

Phuc Nguyen

An introduction to parsing context-free
language

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

24 April 2020

 Abstract

Author
Title

Number of Pages
Date

Phuc Nguyen
An introduction to parsing context-free language

31 pages + 0 appendices
24 April 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Smart System

Instructors

Kimmo Sauren

Context-free grammar is a fundamental tool in software technologies. It is present in almost
all aspects of software developments, from construction of software in programming lan-
guages and compilers to applications such as data transmission, storage and presentation.
This thesis aims to introduce context-free grammar and parsing context-free language to
beginners by answering three questions – what context-free grammars are, what parsing
context-free language means and how to parse context-free languages.

The motivation for context-free grammar is shown through its ordinary usages in daily signs,
forms and numerical formulae. Having established that context-free grammar is used to de-
scribe structured information, its ability to do so is showcased further through examples in
numerical expressions and programming languages.

Concrete examples and detailed illustrations are provided to show what parsing context-free
language means and how to do so. To complete the introduction to parsing context-free
language, an example parsing algorithm is provided. The algorithm is constructed on the
idea of simulating left-most reduction on an input string and its implementation is based on
a procedure called the DK-test, which is meant for determining if a context-free grammar is
deterministic. This example parsing algorithm is rudimentary and limited in power, but it in-
corporates ideas adaptable to more advanced parsing algorithms, making it an ideal starting
point for the study of parsing context-free languages.

Keywords parsing, context-free language, context-free grammar, intro-
duction to parsing

Contents

1 Introduction 1

2 Motivation for context-free grammar 2

3 Expressiveness of context-free grammar 8

3.1 Numerical expression 8

3.2 Functional expression 13

4 Context-free grammar 16

4.1 Definition of context-free grammar 16

4.2 Derivation and reduction 16

5 Parsing context-free language by simulating left-most reduction 20

5.1 Illustration of the parsing algorithm 21

5.2 The parsing algorithm 25

6 Conclusion 31

References 32

1

1 Introduction

This thesis aims at providing a full fundamental overview on how to parse context-free

language, from motivation to minimal example implementation. Context-free language

and context-free grammar may have faded into the background of modern software tech-

nologies, but they are the backbone of software development today. Almost all modern

programming languages at the time of writing are described using context-free grammar

either entirely or only for the context-free part of the language.

One of the most widely used programming languages – the programming language C –

has its syntax described by a context-free grammar. Fundamental questions encoun-

tered when reading a piece of programming code in C, such as what is a number, string

or whitespace. Which concepts are high-level compared to raw bits or plain text, can be

answered by the syntax of the language [1], providing a well-defined and intuitive struc-

ture to interpret the language.

The same method is applied to describe other languages such as Java [2] and Haskell

[3], which have even higher-level concepts than numbers and strings, such as functions,

classes and modules. In addition, there are many other concepts in programming lan-

guages such as data declaration, function call, inheritance declaration, pattern matching

etc. that need to be expressible by text and fit into their larger language semantically.

Otherwise, today’s programming practice would not have been so effortless. Another

software facilitator constructed with context-free grammar is the data format JSON,

which allows expressing structured data of record types in text. In fact, JSON is entirely

described by a context-free grammar [4]. Compared to raw binary data, JSON is much

more intuitive. JSON is widely used in web application and other applications for data

storage and formatting, an example of which is glTF 2.0, a format for carrying 3D scenes

and models utilizing JSON [5].

Context-free grammar brings a higher level of abstraction to the fundamental tools of

software technology such as programming languages and data formats. Without context-

free grammar, high-level programming would not have been possible because imple-

menting high-level programming languages would have been much more difficult if not

impossible. How can ideas such as “function”, “class” and “module” be expressed in text?

How can strings of digits be distinguished from strings of punctuations and still fit into the

meaningful scheme of the larger language? And most importantly, how can the answers

2

to these questions be documented in a well-defined structure so that they can easily be

consumed and developed further? Context-free grammar is one answer to these ques-

tions. The goal of this thesis is to explain what context-free grammar is and produce a

rudimentary algorithm to parse context-free language for learning purposes.

2 Motivation for context-free grammar

This section introduces context-free grammar through three examples. The first example

is an opening hour sign, which contains only text but can tell a reader on which day of

the week and during what time a shop is open. What gives meaning to the sign is not

only the text but also the structure of the text. Figure 1 shows an example opening hour

sign.

Figure 1. Example of an opening hour sign

In figure 1, the opening hour sign has three lines with similar structure. The structure can

be described as follows. Each line starts with a range of days of the week or just one day

(where the days are MON, TUE, WED, THU, FRI, SAT, SUN) followed by a colon, fol-

lowed by a range of hours in the day or the word closed (where the hours are 00, 01,

02, 03, 04, 05, 06, 07, 08, 08, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23).

Because of this known structure, the opening hour of the shop is known.

The second example is an application form detailing the applicant's name, age and ad-

dress, shown in figure 2.

3

Figure 2. Example of application form detailing applicant's name, age and address

The subtle difference between this application form and the opening hour sign in figure

1 is that the latter is finite in length, but the former is potentially infinite. Name, age and

address are arbitrary depending on customs, countries and cultures, having no fixed

length. In contrast, the opening hour sign described cannot have a line exceeding a cer-

tain length because of the fixed possible patterns for days of the week, hours of the day

and the fixed structure which glues them together into ranges.

The potential growth in length of a name in the application form can be expressed by

saying: a name is a sequence of characters. This is not clear in terms of being ex-

plicit―what is a sequence, are empty names allowed? Establishing that the application

form does not allow undisclosed name or address but allows undisclosed age, their syn-

tax is as follows. Name is a sequence of at least one character. A sequence of at least

one character is either a single character or a single character followed by a sequence

of at least one character. This is rather lengthy―a more notational description could be

employed [6, p.103].

𝑁 → 𝑆

𝑆 → 𝐶

𝑆 → 𝐶𝑆

𝑤ℎ𝑒𝑟𝑒 𝑁 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑎𝑚𝑒, 𝑆 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑎𝑛𝑑

𝐶 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛𝑦 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟

Figure 3 illustrates this syntax on the name in the application form from figure 2.

4

Figure 3. Structure of “a sequence of at least one character” (each circle represents a sequence
of at least one character, which includes “z” because it is a sequence of one character)

This definition of character sequence is recursive, allowing its length to potentially grow

to infinity from one. Figure 3 illustrates this on a sequence of seven characters, Abc Xyz,

which is the character A followed by a sequence of characters starting with b and is

followed by another sequence of characters starting with c and so on, ending with the

sequence of a single character z. Because the applicant’s name is a sequence of at least

one character, empty name is not allowed. In contrast, empty age is allowed, therefore,

age can be described as a sequence of zero or more digits. Figure 4 illustrates this syn-

tax of optional age on the age from figure 2.

Figure 4. Structure of “a sequence of zero or more digits” (each circle represents a sequence of
zero or more digits, ɛ denotes empty sequence)

5

The syntax of age and name are similar, except that an age can be empty while a name

must have at least one character. Figure 4 shows this difference when compared to fig-

ure 3 through the position of ɛ compared to the position of the dot under character z.

The last example for context-free grammar is the simple numerical expression 3 ∗ 5 +

6 ∕ (4 ∗ 8 + 2) . At first glance this seems more structurally complex than the opening

hour sign and application form in figure 1 and figure 2. The observed complexity comes

from unclear grouping of the symbols. In figure 1 and figure 2, there is clear structuring

of symbols into lines and left-right sections relative to the colons. One way to interpret

3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) similarly is to dissect it with the same principle in mind―so that the

components are clearly separated instead of lumping together in one line by considering

3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) an addition of two terms: 3 ∗ 5 and 6 ∕ (4 ∗ 8 + 2).

+

 3 ∗ 5

6 ∕ (4 ∗ 8 + 2)

This agrees with the convention of operator precedence where ∗ and ∕ bind more

strongly than +, or in another word, have higher precedence over +. This means, math-

ematically, 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) is equivalent to (3 ∗ 5) + (6 ∕ (4 ∗ 8 + 2)), and not

equivalent to 3 ∗ (5 + 6) ∕ (4 ∗ 8 + 2). By the same convention, ∗ and ∕ have equal prec-

edence and parentheses, (), denote grouping. This leads to the full detailed structuring

of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) in figure 5.

6

Figure 5. Structure of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) considering operator precedence and parentheses
grouping

A pattern emerges in figure 5. Operands of + are either multiplications, divisions or num-

bers. Operands of ∗ or ∕ are either numbers or expressions in parentheses. These ob-

servations help define the syntax of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2). However, this description

does not account for typical numerical expressions―for example, it does not say that

operands of + can also be numbers and other numerical expressions. Listing 1 shows

an improved description, written in a similar style as the description of names in the ap-

plication form, with the addition of the symbol ‘|’ to express alternatives.

𝐸 → 𝑇 + 𝑇 | 𝐹

𝑇 → 𝐴 ∗ 𝐴 | 𝐴 𝐴⁄ | 𝐴

𝐴 → 𝑁 | (𝐸)

𝑁 → 𝐷 | 𝐷𝑁

𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

𝑤ℎ𝑒𝑟𝑒

𝐸 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛,

𝑇 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑛𝑑 𝑜𝑓 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛,

𝐴 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑛𝑑 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛,

𝑁 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟,

𝐷 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑑𝑖𝑔𝑖𝑡

Listing 1. A symbolic description of a possible grammar for 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2)

7

Listing 1 shows a symbolic description of the grammar for 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) where

the grammatical components involved are denoted by capital letters (left-hand sides of

the arrows) and the vertical bars separate the alternative forms of one grammatical com-

ponent [6, p.109]. The rule for 𝑇 ― 𝑇 → 𝐴 ∗ 𝐴 | 𝐴 𝐴⁄ | 𝐴 ― says it is either a multiplication,

a division or an 𝐴, which is either a number or an expression in parentheses. An 𝐴 is

indivisible. This means that when reading 9109 + 6 or 6 / (8 + 4), mathematically, one

does not interpret them as 910(9 + 6) or (6/8) + 4 respectively. (𝐴 could be thought of

as “atom” for this indivisibility.) Finally, a number 𝑁 is one or more decimal digits, and

multiplication or division is only between two atoms. Applying this grammar on 3 ∗ 5 +

6 ∕ (4 ∗ 8 + 2) gives an illustration of its structure in figure 6.

Figure 6. Structure of 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) following the grammar in listing 1

By structuring 3 ∗ 5 + 6 ∕ (4 ∗ 8 + 2) as illustrated in figure 6, the numerical expression is

"understood" because figure 6 shows exactly what the numbers are in the expression,

what operations are done on them, what operations are done on the results of those

operations.

These three examples show that three different "languages" – strings that tell opening

hours of a shop, strings carrying an applicant's information and strings that express sim-

ple numerical operations – can be described similarly using what is called context-free

8

grammar [6, p.102-106]. Context-free grammar is intuitive, simple in description and

powerful in application (as the three examples hinted at). Various programming lan-

guages can be described and are described at the time of writing by the principal of

context-free grammar. Context-free grammar is complex enough to express complex

programs, human-readable enough to be written and read by humans but also explicit

enough to be interpreted and compiled by computers.

3 Expressiveness of context-free grammar

This section showcases the expressiveness of context-free grammar through two differ-

ent mocked-up languages: a simple type of numerical expression found in calculators

and functional expressions such as f(a, g(b), f(g)). By demonstrating the expressiveness

of context-free grammar through these example languages, the components of a con-

text-free grammar are informally introduced in their natural habitats.

3.1 Numerical expression

This section shows how numerical expressions with operator precedence can be de-

scribed by a context-free grammar [6, p.103-106]. The type of numerical expression we

aim to describe are numerical expressions with only integers, parenthesized expres-

sions, exponentiation, negation, multiplication, division, addition, and subtraction. The

simplest numerical expression is a positive integer such as 101, which we will custom-

arily call a number in this section. In the grammar, negative integers such as -101 are

treated specially, as a negation of a number, not directly a number.

Example 1. A few example numerical expressions are

(1) 101

(2) −101

(3) 101 + 101

(4) 1 + 2 + 3

(5) (1 + 2) ∗ 3 − 4

9

The numerical expressions in example 1 (from (1) to (5)) increase in complexity. The key

to seeing their structure is constructing them from a number and building up to a com-

pound expression. For example, (1) is a number, 101, the simplest kind of numerical

expression. (2) is a negated number, −101, which consists of a minus sign followed by

a number. (3) is an addition between two numbers, which consists of a number followed

by a + sign, followed by another number. Addition can also be between other numerical

expressions; this is hinted at by (5) showing a multiplication between parenthesized ex-

pressions (1 + 2) and the number 3. A typical numerical expression is a compound ex-

pression made of sub-expressions combined by operators.

Employing a similar strategy, the key to constructing a grammar for numerical expression

is to start with describing primitive expressions such as numbers and then describe how

expressions can be combined into larger compound expressions, thus completing the

description of all desired numerical expressions. However, to describe numerical expres-

sions in this way, we must define what are “primitive” expressions. In fact, this “primitive”

concept is a special case of operator precedence or binding strength. To clarify this, we

examine the numerical expression 1 ∗ 3 + 4, which is interpreted as (1 ∗ 3) + 4 but not

1 ∗ (3 + 4). In mathematical convention, the multiplication operator ∗ has a higher prec-

edence than the addition operator +. Another way of interpreting this is that the multipli-

cation expression 1 ∗ 3 binds more strongly than the addition expression 3 + 4, which is

why the addition cannot “take” the operand 3 from the multiplication, hence 1 ∗ 3 + 4 is

interpreted as (1 ∗ 3) + 4 but not 1 ∗ (3 + 4). With this, the grammar can be outlined by

defining expressions with higher binding strength (precedence) such as numbers and

numerical expressions in brackets first, then defining compound expressions with in-

creasing precedence level such as exponentiation, negation, multiplication/division, ad-

dition/subtraction.

Numbers are written with digits, specifically we choose decimal digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9. In the grammar, a number is represented by a symbol or variable

𝑁 [6, p.102-104]. Later, when other components of numerical expression such as nega-

tion and multiplication etc. are described, they will be represented with their own varia-

bles. One interpretation for the word “variable” is that a number could be

1, 2, 100000292, 0, 123 or any possible string of digits; similarly, if 𝑀 represents any mul-

tiplication, it represents any possible multiplication expression. Under this interpretation,

the word “variable” is an apt name for the symbols that represent a grammatical compo-

nent in a grammar. A decimal digit is denoted by 𝐷.

10

𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This means a digit can be 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. The vertical bar ‘|’ expresses alterna-

tives. The arrow ‘→’ expresses the idea that given a variable 𝐷, 𝐷 can expand to or derive

0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 [6, p.104]. With this, a number 𝑁 as a single digit or multiple digits

is described by

𝑁 → 𝐷 | 𝐷𝑁

We can demonstrate the structure of a number according to 𝑁 → 𝐷 | 𝐷𝑁 by deriving a

number from the variable 𝑁. In derivation, 𝐴 ⟹ 𝐵 means the string 𝐴 derives the string

𝐵. 𝐴 and 𝐵 may contain any number of variables and other symbols, for example, 12𝑁 ⟹

120𝑁 because 𝑁 ⟹ 0𝑁. [6, p.102]

𝐴 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑙𝑒𝑓𝑡 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑤𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑁 ⟹ 31415

⟹𝑁

⟹𝐷𝑁 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 31415 𝑖𝑠 𝑛𝑜𝑡 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑖𝑔𝑖𝑡)

⟹ 3𝑁 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 31415 𝑠𝑡𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ 𝑑𝑖𝑔𝑖𝑡 3)

⟹ 3𝐷𝑁 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑁 → 𝐷𝑁)

⟹ 31𝑁

⟹ 314𝑁

⟹ 3141𝑁

⟹ 3141𝐷 (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 31415 ℎ𝑎𝑠 𝑜𝑛𝑙𝑦 5 𝑑𝑖𝑔𝑖𝑡𝑠 𝑎𝑛𝑑 𝑁 → 𝐷)

⟹ 31415

Representing digits with 𝐷, numbers with 𝑁 and other types of expressions with variables

related to their precedence such as 𝐴 for addition and subtraction collectively and 𝐸 for

any numerical expression, ordering the derivation rules of the variables by precedence

from lowest to highest, the context-free grammar of numerical expression is constructed

in listing 2.

11

𝐸 → 𝐴

𝐴 → 𝐴 +𝑀 | 𝐴 − 𝑀 | 𝑀

𝑀 → 𝑀 ∗ 𝑂 | 𝑀 ∕ 𝑂 | 𝑂

𝑂 → −𝑂 | 𝑃

𝑃 → 𝑊 ^ 𝑃 | 𝑊

𝑊 → 𝑁 | (𝐸)

𝑁 → 𝐷 | 𝐷𝑁

𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

𝐸 → 𝑃1

𝑃1 → 𝑃1 + 𝑃2 | 𝑃1 − 𝑃2 | 𝑃2

𝑃2 → 𝑃2 ∗ 𝑃3 | 𝑃2 ∕ 𝑃3 | 𝑃3

𝑃3 → −𝑃3 | 𝑃4

𝑃4 → 𝑃5 ^ 𝑃4 | 𝑃5

𝑃5 → 𝑁 | (𝐸)

𝑁 → 𝐷 | 𝐷𝑁

𝐷 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Listing 2. Grammar of numerical expression capturing operator precedence (𝐸 represents a nu-
merical expression) presented in two versions. On the left, the types of expressions
are denoted by operators. On the right, they are denoted by precedence levels.

Per outline of the grammar for numerical expression in listing 2, the most strongly binding

or highest precedence type of expression is placed at the bottom, the least at the top

and a gradient of precedence in between. The two columns – left and right of listing 2 –

present the same grammar with different sets of corresponding variables. The left is use-

ful for the idea that each type of numerical expression is constructed with an operator in

mind and capturing their precedence is capturing the precedence of the operators. The

right column is useful for the idea that each type of expressions has a precedence without

concerning the operators or their mathematical meaning. Together, the left and right col-

umns capture the idea of operator precedence in numerical expressions. In addition, the

right column shows that expression precedence or binding strength of arbitrary sense,

not necessarily related to operators, can be captured in this type of grammar as well.

The key to seeing how listing 2 captures operator precedence is to ask what variable can

derive what variable, and therefore, seeing what types of numerical expression can be

operands of a specific operator and what types could not [6, p.105-106]. For example,

knowing that unbracketed additions, such as 3 + 4 cannot be operands of multiplication,

helps explain why 1 ∗ 3 + 4 is interpreted as (1 ∗ 3) + 4 and not 1 ∗ (3 + 4). We express

the “can derive” relationship of the variables in listing 2 through a diagram in listing 3,

using the set of variables from right column of listing 1 because they are more prece-

dence-related than those in the left column.

12

𝐸 → 𝑃1 → 𝑃2 → 𝑃3 → 𝑃4 → 𝑃5 𝑜𝑟 𝑊 → 𝑁 → 𝐷

𝑊 → 𝐸 𝑜𝑛𝑙𝑦 𝑎𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑏𝑟𝑎𝑐𝑘𝑒𝑡𝑠 (𝐸)

Listing 3. “Can derive” relationship of variables in grammar of listing 1, right column, where 𝑉𝑎 →
𝑉𝑏 reads “𝑉𝑎 can derive 𝑉𝑏”

From listing 3, a variable representing expressions of precedence level 𝑎 can only derive

expressions of higher than or equal precedence level to 𝑎. In addition, all rules except

that of 𝑊 are similar to 𝑃1 → 𝑃1 ∗ 𝑃2 | 𝑃1 ∕ 𝑃2 | 𝑃2 in that their operators only accept ex-

pressions of equal or higher precedence levels. These two facts are combined to show

that an operator at precedence 𝑎 can only accept expressions of precedence levels

greater or equal to 𝑎. For example, operators of precedence 2 (𝑃2) are ∗ and ∕. They

only accept expressions of higher or equal precedence because their operands, which

are 𝑃2 and 𝑃3 in 𝑃2 → 𝑃2 ∗ 𝑃3 | 𝑃2 ∕ 𝑃3 | 𝑃3, can only be 𝑃2, 𝑃3, 𝑃4, 𝑃5 but never 𝑃1, because

𝑃2 and 𝑃3 can never derive 𝑃1 according to listing 2 and listing 3. This means operands

of multiplication and division cannot be additions or subtractions that are not in brackets.

The same applies to other operators, completely capturing operator precedence in nu-

merical expression.

In addition to operator precedence, there is the concept of associativity such as the idea

that without parentheses, the expression 1 + 2 + 3 + 4 + 5 is interpreted as (((1 + 2) +

3) + 4) + 5. Although this section (section 3.1) chose to focus on operator precedence,

the grammar in listing 2 captures an associativity convention as well. However, this is

different from the mathematical associativity of binary operators in mathematics, which

is not captured by the grammar in listing 2. For example, it does not capture the equality

1 + 2 + 3 + 4 + 5 = (((1 + 2) + 3) + 4) + 5

= 1 + (2 + (3 + (4 + 5)))

According to listing 2 (aided by listing 3), addition is left-associative, not right-associative.

That is, for example, 1 + 2 + 3 is an addition expression plus the number 3, not the num-

ber 1 plus an addition expression. The associativity captured in the grammar is purely

grouping, right-associativity or left-associativity, not mathematical associativity namely,

(𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐) where ∘ denotes some binary operator. In listing 2, addition,

13

subtraction, multiplication, division (+, −, ∗, ∕) are left-associative while exponentiation

(^) is right-associative.

3.2 Functional expression

This section gives a context-free grammar for mocked-up functional expressions such

as f(a, g(b), f(g)) and introduces a few concepts and conventions of context-free grammar

in the process. The structure of this kind of function expression is simple and less com-

plex than that of numerical expressions described in section 3.1. However, applications

of these functional expressions are various in practice; one example is the programming

language Lisp [7].

The type of functional expressions to be captured in a context-free grammar in this ex-

ample are those such as

𝑓(𝑎)

 𝑏(23, 𝑇𝑟𝑢𝑒)

 𝑔𝑘𝑖(𝑓(𝑏𝑐𝑠), 𝑐𝑜𝑢𝑛𝑡(𝑛𝑠))

Defining a language through listing all strings in that language is one way to define a

language. One of the definitions for “a language” is a set of strings. The set of all strings

conforming to the grammar is the language of that grammar [6, p.103-104]. By giving a

context-free grammar of functional expressions (listing 4), the set containing all of these

functional expressions is captured.

𝐹 → 𝐼(𝐴)

𝐴 → 𝑆 | 𝑆, 𝐴

𝑆 → 𝐹 | 𝐼 | 𝐿

𝐼 → 𝐶 | 𝐶𝐼

𝐿 → 𝑁 | 𝑇𝑟𝑢𝑒

𝐶 → 𝑎|𝑏|𝑐|𝑑|𝑒|𝑓|𝑔|ℎ|𝑖|𝑗|𝑘|𝑙|𝑚|𝑛|𝑜|𝑝|𝑞|𝑟|𝑠|𝑡|𝑢|𝑣|𝑤|𝑥|𝑦|𝑧

𝑁 → 𝐷 | 𝐷𝑁

𝐷 → 0|1|2|3|4|5|6|7|8|9

𝑇ℎ𝑒 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝐹.

14

𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 𝑖𝑠 {(,), 𝑐𝑜𝑚𝑚𝑎, 𝑇, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛, 𝑜, 𝑝,

𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

𝑇ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑖𝑠 {𝐹, 𝐼, 𝐴, 𝑆, 𝐿, 𝐶, 𝑁, 𝐷}.

Listing 4. Grammar of mocked-up functional expressions such as 𝑔𝑘𝑖(𝑓(𝑏𝑐), 𝑐𝑜𝑢𝑛𝑡(𝑛𝑠), 2, 𝑇𝑟𝑢𝑒)

The grammar of function expression in listing 4 looks more verbose than the grammar of

numerical expression in listing 2, with extra elements such as the language variable, the

set of terminals and the set of variables. All strings derived from the language variable

(e.g. 𝐹 in listing 4) form the language of the grammar. The set of terminals is usually

called the alphabet of the language. It contains all the symbols composing the strings in

the language. For a context-free grammar 𝐺 with the set of terminals 𝑇, given any string

𝑠 in the language of 𝐺, the only symbols present in 𝑠 are the symbols in 𝑇 and only the

symbols in 𝑇. The set of terminals states precisely what symbols make up any string in

the language. An example from a simplified English language is the set of symbols con-

taining the English alphabet and punctuation marks. All words and sentences in this sim-

plified English language are made up of symbols from this set and only symbols from

this set; for example, “aesthetic” and “Hello, everyone!” contain only letters and punctu-

ation marks. [6, p.102-106]

By convention, a context-free grammar is often specified by only stating its rules (see

listing 2). All variables are identifiable by looking at the symbols on the left-hand side of

the rules. After that, by elimination, knowing all the variables and the auxiliary symbols

to structure the rules – the arrow and the vertical bar to denote substitution and alterna-

tives, respectively – all terminals are known. Finally, the rule for the language variable

(or start variable) is placed at the top as the first rule (top-to-bottom). The set of varia-

bles/non-terminals details all the variables used to represent components of the context-

free grammar, thereby distinguishing between the symbols in the alphabet and the sym-

bols for the variables, eliminating any ambiguity arising from the use of symbols to denote

both terminals and variables in writing. The choice of the names “terminal” and “non-

terminal” arises from the fact that terminal symbols such as 𝑎, 0, 𝑥 in listing 4’s grammar

are not expandable to anything else, while variables such as 𝐹,𝑁, 𝐿 are expandable to

strings of terminals and non-terminals. This property of non-terminals is the key to de-

scribing languages by a context-free grammar. For the remainder of this thesis, non-

terminals will be called variables. [6, p.102-106]

15

If the grammar in listing 4 is put into words, the description is as follows. A functional

expression is composed of an identifier followed by a list of arguments in parentheses.

An identifier is a string of at least one character where the set of possible characters is

the English alphabet. A list of arguments is either a single argument or multiple argu-

ments separated by commas. A single argument can be any of three things: a functional

expression, an identifier, or a literal. A literal is either a number or the string 𝑇𝑟𝑢𝑒. A

number is a natural decimal number. (The variables’ names are chosen to reflect what

they represent, e.g. 𝐼 for identifier, 𝐴 for argument; however, their names are irrelevant,

only what they expand to matters.)

The grammar in listing 4 describes a mocked-up type of functional expressions (the lit-

erals and the identifiers are limited). However, it is easy to see how it can be extended

to capture more useful types of functional expressions (for example, the rules for literals

can be extended to include string literals, numerical expressions, complete Boolean val-

ues).

16

4 Context-free grammar

4.1 Definition of context-free grammar

A context-free language 𝐺 is a 4-tuple (𝑉, 𝐴, 𝑅, 𝑆) where

1. 𝑉 is the set of variables

2. 𝐴 is the set of terminal symbols

3. 𝑅 is the set of rules where each rule is a pair (𝑣, 𝑠), 𝑣 is a variable in 𝑉 and 𝑠 is a

string of variables and terminals.

4. 𝑆 ∈ 𝑉 is the language variable. All strings derivable from 𝑆 form the language of

context-free grammar 𝐺.

4.2 Derivation and reduction

The key idea to parsing context-free language in this thesis is to reduce a string bit by

bit, step by step through a series of small reductions, reducing sub-strings to variables

so as classify portions of the string by variables of the grammar [6, p.135-137]. A way to

imagine this process is to imagine deriving a string from a variable through a series of

intermediate derivations, then view the derivation in reverse to obtain the corresponding

reduction. Every time, a variable 𝑣 is expanded into a string 𝑤 of variables and terminals

in the derivation direction is when the string 𝑤 is reduced to the variable 𝑣 in the reduction

direction [6, p.135-136]. This information can be represented pictorially and logically with

a parse tree [6, p.102-103]. Parsing a string in a context-free language is to determine a

parse tree involving that string and the language variable. The rest of this thesis will use

a variant of parse diagram (see figure 7) to illustrate derivations and reductions.

17

Figure 7. Derivations and their corresponding reductions

Figure 7 shows two strings being derived and then reduced. In a derivation, a variable s

expanded to form a string. This is comparable to a noun deriving any noun such as “car”,

“water”, “bird”, etc. In a reduction, a string and areas of that string are reduced to varia-

bles, effectively classifying them as those variables. This is comparable to “bright” being

classified as an adjective, “cars” being classified as a noun or “run” being classified as a

verb. Furthermore, the combination of a noun and a verb can form a sentence, such as

“cars run” is a sentence. This is shown in figure 7 by repeated reductions. For example,

the reduction process on the right half of figure 7 shows the substring “a(5)” in “b(a(5))”

being classified as “a(N)”, which in turn is classified as “I(F)”, which in turn is classified

as F, effectively classifying “a(5)” in “b(a(5))” as F. This is what parsing a string against

a context-free grammar means – classifying areas of a string with variables from the

context-free grammar until no area is left unclassified. This thesis shows how to achieve

this classification process by simulating reductions.

However, for the purpose of parsing as a concrete algorithm, the general concept of

reduction is not specific enough. Since there is generally more than one way to derive a

string by a context-free grammar, there is generally more than one way to reduce a string

in a context-free grammar (figure 8). [6, p.107-108] This leads to a problem when using

reduction to parse a string. The interpretation of a string may vary depending on how it

is reduced (figure 8).

18

Figure 8. Two examples showing that interpretation of a string may vary depending how it is
reduced

Some context-free grammars allow ambiguity in parsing. This means the information

obtained from a string can vary based on how it is reduced to the language variable. In

some cases, interpretation of portions of the string may change (figure 8, top). In some

other cases, the meaning of the string may change entirely (figure 8, bottom).

Choosing to commit to a certain reduction scheme simplifies parsing context-free lan-

guage. For this reason, this thesis deals with only one type of reduction: left-most reduc-

tion. This does not mean that parsing can only be done with one type of reduction. This

only means that this thesis commits to one type of reduction for the sake of producing

an example parsing algorithm. For comparison, figure 9 illustrates both left-most and

19

right-most reductions. Left-most reduction is shown on the left of figure 9 and right-most

reduction on the right of figure 9.

Figure 9. Left-most reduction of a string (left) and right-most reduction of the same string for
comparison (right)

A left-most reduction is a right-most derivation in reverse. Figure 9 demonstrates this

relationship. It also shows that reducing the left-most reduceable substring does not nec-

essarily succeed in producing a correct reduction. In short, from this point forward, left-

most reduction refers only to the reduction corresponding to a right-most derivation (fig-

ure 9).

20

Left-most reduction bears similar pattern to scanning a string from left to right and reduc-

ing the first reduceable sub-string. Therefore, we choose it as a simulation target to pro-

duce an example parsing algorithm. This pattern of reduction also suggests relevance to

certain practical problems such as parsing from a stream where parsing must occur upon

receiving input symbols without knowing when the input stream ends. [6, p.135-146].

5 Parsing context-free language by simulating left-most reduction

Parsing a string against a context-free grammar is to achieve two goals: determining if

the string reduces to the language variable and determining what variables the areas of

the string reduce to. The first goal answers whether the string belongs to the language

or, in another word, is grammatically correct. Examples in practice include verifying that

a piece of source code in a programming language is not malformed (without syntax

error). The second goal extracts the meaning of the string by reducing the areas of the

string to variables, effectively assigning them meaning. An example of this is shown in

figure 10 through the parsing of a piece of pseudo code “int_add(int_a,_int_b)_{_re-

turn_a_+_b_}”.

Figure 10. An example of “parsing is to produce a parse tree”

Figure 10 shows two things: reduction of the areas of “int_add(int_a,_int_b)_{_re-

turn_a_+_b_}” to variables, and reduction of the whole string “int_add(int_a,_int_b)_{_re-

turn_a_+_b_}” to F. If interpreted as a process, this process interprets the meaning of

the substrings “int”s, “add”, “return”, “a”s, “b”s, “+” to be T’s, I, R, I’s, I’s, S respectively,

and determines that “int_add(int_a,_int_b)_{_return_a_+_b_}” conforms to the grammar

(by successfully reducing it to the language variable F). A counter-example of this is the

21

string “int_add(int_a,_int_b)__return_a_+_b_}” which cannot be reduced to F in any way

due to the missing left brace ‘{‘.

While figure 10 demonstrates a process of parsing, it does not show how parsing can be

done in detail when receiving the symbols one-by-one, left-to-right, instead of having the

entire string available at all time during parsing and human-level pattern recognition to

reduce the sub-strings. For learning purposes, this thesis presents an algorithm to parse

a stream of input symbols by simulating left-most reduction. The input of the algorithm is

a context-free grammar and a string of terminal symbols to be parsed, the output of the

algorithm is zero or more parse trees of that string in the given context-free grammar.

This algorithm is based on a procedure called the DK-test meant for determining if a

context-free grammar is a deterministic context-free grammar [6, p.139-146].

5.1 Illustration of the parsing algorithm

The workings of the algorithm will be shown through an illustration in figure 11, 12, 13

before the algorithm is defined explicitly. Figure 11, 12, 13 illustrate parsing of the string

“int_add(int_a,_int_b)_{_return_a_+_b_}” against the grammar G from figure 10. The

functioning principle of the parsing algorithm is simple. The algorithm starts with a set of

theories. When presented with a new piece of information, it discards the theories that

are wrong and pursues the theories that are supported. The total outcome of these pur-

suits is the outcome of the algorithm.

In more details, the illustration is a diagram starting in figure 11 with a box containing a

set of theories and the input string. The theories are denoted by what are called tracking

rules (or dotted rules as they are called in [6, p.139-146]). Since the purpose of parsing

is to determine the meaning of the string and its substrings, the purpose of a tracking

rule is to theorize about the meaning of the string portion being read. If the string portion

being read supports any theory in the box, it advances the tracking rule of that theory to

pursue the theory further. Sometimes, multiple theories are supported at the same time,

in which case, the diagram branches to pursue all of them (figure 12). Once a theory on

the meaning of the string portion is confirmed, that string portion is assigned that mean-

ing, that is, the string portion is reduced to a variable. The process goes on until all areas

of the string have been assigned meaning or until no more theory is supported (figure

13).

22

Figure 11. Illustration of parsing “int_add(int_a,_int_b)_{_return_a_+_b_}” up to the first reduc-
tion, “int” to T

Figure 11 walks through the steps of parsing “int_add(int_a,_int_b)_{_return_a_+_b_}”

up to the first reduction (“int” to T). Each box in figure 11 (also in figure 12, 13) is a self-

contained packet of information that can determine the next box in the diagram. Specifi-

cally, each box, with its tracking rules and bookmarked string, completely determines the

next box (using information from grammar G in figure 10). There are three types of box

in figure 11 (determined by their border): bold box, dotted box and dashed box. The bold

boxes hold those situations where the entire string in question is suspected to corre-

spond to the language variable. The dashed boxes hold those situations when one or

more theories have been confirmed and a reduction is identified. The dotted boxes hold

in-progress analyses where a theory is being investigate but has not been confirmed.

These types of boxes are classifiable by the box content alone (by the set of tracking

23

rules and bookmarked string). The rendering – bold, dotted, dashed – are only for ease

of reference.

Parsing of “int_add(int_a,_int_b)_{_return_a_+_b_}” against grammar G continues be-

yond figure 11. Figure 12 shows branching when multiple tracking rules are advanceable

and failure when no tracking rule is advanceable.

Figure 12. Parsing of “int_add(int_a,_int_b)_{_return_a_+_b_}” after the first reduction up to the
second reduction, showing branching and failure

Figure 12 continues from figure 11. It shows the situation where multiple branches of

computation can exist because a box can pursue multiple theories. The output of a

branch of computation is a set of parse trees (because that branch may branch into more

branches). When a branch fails due to unsupported theories, it returns an empty set. The

union output of all branches forms the output of the algorithm. Figure 12 shows a failing

branching returning the empty set but does not show any successful branches. Figure

13 continues from figure 12 but skipping ahead to the end of the evaluation to show a

successful branch (the only successful branch in the parsing of

24

“int_add(int_a,_int_b)_{_return_a_+_b_}”). In addition, figure 13 also demonstrates the

usage of the > caret in the bookmarked string more clearly than figure 11 and 12.

Figure 13. Parsing of ““int_add(int_a,_int_b)_{_return_a_+_b_}” producing a parse tree

Figure 13 highlights two things: that the output of the algorithm is a set of parse trees

and that the algorithm constructs the parse tree incrementally. The output is a set of

parse trees because sometimes parsing fails due to invalid input, and sometimes parsing

25

produces more than one parse tree if the grammar permits left-most reduction to do so.

The algorithm is a chain of reasoning where deduction works to produce a parse tree.

Each link in the chain consumes a piece of information (a variable or terminal from the

bookmarked strings) to make a deduction, contributing a piece to the final image of the

parse tree.

The parsing algorithm is defined by capturing the patterns in figure 11, 12, 13 and will be

stated by two functions. However, in order to capture the algorithm, two key elements

must first be discussed. The first element is a method to denote parse trees. The second

element is a method to denote the tracking rules and their properties. Although both

elements are already illustrated in figure 11, 12 and 13, to state the parsing algorithm,

they require concrete notational methods.

5.2 The parsing algorithm

A tracking rule of a rule 𝑉 → 𝑥1𝑥2…𝑥𝑛 is any in the sequence (𝑉 →> 𝑥1𝑥2…𝑥𝑛, 𝑉 → 𝑥1 >

𝑥2…𝑥𝑛, 𝑉 → 𝑥1𝑥2 > 𝑥3…𝑥𝑛, … , 𝑉 → 𝑥1𝑥2…𝑥𝑛−1 > 𝑥𝑛, 𝑉 → 𝑥1𝑥2…𝑥𝑛 >). The purpose

of a tracking rule is to manage suspected possible reduction and the expected symbol

that will reinforce and advance the suspicion (e.g. 𝑥2 immediate on the right of > in 𝑉 →

𝑥1 > 𝑥2…𝑥𝑛 is the expected symbol that will advance this tracking rule to the next form,

𝑉 → 𝑥1𝑥2 > 𝑥3…𝑥𝑛). A tracking rule of 𝑉 → 𝑥1𝑥2…𝑥𝑛 is said to be completed or com-

pletes when it takes on the last form in the sequence, 𝑉 → 𝑥1𝑥2…𝑥𝑛 >, where the caret

> has advanced to the end of the right-hand side. This indicates that a reduction from

𝑥1𝑥2…𝑥𝑛 to 𝑉 is available (see figure 11, 12, 13, the dashed boxes). Lastly, it is important

to note that when a tracking rule expects a variable (as opposed to expecting a terminal),

it also makes the algorithm expect that variable’s content. That is, if a grammar has three

rules 𝐻 → 𝐴𝑏𝑐 and 𝐴 → 𝑎 | 𝑥𝑦 (𝐴 → 𝑎 | 𝑥𝑦 is counted as two rules 𝐴 → 𝑎 and 𝐴 → 𝑥𝑦),

when the algorithm expects 𝐻 → > 𝐴𝑏𝑐, it must also expect 𝐴 →> 𝑎 and 𝐴 →> 𝑥𝑦 (see

figure 11, 12, 13). The tracking rule set for the expectation of variable 𝐻 is {𝐻 → > 𝐴𝑏𝑐,

𝐴 →> 𝑎, 𝐴 →> 𝑥𝑦} and is denoted as 𝐸𝑥𝑝𝑒𝑐𝑡(𝐻). If 𝑥 is a terminal, 𝐸𝑥𝑝𝑒𝑐𝑡(𝑥) = ∅. This

notation will be used in the statement of the parsing algorithm later, so it is defined here.

26

𝐸𝑥𝑝𝑒𝑐𝑡(𝑥) =

{

∅, 𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙

{𝑉 →> 𝑝1, … , 𝑉 →> 𝑝𝑛} ∪ (⋃ 𝐸𝑥𝑝𝑒𝑐𝑡(𝑓𝑖𝑟𝑠𝑡 𝑠𝑦𝑚𝑏𝑜𝑙 𝑜𝑓 𝑝)

𝑝=𝑝1,…,𝑝𝑛

)

𝑖𝑓 𝑥 𝑖𝑠 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑉 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒𝑠 𝑉 → 𝑝1, … , 𝑉 → 𝑝𝑛,
𝑤ℎ𝑒𝑟𝑒 𝑝1, … , 𝑝𝑛 𝑎𝑟𝑒 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠.

,

The parsing algorithm must return some result. The result of parsing is captured in a

parse tree. A parse tree is a tree and is not to be confused with the graphical variant of

parse trees used to demonstrate derivation and reduction in figure 7, 8, 9. These graph-

ical variants are not trees. Moreover, in figure 11, 12, 13, even though the trees and tree

elements depicted are meant to represent trees, they are subjected to visual interpreta-

tion and creativity, thus, unreliable as a source of tree definition.

The definition of trees used here is specialized for the purpose of expressing parse trees.

Given a context-free grammar 𝐺 = (𝑉, 𝐴, 𝑅, 𝑆), where 𝑉 is the set of variables and 𝐴 is

the set of terminals (see section 4.1), trees are members of the set denoted by 𝑡(𝑉, 𝐴)

which consists of two parts: leaves of the trees and nodes (branches) of the trees. The

leaves are formed by terminals in the alphabet 𝐴 and a node is a variable in 𝑉 linked with

a string of other leaves and nodes. By this construction, a node captures a reduction,

where a string of terminals and variables reduces to a variable.

𝑡(𝑉, 𝐴) = 𝐴 ∪ { (𝑣, 𝑡1𝑡2…𝑡𝑛) | 𝑣 ∈ 𝑉 𝑎𝑛𝑑 𝑡1, 𝑡2, … , 𝑡𝑛 ∈ 𝑡(𝑉, 𝐴)}

As an example, the tree from figure 10 is concretely denoted (𝐸, (𝐼,

𝑎)_(𝑆, +)_(𝐼, 𝑏)). As a larger, more complex example, the entire parse tree from figure

10 is denoted (𝐹, (𝑇, 𝑖𝑛𝑡)_(𝐼, 𝑎𝑑𝑑)′(′(𝑇, 𝑖𝑛𝑡)_(𝐼, 𝑎), _(𝑇, 𝑖𝑛𝑡)_(𝐼, 𝑏)′)′_{_(𝑅,

𝑟𝑒𝑡𝑢𝑟𝑛)_(𝐸, (𝐼, 𝑎)_(𝑆, +)_(𝐼, 𝑏))_}) where the parentheses that are terminal symbols are

surrounded by apostrophes ′ to be distinguished from parentheses used for the tree

notation.

The statement of the parsing algorithm will sacrifice rigorousness for simplicity in some

places. Some notational convenience will be used, such as notation of a set of strings

formed by an alphabet (i.e. a set of all strings where each character in a string comes

from another set) or considering a tree node such as 𝑡 = (𝑇, 𝑖𝑛𝑡) as the variable symbol

27

𝑇 in phrases such as “𝑡 is not expected by tracking rule 𝑆 → 𝑎 > 𝑏𝑐” or “𝑡 is expected by

𝑆 →> 𝑇𝑏𝑥”, even though 𝑡 is a tree instead of the variable it wraps.

The concept of lists, sequences and strings is useful for describing the inputs of the two

functions describing the algorithm. Given a set 𝑋, 𝑋∗ denotes the set of all strings 𝑥1…𝑥𝑛

where 𝑥1, … , 𝑥𝑛 ∈ 𝑋 including the empty string denoted by 𝜀, that is, 𝑋∗ =

{𝑥1…𝑥𝑛|𝑥1, … , 𝑥𝑛 ∈ 𝑋} ∪ {𝜀}. Since strings, lists and sequences are isomorphic, the same

notation is used to refer to set of lists and set of sequences from a given set. This will be

useful when stating the algorithm where the boxes in figure 11, 12, 13 are characterized.

The parsing algorithm is defined by two functions. The first function, 𝑆𝑇𝐸𝑃, captures the

box evolution in figure 11, 12, 13 including the branching mechanism and the return

mechanism (in figure 12 and 13). The second function, 𝑃𝐴𝑅𝑆𝐸, uses the first function to

satisfy the desired input and output requirement of the parsing algorithm. The 𝑆𝑇𝐸𝑃 func-

tion does the bulk of the work.

The first step to constructing 𝑆𝑇𝐸𝑃 is to characterize a box in figure 11, 12, 13. Each box

contains two elements: a set of tracking rules and a bookmarked string. While the parse

tree elements and unread terminal stream have been provided enough notational de-

vices such as 𝑡(𝑉, 𝐴) for trees and 𝑋∗ for strings, lists or sequences from set 𝑋, nothing

has been provided for the group of tracking rules.

To represent any group of tracking rules in a context-free grammar 𝐾, which is, for ex-

ample, defined by two rules 𝑆 → 𝑎𝑏𝑐, 𝑈 → 𝑢𝑘, 𝑇𝑟(𝐾) is used. This means 𝑇𝑟(𝐾) denotes

any subset of all the tracking rules of 𝐾 which is the set {𝑆 →> 𝑎𝑏𝑐, 𝑆 → 𝑎 > 𝑏𝑐, 𝑆 →

𝑎𝑏 > 𝑐, 𝑆 → 𝑎𝑏𝑐 >, 𝑈 →> 𝑢𝑘, 𝑈 → 𝑢 > 𝑘, 𝑈 → 𝑢𝑘 >}. Since 𝑇𝑟(𝐾) is used to represent

any group of 𝐾’s tracking rules, it is also used to denote the set containing all groups of

𝐾’s tracking rules. Expanding this to any context-free language 𝐺, 𝑇𝑟(𝐺) represents any

group of tracking rules formed from the rules of 𝐺. Another way to define 𝑇𝑟(𝐺) is with

the concept of power set – the set containing all subsets of a set. If 𝒫(𝐴) denotes the set

containing all subsets of the set 𝐴, 𝑇𝑟(𝐺) can be defined as

𝒫(𝑎𝑙𝑙 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑜𝑓 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 𝐺).

Now that all the necessary pieces to represent the elements of a box in figure 11, 12, 13

are available, a box can be represented by 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗ where 𝐺 =

(𝑉, 𝐴, 𝑅, 𝑆) is the context-free grammar and × denotes the Cartesian product. To simplify,

28

in the expression 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗, the 𝑇𝑟(𝐺) portion stands for the group

of tracking rules, the first 𝑡(𝑉, 𝐴)∗ portion stands for the partially constructed parse tree

elements left of the > caret, the second 𝑡(𝑉, 𝐴)∗ portion stands for the tree elements

between the > caret and the ╿ caret (figure 11, 12, 13). The combined

𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗ portion represents the bookmarked string in each box. This is

how 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗ represents a box in figure 11, 12, 13.

The example parsing algorithm is presented in listing 5 and 6. The 𝑃𝐴𝑅𝑆𝐸 function is

listed first in listing 5 and the 𝑆𝑇𝐸𝑃 function is listed in listing 6. For simplicity, the algo-

rithm assumes the context-free grammar being used, so that the functions need not in-

clude the grammar in their inputs.

𝐺𝑖𝑣𝑒𝑛 𝑎 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 − 𝑓𝑟𝑒𝑒 𝑔𝑟𝑎𝑚𝑚𝑎𝑟 𝐺 = (𝑉, 𝐴, 𝑅, 𝑆)

𝑃𝐴𝑅𝑆𝐸(𝑙):

𝐼𝑛𝑝𝑢𝑡: 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔 𝑙 ∈ 𝐴∗

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑠𝑒 𝑡𝑟𝑒𝑒𝑠 𝑟𝑒𝑑𝑢𝑐𝑖𝑛𝑔 𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆 𝑜𝑟 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑜𝑓 𝐺

𝑃𝐴𝑅𝑆𝐸(𝑙) = 𝑆𝑇𝐸𝑃(𝐸𝑥𝑝𝑒𝑐𝑡(𝑆), 𝜀, 𝜀, 𝑙)

Listing 5. The interface of the example parsing algorithm

The 𝑃𝐴𝑅𝑆𝐸 function in listing 5 admits a string (and a context-free grammar) as input. It

parses the input string by initiating the box transition with the 𝑆𝑇𝐸𝑃 function from a box

expecting the language variable and the input string bookmarked at the beginning (figure

11, the top bold box). From then on, the 𝑆𝑇𝐸𝑃 function goes through the necessary steps

to produce an output (listing 6).

29

𝑆𝑇𝐸𝑃(𝑇, 𝑟1, 𝑟2, 𝑟3):

𝐼𝑛𝑝𝑢𝑡: 𝑎 𝑠𝑡𝑒𝑝 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑏𝑦 𝑇𝑟(𝐺) × 𝑡(𝑉, 𝐴)∗ × 𝑡(𝑉, 𝐴)∗ × 𝐴∗

𝑇 ∈ 𝑇𝑟(𝐺) 𝑖𝑠 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑖𝑛 𝐺.

𝑟1 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡𝑟𝑒𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 > 𝑐𝑎𝑟𝑒𝑡.

𝑟2 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡𝑟𝑒𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 > 𝑐𝑎𝑟𝑒𝑡 𝑎𝑛𝑑 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑡ℎ𝑒 ╿ 𝑐𝑎𝑟𝑒𝑡.

𝑟3 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 𝑟𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 ╿ 𝑐𝑎𝑟𝑒𝑡.

𝑂𝑢𝑡𝑝𝑢𝑡: 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑠𝑒 𝑡𝑟𝑒𝑒𝑠 𝑜𝑟 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝜀, 𝜀, 𝜀) = ∅

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝑟1 = 𝑡1…𝑡𝑘, 𝜀, 𝑟3 = 𝑠1𝑠2…𝑠𝑥) (illustration. 𝑡1… 𝑡𝑘 > ╿𝑠1𝑠2…𝑠𝑥)

{

1. 𝑓𝑎𝑖𝑙 𝑐𝑎𝑠𝑒. 𝑖𝑓 𝑛𝑜 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒 𝑖𝑛 𝑇 𝑒𝑥𝑝𝑒𝑐𝑡𝑠 𝑠1, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ∅
2. 𝑎𝑑𝑣𝑎𝑛𝑐𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑎𝑛𝑑/𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔).

 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑎, … , 𝑇𝑗 𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑐𝑡 𝑠1, 𝑡ℎ𝑒𝑛

 𝐴 = ⋃ 𝑆𝑇𝐸𝑃(𝑡+,

𝑡=𝑇𝑎,…,𝑇𝑗

𝑡1…𝑡𝑘𝑠1, 𝜀, 𝑠2…𝑠𝑥), 𝑒𝑙𝑠𝑒 𝐴 = ∅;

 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑟 , … , 𝑇𝑧 𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑛𝑑 𝑎𝑔𝑟𝑒𝑒 𝑤𝑖𝑡ℎ 𝑟1

 𝑅 = ⋃ 𝑆𝑇𝐸𝑃(𝐸𝑥𝑝𝑒𝑐𝑡(𝑆), 𝜀, [𝑟1 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝](𝑋, 𝑝), 𝑟3) 𝑤ℎ𝑒𝑟𝑒 (𝑋, 𝑝) ∈ 𝑡(𝑉, 𝐴)

(𝑋→𝑝>)=𝑇𝑟,…,𝑇𝑧

,

 𝑒𝑙𝑠𝑒 𝑅 = ∅;
𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝐴 ∪ 𝑅

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝜀, 𝑟2 = 𝑡1𝑡2…𝑡𝑘 , 𝑟3) (illustration. > 𝑡1𝑡2…𝑡𝑘╿𝑟3)

{

1. 𝑓𝑎𝑖𝑙 𝑐𝑎𝑠𝑒. 𝑖𝑓 𝑛𝑜 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒 𝑖𝑛 𝑇 𝑒𝑥𝑝𝑒𝑐𝑡𝑠 𝑡1, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ∅

2. 𝑎𝑑𝑣𝑎𝑛𝑐𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔).

𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑎, … , 𝑇𝑗 𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑐𝑡 𝑡1, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ⋃ 𝑆𝑇𝐸𝑃(𝑡+,

𝑡=𝑇𝑎,…,𝑇𝑗

𝑡1, 𝑡2… 𝑡𝑘, 𝑟3)

3. 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑝𝑎𝑟𝑠𝑖𝑛𝑔. 𝑖𝑓 𝑟2 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑛𝑜𝑑𝑒 𝑡1 = (𝑆,…), 𝑡ℎ𝑒 𝑝𝑎𝑟𝑠𝑒 𝑡𝑟𝑒𝑒 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒,

𝑟𝑒𝑡𝑢𝑟𝑛𝑠 {(𝑆, …)}

𝑆𝑇𝐸𝑃(𝑇 = {𝑇1, … , 𝑇𝑚}, 𝑟1 = 𝑡1… 𝑡𝑖 , 𝑟2 = 𝑡ℎ𝑡𝑘 …𝑡𝑞 , 𝑟3) (illustration. 𝑡1…𝑡𝑖 > 𝑡ℎ𝑡𝑘 … 𝑡𝑞╿𝑟3)

{

1. 𝑓𝑎𝑖𝑙 𝑐𝑎𝑠𝑒. 𝑖𝑓 𝑛𝑜 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒 𝑖𝑛 𝑇 𝑒𝑥𝑝𝑒𝑐𝑡𝑠 𝑡ℎ, 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 ∅

2. 𝑎𝑑𝑣𝑎𝑛𝑐𝑖𝑛𝑔 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠 𝑎𝑛𝑑/𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔).
 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑎 , … , 𝑇𝑗 𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑒𝑥𝑝𝑒𝑐𝑡 𝑡ℎ, 𝑡ℎ𝑒𝑛

 𝐴 = ⋃ 𝑆𝑇𝐸𝑃(𝑡+,

𝑡=𝑇𝑎,…,𝑇𝑗

𝑡1…𝑡𝑖𝑡ℎ, 𝑡𝑘 …𝑡𝑞 , 𝑟3), 𝑒𝑙𝑠𝑒 𝐴 = ∅;

 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑇𝑟 , … , 𝑇𝑧 𝑖𝑛 𝑇 𝑤ℎ𝑖𝑐ℎ 𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑛𝑑 𝑎𝑔𝑟𝑒𝑒 𝑤𝑖𝑡ℎ 𝑟1

 𝑅 = ⋃ 𝑆𝑇𝐸𝑃(𝐸𝑥𝑝𝑒𝑐𝑡(𝑆), 𝜀, [𝑟1 𝑏𝑒𝑓𝑜𝑟𝑒 𝑝](𝑋, 𝑝)𝑡ℎ𝑡𝑘 …𝑡𝑞 , 𝑟3) 𝑤ℎ𝑒𝑟𝑒 (𝑋, 𝑝) ∈ 𝑡(𝑉, 𝐴)

(𝑋→𝑝>)=𝑇𝑟,…,𝑇𝑧

,

 𝑒𝑙𝑠𝑒 𝑅 = ∅;
𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝐴 ∪ 𝑅

Listing 6. The core function (𝑆𝑇𝐸𝑃) of the example parsing algorithm (the grammar 𝐺 =
(𝑉, 𝐴, 𝑅, 𝑆) is assumed)

30

The 𝑆𝑇𝐸𝑃 function (listing 6) is listed with the aid of some minor notations. For ad-

vancements of a tracking rule 𝑡 = 𝑉 → 𝑥1… > 𝑥𝑘𝑥𝑘+1…𝑥𝑛, the set of tracking rules ob-

tained by advancing 𝑡 is denoted by 𝑡+ = {𝑉 → 𝑥1…𝑥𝑘 > 𝑥𝑘+1…𝑥𝑛} ∪ 𝐸𝑥𝑝𝑒𝑐𝑡(𝑥𝑘+1).

For clarifying the condition of a reduction, listing 6 uses the phrase “a tracking rule

agrees with a string”. A tracking rule is said to agree with a string 𝑟 if that tracking rule

takes the form 𝑉 → 𝑥1…𝑥𝑛 > and 𝑟 ends with 𝑥1…𝑥𝑛. Finally, to aid the string replace-

ment in a reduction, [𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑙] denotes the portion of the string 𝑟 that precedes the

string 𝑙 if 𝑟 ends with 𝑙. That is, given 𝑟 = 𝑥1…𝑥𝑖𝑥𝑗…𝑥𝑛, 𝑙 = 𝑥𝑗 …𝑥𝑛, [𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑙] is the

prefix 𝑥1…𝑥𝑖.

Comparing function 𝑆𝑇𝐸𝑃 to the illustration in figure 11, 12, 13 can explain its statement

in listing 6 with better context. The input of the 𝑆𝑇𝐸𝑃 function is a box in the illustration

of figure 11, 12, 13. The function brings one box to the next until a box can no longer be

advanced due to unmet expectations or until a box can return a parse tree. Whenever

the flow of the box transition branches, 𝑆𝑇𝐸𝑃 collects the outputs from all branches at

that junction into a set. Branching may occur due to multiple supported theories and/or

multiple available reductions. Should a branch fail to proceed further, it returns the empty

set ∅, otherwise it returns a set of parse trees. All this work is done by the 𝑆𝑇𝐸𝑃 function

while the 𝑃𝐴𝑅𝑆𝐸 function merely wraps the 𝑆𝑇𝐸𝑃 function to present a proper interface

for the parsing algorithm.

The parsing algorithm presented in this thesis can be classified as a naïve parsing algo-

rithm. One example of the limitations of the algorithm is parsing against context-free

grammars which accept empty strings. That is, the algorithm is not equipped to parse

context-free languages whose grammars have rules such as 𝑉 → 𝜀 where 𝜀 stands for

an empty string (see the second example in section 2 where the age field in an applica-

tion can be empty). If forced to parse against this kind of grammar, the algorithm in listing

5 and 6 may fail to evaluate or fail to terminate. The subject of parsing these empty-

string-accepting languages is complex and deserves its own treatment. Therefore, this

thesis chooses not to explore it. However, for the purpose of understanding how context-

free language can be parsed in a simple and constructive way, the algorithm presented

in this section suffices.

31

6 Conclusion

Context-free grammar is a useful tool which is present in almost all places in software

technologies, from important foundational tools such as programming languages to com-

munication and interoperability tools such as data transmission formats. Everyday tools

such as editors, browsers, compilers all utilize parsing in one way or another. Context-

free grammar is a concise tool for describing many structured ideas. However, it is not

enough to just describe an idea into language. The language must be translatable to the

idea as well. Studying how to parse context-free languages is one of the first steps to

studying parsing in general.

Context-free grammars use substitution to describe languages. Therefore, parsing a

context-free language is just using its grammar to undo the substitutions. Organizing this

into a concrete thought process forms a parsing algorithm. The example algorithm pro-

vided in this thesis, despite being rudimentary, incorporates ideas that can be expanded

upon to form practical and advanced parsing algorithms. The example algorithm along

with detailed illustrations of the parsing-related concepts completes this thesis as an in-

troductory material to parsing context-free languages.

32

References

[1] Dennis M. Ritchie. C Reference Manual. Bell Laboratories, Murray Hill, New Jersey.
April 1977.

[2] James Gosling et al. The Java® Language Specification, Java SE 11 Edition. Au-
gust 2018.

[3] Haskell Community. Haskell 2010 Language Report. 2010 [Internet]. Accessed
March 4, 2020. URL: https://www.haskell.org/definition/haskell2010.pdf

[4] Ecma International. The JSON Data Interchange Syntax. ECMA-404, 2nd edition.
December 2017.

[5] Khronos Group. glTF 2.0 Specification, June 9, 2017 [Internet]. Accessed March 4,
2020. URL: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/RE-
ADME.md

[6] Michael Sipser. Introduction to the Theory of Computation, 3rd edition. Cengage
Learning. 2018

[7] Paul Graham. On Lisp: Advanced Techniques for Common Lisp. Prentice Hall,
1993. [Internet] Accessed March 4, 2020. URL: http://www.paulgraham.com/onlisp.html

https://www.haskell.org/definition/haskell2010.pdf
https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md
https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md
http://www.paulgraham.com/onlisp.html

