

Nguyen Mai Vinh

Artificial Intelligence application: Cate-
gorize route and non-route given pre-
defined route

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

17 April 2020

 August 2018

 Abstract

Author
Title

Number of Pages
Date

Nguyen Mai Vinh
Artificial Intelligence application: Categorize route and non-route
given predefined route
58 pages + 3 appendices
17 April 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Smart Systems

Instructors Patrick Ausderau, Principal Lecturer

The purpose of this final year project is to create an Artificial Intelligence application to
study the possibility of using Neural networks to categorize route points based on prede-
fined routes. The information can be used to determine how well the new route follows the
predefined routes.

The method chosen was to construct a Neural network to learn from the data which is in
the form of X and Y coordinates with 2 types of labels: route and non-route. The trained
neural network will take the new route data points and determine which point is in the pre-
defined route. As a result, the accuracy level is calculated for this route to examine how
well the new route follows the predefined route.

The outcome of the project was a Python application which utilizes the TensorFlow frame-
work to build the Neural Network for route points classification. Matplotlib library is used for
data visualization.

In conclusion, the project proves that applying Artificial Intelligence for classification prob-
lems is possible. Based on the results, more complex data models and methods need to
be explored for high accuracy in the more complex situations.

Keywords Machine Learning, Artificial Intelligence, Artificial Neural Net-
work, Python, TensorFlow

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical background of Artificial Intelligence 3

2.1 History of Artificial Intelligence 3

2.2 What is intelligence 7

2.2.1 Animal Intelligence 8

2.2.2 Sensing and interaction 9

2.3 Classical AI versus Modern AI 10

2.4 Biological brain 11

2.5 Artificial neuron model 14

2.6 Artificial Neural Networks 16

2.6.1 Robustness, flexibility and content-based retrieval 17

2.6.2 Generalization 18

2.7 Difference between Artificial Intelligence, Machine Learning and Data Science
 18

2.7.1 Data Science produces insights and Machine Learning produces
predictions 18

2.7.2 Artificial Intelligence produces actions 19

2.8 Data normalization 20

3 Project specifications 22

4 Implementation 25

4.1 Development process 25

4.2 Structure, tools and system used 26

4.3 Implementation in detail 29

4.3.1 Generating raw data 29

4.3.2 Processing raw data 33

4.3.3 Building an ANN 37

5 Results and discussion 42

5.1 Results 42

5.1.1 Result on training, validation and testing subsets 42

5.1.2 Result on a new route data 43

5.2 Discussion 44

5.2.1 Unbalanced data problem 44

5.2.2 Influence of epochs on accuracy and training time 45

5.2.3 Influence of batch size on accuracy and training time 46

5.2.4 Influence of learning rate on accuracy and training time 47

5.2.5 Influence of ANN topology on accuracy and training time 48

5.2.6 Influence of total number of data points on accuracy and training time
 50

5.2.7 Influence of route complexity on accuracy and training time 51

5.2.8 Possible improvement 51

6 Conclusion 54

References 56

Appendices

Appendix 1. Routes with different levels of complexity

Appendix 2. Level 3 complexity result

Appendix 3. ANN with different topologies

List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

ML Machine Learning

DL Deep Learning

DS Data Science

GPS General Problem Solver

RL Reinforcement Learning

NLP Natural Language Processing

ReLu Rectified Linear Units

Glossary

Quaternions A mathematical notation for representing orientations and rotations of

 objects in 3-dimensional space

XY coordinates Horizontal and vertical addresses of a point in a map or display screen

1

1 Introduction

Over the past few years, Machine Learning (ML) and Artificial Intelligence (AI) has be-

come a big trend due to its contribution to various business sectors, manufacturing and

military. [1 p.VIII] This trend is supported by two main factors: increasing computing

power and the availability of big data. The more data is analyzed, the better the pattern

recognition is performed and as a result, knowledge and insight view is deepened.

Wizense Oy1 is a company that works on the development of wearable tracking devices

using wireless technology. Based on the collected data, which includes timestamp and

quaternions, useful applications could be created to assist users in many different ways;

for example, the wearable device could advise on whether the user is following the cor-

rect suggested route.

The objective of this thesis is to propose a solution to the challenge by providing a Neural

network model to learn from collected data and output useful advice for users. This study

also aims to answer the following question: How could ML and AI could help companies

to make better decisions. Various ML fields are also introduced and discussed.

The outcome of the project is an AI application system built on Neural Network which

categorizes and labels the footstep positions of the wireless wearable devices users in

terms of XY-coordinate to determine whether or not they are following a predefined op-

timized route. Python programming language, TensorFlow ML framework, Numpy and

Pandas data framework are used for this project.

Firstly, data is obtained as XY-coordinates and saved in a csv file with the correct labels,

then this data is fed into a Neural network model to learn. As a result, a trained model

could be used consequently to categorize new route points data into two labels: route or

non-route points. Finally, the graphical representation of the route data points and what

is the percentage of them following the route is shown. Furthermore, this project also

evaluates how well neural networks perform the above task in terms of accuracy and

1 https://wizense.com/about-us

2

training time, different hyper-parameter tuning process, complexities of the predefined

route, problem encountered during implementation and lesson learnt.

The study is divided into six chapters. The first chapter provides the introduction in which

business requirements, objectives and outcomes of the study are introduced. The sec-

ond chapter discusses theoretical background related to the study topics such as AI, ML,

and Artificial Neural Network (ANN). The third chapter covers the project specifications.

The fourth chapter describes the implementation in detail. The fifth chapter shows the

result and discussion of the project. Finally, the sixth chapter provides the conclusion.

3

2 Theoretical background of Artificial Intelligence

This chapter explores key topics that relate to the Bachelor thesis. Therefore, it focuses

on discussing Machine Learning, Artificial Intelligence and Neural Network.

2.1 History of Artificial Intelligence

The field of AI started with the birth of computers around the year 1950s. In the early

development, the focus is on how to make computers imitate the intelligence of human

beings [1 p.VII]. For example, there are attempts to make computers perform all aspects

in human behaviour. This eventually leads to the philosophical discussion of how close

to the human brain a computer is and whether or not the difference between them mat-

ters.

Even though evidence shows strong connection between the emergence of AI and the

development of computers, the AI concept was found long before the existence of mod-

ern computers. [1 p3] For example, René Descartes, who is a XVII century French phi-

losopher and mathematician, considered animals as a machine models in which the con-

trol mechanism is created to follow the predetermined sequence of instructions. Moreo-

ver, the concept of automaton is similar to the concept of humanoid robots today. A fa-

mous example of automaton is the Maillardet’s automaton which was built in the 1800s

by a Swiss mechanician, Henri Maillardet. It is currently displayed at the Franklin Institute

and is shown in figure 1. However, the artificial beings could be discovered even further

such as the Golem of Prague which was created by Rabbi Loew out of clay from the

Vltava River and brought to life through rituals around the late 16th century.

4

Figure 1. Maillardet’s automaton at the Franklin Institute [2]

The most relevant and strongest roots of modern AI could be linked to the work in 1943

of McCulloch and Pitts, who represented the mathematical models of neurons in the

brain cells. These models are called perceptrons and are based on the detailed analysis

of how biological brains work. They described how neurons operate in a switching binary

fashion in which neurons either fire—“on” state—or do not fire the signal—“off” state.

This model also explains how such neurons could learn from experience and change

their actions according to external circumstances. [1 p2]

The first AI computer which was based on the neuron models were built by Marvin Min-

sky and Dean Edmonds. At the same time, Claude Shannon worked on the topic of

computer playing chess and strategies on how to decide the next move. In 1956, these

researchers came to the first workshop in Dartmouth College in the USA and laid the

foundation for the new field of AI. [1 p3]

In the 1960s, there was a huge effort in making computers understand and respond to

human natural language. This was not only driven by the Turing test which examines the

machine’s ability to show intelligent behavior indistinguishable from that of a human, but

also by the desire of making computers ready to interface with the real world. [1] The

remarkable example is Joseph Weisenbaum’s ELIZA which is one of the best English-

5

speaking computers and laid the foundation for modern “Chatterbots”. [1 p4] The con-

versation produced by ELIZA was realistic enough that it is not known whether the com-

munication is from machine or human.

During the 1960s, one of the most significant contributions to the AI field was the work

of Newell and Simon on General Problem Solver (GPS). This is a multi-purpose com-

puter designed to simulate problem solving methods of a human. The basic principle is

to form real world problems into a set of well-formed formulas or Horn clauses. These

formulas construct a graph with multiple sources and sinks in which sources refer to

axioms and sinks refer to conclusions. [3]

To be more specific, the objects and operations on the objects are defined and GPS will

solve the problem by finding heuristics using means-ends analysis. Unfortunately, the

project was abandoned due to inefficiency of the technique, memory requirements and

time taken to solve straightforward real problems. The basic algorithm of GPS and block

diagram are described in figure 2.

6

Figure 2. General Problem Solver search algorithm and block diagram [4]

In the 1980s, there was a new approach to AI in which AI is no longer restricted to copy

human intelligence. As a result, AI could be intelligent in its own way. This implies that

AI could be better than a human brain and outperform humans in certain tasks. Recent

7

development in the AI field has proven this point. AI applications have outperformed hu-

mans in the fields of military, finance and biology pattern detection. [1 pviii]

Moreover, AI also could be better than humans in playing games. The typical case is

AlphaGo, which is the first computer that beat a professional Go player without handicap

in October 2015. In March 2016, AlphaGo won Lee Sedol who is a 9-dan professional

without handicap. Furthermore, in 2017, AlphaGo Master beat Ke Jie, the world top

player at that time. Eventually, AlphaGo was awarded a 9-dan honorary professional by

both Korea Badul Association and Chinese Weiqi Association. AlphaGo is a computer

program, developed by DeepMind Technologies, that plays the board game Go. It com-

bines Monte Carlo tree search and ANN to determine its moves based on learnt experi-

ence by extensive training on historical games which were played by both humans and

computers. The combination enhances the quality of move selection and strengthens

self-evolvement in the next iteration. [5]

2.2 What is intelligence

It is important to understand the concept of intelligence before the discussion of AI. What

is considered as intelligence in different entities such as in humans, animals and ma-

chines. Obviously, the concept of intelligence is based on each person's views, experi-

ences and what is important to him or her. The subjective nature of intelligence is signif-

icant since it implies that what is considered as intelligent could be easily changed de-

pendent on time and place. For example, the New English Dictionary of 1932 clearly

defines intelligence as follows: “The exercise of understanding; intellect power; acquire

power or quickness of intellect”. [1 p13] This definition emphasizes human intelligence

based on knowledge and speed. Recently, Macmillan Encyclopedia of 1995 defined in-

telligence as ability to reason and profit from experience. [1 p14] In this case, the focus

is on the complicated interaction between an individual's qualities and the environment.

8

2.2.1 Animal Intelligence

In order to allow for more possibilities, it is also important to discuss the intelligence of

animals. Many aspects of intelligence such as planning and communication as well as

reasoning, learning and using tools will be considered.

It is observed that bees communicate with one another in the form of complex dance

routines. Returning from pollen collection activity, a bee performs a dance in which it

wiggles its bottom and moves forward in a straight line at the hive entrance. The distance

moved by the bee in its dance is proportional to the distance from the hive to the pollen

source. In addition, the angle which the bee moves also indicates the angle between the

source and the sun. This is how bees could learn from each other how to determine good

directions to fly. [1]

Water spiders exhibit excellent planning skills to catch their prey. A water spider builds

an air-filled diving bell out of silk and waits patiently underwater for a shrimp to pass by.

At the right moment, it pounces to give a deadly bite and pulls the shrimp into its lair. [1]

Furthermore, octopuses show interesting learning capability. If an octopus is trained to

perform a task such as choosing objects of different colour, the second octopus also

could perform the same task by simply watching the first one. [1 p14]

On the other hand, the ability to use tools is remarkable in the case of green herons.

They drop small pieces of food into water to lure fish into that area and when a fish swims

nearby to take the bait, they catch it. [1 p15]

However, the most studied non-human animal is chimpanzees and monkeys due to their

genetic similarity to humans. They exhibit a variety of complex skills which are very close

to humans such as planning hunting trips, using different tools and climbing for food

search and collection. They also communicate and convey emotions with each other

using complex vocalizations, facial expressions and body gestures. Studies have shown

that the intelligence of animals is easier to evaluate if its expressions are close to that of

humans and harder to measure if the expressions are meaningless to humans. [1 p15]

9

2.2.2 Sensing and interaction

Intelligence arguably depends not only on the brain—processing data—but also how it

could sense—the amount of data—and interact or react with the surrounding environ-

ment—the output. These are the three basic pillars that support the intelligence concept.

[1 p17] In terms of sense, a human has five basic senses which includes touch, smell,

taste, hearing and vision. [6] In terms of vision, humans are not able to sense frequencies

which are out of visible light such as ultraviolet or infrared frequency range. In terms of

hearing, most humans can sense sound in the range of 20 Hz to 20000 Hz and we could

not hear ultrasonic sound. Therefore, humans’ perception of the world is limited. [1]

On the other hand, machines or animals with different senses are able to experience the

reality that humans have no sense of that. For example, bats could detect frequencies in

ultrasonic range which is from 100 kHz to 200 kHz. [1 p163] Another example is a thermal

camera which is a device that creates images using infrared radiation. Compared to com-

mon cameras that capture visible light in the range of 400 - 700 nanometer wavelengths,

thermal cameras are sensitive to infrared wavelengths ranging from approximately 0.75

to 1000 microns. [7] The difference between visible light and thermal views is illustrated

in figure 3.

Figure 3. Left: The burner behind the flame is invisible. Right: Temperature distribution of burner

is visible through flame. [8]

The success of a being could be evaluated based on how well it performs in its own

environment and intelligence plays an important role in this success. Humans are not

the only intelligent beings on this planet and the concept of intelligence should be open

to include both human and non-human forms. Animals and machines could be intelligent

10

in their own way and should not be compared to humans’ standards. This applies to the

three pillars of intelligence. It is not appropriate to make a statement that a being is not

or less intelligent because it could not perform a specific human task such as making a

cup of tea. As a result, a more general definition of intelligence could be: “The variety of

information-processing processes that collectively enable a being to autonomously pur-

sue its survival”. [1 p17]

Some brainless and single-cell organisms such as the paramecium and the sponge, do

not have neurons. However, they can perform tasks like eating, moving away from aver-

sive situation, reacting to environmental stimuli and even changing their own behavior

after repeated simulation - a sign of intelligence. However, a being with its brain has two

advantages compared to those brainless organisms. The first one is selective receiving

and transmission of signal from and to distant parts of the body. The second one is

adaptation using synaptic plasticity mechanisms. As a result, more complex bodies and

better reaction and adaptation to a fast-changing environment are enabled. [1 p164]

2.3 Classical AI versus Modern AI

In classical AI, the top-down method in which knowledge-based or expert systems are

the fundamental building blocks. There is an attempt to replicate the workings of a brain

from outside using a rule-based approach such as logical IF … THEN … statement. [1

p31] This is based on the ability of the human brain to reason. If some facts are given, a

human could decide a conclusion after making a reasoned assumption about those facts.

[1 p24] For example, if it is December and the temperature is below 0 degree Celsius,

then turn on the heater. This is how the first AI systems are built.

The classical approach follows this trend because of the desire to compare AI with hu-

man intelligence directly. This implies that the best one could only reach to the level of

human intelligence and could not surpass it. [1 p31] As a result, the possibility of AI could

have their own intelligence and outperform human intelligence is rejected. In addition,

the classical technique is especially successful at solving well-defined tasks in which the

whole set of clear and hard rules are created and computers could process them in a

short time period. [1 p88] The CPU processing speed and large memory plays an

11

important role to support this. However, the classical AI approach becomes disadvanta-

geous when slightly different situations happen and it needs to make decisions in these

situations based on predefined rules. Being aware of unusual situations, comparing them

with previous learned experiences and dealing with them is an important aspect of intel-

ligence. This is a daily feature of intelligence in many animals. Therefore, modern AI has

a better way of solving this problem by examining how the brain works in a fundamental

way. [1 p89]

Recently modern AI has been focusing on a bottom-up approach which is putting to-

gether basic building blocks of intelligence and observing how the system could learn

and develop over time. This is inspired by how a biological brain works such as how it

learns, evolves and adapts over a period of time. [1 p88] The next step is to construct a

simple model of fundamental elements of the brain. Lastly, these elements are built and

simulated using a computer program or electronic circuits and as a result, an artificial

brain or AI system could function in a brain-like fashion. In this way, modern AI is able to

perform generalization which could be very difficult to achieve in classical AI.

2.4 Biological brain

Emotions, thoughts and behaviors are controlled by a complex network of cells called

neurons which are the basic cells in a biological brain. [9 p163] There are about 100

billion of them in the typical human brain. They have diameters typically in the sizes of 2

to 30 micrometers. Complex network is formed with connected neurons and there are up

to 10,000 connections between them. [1 p89] They are different from each other not only

in terms of size, but also in which types of neurons they connect to and how strong the

connections are. For example, sensory neurons receive and process signals from light,

sound, etc. Meanwhile, motor neurons are specialized to send output signals to control

muscles. There are also neurons that are associated with planning and reasoning. [9

p170] Even though they have considerably simple structures, the biological brain be-

comes a powerful tool when many of them form a complex network.

In general, every neuron has a cell body with a nucleus located at its center. A cell body

receives input signals from other neurons through dendrites and sends output signals to

other neurons through an axon. An axon consists of many branches and they connect to

12

the dendrites of other neurons, at a point called synapse. At the synapse, incoming elec-

trical pulses cause the release of neurotransmitters. [9 p167] The structure of a biological

neuron is illustrated in the figure 4.

Figure 4. The structure of a biological neuron model [10]

Initially, a neuron is in an inactive state or resting state in which it does not receive or

transmit any signal. In the active state, it receives input pulses which are electrical and

chemical in nature called electro-chemical pulses along the dendrites from some of the

connected neurons. The received pulses could change the potential voltage of the cell

body. If the dendrites add to the cell potential voltage, they are called excitatory dendrites.

On the other hand, the cell potential voltage is lower, these are called inhibitory dendrites.

[1 p92]

At any time, if total potential electrical voltage received from the dendrites is above a

certain threshold value, that particular cell body will in turn fire an electro-chemical pulse

through its axon to those connected neurons. This is the mechanism how signals are

13

transmitted between neurons in a neuron network. After firing the pulse, the neuron will

return to its inactive state and wait for the new incoming pulse again. [1 p90] However,

the neuron does not fire its pulse in the case that threshold value is not reached. It is

actually a binary process - the neuron either fires or it does not and therefore a Boolean

logical function could be formed using this network of neurons. [9 p168]. The process is

illustrated in figure 5.

Figure 5. Resting state voltage, threshold voltage, failed stimulus and successful stimulus [9 p168]

The biological neural network is in fact much more complex than what is described in

figure 5. It is observed that neurons could have different sizes; axons length also could

vary from very long to very short; a neuron can connect to its neighboring neurons and

they in turn could connect back to its dendrites; the connections can also be in different

sizes and strengths. [1 p91]

This structure could be explained partly for genetic reasons and partly for development

due to life experience. When an individual learns from his or her experience, the axon-

dendrite connections or synaptic strength could either strengthen or weaken and in turn

change the tendency of his or her reaction or behavior [9 p175]. As a result, a brain could

learn, adapt and function differently depending on the patterns of signals it receives.

The idea of ANN is based on some of the characteristics of the biological brain. The aim

is not to copy exactly the original structure of a biological brain, but to utilize some meth-

ods of operation in building the structure of the ANN. A typical ANN has approximately

14

below hundred neurons compared to 100 billion cells of a human brain. [1 p92] However,

ANNs are powerful AI tools that are able to perform excellently in difficult tasks such as

recognizing images, understanding speech, and identifying fraudulent activities in credit

card usage. [1 p147] A basic artificial neuron model is introduced in section 2.5.

2.5 Artificial neuron model

The first task of building an ANN is to construct a simple model of an individual neuron

that could be modeled into a computer program or simulated using an electronic circuit.

The next step is to connect those individual neurons into larger neural networks to form

an ANN. The typical and famous neuron model was invented by Warren McCulloch and

Walter Pitts in 1943. [1 p93] The basic model of an artificial neuron is shown in figure 6.

Figure 6. Basic model of an artificial neuron [1 p93]

The model stems from a branch of engineering named Neural Engineering which studies

and reproduces the functionalities of the human brain in a bottom-up approach to engi-

neer intelligent machines. Neural Engineering addresses problems such as learning al-

gorithms, building high-level architectures that could create cognitive abilities, and imple-

menting neural models in hardware. [9 p163] For comparison purposes, the similarity

between an artificial neuron and a biological neuron is shown in figure 7.

15

Figure 7. The similarity between an artificial neuron and a biological neuron [11]

In this model, the products of the inputs of x and y and their weights W1
 and W2 are

summed together and are expressed in formula 1. This sum is compared with the bias

value b. If the value of the sum is equal or larger than the value of b, the neuron fires and

gives the output of value 1. On the opposite, if the value of the sum is smaller than the

value of b, the neuron does not fire and the output value is 0. The output then in turn

becomes the input of the next connected neuron as mentioned in the biological brain

model.

W1 * x + W2 * y (1)

In this case, two inputs are used for illustration purposes and in reality, the number of

inputs are not limited. [1 p93] This is the foundation for building a larger ANN using the

basic building block of a simple artificial neuron model. The number of inputs is called

the dimension or breadth of inputs.

16

2.6 Artificial Neural Networks

ANNs are computational models that simulate the adaptive and behavioral features of a

biological network of neurons. An ANN is constructed using interconnected artificial neu-

rons which is discussed in section 2.5. Input neurons receive information directly from

the environment while output neurons interact with the environment. [9 p175] Other neu-

rons, which communicate internally within the network, are called hidden or internal neu-

rons as illustrated in figure 8, where each small circle represents an artificial neuron.

Figure 8. Generic neural network topology [9 p176]

When the neuron becomes active, it fires a signal to all neurons to which it connects. The

weighted connections act like filters which either strengthen or weaken the input signals.

This is also called synaptic strength which is similar to the biological model. Whereas

biological neurons have either excitatory or inhibitory dendrites, artificial neurons simu-

late this feature by emitting positive and negative values to its connected neurons.

The output of an ANN to a stimulant input from the environment depends on its architec-

ture and pattern of weighted connections or synaptic strength. The behavior and

knowledge of the whole network is distributed across its connections; therefore, each

17

connection or neuron contributes its role accordingly. ANNs learn by modification of syn-

aptic strengths when receiving input from the environment. [9 p176]

Technically, this is done through by introducing a loss function and performing back prop-

agation to minimize this loss function. Normally, a set of inputs called a batch or smaller

subsets of inputs called a mini batch is presented repeatedly to the ANN for a learning

process. Each of the presentations is called one iteration. In each iteration, the loss func-

tion which is the difference in mathematical value between the correct answer—expected

behavior—and the predicted answer—current behavior—is reduced by changing the

weight values of the weight connections. As a result, learning is achieved by producing

an answer which is closest to the expected answer.

2.6.1 Robustness, flexibility and content-based retrieval

ANNs are quite robust against many categories of signal degradation such as unit oper-

ation malfunction of the hardware implementations, quality of connection or signal noise.

When the noise level increases, ANNs can distribute the errors uniformly across the input

domain and maintain the correct response. Moreover, ANNs can be trained on mini-batch

or single data incrementally to reduce the effect of noise or components’ damage. [9

p176]

ANNs are not domain specific and could be applied to various types of problems. Due to

this feature, ANNs are excellent in solving problems for which there is not any analytical

solution. However, the tradeoff is even though a solution for such problems could be

found, but effort of understanding them is given up. As a result, solving problems using

ANNs might not strengthen our knowledge in a fundamental way. [9 p177]

Even in the case of an incomplete input data set or data corrupted by noise, ANNs can

also retrieve memories by matching contents. It means that more familiar patterns are

recognized easier and faster than those that are different or occur less frequently. This

is different from conventional computer systems where data is obtained using the ad-

dress of the memory cells. If the address number is corrupted, the entire memory is lost

and therefore, data could not be retrieved. [9 p177]

18

2.6.2 Generalization

ANNs can provide the correct output to a data set which is not the training set. This

means that it could act intelligently in a situation that it has never encountered before.

This ability is due to the fact that ANNs could extract and store the invariant features of

the training set in their weighted connections. How well an ANN could respond to a new

data set depends on how similar the new data pattern can be described by the learnt

invariant features. [9 p177]

Learning invariant features is also observed in the biological network of neurons. This

allows them to deal with continuously changing environments. The capability to general-

ize is very important to problems in which it is costly or impossible to obtain all possible

situations that the system is exposed to. [9 p177]

2.7 Difference between Artificial Intelligence, Machine Learning and Data Science

What is the difference between ML and AI? How does Data Science (DS) relate to AI?

These are common questions when one is first introduced to those terminologies. Even

though these three fields have similarities, they are not interchangeable. Those concepts

could be used as fashionable words for marketing purposes, but most professionals

working in these fields have intuitive understanding on how to categorize whether a cer-

tain matter belongs to AI, ML or DS. The simplified explanation about the difference be-

tween these three fields could be described as DS provides tools and insights, ML uses

tools to make predictions, and AI produces actions. [12]

2.7.1 Data Science produces insights and Machine Learning produces predictions

The goal of DS is to gain insight and understanding, especially for humans. This can be

used to distinguish from other two fields. The main point is that there is always a human

in the process which performs raw data processing, puts structured data into a graph for

visualization, and understands the insight. The classic Data science utilizes the combi-

nation of statistics, computer science and domain expertise and focuses on these tasks:

domain knowledge, experimental design, statistical inference, data visualization and

communication. [12]

19

If a certain problem could be summarized as the statement: “Given X with particular fea-

tures, predict Y about it.” [12] To be more specific, given some training data, how ML

can produce predictions or make conclusions about a new set of data. The prediction

could be about a time series such as weather and stock market forecasts; or they could

discover data patterns which are not easily detected.

On the other hand, there is also overlap between DS and ML. For example, logistic re-

gression algorithms could be used to predict in ML or gain insights in DS. To be more

specific, the following statement is the product of logistic regression in DS to understand

customers better: It is more likely that a customer with high income will purchase our

product, should we change our marketing strategy? Meanwhile, a statement like “This

customer has approximately 56% chance of buying our new product, should it be recom-

mended to him?” could be a prediction statement for a ML work. [12]

2.7.2 Artificial Intelligence produces actions

Historically, ML is considered as a subfield of AI. For example, computer vision was clas-

sified as an AI problem rather than ML problem. The relationship between AI, ML and

Deep Learning (DL) is illustrated in figure 9.

20

Figure 9. Generic neural network architecture [13]

AI is the oldest and the most widely recognized of these three fields. However, it is the

most challenging to define due to extravagant publicity or promotion to get the attention,

funding and investment by journalists, researchers and startups. AI is normally misinter-

preted as general AI which is the capability to perform tasks from different domains. AI

is also wrongly perceived as super intelligent AI, which outperforms human intelligence.

This creates unrealistic expectations for an AI system. [12]

The definition of AI that is commonly accepted, for example by Poole, Mackworth and

Goebel 1998 and Russell and Norvig 2003, is an agent that executes or recommends

actions. [12] The typical AI system includes Reinforcement Learning (RL), Natural Lan-

guage Processing (NLP), game-playing algorithms such as Deep Blue and AlphaGo,

optimization solutions, for example Google Maps recommend an optimized route, Robot-

ics and control theory.

2.8 Data normalization

Data normalization is a common and important technique for raw data processing before

applying to ML or ANN models. The outcome of data normalization is to make values of

different features in a data set into a common range without changing the internal rela-

tionships of data points in each feature. It is especially important when features have

ranges which are much further away from each other. [14]

For example, a data set contains two features which are age and income. Age can be in

the range from 0 to 100, while income values could be in the range from 0 to 100,000. If

data normalization is not performed, the income feature could influence the output of a

model due to its larger value. Therefore, the model could be a wrong predictor in a case

where age is the true influential factor. [14] An experiment is conducted using normalized

data and non-normalized data on the same deep neural network model.

21

Figure 10. Left: Accuracy graph without normalized data, Right: Accuracy graph with normalized

data [14]

As seen in figure 10, the accuracy without normalized data is only around 48.8% while

accuracy of the model with normalized data could reach 88.93% on the validation data

set. The straight line of the graph on the left can be explained that the accuracy remains

unchanged and the model could not learn within 26 iteration steps. This implies that using

non-normalized data could lead to long learning time because gradient descent algo-

rithms can oscillate back and forth and are not able to find local or global minimums and

therefore do not converge quickly. [14]

22

3 Project specifications

This chapter describes in detail the project specifications. Wizense Oy demands a study

of the possibility of AI in categorizing and labeling route activities. The actual raw ob-

tained from wearable devices is in the form of quaternions with the time stamps. After

that, the quaternions are converted into 2 dimensional XY coordinates. Consequently,

these XY coordinates are fed into an ANN model in order to train this model. After the

model is trained, it can categorize whether a certain point is in or out of the predefined

route.

The simplified version of the Metropolia Myyrmäki building layout and L-shaped prede-

fined route is shown in figure 11. Black rectangles represent rooms in the building and

yellow color rectangles represent predefined routes. Red rectangles are doors of the

building. In this study, 3 predefined routes with increasing complexity will be examined

to explore the ability to learn of the ANN.

Figure 11. The simplified version of Metropolia Myyrmäki building layout with predefined route

In real life situations, there will be an experienced cleaner or worker who will wear a

wearable device which generates step points and data is collected and converted to XY-

coordinates. This experienced cleaner or worker performs his work following the optimal

23

route which will be the predefined route. As a result, all the step points collected by this

person will be labeled as “in route” which is also Boolean value True or 1. Other parts of

the room which are not covered by his route will be labeled as “out route” which also has

Boolean value False or 0.

Figure 12. The simplified Metropolia Myyrmäki building layout with predefined route

Due to the inconvenience of walking on the real map and collecting large enough data

for the neural network to learn, a random generated function will be used to generate

steps data in XY coordinates and label them. The route data points are in blue color—

Boolean logic 1— and non-route data points are in green color—Boolean logic 0—as

illustrated in figure 12.

24

Figure 13. Expected outcomes from ANN model

A neural network will learn from these data points and with given input as step points of

the new route, it will label which part of the new route is in or out of the predefined route

as follows. The expected outcome of the ANN application is demonstrated in figure 13.

25

4 Implementation

4.1 Development process

The Waterfall model was adopted for the project development process. This is the tradi-

tional and predictive software development process in which the requirements are fully

understood and not changing since any change in the requirements would make the

completed tasks useless and extend the project deadline further. This is especially true

for an individual short-term project such as this project which lasts only approximately 3

months. [15]

Figure 14 The Stacey Graph [15 p11]

The Waterfall model also requires the technology to be reliable and stable. Since the

project is short in timespan in nature, technology changes are not expected to occur.

Furthermore, the libraries and modules used in this project have a long historical record

to be stable and also adopted by large companies such as Google. In brief, if the devel-

opment process is certain and predictive, the Waterfall model is a suitable choice. Oth-

erwise, the Agile model is a better choice. The Stacey Graph, which is a useful tool to

assist in deciding which model to use for the development process, is described in figure

14.

26

Figure 15 The Waterfall model [16]

The traditional Waterfall model contains 5 stages which includes requirement, design,

implementation, verification and maintenance. [16] The model is described in figure 15.

The requirement stage takes the first two weeks of the development process where pro-

ject requirements and specifications were discussed and completely understood. The

design phase takes two weeks in which different ANN models are studied and the most

suitable one is selected. Dataflow and software architecture are also decided in this

phase. The implementation phase takes approximately 2.5 months. The verification and

maintenance take another two weeks.

4.2 Structure, tools and system used

The overall flowchart of the project is described in figure 16. Firstly, the CSV files which

contain information about the dimensions such as XY coordinates, widths and heights of

the rooms, doors and predefined routes is fed into a python program called dataGener-

ator.py. This Python program uses two Python modules called Numpy and Pandas for

27

data frames processing and matrix operation. Source code of the application is available

on github2 under GPL license.

Figure 16. Application flow chart

The output of dataGenertor.py is the map of the building layout, rooms and predefined

routes as shown in Figure 11. A few examples of rooms’ dimensions are described in

listing 1.

Listing 1. A few examples of rooms’ dimensions in room.csv file

The dataGenerator.py also contains an algorithm to randomly generate raw data points

in a CSV file. Each of the data points has three dimensions. The first dimension is that if

a point is within the predefined route—yellow color area in figure 11—it has a value of 1

and has value of 0 otherwise. The second is the coordinate along the horizontal axis or

X-axis. The third dimension is the coordinate along the vertical axis or Y-axis. The first

few data samples are shown in listing 2. For example, the first data point has a label

value of 1, X-coordinate is 896.93, and Y-coordinate is 561.47.

2 https://github.com/vinhxu/BachelorThesis

28

Listing 2. First few data samples with label, X-coordinate, and Y-coordinate

Consequently, the raw data file acts as an input into the loadData.py program. The load-

Data.py has 3 main functions. The first function is to shuffle the raw data into random

order. Since the training process for the ANN model is done in a mini batch data set, the

shuffling prevents the mini batch data set from containing only samples from only one

label. Intuitively, one aspect of a human mind is a tool to separate and differentiate. A

human could not learn about the concept of darkness without the existence of the oppo-

site concept which is light. Therefore, distinguishing and comparing is one of the ways

to learn. In the same manner, if there are only data points which belong to the predefined

route, an ANN model could not learn how to categorize them from non-route data points.

Therefore, data shuffling is necessary in this case. After shuffling, the shuffled data is

saved into a CSV file and is used as an input for ANN in ANN.py file.

The second function is to normalize the data into smaller ranges. As seen from listing 2,

values of X and Y coordinates are quite large compared to the values of labels. To be

more specific, the range of XY-coordinates are in the range of hundreds to thousands

while the label is in the range from 0 to 1. There can be a large difference between the

ranges of X and Y coordinates in the data set. To make the application useful in general

cases, data normalization is necessary. As discussed in section 2.8, data normalization

helps to improve the accuracy of an ANN model, decrease learning time and enhance

data visualization as well. The MinMaxScaler function imported from sklearn.prepro-

cessing library will be used for data normalization. This function uses an algorithm to

transform data into a specific range which is similar to zero mean and unit variance scal-

ing. The first few data samples are described in listing 3.

Listing 3. Normalized data in range from 0 to 1

The third function is to divide the whole data set into 3 smaller subsets which is training,

validation and testing set. The main purpose is to detect the overfitting from the learning

process and retrain the ANN model if this occurs. Finally, an ANN is built to learn from

the processed data in the program file ANN.py. Numpy will be used again for matrix and

29

array operations and Pandas is used for data processing. In addition, Tensorflow open

source library provides an excellent tool for ML or Deep Learning applications such as

ANNs. Tensorflow library was developed by Google for both research and production.

Lastly, matplotlib library is used for data visualization and drawing graphs. Time library

is used to keep track of the learning time of ANN.

In ANN.py, hyper parameters which influence the performance of the ANN model are

declared and initialized. Consequently, ANN topology is constructed and its parameters

are initialized. After that, data from the training set is divided into smaller batches and

fed into this ANN model. After a predefined number of iterations which are called epochs,

ANN model is trained with high accuracy and small loss value. This also indicates con-

vergence in which these values fluctuate in a very small range when the number of iter-

ations increases. Lastly, trained models are saved into the 03_savedModel folder.These

models could be restored to perform new route data points in the later stage. The results

such as accuracy, loss on training, validation and testing data set are presented to the

user for visualization purposes. During the training, accuracy and loss from both valida-

tion and training data is also printed to monitor the training progress and its convergence.

4.3 Implementation in detail

4.3.1 Generating raw data

Firstly, the information regarding dimensions of the rooms, doors and predefined routes

are required so that the data generating function could generate the points and correctly

label these points to their categories: route which has a value 1 or non-route which has

value of 0. This is done by using Pandas pd.read_csv(path_to_csv_file) func-

tion. Furthermore, the vertices, which guide the path of the new route, are also defined

in listing 4.

30

Listing 4. Defining vertices of new route and reading dimensions of rooms, routes and doors from

CSV file.

The call of the plot function to draw all the graphs is shown in listing 5. The X-axis and

Y-axis margins for the graph are set at the minimum and maximum values of the rooms’

dimensions plus the offset value of 200.

Listing 5. Set the X-axis and Y-axis limits

The function draw_map on lines 31 to 34 of listing 6 is to draw the simplified version of

Metropolia Myyrmäki building layout with predefined route as shown in figure 11. Like-

wise, function draw_walking_path in listing 6 will generate the data points based on

the defined vertices as a guide path and draw those data points as a walking path of the

new route. The stepDistance parameter adjusts how big the step size is. The variable

margin adds some noise to the data points so that they appear more natural compared

to natural walking steps.

31

Listing 6. Functions that draw rooms, predefined routes and walking path of the new route

The function isOnRoute in listing 7 compares the X and Y coordinates of a data point

with the coordinates of the predefined route and outputs the Boolean value of True or

False accordingly. The function calculate_total_area calculates an area of a rec-

tangle given its dimensions. The function get_random_xy from listing 7 takes dimen-

sions of a rectangle and generates the desired number of data points in that rectangle.

This function is to facilitate the control of how many data points in total as well as for

each category in the data set. How the total number of samples and the ratio of data

points in each label affect the training time, the accuracy of the ANN model will be dis-

cussed in the chapter 5.

32

Listing 7. Functions which support the data generation process

Function generate_route_xy and generate_nonRoute_xy in listing 8 generate a

desired number of route and non-route data points accordingly by calling the function

get_random_xy from listing 7. Function generate_map_xy in listing 8 has an algo-

rithm to balance the data from both categories. Firstly, the area of both route and non-

route is calculated and the ratio between them. Based on this information combined with

the parameterized total number of samples, the actual number of samples for both the

labels is calculated using the formulas shown in line 186 and 187 of the listing 8.

33

Listing 8. Functions to generate data points

As a result, we could get the balanced data for the ANN model. The reason for balancing

the data is because if the total number of data points which belongs to one category is

much more than the others, it will affect the result of the ANN model. This point will be

discussed further in chapter 5. The function generate_map_xy also produces raw data

in a CSV file and will be processed in later stages.

4.3.2 Processing raw data

The processing raw data task resides in the file loadData.py. The function shuf-

fle_csv_data which creates randomness in the data set for training, validation and

testing purposes is shown in listing 9. The shuffling task is done by call methods sam-

ple(frac=1) and reset_index(drop=True) of the pandas library.

34

Listing 9. Function to shuffle data into random order

Data normalization is performed using a wrapper function scaler_min_max that calls

MinMaxScaler of sklearn.preprocessing library. The function returns processed

data as well as the scaler. This scaler will be used to scale the new route data points for

verification purposes. The implementation of the function scaler_min_max is de-

scribed in listing 10.

Listing 10. Function to normalize data into range from 0 to 1

The convert_to_oneHot function is implemented in listing 11. In short, one hot en-

coding is a data transformation of categorical variables as binary vectors. This is done in

two steps. Firstly, values of the categorical variables are represented in integer values.

The second step is each integer value is converted into a binary vector that is all zeros

except at the index of the integer which is 1. For example, given a data set “route, route,

non-route”, after the first step, the following result is obtained: “1,1,0”. After the second

step, we achieve the one hot representation of the original data set: “[0,1], [0,1], [1,0]”.

The purpose of one hot encoding is to give probability prediction to each of the catego-

ries. For example, a point could be represented as [0.3, 0.7] which means that this point

has a 30% chance of being out of the predefined route and 70% chance of being in a

predefined route.

Listing 11. Function to convert to one Hot

35

As seen from listing 12, the load_data function which returns the correct set of data

depending on the choice of mode. There are two modes that are important for an ANN

model. The first mode is train mode in which both the training and validation data subsets

are put into an ANN model. The reason for putting both these subsets is to prevent over-

fitting issues and also help to monitor the convergence of the training process. The sec-

ond mode is test mode in which the testing data subset is put into a trained ANN model.

If the accuracy is high and fairly comparable to those obtained by training and validation

data subsets, it is quite confident to conclude that the model is well trained and does not

have both underfitting or overfitting problems.

Listing 12. Function to load data to ANN model

As depicted in listing 13, the actual implementation of dividing original data set into

smaller subsets of training, validation and testing set with the ratio of 79%, 7% and 14%

accordingly. This is done by calling numpy function np.floor to determine the correct

index giving the ration and then calling numpy method np.arange to put the values into

correct order. There is no golden rule on how to divide a data set into these 3 subsets.

Typically, a ratio of 80/10/10 or 70/15/15 is used for data set division. In this application,

the training set is 79%, validation set is 7% and testing set is 14%.

The final step is to separate the XY-coordinates data and labels because only the XY-

coordinates are put into the ANN model. Then outputs of the ANN model are compared

36

to the correct labels to make necessary adjustments to the weight connections. This

process helps the ANN to produce better predictions. This separation is done using the

code from line 75 to 80 in listing 13.

Listing 13. Source code to divide data into 3 subsets: training, validation and testing

After the ANN model is trained, it is helpful to verify how well the trained model works on

new data. Therefore, as mentioned in the requirement, new route data points are created

using vertices as a guideline. Since the ANN model is trained with the use of the scaler,

the same scaler needs to be applied to new data as well.

Listing 14. Source code to read new route data points and normalize them

The transformation from raw data into normalized data is implemented in line 89 of listing

14 by using the scaler returned by the scaler_min_max function described in listing

37

10. Furthermore, 2 extreme points at the corner of the rooms so that the graph will have

an auto scale feature as seen from line 86 and 87 of listing 14.

4.3.3 Building an ANN

Firstly, all data subsets are loaded into the ANN.py file as train mode and test mode as

mentioned in subsection 5.2.2 . This is done using line 12 and 13 from listing 15. Variable

n_inputs is the dimension of the inputs into the ANN model. In this case, the ANN

model is trained with X coordinate and Y coordinate, hence variable n_inputs is equal

to 2. Variable n_classes is the dimension of the outputs of the trained ANN model.

Since there are two categories, which are route and non-route encoded into one hot

encoding as shown in listing 11, n_classes variable takes the value of 2. The initializa-

tion of the two variables are shown in line 15 and 16 from listing 15.

Hyper-parameters are parameters that are important to the training process. These pa-

rameters can be adjusted to improve the accuracy and training time which are the most

important aspects of an ANN model. These parameters include epochs, batch size, dis-

play frequency and learning rate from listing 15. Variable epochs is the total number of

iterations. Variable batch_size is the random selected subset of the training data to

speed up the training process. Display frequency allows monitoring the accuracy over

the training process and also helps detect the convergence. Lastly, learning rate controls

the magnitude of weights adjustments in each iteration step to give better predictions.

Listing 15. Load data set, declare input and output dimensions and set hyper-parameters

38

Function fc_layer in listing 16 creates a fully connected layer of ANN neurons given

these parameters: the matrix from the previous layer denoted by x, number of neurons

on this layer denoted by num_units, name of this layer denoted by name, and the

variable use_relu which take Boolean value of 1 as a default. If the use_relu has

value True, the layer of ANN neurons will use the Rectified Linear activation function.

Otherwise, when it has value False, sigmoid activation function is used. Sigmoid and

Rectified Linear Units (ReLu) are the most common activation functions that have been

used regularly in building an ANN. [17] The Sigmoid function is in the form of formula 2

and produces the S-shaped curve. The ReLu function is a combination of two straight

lines and expressed as formula 3.

S(x) = (1 - exp(-2x)) / (1 + exp(-2x)) (2)

R(x) = max(0,x) and if x < 0, R(x) = 0, otherwise if x >= 0, R(x) = x (3)

Weight_variable function in listing 16 takes the dimension or shape of the matrix and

returns the initialized weight matrix. Initialization process uses the tf.random_nor-

mal_initializer function of the tensorflow library to randomize the weights to small

numbers which is close to zero. In the same manner, bias_variable function takes

the shape of the required matrix and returns the bias matrix. Normally, bias is initialized

with a value of 0. Besides hyper-parameters, ANN topology is a very important factor for

an ANN model to successfully extract data patterns from a given data set. A generic

neural network architecture or topology is illustrated in figure 8. ANN topology shows

how each ANN neuron connects to other ANN neurons. Typically, a fully connected ANN

topology is used so each neuron can receive all information from the others. The imple-

mentation of functions weight_variable, bias_variable and fc_layer is de-

scribed in listing 16.

39

Listing 16. Functions to create a fully connected layer, initialize bias variable, and initialize weight

variable

The implementation of an 8x3 ANN model in which there are 3 layers and each layer has

8 neurons as depicted in listing 17. In other words, the width of this ANN is 8 and the

depth is 3. Variable x from listing 17 is the placeholder for the input matrix, variable y is

the placeholder for the output matrix. Three hidden layers are constructed by calling the

fc_layer function in listing 15 and the results are stored in variables fc1, fc2 and

fc3 accordingly. The variable output_logits in listing 17 is one hot encoding of the

output matrix.

To summarize, the ANN has the following topology: one input layer, 3 hidden layers and

one output layer. The input layer is represented by the matrix with dimension which

equals to the number of training samples times 2. Each of the hidden layers is a matrix

of shape of 2 times 8. The output layer matrix is also in the shape of 2 times 8. Following

the matrix multiplication rule, the ouput_logits has the dimension which is equivalent to

the number of training samples times 2. This is also the shape of the variable y, the

40

placeholder for output matrix. The calculation is called dimension verification which pre-

vents errors from occurring in matrix multiplication operation.

Listing 17. Fully connected ANN

Variable cls_prediction from listing 18 stores the value of the class or category

which is predicted by the ANN model. It is the category in which the index has the highest

probability among indexes of the output_logits one hot encoding matrix. Variable

cls_prediction has either 0 or 1 in its value. Variable y_true_test from listing 18

stores the true classification or category of the training data set. Similar to variable

cls_prediction, it also contains a value of either 0 or 1.

Listing 18. Variables contains network predictions

Variable correct_prediction from listing 18 stores the result of the comparison between

the predicted class from the ANN model and the correct class. If the predicted class is

the same with the correct class, boolean value True is assigned to this variable. Other-

wise, the value of correction_prediction is False.

Listing 19. Define loss function, optimizers for training process

41

The implementation of the loss function and optimizer for the ANN model is described in

listing 19. Tensorflow funcion tf.nn.softmax_cross_entropy_with_logits is

called for constructing the variable loss which contains the loss value for loss function at

line 112. Loss function represents the difference in value of all the predictions. The goal

of the optimizer is to reduce the loss value to its minimum. The variable optimizer from

listing 19 contains the result of calling the function tf.train.AdamOptimizer to min-

imize the loss variable with the specified learning rate of 0.001 in listing 15.

 Listing 20. Global variables, session and model saver initialization

The process of initialization of all global variables of the Tensorflow execution graph is

depicted in line 119 of listing 20. After that, defining and running the session is imple-

mented in lines 121 and 122 in listing 20. Finally, the saver function to save the trained

ANN model for future use is declared in line 124.

42

5 Results and discussion

5.1 Results

5.1.1 Result on training, validation and testing subsets

The visualization of the trained ANN model with accuracy of 99.3% on the training set is

shown in figure 17. Accuracy on validation data set and testing set are 98.9% and 99.6%

accordingly. The small difference between the accuracies obtained on 3 subsets of data

proves that the training process is successful and the trained ANN model could be able

to generalize and provide prediction on the new route data set.

Figure 17. Trained ANN model with accuracy of 99.3% on the training set

The ANN model is trained on a data set of approximately 10,000 data points. Hyper-

parameters include epochs of 20000 iterations, batch size is 3000 data points, learning

43

rate is 0.001. The topology of the ANN model is 1 input layer, 3 hidden layers and 1

output layer. The average training time for this ANN model is approximately 272 seconds

which is around 4.5 minutes.

Points with green color are correctly categorized while points with red color are wrongly

labeled as depicted in figure 17. It is noticed that most of the points , which are classified

wrongly, are located near the border line between the route and the non-route area.

5.1.2 Result on a new route data

The visualization of a trained ANN model with accuracy of 100% on the new route data

was shown in figure 18. Since all the points are in green color which means that all the

points are correctly categorized. This proves that the model works quite well in classifi-

cation problems.

Figure 18. Trained ANN model with accuracy of 100% on the new route data

44

In the same manner, any new route data could be put into the trained ANN and the user

could receive the classification result even though the data has not been introduced to

the model before. This is an advantage of the ANN model of modern AI bottom-up ap-

proach compared to classical AI top-down approach with a hard set of rules of logical IF

… THEN … statement.

5.2 Discussion

5.2.1 Unbalanced data problem

The achieved results as depicted in figure 17 is with the assumption of balanced data.

This means that the total number of data points in both route and non-route are approx-

imately at the same level. This condition also applies when there are more categories to

be classified by an ANN model.

In this case, the area of the predefined route is approximately 10% of the total area,

hence the ratio of non-route over route is around 9 times. This leads to the issue in which

an ANN model could learn to predict all points as non-route data and still obtain the

accuracy of 90%. Conducting an experiment on such unbalanced data proves the state-

ment. As seen from figure 19, the trained ANN model predicts all data points in the pre-

defined route as non-route and 90% accuracy is still obtained.

45

Figure 19 The result obtained given the unbalanced data

Therefore, it is very important to make data balanced before training an ANN model.

There are two commonly used methods to achieve balanced data. The first method is to

put more weights on the data set which is smaller so their influence on the result is bigger.

The second method is to increase the number of data points of the smaller data set by

adding randomized data points from itself so that the total number of data is approxi-

mately equal to other classes. In this project, the second method is used as shown in

Listing 8.

5.2.2 Influence of epochs on accuracy and training time

This subsection explains how the number of epochs affects the performance of the ANN

in terms of accuracy and training time. The total number of data points is 10,000 points

with the batch size of 3,000 and the learning rate of 0.001 will be used to train the ANN.

The ANN topology is 1 input layer, 3 hidden layers with 8 neurons on each of them, and

46

1 output layer. The number of epochs is set in increasing order starting from 0 to 30,000.

The following result is obtained.

Table 1. Results of how epochs number affects accuracy and training time

Epochs Accuracy Training time

300 72.0% 4

1000 77.6% 14

3000 92.9% 39

10000 98.7% 135

20000 99.0% 272

30000 99.2% 395

As seen in table 1, when the number of epochs increases, the accuracy and training time

also increases. To achieve the accuracy of 99% and above, the required training time is

272 ± 10 seconds which is approximately 5 minutes. Since this is a stochastic algorithm

which uses randomness to solve optimization problems, it is observed that both accuracy

and training time obtained is slightly different each time and this result represents the

average plus/minus the error to conform with scientific notation.

5.2.3 Influence of batch size on accuracy and training time

The influence of the batch size on the performance of the ANN in terms of accuracy and

training time will be conducted in this subsection. The total number of data points is

10,000 points with an epoch number of 20,000 and a learning rate of 0.001 will be used

to train the ANN. The ANN topology is 1 input layer, 3 hidden layers with 8 neurons on

each of them, and 1 output layer. The batch size is set in increasing order starting from

100 to 10,000. The result is described in table 2.

47

Table 2. Results of how batch size affects accuracy and training time

Batch size Accuracy Training time

100 99.1% 2193

300 99.0% 858

1000 99.3% 375

3000 99.4% 267

5000 53.1% 239

10000 52.9% 42

As seen from table 2, if batch size is equal or smaller than 3,000, the accuracy above

99% is achieved. If batch size is equal or above 5,000, the accuracy reduces dramatically

to around 50% level which is the same result as without training. The reason for low

accuracy at batch size of 5000 is due to the gradient descent algorithm only can only find

the local minimum on that running session. Conducting more experiments with batch

size above 5000 proves that the bigger the batch size, the higher the chance the algo-

rithm could only find local minima. However, when batch size increases, the training time

decreases significantly. From the observation, there is a tradeoff between higher chance

of finding global minimum and higher training time versus lower chance of finding global

minimum and lower training time.

5.2.4 Influence of learning rate on accuracy and training time

This subsection examines the effect of learning rate on the performance of the ANN in

terms of accuracy and training time. The total number of data points is 10,000 points with

batch size of 3,000 and epochs number of 20,000 will be used to train the ANN. The

ANN topology is 1 input layer, 3 hidden layers with 8 neurons on each of them, and 1

output layer. The learning rate is set in ascending order starting from 0.001 to 0.1. The

result is shown in table 3.

48

Table 3. Results of how learning rate affects accuracy and training time

Learning rate Accuracy Training time

0.001 99.4% 267

0.003 99.0% 268

0.01 98.9% 258

0.03 53.1% 257

0.1 53.1% 257

In general, when learning rate increases, the accuracy slightly reduces, however the

training time remains almost unchanged as shown in table 3. Until the learning rate of

0.01, the training accuracy is kept close to 99% level. When the learning rate is at 0.03,

there is a remarkable phenomenon in which the accuracy slowly increases from 53.1%

to maximum of 95.3% at epoch 1098 and decreases back to 53.1% level. This phenom-

enon is due to too large a learning rate where instead of going downhill to find local or

global minimum, the gradient descent algorithm goes uphill and as a result, accuracy

reduces. The observation at learning rate of 0.1 supports the explanation when accuracy

of 53.1% is obtained which means that if the learning rate is above a certain threshold,

gradient descent algorithm could not go downhill to find its minimum. Nevertheless, the

learning rate does not affect the training time since it remains at around 260 seconds.

5.2.5 Influence of ANN topology on accuracy and training time

This subsection studies how ANN topology affects the performance of the ANN in terms

of accuracy and training time will be conducted. The total number of data points is 10,000

points with batch size of 3,000, epochs number of 20,000 and learning rate of 0.001 will

be used to train the ANN. The number of hidden layers and number of neurons in each

layer will be modified to generate a variety of ANN topologies for the study.

49

Table 4. Results of how an ANN topology affects accuracy and training time

Topology Accuracy Training time

in-888-out 99.4% 267

in-88-out 97.6% 235

in-8-out 85.7% 202

in-666-out 98.6% 269

in-444-out 72.1% 233

in-222-out 53.1% 249

in-864-out 95.9% 245

There are two ways to modify the ANN topology. The first method is to change the num-

ber of hidden layers which is the depth of the ANN and the second method is to change

the number of neurons in each layer which is the breadth of the ANN.

When changing the number of hidden layers from 3 to 1 and keeping the number of

neurons in each layer at 8, it is observed that the accuracy decreases from 99.4% to

85.7%. This is due to the fact that with less features, the ANN model could not draw

necessary classification lines in the graph to make correct predictions and therefore ac-

curacy is reduced. The training time also decreases if the number of hidden layers de-

creases as shown in table 4.

In the same manner, when changing the number of neurons in each layer from 8 to 2

and keeping the number of hidden layers at 3 layers, the accuracy also decreases. With

the topology of in-444-out, the accuracy reduces to 72.1% and with topology of in-222-

out the accuracy is only 53.1%. Lack of necessary features is also the root cause for this

observation. However, when the number of neurons gradually decreases from 8 in layer

1 to 4 in layers 3, the accuracy remains at a high level of 95.9%.

The conclusion is that the ANN topology should accommodate the necessary data fea-

tures, otherwise this will affect the accuracy of the model significantly. How wide and

deep of an ANN depends on the nature of the data set. In the case that the width and

50

depth is too small, there will be a lack of materials to build the necessary patterns which

are required by the learning process and leads to the underfitting situation—high bias.

On the opposite, if the width and depth of the ANN is too large, it could result in the

overfitting problem—high variance. Therefore, the tuning process is extremely important

to discover the optimized hyper-parameters and ANN topology which enhances the per-

formance of the model. Some of the results of this are illustrated in the Appendices 2

and 3.

5.2.6 Influence of total number of data points on accuracy and training time

This subsection examines the effect of total number of data points on the performance

of the ANN in terms of accuracy and training time. The epoch number is 20,000 with

batch size of ⅓ of the total number of data points, and a learning rate of 0.001 will be

used to train the ANN. The ANN topology is 1 input layer, 3 hidden layers with 8 neurons

on each of them, and 1 output layer. The number of data points is in increasing order

starting from 1,000 to 30,000. The result is illustrated in table 5.

Table 5. Results of how a total number of data points affects accuracy and training time

Number of data points Accuracy Time

1000 91.7% 112

3000 98.6% 145

10000 99.1% 272

30000 99.5% 540

The batch size of ⅓ of the total number of data points is concluded from subsection 5.2.3

to be in the range of optimized hyper-parameters to use for an ANN model. As seen from

table 5, the accuracy improves significantly with an increasing number of data points.

This explains one of the facts that big data matters and hence the trend for big data in

recent technology development. On the other hand, big data also comes with the cost of

training time and energy consumption.

51

5.2.7 Influence of route complexity on accuracy and training time

The effect of route complexity on the performance of the ANN in terms of accuracy and

training time will be studied in this subsection. The total number of data points is 10,000

points with batch size of 3,000, epoch number of 20,000, and a learning rate of 0.001

will be used to train the ANN. The ANN topology is 1 input layer, 3 hidden layers with 8

neurons on each of them, and 1 output layer. Three different predefined routes with in-

creasing complexity will be used to train the ANN model. The predefined routes with level

2 and 3 complexities are shown in the Appendix 1.

Table 6. Results of how complexity of the route affects accuracy and training time

Route number Accuracy Training time

Route 1 99.1% 272

Route 2 97.1% 264

Route 3 95.7% 275

As observed from table 6, when the complexity of the route increases, the accuracy of

the trained ANN model decreases. This can be explained that with current ANN topology

it might not be enough features to accommodate a more complex data set. As a result,

increasing both the depth and breadth of the ANN could improve the accuracy. Another

method to improve the accuracy performance is to increase the total number of data

points to 30,000 as explained in subsection 5.2.6.

5.2.8 Possible improvement

There are 3 basic models, which includes linear regression, logistic regression and ANN,

are studied for the classification task. Linear regression is useful for predicting continu-

ous values such as house price, temperature. However, classifying route and non-route

belongs to the discrete value domain so linear regression is not a good model. Logistic

regression is a good candidate to solve discrete value classification problems because

most of the outcome values of logistic function are either 1 or 0 in value. Nevertheless,

the disadvantage of using this model is that it requires explicit modeling of the

52

interactions which is quite similar to hard rules of classical AI approach. Therefore, ANN

is the best suitable model for the route classification task. However, the logistic regres-

sion can be interesting to explore so that performance could be compared between these

two models.

Typical ratio of 80/10/10 or 70/15/15 is used for data subsets division. The largest pro-

portion is included in the training data set so that the ANN model could obtain sufficient

data points to learn from since less data points could lead to lower accuracy as shown

in subsection 5.2.6. Normally, the proportion of validation data set and testing set is equal

since it serves the monitoring convergence and testing purposes quite well. In this appli-

cation, the training set is 79%, validation set is 7% and testing set is 14%. The reason

for setting the testing set proportion two times of the validation set is to achieve a larger

number of wrongly labeled points (red points) for model limitation tests. The lesser the

testing data set is, the lesser the data points lie near to the border line between route

and non-route and therefore increasing the chance of correct predictions.

One of the advantages of the ReLu activation function compared with the Sigmoid acti-

vation function is it allows faster learning which means it costs less in training time. An-

other advantage is that it reduces the vanishing gradient descent issue due to constant

gradient of the function. The vanishing gradient descent problem seriously affects the

performance of the Sigmoid activation function because the slope of this function is near

zero value as the function approaches 0 and 1 values on the vertical axis. The scope of

this project does not include the influence of activation function on the performance of

the ANN. However, it would be an interesting topic to explore even further in subsequent

studies. As explained in subsection 5.2.3, there is a tradeoff between different batch

sizes regarding the chance of finding global minimum and training time. More experi-

ments could be conducted to find out what is the optimal expectation value considering

the probability of finding global minimum.

Even though the basic requirements of the project are fulfilled, there are rooms for further

improvement and development as well. The first area for future development is to take

the direction of a predefined route into consideration. This requires the introduction to

one more input feature which is time, therefore there will be a total of 3 input features

which are X-coordinate, Y-coordinate and time. The output remains at 2 dimensions

53

which are either route or non-route as one hot encoding vector. However, there is one

aspect that needs to be noticed which is the size of the data. An ANN model could not

learn from positive examples only but also from negative examples. Without the time

dimension, the number of data points, which are used to train the ANN model, is 10,000.

These data points are divided equally for both positive and negative examples as a re-

quirement of balanced data. When a time dimension is added, for each time step, the

model needs approximately 10,000 data points to train. For a data set of the size of

10,000, it takes around 5 minutes to train. The more the number of time steps increase,

the longer time the training process requires. In the same manner, it would take 50

minutes to train a data set with only 10-time steps, and hence this approach becomes

not realistic. The unsupervised learning algorithm such as K-means clustering could be

a good candidate to solve this problem.

Since the scope of this project is to explore the possibility of using ANN to solve real-life

problems, using complex data flow and software architecture to enhance performance is

avoided. Therefore, the second area for future development is how to propose a software

architect to integrate this solution into the existing software architecture, especially mak-

ing ANN models running in embedded systems like Linux real time operating system

which is the same system used by the wearable devices.

The final area for improvement is the User Interface (UI) and User Experience (UX). In

this application, the building layout is simplified in order to focus into exploration of the

possibility of the ANN model to solve the classification challenge. More realistic building

layout and user-oriented application can be a target for next delivery.

54

6 Conclusion

This is the era of big data and those who own more data could have huge advantages

compared to those who do not. Instead of the gold rush, the data rush has been seen

and is going to be seen in the near future. The next question is what to do with the big

data, what information could benefit us as a whole. AI and ML provide an answer to those

questions by extracting useful data patterns which used to be very hard or inefficient

using conventional methods. This project is an attempt to use modern AI tools to solve

real-life problems.

In this project, the relationship and similarity between the biological network of neurons

and ANN has been explained in detail. The application using Python programming lan-

guage and Tensorflow framework demonstrates how to apply the model to perform clas-

sification tasks such as determining whether data points belong to a predefined route.

The advantage of modern AI models is also emphasized compared to classical models.

For example, the trained ANN model could categorize the data points from new routes

which it does not learn from. This could be a difficult task for models such as GPS.

This project also attempts to test different hyperparameters to see how they affect the

performance of the ANN model in terms of accuracy and training time. These parameters

include epochs, batch size, learning rate, ANN topology, total number of data points and

route complexity. Furthermore, the study also provides a method on how to find the op-

timal values for these hyperparameters for the dataset from predefined route 1. This

method could also be applied to different datasets for performance optimization.

Since the scope of the project is limited to exploring the possibility of applying ANN model

to solve real-life problems; software architecture, data flow, UI and UX implementation

is kept at minimal level and hence these areas could be targets for improvement for

future development. Besides, alternative models such as logistic regression could be

implemented for performance benchmarking with the current ANN model. Based on cal-

culation of theoretical training time, it is also interesting to notice that there is a limitation

for the practical use of ANN model if a time dimension is added as another input feature.

Therefore, unsupervised learning models such as K-means clustering could be an alter-

native solution to solve classification problems with 3 input features.

55

For the route complexity, further study could be done to verify that routes with higher

complexities such as curved routes or curved and lined combination routes could be

classified effectively using the ANN model. This project has introduced the method to

find the optimal hyperparameters to obtain the best performance of the mode in terms of

accuracy and training time. However, because of the time constraint of the project, the

current error range of the obtained parameters is quite large. In the subsequent study, a

fine-tuning process could be performed to reduce the errors even further.

56

References

1. Warwick K. Artificial Intelligence: the Basics. Florence: Taylor & Francis Group;

2011.

2. Paul P. Maillardet's Automaton [Internet]. Atlas Obscura. 2020 [cited 16 April

2020]. Available from: https://www.atlasobscura.com/places/maillardets-auto-

maton

3. Allen N. A guide to the general problem-solver program GPS-2-2. California:

Rand Corporation; 1963.

4. Joshua E. General Problem Solver (GPS) [Internet]. Ai-su13.artifice.cc. 2020

[cited 16 April 2020]. Available from: https://ai-su13.artifice.cc/gps.html

5. Coppey L. What does AlphaGo vs Lee Sedol tell us about the interaction be-

tween humans and intelligent systems? [Internet]. Medium. 2020 [cited 16 April

2020]. Available from: https://medium.com/point-nine-news/what-does-alphago-

vs-8dadec65aaf

6. Alina B. The Five (and More) Senses [Internet]. livescience.com. 2020 [cited 16

April 2020]. Available from: https://www.livescience.com/60752-human-sen-

ses.html

7. Meola C, editor. Infrared Thermography : Recent Advances And Future Trends.

SAIF Zone: Bentham Science Publishers; 2012.

8. Nippon Avionics Co.,Ltd. InfReC R300BP-TF | Infrared Thermography | NIP-

PON AVIONICS CO.,LTD. [Internet]. Infrared.avio.co.jp. 2020 [cited 16 April

2020]. Available from: http://www.infrared.avio.co.jp/en/products/ir-

thermo/lineup/r300bp-tf/index.html

https://www.atlasobscura.com/places/maillardets-automaton
https://www.atlasobscura.com/places/maillardets-automaton
http://ai-su13.artifice.cc/
https://ai-su13.artifice.cc/gps.html
https://www.livescience.com/60752-human-senses.html
https://www.livescience.com/60752-human-senses.html
http://www.infrared.avio.co.jp/en/products/ir-thermo/lineup/r300bp-tf/index.html
http://www.infrared.avio.co.jp/en/products/ir-thermo/lineup/r300bp-tf/index.html

57

9. Floreano D, Mattiussi C. Bio-Inspired Artificial Intelligence : Theories, Methods,

and Technologies. Cambridge: MIT Press; 2008.

10. Hafsi B, Elmissaoui R, Kalboussi A. Neural Network Based on SET Inverter

Structures: Neuro-Inspired Memory. World Journal of Nano Science and En-

gineering. 2014;04(04):134-142.

11. Richard N. The differences between Artificial and Biological Neural Networks

[Internet]. Medium. 2020 [cited 16 April 2020]. Available from: https://to-

wardsdatascience.com/the-differences-between-artificial-and-biological-neural-

networks-a8b46db828b7

12. David R. What's the Difference Between Data Science, Machine Learning, and

Artificial Intelligence? [Internet]. Pubs.spe.org. 2020 [cited 16 April 2020]. Avail-

able from: http://pubs.spe.org/en/twa/twa-article-de-

tail/?art=3781&gclid=Cj0KCQiAv8PyBRDMARIsAFo4wK3GSgMifi-

PDEF7oU872Dn6DSoH8Dojq-W-_IT8XF4IaLuPkrz5jVwaAg0uEALw_wcB.

13. Moore J, Raghavachari N. Artificial Intelligence Based Approaches to Identify

Molecular Determinants of Exceptional Health and Life Span-An Interdiscipli-

nary Workshop at the National Institute on Aging. Frontiers in Artificial Intelli-

gence. 2019;2.

14. Urvashi J. Why Data Normalization is necessary for Machine Learning models

[Internet]. Medium. 2020 [cited 16 April 2020]. Available from: https://me-

dium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-

learning-models-681b65a05029

15. Schwaber K, Sutherland J, Sutherland J. Software in 30 Days : How Agile Man-

agers Beat the Odds, Delight Their Customers, and Leave Competitors in the

Dust. Hoboken: John Wiley & Sons, Incorporated; 2012.

https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
http://pubs.spe.org/en/twa/twa-article-detail/?art=3781&gclid=Cj0KCQiAv8PyBRDMARIsAFo4wK3GSgMifi-PDEF7oU872Dn6DSoH8Dojq-W-_IT8XF4IaLuPkrz5jVwaAg0uEALw_wcB
http://pubs.spe.org/en/twa/twa-article-detail/?art=3781&gclid=Cj0KCQiAv8PyBRDMARIsAFo4wK3GSgMifi-PDEF7oU872Dn6DSoH8Dojq-W-_IT8XF4IaLuPkrz5jVwaAg0uEALw_wcB
http://pubs.spe.org/en/twa/twa-article-detail/?art=3781&gclid=Cj0KCQiAv8PyBRDMARIsAFo4wK3GSgMifi-PDEF7oU872Dn6DSoH8Dojq-W-_IT8XF4IaLuPkrz5jVwaAg0uEALw_wcB
https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029
https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029
https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029

58

16. UKEssays. Waterfall Methodology in Software Development [Internet].

UKEssays.com. 2020 [cited 16 April 2020]. Available from:

https://www.ukessays.com/essays/computer-science/waterfall-methodology-in-

software-development.php

17. Anish S. Activation functions and it’s types-Which is better? [Internet]. Medium.

2020 [cited 16 April 2020]. Available from: https://towardsdatascience.com/acti-

vation-functions-and-its-types-which-is-better-a9a5310cc8f

https://www.ukessays.com/essays/computer-science/waterfall-methodology-in-software-development.php
https://www.ukessays.com/essays/computer-science/waterfall-methodology-in-software-development.php
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f
https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f

Appendix 1

 1 (2)

Routes with different levels of complexity

Figure 20 Route with level 2 complexity

Appendix 1

 2 (2)

Figure 21 Route with level 3 complexity

Appendix 2

 1 (1)

Level 3 complexity result

Figure 22 Result with route at level 3 complexity

Appendix 3

 1 (2)

ANN with different topologies

Figure 23 Result with the ANN topology of in-8-out

Appendix 3

 2 (2)

Figure 24. Result with the ANN topology of in-444-out

