…𝑥𝑘 > 𝑥𝑘+1…𝑥𝑛} ∪ 𝐸𝑥𝑝𝑒𝑐𝑡(𝑥𝑘+1). 

For clarifying the condition of a reduction, listing 6 uses the phrase “a tracking rule 

agrees with a string”. A tracking rule is said to agree with a string 𝑟 if that tracking rule 

takes the form 𝑉 → 𝑥1…𝑥𝑛 > and 𝑟 ends with 𝑥1…𝑥𝑛. Finally, to aid the string replace-

ment in a reduction, [𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑙] denotes the portion of the string 𝑟 that precedes the 

string 𝑙 if 𝑟 ends with 𝑙. That is, given 𝑟 = 𝑥1…𝑥𝑖𝑥𝑗…𝑥𝑛, 𝑙 = 𝑥𝑗 …𝑥𝑛, [𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑙] is the 

prefix 𝑥1…𝑥𝑖. 

Comparing function 𝑆𝑇𝐸𝑃 to the illustration in figure 11, 12, 13 can explain its statement 

in listing 6 with better context. The input of the 𝑆𝑇𝐸𝑃 function is a box in the illustration 

of figure 11, 12, 13. The function brings one box to the next until a box can no longer be 

advanced due to unmet expectations or until a box can return a parse tree. Whenever 

the flow of the box transition branches, 𝑆𝑇𝐸𝑃 collects the outputs from all branches at 

that junction into a set. Branching may occur due to multiple supported theories and/or 

multiple available reductions. Should a branch fail to proceed further, it returns the empty 

set ∅, otherwise it returns a set of parse trees. All this work is done by the 𝑆𝑇𝐸𝑃 function 

while the 𝑃𝐴𝑅𝑆𝐸 function merely wraps the 𝑆𝑇𝐸𝑃 function to present a proper interface 

for the parsing algorithm. 

The parsing algorithm presented in this thesis can be classified as a naïve parsing algo-

rithm. One example of the limitations of the algorithm is parsing against context-free 

grammars which accept empty strings. That is, the algorithm is not equipped to parse 

context-free languages whose grammars have rules such as 𝑉 → 𝜀 where 𝜀 stands for 

an empty string (see the second example in section 2 where the age field in an applica-

tion can be empty). If forced to parse against this kind of grammar, the algorithm in listing 

5 and 6 may fail to evaluate or fail to terminate. The subject of parsing these empty-

string-accepting languages is complex and deserves its own treatment. Therefore, this 

thesis chooses not to explore it. However, for the purpose of understanding how context-

free language can be parsed in a simple and constructive way, the algorithm presented 

in this section suffices. 
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6 Conclusion 

Context-free grammar is a useful tool which is present in almost all places in software 

technologies, from important foundational tools such as programming languages to com-

munication and interoperability tools such as data transmission formats. Everyday tools 

such as editors, browsers, compilers all utilize parsing in one way or another. Context-

free grammar is a concise tool for describing many structured ideas. However, it is not 

enough to just describe an idea into language. The language must be translatable to the 

idea as well. Studying how to parse context-free languages is one of the first steps to 

studying parsing in general. 

Context-free grammars use substitution to describe languages. Therefore, parsing a 

context-free language is just using its grammar to undo the substitutions. Organizing this 

into a concrete thought process forms a parsing algorithm. The example algorithm pro-

vided in this thesis, despite being rudimentary, incorporates ideas that can be expanded 

upon to form practical and advanced parsing algorithms. The example algorithm along 

with detailed illustrations of the parsing-related concepts completes this thesis as an in-

troductory material to parsing context-free languages. 
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