

IMPLEMENTATION OF A PLC CODE ON A RASPBERRY PI IN

CODESYS ENVIRONMENT

Bachelor’s thesis

Electrical and Automation Engineering

Valkeakoski campus

Autumn 2019

Anna Makarcheva

ABSTRACT

Electrical and Automation Engineering
Valkeakoski

Author Anna Makarcheva Year 2019

Subject Implementation of a PLC Сode on

Raspberry Pi in CODESYS Environment

Supervisor Mika Oinonen

ABSTRACT

This thesis project illustrated a Raspberry Pi microcontroller being used as
a replacement for an industrial-grade programmable logic controller (PLC)
in a data-collection application. The application, Inspector, is a tool for
factory production monitoring provided by a Finnish automation company
InSolution Oy, which was the commissioning party of the thesis project.
Inspector is comprised of a PLC application collecting real-time data and a
web application. The PLC data-collection application normally uses PLCs
manufactured by Beckhoff, whereas in this project a program with the
same functionality was implemented on a Raspberry Pi in CODESYS
programming environment.

The theoretical part of the thesis includes information on the hardware,
programming tools, languages and communication protocols used during
the empirical part of the project.

In the implementation part of the project, changes were made to the
original program to transfer it from TwinCAT to CODESYS environment.
Most of the modifications were related to reference libraries,
communication to the web client application over TCP/IP and the date and
time interface. This part of the project also included the configuration of
the inputs and outputs using Raspberry Pi GPIO and Horter I2C input
modules.

Finally, the Raspberry Pi program was tested by establishing a connection
to a web application, which revealed several issues related to the reliability
of the new application in cases of power and network failures. Data
persistence was added to the project along with other improvements
which eliminated the discovered issues and enhanced the reliability of the
application.

As an outcome of the project, a reliable and well-functioning solution was
developed for possible use of Raspberry Pi instead of a Beckhoff PLC in the

Inspector tool. The developed solution provided the possibility of a
significant increase in the cost-efficiency and flexibility of the tool. It was
concluded that a Raspberry Pi can be a feasible replacement for a PLC in
certain industrial automation applications. Moreover, the commissioning
company decided to continue the project by conducting tests on the new
product to prepare it to be released for customer projects.

Keywords Automation, data collection, microcontrollers, PLC programming.

Pages 54 pages including appendices 10 pages.

CONTENTS

LIST OF ABBREVIATIONS ... 1

1 INTRODUCTION ... 2

2 THEORETICAL BACKGROUND .. 3

2.1 PLC programming .. 3

2.1.1 Introduction to programmable logic controllers 3

2.1.2 Structured Text programming language ... 4

2.1.3 CODESYS .. 6

2.2 Controller selection and requirements ... 7

2.2.1 Required parameters ... 7

2.2.2 Raspberry Pi microcontroller ... 9

2.2.3 Allen-Bradley Micro800 programmable logic controllers 10

2.2.4 Arduino microcontroller .. 11

2.2.5 Selection .. 12

2.3 Inspector software tool ... 12

2.3.1 Functional description of Inspector software 12

2.3.2 Technical information on Inspector software 14

2.4 Communication protocols ... 14

2.4.1 TCP/IP .. 15

2.4.2 Secure Shell (SSH) protocol ... 15

2.4.3 I2C protocol ... 16

3 IMPLEMENTATION ... 17

3.1 Setup preparations .. 18

3.1.1 Preparation of Raspberry PI .. 18

3.1.2 Installations on computer ... 21

3.1.3 Exporting Inspector code from TwinCAT to CODESYS 23

3.2 Adjusting Inspector code for Raspberry Pi .. 23

3.2.1 Replacing libraries ... 24

3.2.2 Rewriting date and time functions .. 26

3.2.3 Rewriting TCP/IP communication .. 26

3.3 IO setup ... 29

3.3.1 GPIO of Raspberry Pi ... 30

3.3.2 Additional IO modules ... 31

4 TESTS AND IMPROVEMENTS ... 32

4.1 Connection to Inspector Web and testing ... 33

4.2 Improving reliability of the data collection ... 36

4.2.1 Data collection in case of network failure ... 36

4.2.2 Retaining variables in case of power failures .. 38

4.3 Prevention of cycle time increase in case of connection problems 40

5 CONCLUSION ... 40

REFERENCES .. 42

Appendices
Appendix 1 Get Date and Time Function Block
Appendix 2 TCP/IP Connect Function Block
Appendix 3 TCP/IP Send Function Block
Appendix 4 TCP/IP Receive Function Block
Appendix 5 Get Network Adapters Function Block

1

LIST OF ABBREVIATIONS

ADC Automated Data Collection
CM Condition Monitoring
GPIO General Purpose Input/Output
GUI Graphical User Interface
I2C Inter-Integrated Circuit
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IO Input/Output
NOOBS New Out Of the Box Software
NOVRAM Non-Volatile Random Access Memory
OS Operating System
PLC Programmable Logic Controller
POU Program Execution Unit
ST Structured Text
UPS Uninterruptible Power Supply

2

1 INTRODUCTION

The commissioning company of the thesis project, InSolution Oy, provides
automation solutions for industry and education. One of the company’s
main products is Inspector – a software tool for production monitoring,
that allows users to trace the productivity, availability and efficiency of the
machinery at a factory. Inspector collects production data using
programmable logical controllers (PLCs) and sends the data to a web
application interface. The web application displays numerical information
and different figures that allow users to analyse and optimise production
processes.

Inspector tool performs data collection using PLCs from Beckhoff, which
are programmed in the TwinCAT environment. Beckhoff PLCs provide
sufficient reliability and durability for the Inspector application. However,
InSolution has faced several difficulties in the implementation of Inspector
data-collection application using Beckhoff products. Firstly, all of the used
controller models have limitations on the size of the code, which in some
cases makes it necessary to reduce the functionality of the program.
Expanding the functionality of the application often requires more
expensive controller models, which increases the price of the final product.
Secondly, the PLC program requires modifications when it is implemented
on different controller models, which leads to having several versions of
the same program. Therefore, it was decided to look for a solution to
replace Beckhoff PLCs in the application. (Katajisto, 2019)

The main idea of the thesis project was to replace a PLC in Inspector with
a Raspberry Pi microcontroller. Raspberry Pi can execute PLC code in
CODESYS, which is a hardware-independent programming environment.
The microcontroller provides sufficient computing power and memory for
the Inspector application, and, therefore, would eliminate the issued
described above.

Both CODESYS and TwinCAT comply with the IEC 61131-3 standard that
includes regulations for PLC programming languages and interfaces. The
original PLC code had been written using Structured Text (ST) as the
programming language, which can be used in both of these programming
environments. Therefore, it is possible to implement the same code on a
Beckhoff PLC and Raspberry Pi. However, there are differences in writing
and execution of a program, which are related to reference libraries and
device hardware. (Codesys, 2019) (TwinCAT, 2019)

However, Beckhoff PLCs are specifically designed to be used in automation
and industry, while Raspberry Pi is made mainly for testing and educational
purposes. That means that there are significant differences in the
hardware design of PLCs and educational microcontrollers, and a

3

Raspberry cannot fulfil the same requirements as an industrial controller.
Another setback of the project is that there is no sufficient information
about the limitations and possibilities of Raspberry Pi being used as a PLC
and it is difficult to estimate whether it is possible to use a Raspberry Pi for
a specific application. The goal of this research project was to check how
and to what extent it is feasible to replace a Beckhoff PLC in the Inspector
tool.

2 THEORETICAL BACKGROUND

This chapter includes theoretical information on the topics covered in the
thesis. Understanding the terms and concepts described in the chapter is
essential for the comprehension of the workflow and ideas of the project.
The chapter also describes the hardware and software that was utilised in
the thesis project, as well as gives information on the used communication
protocols.

2.1 PLC programming

The following section provides basic information about what
programmable logic controllers are, their cases of use, features,
manufacturers and history. It also describes the programming language
and environment that were used in the thesis project.

2.1.1 Introduction to programmable logic controllers

A programmable logic controller is a special form of microprocessor-based
controller that uses programmable memory to store instructions and to
implement functions such as logic, sequencing, timing, counting, and
arithmetic in order to control machines and processes. (Bolton, 2015, p. 5)

Figure 1 describes the general idea of a PLC: it executes a program that
receives real-time input information, processes it and gives obtained
results as output signals.

Figure 1. Programmable logic controller (Bolton, 2015, p. 5).

4

PLC controllers are similar to normal computers, but they are optimized
for industrial use, which results in several differences. Firstly, the
programming environments of PLCs are simplified to be operated by
factory workers and operators who are not necessarily familiar with
programming. Therefore, they use graphical programming languages such
as Ladder Logic or Function Block Diagram, or simplified textual languages,
for instance, Instruction List and Structured Text. These languages use
simple logical expressions that can be understood intuitively. Secondly,
PLCs are designed to withstand harsh conditions of production
environments, such as vibrations, moisture, noise and temperature. Lastly,
PLCs have built-in interfacing for inputs and outputs for monitoring,
controlling and communicating with other devices. (Bolton, 2015, p. 5),
(John & Tiegelkamp, 2010).

The first PLC was invented in 1968 by Dick Morley in response to the
request from a US automobile manufacturer GM Hydramatic. The PLC was
created as a replacement for old relay logic systems, which needed to be
re-wired every time manufacturing process was updated. The first PLC,
Modicon 084, was designed to be programmed with ladder logic, which
bore resemblance to the relay logic diagrams, in order to be
comprehensible for the people used to work with the old systems. Later
on, PLC development continued by the introduction of Modbus
communication, Manufacturing Automation Protocol, PLC programming
PC software, different programming languages and standardisation by
International Electrotechnical Commission (IEC). (History of the
Programmable Logic Controller (PLC), n.d.).

Nowadays, there is a high variety of PLCs with different characteristics and
capabilities available on the market. For instance, the world’s best-known
PLC manufacturers include ABB, Siemens, Beckhoff, Schneider Electric,
Omron, Allen-Bradley.

2.1.2 Structured Text programming language

“So why not just go ahead and use ST all the way? The answer to this is
that you can” (Hanssen, 2015, p. 396).

According to John and Tiegelkamp (2010, p.10), classical PLC programming
methods that existed earlier, such as Instruction List, Ladder Logic or
Control System Function chart had reached their limits. What is more,
there were certain differences in both software and hardware of products
from different manufacturers, even for the ones, that used the same
programming language. These differences were escalating with the
development of PLC programming, and, therefore, there was a need for a
standardisation of PLC programming, hardware requirements, and
manufacturer-independent language concepts. (Hanssen, 2015, p. 20).

5

International standard IEC 61131 was introduced in 1993 by the IEC and
stands for “Industrial-process measurement and control – programmable
controllers”. The standard regulates PLC hardware, programming
languages and interfaces. The latest version of the standard is IEC 61131-3
which was released in 2013. (Hanssen, 2015, p. 20), (Budimir, 2018).

There are three graphical programming languages and three textual
languages defined by the IEC 61131-3 standard. The graphical languages
are Ladder Diagram, Function Block Diagram and Sequential Function
Chart (graphical version). The textual languages are Instruction List,
Structured Text and Sequential Function Chart (textual version). (John &
Tiegelkamp, 2010, p. 97).

In this project, ST was used as the main programming language, both in the
source Inspector code and in the modified code for Raspberry Pi. ST
programs consist of statements divided by semicolons. Statements control
the program flow, change the values and manage the calls for program
execution units (POUs).

Out of the PC programming languages, ST is comparable to PASCAL and C.
Therefore, many programmers who have worked with these languages,
find it easy to adapt to the syntax of ST. Structured Text is a High-Level
programming language, which means it uses abstract statements
describing complex functionality in a very compressed way. An example of
the ST code is given in Figure 2. (John & Tiegelkamp, 2010, p. 116).

Figure 2. Example of ST code (Hanssen, 2015, p. 395).

John and Tiegelkamp (2010, 116) describe three main advantages of
Structured Text when comparing it to Instruction List. Firstly, it provides a
very compressed formulation of the programming task. Secondly, there is
a clear construction of the program in the statement blocks. Lastly, it has
powerful constructs to control the command flow.

6

On the other hand, these advantages lead to the fact that programs
written using ST need to be compiled, and translation to the machine code
cannot be accessed directly. Compilation of the code, as well as abstract
statements, reduce the efficiency of the code execution. (John &
Tiegelkamp, 2010, p. 116).

Moreover, Hanssen states that “ST is first and foremost with arithmetic
calculations, processing numbers and in handling structured data types”
(Hanssen, 2015). They also mention that when compared to LD, writing
code in Structured Text faster and more concise. In addition, some
operations cannot be implemented in a graphical programming language.
(Hanssen, 2015).

2.1.3 CODESYS

Raspberry Pi was programmed using the CODESYS 3.5 programming tool,
developed by Smart Software Solutions GmbH. CODESYS stands for
Controller Development System, it is a hardware-independent
programming system for industrial automation technology that complies
to IEC 61131-3 standard. It supports all five languages described by the
standard, as well as other basic PLC programming attributes and features.
(Hanssen, 2015, p. 486).

CODESYS is compatible with more than 1 000 device types from over 400
different manufacturers. It is available as a modular single-source runtime
system for different device platforms. CODESYS provides multiple add-on
components and libraries for it to be used in various types of automation
systems. The software is available in complete version for free of charge
download on the CODESYS official website. However, some of the
additional modules require paid licences. The integration of different
editors and add-ons in the CODESYS Development System is illustrated in
Figure 3. (Why CODESYS?, 2019).

7

Figure 3. Integration of CODESYS system (Why CODESYS?, 2019).

In the implementation of the thesis, CODESYS runtime system was
installed and programmed on a Raspberry PI microcontroller using
CODESYS Control for Raspberry Pi SL extension. The package supports
multiple communication interfaces of Raspberry Pi, such as I2C, GPIO, One-
wire, etc., as well as CODESYS WebVisu visualisation, and several fieldbus
protocols. (CODESYS Control for Raspberry Pi SL, 2019).

2.2 Controller selection and requirements

This section describes the requirements of the project for the controller in
the Inspector application and provides parameters of the currently used
controller and its replacement options. The commissioning company
suggested using a Raspberry Pi microcontroller. Moreover, two other
controller options were considered – Allen-Bradley Micro800 PLC and
Arduino microcontroller. The section also provides information on the
choice that was made and its reasoning.

2.2.1 Required parameters

The main idea of the project was to develop a solution to replace the
Beckhoff PLC in the Inspector application. Normally, Beckhoff BC9020 is
used as a controller in the application. Depending on the project
specifications, other controller models can be used, such as BC9050 or
CX8090, and input/output (IO) cards are added.

The BC9020 Ethernet TCP/IP “Economy plus” Bus Terminal Controller is a
Bus Coupler with built-in PLC functionality and a bus interface for Ethernet.
It is programmed with TwinCAT software which complies to IEC 61131-3.
The image of the controller is given in Figure 4 and its technical
specifications are provided in Table 1. (BC9020, 2017).

8

Figure 4. Beckhoff BC9020 (BC9020, 2017).

Table 1. Beckhoff BC9020 specifications (BC9020, 2017).

Program memory 128 kbytes

Data memory 128 kbytes

Remanent data 2 kbytes

Persistent data 1 kbyte

Runtime system 1 PLC task

PLC cycle time approx. 1 ms for 1,000 instructions
(without I/O cycle, K-bus)

Programming languages IEC 61131-3 (IL, LD, FBD, SFC, ST)

Programming software TwinCAT

Ethernet connection RJ45

BC9020 is suitable for Inspector application with its speed and computing
power. However, there are two main setbacks of the implementation with
Beckhoff products. Firstly, there are limitations on the program size, which
can restrict the functionality of the application from being expanded.
Secondly, there is a lack of flexibility when using different controller
models. All the Beckhoff controllers are programmed in TwinCAT
environment, which has two active versions: TwinCAT 2 and TwinCAT 3.
Even though TwinCAT 2 and 3 use the same programming languages and
structures, in some cases they require different reference libraries for the
same functionality. This leads to having to write several versions of code
with the same functionality, which is inconvenient.

The new implementation needs to resolve the issues mentioned above
without adding any other restrains to the application. Inspector
application requires the controller to be able to perform communication
over TCP/IP and have extendable IO.

9

Several controller models that could fulfil the requirements of the
Inspector application have been found. Their parameters are described in
the sections below.

2.2.2 Raspberry Pi microcontroller

Raspberry Pi is a low cost, credit-card sized computer which can be
connected to a monitor, mouse and keyboard and is capable of performing
all the standard functions of a desktop computer with additional
possibilities for interaction with the outside world.

This microcontroller was designed by Raspberry Pi educational charity
foundation to promote programming in education. The microcontroller is
supplied with an affordable price, around USD 35, plentiful of
understandable instructions and inspirational ideas, which makes it a good
platform to learn programming for people of all ages. Moreover, the
manufacturer promotes the idea that learning programming can be seen
as entertainment or hobby, both for children and adults. (What is a
Raspberry Pi?, n.d.).

The promotional video on the official Raspberry PI website claims: “…we
have seen examples of people using the Pi in a variety of amazing
interesting projects taking advantage of its size, portability, cost,
programmability and connectability” (What is a Raspberry Pi?, n.d.).

Raspberry Pi is a Linux-based computer which has a set of general-purpose
input/output (GPIO) pins for controlling electronic components and
interaction with the Internet of Things, as illustrated in Figure 5. Even
though Raspberry Pi is designed mainly for developing practical skills in
programming and building hardware, it is also used in home automation
and industrial applications. (Raspberry Pi, 2019).

Figure 5. Raspberry Pi GPIO pins (Raspberry Pi, 2019).

10

The commissioning company provided Raspberry Pi 3 Model B v1.2 for the
thesis project. This model, released in 2016, is the earliest model of the
third generation of Raspberry Pi. Table 2 provides the specifications of the
microcontroller.

Table 2. Specifications of Raspberry Pi 3 model B. (Raspberry Pi 3
Model B, n.d.)

Processor Quad-Core 1.2GHz Broadcom BCM2837 64bit

RAM 1GB

Wireless
connections

BCM43438 wireless LAN and Bluetooth Low
Energy (BLE)

Ethernet
connection

100 Base Ethernet

GPIO 40 pins, extended

USB connections 4 ports

Media outputs 4 Pole stereo output and composite video port

Screen output Full-size HDMI

Port for SD card Micro SD port for loading your operating
system and storing data

Power supply Micro USB power source up to 2.5A

Other ports CSI camera port for connecting a Raspberry Pi
camera; DSI display port for connecting a
Raspberry Pi touchscreen display

2.2.3 Allen-Bradley Micro800 programmable logic controllers

The Micro800 PLCs from Allen-Bradley are designed for low-cost
standalone automation applications. The controllers of the series are
shown in Figure 6. All the models in the series are programmed in the
same programming environment which supports the following IEC61131-
3 programming languages: Ladder Diagram, Function Block Diagram and
Structured Text. The models Micro820, Micro850 and Micro870 have
embedded Ethernet ports and support communication over TCP/IP.
Micro820 PLC has similar specifications to the Beckhoff BC9020, whereas
Models 850 and 870 provide more IO points, program memory and
computing power. Allen-Bradley Micro800 PLCs already have embedded
IO, size of which varies for different models, unlike the Beckhoff controller,
that requires additional IO cards. Thus, different controller models of
Micro800 series can be used depending on the project requirements,
providing the application with flexibility. (Micro800 Programmable
Controller Family Selection Guide, 2019).

11

Figure 6. Allen-Bradley Micro800 controllers (Micro800
Programmable Controller Family Selection Guide, 2019).

2.2.4 Arduino microcontroller

Arduino is an open-source platform, which contains a microcontroller and
an integrated development environment software for programming the
controller from a computer. Arduino can be used in various electronics
applications by students, teachers, programmers, artists and scientist.
Arduino provides an integrated development environment (IDE) software
that allows to connect and program to the microcontroller via USB from a
computer. Arduino IDE uses C/C++ programming languages. However,
there also exists other software for programming Arduino boards using
different programming languages. For example, Visual Studio provides an
IDE specifically for Arduino. Arduino can also be programmed using IEC
61311-3 languages with logi.CAD 3 software. (What is Arduino?, 2019)

Arduino UNO WIFI Rev2 was chosen for this project. This board has an
embedded Wi-Fi module that provides the possibility of communication
over TCP/IP for the Inspector application. The technical specifications of
the selected board are given in Table 3. (Arduino UNO WiFi Rev2, 2019)

Table 3. Specifications of Arduino UNO WIFI Rev2 board (Arduino
UNO WiFi Rev2, 2019).

Microcontroller ATMEGA4809

Operating Voltage 5V

Input Voltage (recommended) 7 - 12V

12

Input Voltage (limit) 6 - 12V

Digital I/O Pins 14 — 5 Provide PWM Output

PWM Digital I/O Pins 5

Analogue Input Pins 6

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 48 KB (ATMEGA4809)

SRAM 6,144 B (ATMEGA4809)

EEPROM 256 Bytes (ATMEGA4809)

Clock Speed 16 MHz

LED_BUILTIN 25

Length 68.6 mm

Width 53.4 mm

Weight 25 g

2.2.5 Selection

After comparing the parameters of the controllers described above, it was
decided to use a Raspberry Pi. Allen-Bradley PLCs could improve more
program memory and flexibility for the Inspector application, but they
would not improve its cost-efficiency. Microcontrollers have significantly
lower prices than industrial PLCs from Beckhoff and Allen-Bradley.
Raspberry Pi has more IO pins, RAM and flash memory and more powerful
processor, than Arduino. It also does not have any limitations for program
size specified. Having considered all the facts stated above, it was decided
by the author of the thesis and the commissioning company to use
Raspberry Pi microcontroller for this project.

2.3 Inspector software tool

This section provides information on Inspector software, part of which will
be transferred from Beckhoff PLC to be implemented on a Raspberry Pi. It
provides a general description of the functionality and usage of the tool. In
addition, it gives technical information about the implementation of the
tool and its features used in this thesis project.

2.3.1 Functional description of Inspector software

The increase in production profitability is the main target of the Inspector
software tool. The tool collects information about the production losses
and their reasons, resources utilization and other performance indicators.
Based on the collected data, Inspector gives an overview of the production
processes. A visual representation of performance indicators provided by
Inspector is shown in Figure 7.

13

Figure 7. Inspector software in production (Inspector Production
monitoring).

Inspector does not only show the production losses but also helps to
identify and analyse their causes. The chart in Figure 8 illustrates how
losses can cut down the production time. There are six main losses in the
production: stops, setup and adjustment, idle time, reduced speed, quality
errors and remachining and startup errors. These losses affect the three
factors of overall equipment effectiveness (OEE): availability, speed and
quality. The chart shows how the theoretical production time of 8760
hours per year is reduced to actual production time, which is always
smaller than the theoretical, due to planned stops and the six big losses.

Figure 8. Anatomy of production loss (Inspector Production
monitoring).

What is more, Inspector can perform quality monitoring and resource
organising. It can be integrated with existing factory systems such as MES

14

(Manufacturing Execution Systems), Maintenance and ERP (Enterprise
Resource Planning). The software provides a modular system, which can
be adjusted to the needs of a particular customer. (Inspector Production
monitoring).

2.3.2 Technical information on Inspector software

Inspector software uses automated data collection (ADC) to gather real-
time information about production states. Production data is acquired by
PLCs. The application uses PLCs manufactured by Beckhoff which are
programmed using TwinCAT 2 or TwinCAT 3 software. Depending on the
requirements of a specific project, different controller models are used.
Most used PLC models are BC9020, BC9050 and CX8090. In some cases,
the PLC is placed in the Inspector Box – a box containing all the hardware
components and wiring necessary for PLC setup. Inspector Box also has
three status LEDs and nine buttons for manual inputs, which are controlled
by the PLC.

PLCs collect data from machine signals and sensors and send real-time
information about machine state to the Inspector web application. The
web application checks whether the state is productive, idle or
unproductive and logs the information to the database. In the graphical
user interface (GUI) of the application, the states can be configured, which
means the input signals, name, meaning and colour of a state can be set.

The users of Inspector can give reason codes to the unproductive and idle
states. A reason code gives a short explanation of why the production has
been stopped, for instance, “break”, “maintenance”, “emergency”, etc.
The reason codes can be added manually using GUI or by pressing a button
of a reason code box.

Inspector software also provides condition monitoring (CM) module for
tracking analogue input data. Collected data can be retraced from graphs
drawn in the GUI or be “transferred” to ADC data, which means that
machine states can be read based on analogue input values. CM data can
be scaled and have its sample rate set in a way that would provide most
informative and simplified image of the production.

In the Inspector application, PLCs communicate with the web application
over TCP/IP protocol, which is described more in detail in the next chapter.

2.4 Communication protocols

Communication protocols are formal descriptions of digital message
formats and rules, required to exchange messages in or between
computing systems. The protocols describe communication by defining
the rules its of authentication, error handling, signalling, syntax, semantics

15

and synchronisation. (Communicatoin Protocol, 2019). The section below
provides descriptions of the communication protocols used in this project.

2.4.1 TCP/IP

TCP/IP, or the Transmission Control Protocol/Internet Protocol, is a family
of network protocols that are used for connection and communication of
devices in the Internet or private networks. TCP/IP regulates data
exchange by specifying how it can be divided into packets, addressed,
transmitted, routed and received at the destination. TCP/IP protocols were
developed to provide network reliability and sustainability. (Rouse, 2019)

TCP/IP group has two main protocols. TCP is responsible for the assembly
of the data into packets before transmission and reading of those packets
on the receiving devices. IP describes the addressing and routing of data
packets to ensure that they reach the correct destination. Gateway
computers use IP addresses to find where to forward the data. (Rouse,
2019)

TCP/IP protocol uses the client/server model, in which the server
computer provides service to another machine or user. TCP/IP
communication happens at several different levels, and it can be divided
into four layers. The physical layer contains protocols that operate on link
and are responsible for physical connections inside the network, such as
Ethernet or Address Resolution Protocol. The network layer, sometimes
referred as the Internet level, is related to interconnection of independent
networks, data packets and their transmission across the networks. The
network layer includes IP and Control Message Protocol, the protocol for
reporting of errors. The transport layer maintains end-to-end
communication between hosts and provides flow control, multiplexing and
reliability. The protocols of the transport layer are TCP and User Datagram
Protocol, which can sometimes replace TCP. The application layer is
needed for standardised data exchange between applications. It consists
of such protocols as Hypertext Transfer Protocol, File Transfer Protocol,
Post Office Protocol 3, Simple Mail Transfer Protocol and Simple Network
Management Protocol. (Rouse, 2019).

The TCP/IP protocols are stateless, i.e., each request is unrelated to the
previous one and is considered new. Being stateless allows the network
paths to be used continuously. However, the transport layer is stateful,
because it needs to transfer a message in packets and keep the connection
alive until the whole message is received and reassembled. (Rouse, 2019).

2.4.2 Secure Shell (SSH) protocol

Secure Shell is a communication protocol that provides a secure login to a
remote computer. SSH uses the client/server model, where the connection

16

to the server computer is initiated by the client. The SSH client operates
the setup of the connection and uses public-key cryptography to verify the
identity of the SSH server. The simplified model of an SSH connection is
illustrated in Figure 9. (Ylonen, 1996, pp. 37-42).

Figure 9. SSH connection scheme (SSH (Secure Shell), 2018).

The most common uses of SSH include providing secure access for users
and automated processes, interactive and automated file transfers, issuing
remote commands and managing network infrastructure and other
mission-critical system components (Ylonen, 1996, pp. 37-42).

The SSH protocol was invented in 1995 by Tatu Ylonen because of a
hacking event in the Finnish university network. A password sniffer had
been installed to a server that was connected to the backbone, it had
stolen thousands of usernames and passwords before it was noticed.
Ylonen’s company was among the ones that were affected by the incident,
and he developed a solution which would help him perform a secure
remote login over the Internet. Later on, the protocol was improved and
standardised. Nowadays Secure Shell protocol is utilised for managing
more than half of web servers in the world and almost every Linux or Unix
computer. (SSH (Secure Shell), 2018).

2.4.3 I2C protocol

Inter-Integrated Circuit (I2C), sometimes also referred as Inter-IC, IIC or I²C,
is a widely used serial bus protocol designed by Philips in the early 1980s.
The protocol is used for communication between electrical components
on the same board, low-speed devices, such as microcontrollers, IO
modules or other peripherals in the embedded systems. (I2C – What’s
That?, n.d.), (I2C Info – I2C Bus, Interface and Protocol, 2019).

The protocol is flexible and easy to use, as it is based on simple master-
slave relationships between the components and requires only two wires
to connect an almost unlimited number of controllers. The bus lines are
SDA (serial data) and SCL (serial clock). Both of them require pull-up
resistors to the positive supply voltage. Since the bus clock is generated by
the master device, I2C bus communication does not have strict

17

specifications for baud rate as, for instance, RS232 protocol. What is more,
I2C bus is a true multi-master that provides collision detection and
arbitration. An example of an I2C bus connection is shown in Figure 10.
(I2C – What’s That?, n.d.), (I2C Info – I2C Bus, Interface and Protocol, 2019).

Figure 10. Example of I2C bus connection (I2C, n.d.).

The clock frequency in I2C is 100kHz, which means that the speed of
communication is 100kbit/s. However, there also exists 400kHz Fast mode,
3.4 MHz High-speed mode and 5 MHz Ultra-fast mode. (I2C Info – I2C Bus,
Interface and Protocol, 2019)

Communication over the I2C protocol happens by transferring 8-bit
messages. All the slave devices on I2C bus need to have unique 7-bit
addresses by which masters can identify the devices on the bus. Data is
transferred over SDA and the message frames are regulated by SCL. The
scheme of a message transferred over SDA and SCA lines is shown in Figure
11, where S is the start condition, P – stop condition and B1, B2 .. Bn are
the bits of data. (I2C Info – I2C Bus, Interface and Protocol, 2019)

Figure 11. Message transfer over I2C protocol (I2C Info –
I2C Bus, Interface and Protocol, 2019).

3 IMPLEMENTATION

This chapter illustrates the practical part of the project. It describes the
actions that were taken in order to achieve the goals of the project. The
implementation part of the thesis includes software installations on
Raspberry Pi and the PC, exporting the program from the TwinCAT
environment to CODESYS and adjusting it to work on the microcontroller.

18

3.1 Setup preparations

Several preparations needed to be done on the computer and Raspberry
Pi before the Inspector code could be executed on Raspberry Pi. Firstly, the
basic settings and installations were performed on Raspberry Pi. Secondly,
installations on the computer side were performed. Finally, the Inspector
PLC program was exported from the TwinCAT environment and imported
to CODESYS.

At the beginning, hardware prototyping was done on Raspberry Model B
Revision 2.0. This model is older and has lower hardware specifications
than Raspberry Pi 3 Model B v1.2 used in the final setup. However, both
models support the CODESYS Control Module and can provide all the
needed functionality. The newer model was used in the final setup, where
it was placed in the Inspector Box and connected to the IO modules and
the reason code buttons.

3.1.1 Preparation of Raspberry PI

First of all, an operating system (OS) had to be installed on the Raspberry
Pi. NOOBS, which stands for New Out Of the Box Software, is a simple OS
installer, provided by Raspberry Pi Foundation. It can be downloaded from
the official Raspberry Pi website and extracted to an empty SD card. Once
the card with NOOBS is inserted to a Raspberry Pi, it prompts a selection
of operating systems that can be installed on the Raspberry Pi. The
installation of an operational system with NOOBS can be performed online
or offline, depending on the desired OS and NOOBS version.

The microcontroller was connected to the office network using Ethernet
cable, which also provided the Internet connection for the Raspberry Pi.
The Raspberry Pi also had a keyboard and a mouse connected to it via
standard USB, and an HDMI connection to a monitor. The SD card with
NOOBS v3.2.1. was inserted into the microcontroller. Finally, Raspberry Pi
was powered by a mini-USB 5V supply. The Raspberry Pi with these
connections is pictured in Figure 12.

19

Figure 12. Raspberry Pi connections.

When the Raspberry Pi was turned on, the OS selection was made in
NOOBS – Raspbian, the desktop version without additional software.
Raspbian is the official supported Linux-based OS for Raspberry Pi. More
information about the OS version can be found from the screenshot in
Figure 13.

Figure 13. Raspberry Pi OS version.

Once OS installation was completed, some of the basic settings needed to
be checked. Firstly, the localisation of the Raspberry Pi was set to Helsinki,
Finland. Since Raspberry Pi does not have real-time clock, it synchronizes
its time settings with the Internet. Localisation settings configure it to use
the right time zone. Secondly, the interfacing values were checked and SSH
and I2C communication interfaces were enabled, as shown in Figure 14.

Screen (HDMI)

Keyboard

LAN (Ethernet)
Power supply

20

Figure 14. Configuration of the communication interfaces
of Raspberry Pi.

Lastly, it was necessary to find the IP address of the Raspberry Pi so that
the microcontroller could be accessed and controlled from the computer,
connected to the same network. Command “ifconfig” was used to check
the parameters of the network interfaces on the Raspberry Pi. Figure 15
shows the information that was returned by this command, including the
IP address of the device: 192.168.1.181.

Figure 15. Network interfaces of the Raspberry Pi.

21

After the steps described above had been completed, the Raspberry Pi was
prepared and accessible for further installations, which were performed
from the computer side.

3.1.2 Installations on computer

On the computer side CODESYS software was installed, version 3.5 SP14
Patch 2. In addition to that, “CODESYS Control for Raspberry Pi SL” module
was downloaded from official CODESYS store and installed. The
functionality of this package allows to connect to the Raspberry Pi from PC
and install CODESYS runtime on it. With this package installed, the PLC
code written in the software on the computer can be downloaded to the
microcontroller and executed, the same way as on common PLCs.

In order to allow CODESYS software to execute commands and download
data to the Raspberry Pi, SSH connection needed to be established
between the computer and the microcontroller. For this purpose, an open-
source software named PuTTY was used. Version 0.72 for Windows x64,
released in July 2019 was downloaded and installed to the computer. The
screenshots in Figure 16 and Figure 17 illustrate establishing a connection
and log in to the Raspberry Pi using PuTTY.

Figure 16. Establishing an SSH connection to Raspberry Pi
using PuTTY.

22

Figure 17. Log in to Raspberry Pi via SSH using PuTTY.

After the SSH connection was established, the Raspberry Pi could be
accessed and controlled by the CODESYS computer software. CODESYS
runtime was installed on the Raspberry Pi directly from the computer
application. Figure 18 shows the interface for installation and control of
CODESYS runtime on Raspberry Pi.

Figure 18. Control of Raspberry Pi runtime in CODESYS.

When the CODESYS Control runtime system had been installed on the
Raspberry Pi, it was possible to log in to the runtime, download a program
and execute it. Figure 19 shows the connection to the Raspberry Pi as a
target device.

23

Figure 19. Connection to Raspberry Pi from CODESYS.

3.1.3 Exporting Inspector code from TwinCAT to CODESYS

InSolution Oy has developed several versions of Inspector program for
different PLC types, which correspond to different project requirements.
In this project, it was decided to use the version written for TwinCAT 3
environment for CX8090. Unlike TwinCAT 2, TwinCAT 3 has the
functionality to export files in the PLCopenXml format, which allows the
whole code to be imported directly to CODESYS.

After the code had been imported in CODESYS, the whole PLC project,
including all the programs, functions and function blocks, as well as global
variables and custom data types were present in the new project. The new
program was named Inspector RPi.

3.2 Adjusting Inspector code for Raspberry Pi

The imported Inspector program could not be built in the CODESYS
environment due to almost two hundred compilation errors, as shown in
the screenshot in Figure 20. Most of the errors were caused by functions
or function blocks not being defined. The reason for it was that the
TwinCAT libraries used in the original code were not imported to CODESYS
and therefore functionality defined in those libraries was not available in
the new code.

24

Figure 20. Compilation errors after importing TwinCAT
program to CODESYS environment.

The first thing that was tried in order to fix the references, was to add the
TwinCAT libraries to the CODESYS project. It was possible as one of the
TwinCAT library extensions, “.lib”, is also supported by CODESYS. However,
when the library files were added, there were still two compilation errors.
The errors were inside the “Standard” library, which meant that the library
was not supported by the CODESYS environment. Other TwinCAT libraries
in the project were dependent on the “Standard” library and each other.
Therefore, the TwinCAT libraries could not be used in the CODESYS project
and it was reasonable to use the equivalent libraries from CODESYS official
store.

3.2.1 Replacing libraries

First of all, CODESYS libraries that provide functionality that is equivalent
to the TwinCAT libraries used in the initial application needed to be found.
Table 4 illustrates the tables that were used in the old Inspector PLC
program and their versions.

Table 4. TwinCAT libraries.

Name Effective version

Tc2_Standard 3.3.2.0

Tc2_System 3.4.18.0

Tc2_TcpIp 3.3.3.0

Tc2_Utilities 3.3.27.0

Tc3_Module 3.3.18.0

25

Every function and function block that caused a compilation error needed
to be found in a CODESYS library and then the library was added Inspector
RPi project. If the names of the functions/function blocks were different
from the old ones, they were changed using the “Find and Replace”
function. In some cases, new functions/function blocks required different
arguments and data types, so they were modified manually.

The search for libraries was performed in CODESYS official documentation,
store and Library Manager. There was no information on the usage of the
libraries available other than official documentation, which in some cases
was insufficient. Therefore, different libraries had been tested, until
suitable ones were found.

The changes to the Inspector RPi were done so that the project could be
compiled with the least possible changes to its original implementation.
Table 5 contains the list of libraries that were added to the final version of
the CODESYS project.

Table 5. CODESYS libraries.

Name Effective version

CmpErrors 3.3.1.40

CommonPacketFormat Interfaces 3.5.6.0

MemoryUtils 3.3.13.0

Standard 3.5.14.0

SysSocket 3.5.14.0

Time and Date 3.5.7.0

Util 3.5.14.0

CAA Memory 3.5.12.0

IODrvEthernet 3.5.14.0

It can be seen from Table 4 and Table 5 that TwinCAT and CODESYS
libraries used in the PLC and Raspberry Pi programs are completely
different in both names and functionality. Also, the CODESYS project
required a bigger number of libraries than the original project. Due to
these significant differences in the dependences of the programs, it was
challenging to find suitable libraries for Inspector RPi.

Moreover, some of the errors could not be fixed by adding libraries and
changing names of the functions/function blocks, which meant that some
parts of the program would have to be rewritten in a new way. This
problem concerned getting the current time on the controller and TCP/IP
communication. The process of rewriting these sections is described in
detail in the sections 3.2.2 and 3.2.3.

26

3.2.2 Rewriting date and time functions

Getting the current time of the controller is important for the Inspector
tool because it needs to register the accurate time when changes in a
production process happen. It allows the tool to retrace the process and
perform calculations concerning, for example, durations of
productive/non-productive states.

Unlike Beckhoff PLCs, Raspberry Pi microcontrollers do not have real-time
clock and synchronise their current time with the Internet. Also, data types
related to date and time and their handling are different in CODESYS and
TwinCAT environments. Therefore, it was necessary to find some
functionality in CODESYS libraries that would provide the program with the
current date and time of the controller.

Several libraries and functions for retrieving the current time from the
controller are available in CODESYS environment. Not all of them are
suitable for Raspberry Pi, but after testing a few different approaches, a
function block that returns current time on the Raspberry Pi was created
and called GetDT.

GetDT is based on DTU library. A function block called GetDateAndTime
from this library returns UTC (Coordinated Universal Time). To get local
time, time zone information is set during the initialisation of GetDT using
SetTimeZoneInformation function block. Moreover, information about
Daylight Saving Time is checked from GetDateAndTime before returning
the result. During the summer period, one hour is added to the result. As
a result, GetDT returns current local time with Daylight Saving Time taken
into account. The full code of the function block can be found in Appendix
1.

3.2.3 Rewriting TCP/IP communication

Communication of the controller with the Inspector web application is
essential for the data collection application, as the web application filters
and saves the collected data to the database for future retracing and
analysis. Thus, all the data acquired by the controller needs to be sent to
the web application server. The part of the program responsible for TCP/IP
communication had to be rewritten completely, when the program was
transferred from TwinCAT to CODESYS environment, due to significant
changes in hardware and libraries.

The main difference between the new implementation and the old
communication logic was related to the control of the network sockets. In
the old code, TCP socket is opened and closed on each transmission,
whereas in the new implementation the connection is established during
initialisation of the program and the socket is never closed by the client.
Other than that, the new function blocks follow the logic of the old

27

program and used mostly the same variables. The POUs were composed in
such way that they could easily be integrated into the program, without
requiring changes in the other parts of the code.

The section of the program responsible for TCP/IP communication consists
of three function blocks: CONNECT, SEND and RECEIVE. Their
communication functionality is based on SysSocketCom library. All three
function blocks are called constantly as soon as the program is initialised.
Each of them is comprised of several steps. The function blocks
communicate with each other and with the rest of the program via shared
and global variables, so that the steps inside them are changed
accordingly. They also update the information about the communication
status and errors on the global program level.

Each of the function blocks is described more in detail and illustrated
schematically below. The full text of the of CONNECT, SEND and RECEIVE
function blocks written for Inspector RPi can be found in Appendices 2, 3,
and 4 respectively.

First function block, CONNECT, is based on SysSockCreate and
SysSockConnect functions. In the step 0 connection parameters are
initialised and a new socket is created on the controller. As soon as
everything is ready for connection, the function block proceeds to step 10
where the controller attempts to connect to the socket. If the connection
is successful, the step changes to 11, which is as simple as microcontroller
staying in the connected state. If the attempt to connect fails in step 10 or
the connection gets lost in step 11, the function block goes to the error
state, step 999. In this step, the code of the error gets logged so that the
problem can be found and analysed afterwards. After the error is
recorded, the program returns to step 0 and tries to establish the
connection again. The graphical representation of the logic of the
CONNECT function block can be found in Figure 21.

28

Figure 21. Scheme of the CONNECT function block.

Second function block, SEND, begins with Step 0, in which it is waiting until
the program has data to send. When the function block gets the data, it
checks that there is an active connection to the server and the controller
is not receiving data over TCP at the moment. As soon as both of these
conditions are true, the function block goes to step 11. In this step, the
data is sent by SysSockSend function, and the send counter is incremented
to signify that the data has been sent. After that, the program returns to
step 0. However, if an error or a timeout happens during sending, the
function block goes to step 999 to log the error, and then proceeds to step
0. The graphical representation of the logic of the SEND function block can
be found from Figure 22.

Figure 22. Scheme of the SEND function block.

29

Third function clock, RECEIVE, also begins with step 0. In this step receive
buffer is initialised. If the controller is connected but is not sending data to
the server, the function block proceeds to step 10, where the data is
received. In this step, SysSockRecv function is used. If the data is obtained
successfully, it is parsed and saved to buffer. If the receiving is not
successful, then the error gets logged in step 999. In the end, the function
block returns to step 0. The graphical representation of the logic of the
RECIEVE function block can be found from Figure 23.

Figure 23. Scheme of the RECIEVE function block.

3.3 IO setup

Inspector RPi uses analogue and digital inputs to collect data from the
monitored devices. Also, the Inspector Box has nine reason code buttons
which are configured as digital inputs for the controller and three status
LEDs as digital outputs.

17 out of 40 GPIO pins of the Raspberry Pi B can be used as digital inputs
or outputs in the CODESYS program. In Inspector RPi these pins were
connected to buttons and LEDs of the Inspector Box. The IO of the
Raspberry Pi was extended by adding digital and analogue input modules
from Horter. The modules were used to collect information from external
devices. Configuration of the IO is described more in detail in the sections
below.

30

3.3.1 GPIO of Raspberry Pi

The interface for the control of Raspberry PI GPIO allows the pins to be
configured as inputs or outputs. It also shows the memory addresses
where the IO values are stored and provides the possibility to link variables
to them. The variables for buttons and LEDs were linked to corresponding
pins via memory addresses as shown in the screenshot in Figure 24.

Figure 24. Declaration of variables linked to GPIO.

When the program was running, the output variables were turning on and
off the LEDs, whereas the values of the input variables changed when the
corresponding buttons were pressed. However, some of the buttons did
not affect the variables they were linked to, even though they were wired
and configured in the same way as the correctly functioning buttons. The
reason for that was that not all of the GPIO input pins do have internal pull-
up resistors enabled by default.

Creating a pull-up circuit was necessary in this case because the pins were
wired to the ground through the buttons. In this case, voltage is supplied
to the input pin through a large (~50 kOhms) resistor, which makes the
input value HIGH by default. When the button is pressed the circuit is
closed to the ground making the value switch to LOW.

Raspberry Pi has built-in resistors that can be connected to the pins when
needed. Figure 25 shows the default state of the input pins. The pins with
fsel value “0” are configured as inputs, and their level value shows whether
they are high or low by default.

31

Figure 25. Default state of GPIO input pins.

It can be seen that the IO pins have different values by default. The pull-up
resistors of Raspberry Pi cannot be controlled from CODESYS. Therefore,
they needed to be enabled on the microcontroller itself. The following
lines were added to /boot/config.txt file, as shown in Figure 26.

Figure 26. Enabling pull-up resistors on Raspberry Pi.

The commands in this file are executed when the microcontroller boots
up. The line above enables pull-up resistors for stated GPIO pins, which
makes the reading of the button states consistent and reliable.

3.3.2 Additional IO modules

Raspberry Pi provides a limited number of GPIO pins, which might not be
sufficient for connecting external devices. What is more, the maximum
input voltage for the pins is 3.3 V. Therefore, it was beneficial to extend
the IO by adding external modules. In this solution, I2C digital and analogue
modules from Horter were used. They were connected to Raspberry Pi via
Horter I2C repeater, which “raises the level of the SCL and SDA pins so that

32

they are recognized clean 5V I2C slaves to 5V” (Kit I2C repeater for
Raspberry Pi, n.d.).

Digital and analogue input modules were connected in a daisy chain which
could be extended with more modules if needed. The modules were added
to the Inspector RPi project as I2C devices. For the controller to identify
the modules, their I2C ids needed to be found. Figure 27 shows checking
the IDs of the available I2C device on Raspberry Pi with the i2cdetet tool.

Figure 27. i2cdetect tool.

The values in the Figure 27 were converted from the hexadecimal to
decimal numeral system and added to the project.

Finally, the input variables for I2C input modules were declared with
memory addresses provided in the module configuration as shown in
Figure 28.

Figure 28. Declaration of the variables linked to GPIO.

4 TESTS AND IMPROVEMENTS

When the Inspector code in the Raspberry could finally be compiled, it was
important to test it upon connecting to the web client application. This
chapter describes how the tests were conducted as well as their results.
Furthermore, it portrays the issues that were detected during tests and the
actions that were taken to prevent them.

33

4.1 Connection to Inspector Web and testing

Inspector RPi was tested upon the Office instance of Inspector Web
deployed on InSolution’s server which is normally used for development
and debugging purposes.

Firstly, to establish the connection between the Raspberry Pi and the
server, such parameters as the IP address, the host port and the client
name were set to the CODESYS program. Moreover, the IP and MAC-
addresses of the microcontroller were hardcoded in the program. With
these parameters, Raspberry PI was able to connect to the server and
initiate the communication over TCP.

Secondly, a virtual machine called “Raspberry Pi” was created in the
Inspector Web Client application: the MAC-address and other parameters
of the microcontroller were entered. Provided that the Web Client
application knows the MAC-address, it expects a message from a device
with this address and proceeds with communication with the “machine”.

Lastly, the IO parameters were configured in the Web Client application.
These configurations were necessary for associating the physical channels
with the meanings of the input and output signals. Some of the channels
set as inputs provided the Client application with information about the
current state of the “machine” whereas other inputs were linked to the
reason code buttons. The output channels were linked to the LEDs on the
reason code box, which indicated the state of the “machine”.

The setup described above was tested by sending the physical signals and
checking their representation in the user interface of the Web Client.

The illustration of different machine states and reason codes sent from the
Raspberry Pi can be seen in the screenshots below. Figure 29 shows the
state view with a state chart and provides availability and utilization
figures. State durations, comments and reason codes can be found in the
table in Figure 30. The graph in Figure 31 shows the comparison of
durations of different machine states.

34

Figure 29. Inspector state view.

Figure 30. Inspector comments and durations.

35

Figure 31. Inspector state charts.

What is more, analogue input was configured to test the CM data. The
graph of the input value changing over time is shown in Figure 32.

Figure 32. Inspector CM data.

Even though the numbers shown in the figures represent test input data
and do not have any real meaning, they provide good examples of how
production data can be collected and analysed using Inspector RPi. It was
important to see that the application was reacting to the test inputs
correctly and rapidly.

36

4.2 Improving reliability of the data collection

When collecting data on a real production site, there may be network or
power failures. Moreover, sometimes the power at a plant is shut down
when the production is stopped, for example, at night. It is also possible
that the local network of the production site is slow or has connection
interruptions. These situations are common for the production sites,
where the Inspector tool is installed, and they can lead to data loss or
corruption. The PLC Inspector code can take the potential network and
power failures into consideration and, therefore, does not lose collected
data in these situations. It was essential to provide the same reliability of
the data collection for the Inspector RPi application.

4.2.1 Data collection in case of network failure

The logic in the program for Raspberry Pi of TCP/IP communication (see
3.2.3) states that in case the connection to the server is lost, send/receive
operations are not performed while the controller is trying to re-establish
the connection. However, when the connection issue was simulated by
unplugging the Ethernet cable from the Raspberry Pi with running
Inspector program, the result was different from expected.

After connecting the Raspberry Pi back, it was found that the CODESYS
runtime service had been stopped on the microcontroller. The log of the
service is shown in Figure 33.

Figure 33. CODESYS log.

According to the screenshot above, after the communication timeout, the
Raspberry Pi tried to close the connection, which caused an exception in
CommCycleHook. That led to the system being in an inconsistent state and
shutdown of CODESYS Control service was performed. Search on what
CommCycleHook is and what could have caused the exception returned no
results.

It was decided to stay logged into the Raspberry Pi program from the PC
when the connection to the server is interrupted. By using breakpoints and
watching online values of the variables it would possible to see what
happens in the program before the exception.

37

The Raspberry Pi was connected to an Ethernet hub, which provided it with
two wired connections: one to the office network, and one to the PC. That
way, when the network cable was pulled out from the hub, the
microcontroller lost its connection to the network and the server, but still
could be accessed from the PC. However, with this setup, there was no
exception when the connection to the server was lost and Raspberry Pi
was able to reconnect to the server and send the data that was stored in
the buffer. However, the exception repeated when the ethernet cable was
disconnected from the Raspberry Pi. Consequently, this result meant that
the exception only happened when there was not any network connection
at all. It could be related to the fact that when there is no network
connection, the microcontroller does not have an IP address, and
attempting to connect to the server over a non-existing adapter drives the
CODESYS Control service to an inconsistent state.

Based on that, it was decided to check the network adapters before trying
to connect to the server. The library that was used for TCP communication,
SysSocket, has function blocks for checking network adapters called
SysSockGetFirstAdapterInfo and SysSockGetNextAdapterInfo. They return
information on the MAC, IP and default gateway addresses of the device
over its different adapters.

A small function block based on this functionality was created in a separate
test program and was added to Inspector RPi after it was able to return
correct network adapter information. The function block was tested both
with and without network connection. To test how the program works in
case there is no connection, a simple on-delay was used, so that the
program was started, then the Ethernet cable was disconnected from the
Raspberry Pi, and the adapter information check was executed one minute
later. After connecting back to the microcontroller, it was possible to see
the data returned by the function block during the offline state.

The adapter returned by the SysSockGetFirstAdapterInfo was always the
Loopback adapter with IP address 127.0.0.1, independently on whether
there was network connection or not. The SysSockGetNextAdapterInfo
returned the correct information about the connection to the office
network over the Ethernet cable when it existed. The third adapter
belonged to the Wi-Fi connection. And when the connection to the
network did not exist, zeros were returned for the IP and default gateway
addresses. This way the network adapter information could be checked
before trying to connect to the server without the possibility of causing an
exception.

Moreover, retrieving the adapter information is benefitting for the
Inspector application as it allows the Raspberry Pi to continue
communication with the server even the IP address of the device is
changed. It is possible because Inspector web-application identifies the
connected machines by their MAC addresses, and also updates their IP

38

address to the database and GUI, which can be useful for network
configuration and debugging purposes.

The function block was added to the Inspector code with the name
“GetAdapterInfo” and has is called in two places. Firstly, in the main
program during the initialisation of the program for obtaining the MAC
address of the device. Secondly, in TCP_IP_CONNECTION function block
before trying to connect to the server to check whether the second
adapter exists.

At the end of the created function block several conversion operations
were performed to obtain the MAC, IP and default gateway addresses in
string format which helped to integrate the function block into the
Inspector program. The full code of the function block can be found in
Appendix 5.

After adding the GetAdapterInfo function block to the program, the test
with unplugging the Ethernet cable from the Raspberry Pi was performed
again. The microcontroller was able to reconnect to the server successfully
without losing the data in the buffer, which means that the problem was
solved.

4.2.2 Retaining variables in case of power failures

If the power is disconnected from the Raspberry Pi when there is data in
the send and receive buffers, the data will be lost unless it is retained. The
PLC Inspector has the buffer and other important variables declared with
the keyword RETAIN.

Beckhoff PLCs write retain variables in the Non-Volatile Random Access
Memory (NOVRAM, can also be referred as NVRAM) area, which is a
specific memory component for persistent storage of data in a flash ROM
(Read-Only Memory) but additionally has no write-cycle limitation. A
capacitor, integrated into the NOVRAM chip, supplies the energy for
copying recent data from the also internally integrated RAM to the ROM
section during external power-loss situations. The application itself (in this
case TwinCAT) writes only to the RAM section of the IC, cyclically. Storing
variables in the NOVRAM memory allows their values to be retained in
case of uncontrolled termination, application reset cold and program
download. (Remanent Variables - PERSISTENT, RETAIN, n.d.), (Generic
NOV-RAM, n.d.).

Raspberry Pi does not provide a NOVRAM memory area or UPS, which
means that the data might be lost in case of a power failure, even if it is
declared as retain or persistent. When performing Inspector tests, both
retain and persistent data was saved by the microcontroller, only when it
was shut down via the command line, and it had enough time to save the
values. (Remanent Variables - RETAIN, PERSISTENT, n.d.).

39

Therefore, a Raspberry Pi would require additional hardware or an
uninterruptible power supply (UPS) to save the values of the variables
declared as PERSISTENT or RETAIN in case of power failure.

However, CODESYS provides two more mechanisms for data persistence
besides Declaration of VAR Persistent: Persistence Manager of the
Application Composer and Recipes. Both of these mechanisms do not
require UPS or NOVRAM and therefore could be used to retain data on
Raspberry Pi. It was decided to use the Persistence Manager, as its usage
appeared simpler and more comprehensive then Recipes’. (Data
Persistence, n.d.)

The Persistence manager requires the Application Composer which is a
development tool for applications that use recurring function blocks.
Application Composer was downloaded from CODESYS Store and a free
licence for it was obtained.

In the Modules tab, a new Persistence Manager was created with a
Persistence Channel linked to it, as shown in Figure 34.

Figure 34. Persistence manager in Inspector RPi project

Variables that needed to have their values retained in case of power failure
were added to the persistence channel by adding the following attribute
to their declaration:

{attribute= ‘ac_persist‘ :=‘PersistenceChannel‘}

The channel was configured to save data every time changes are made to
the variables and read their values during initialisation of the application.

When the new implementation of the data persistence was tested in the
Inspector tool, the retain data was not lost even when the power cable was
disconnected from the microcontroller. That proves that the Persistence
Manager is an effective solution for making Inspector RPi more reliable.

40

4.3 Prevention of cycle time increase in case of connection problems

After the issue of CODESYS Runtime Service shutting down on losing
network connection (see 4.2.1) was fixed, another problem was detected.
When the connection to the server was lost and the Raspberry was making
attempts to reconnect, the cycle time of the program increased
dramatically: from around 0.5ms up to 6s. It was caused by the fact that
the function block tries to establish the connection for a few seconds
before it returns timeout error, and TCP communication was performed in
the same task with the rest of the program. Thus, the TCP connection
function block was slowing down the whole program cycle. What is more,
it could be seen that the LEDs that normally were blinking fast to indicate
that the Raspberry Pi is trying to connect to the server, were blinking much
slower due to the delay in the task.

To eliminate this problem, it was decided to put TCP/IP communication to
a separate task. A new task was created for communication where the
CONNECT, SEND and RECEIVE function blocks were called continuously
after the initialization of the program. Thus, even if the execution of the
communication function blocks was slow, it did not affect the rest of the
program, including managing of the LED outputs, and the program
execution proceeded at normal speed.

5 CONCLUSION

The main goal of the thesis project was achieved successfully: Inspector
PLC code was transferred to the CODESYS environment and executed on a
Raspberry Pi microcontroller. With the adjustments, described in chapters
3 and 4, the new Raspberry Pi application was able to meet the
requirements for the Inspector PLC application. Therefore, Raspberry Pi
can become a replacement for a PLC in the Inspector tool.

The implementation of a PLC code on a Raspberry Pi in the CODESYS
environment consisted of three main parts: firstly, software installations
and preparations on the computer and Raspberry Pi, secondly, adjusting
the program and its references to be compilable for CODESYS, and lastly,
resolving the issues related to the hardware and improving the reliability
of the application.

Due to a lack of documentation and research on the topic, finding suitable
libraries and functionality was only possible by searching through CODESYS
official documentation and experimentation with different approaches.
Multiple tests and examinations were necessary to find the best solutions
and to discover potential bugs and issues. The problems that were found
during the tests required, in some cases, considerable adjustments to the
program.

41

However, it was proved that a Raspberry Pi microcontroller with the
CODESYS Control module can be used as a replacement for an industrial
PLC. Whereas it is still not recommended to use Raspberry Pi for industrial
solutions that require high precision or which control heavy machinery, the
microcontroller can be a sufficient replacement for a PLC with smaller
applications such as data collection, monitoring, testing, etc. as it proved
to be for the Inspector tool.

Using a Raspberry Pi instead of an industrial-grade Beckhoff PLC will allow
the case company, InSolution Oy, to significantly reduce the price of
production of the Inspector tool without any losses in the reliability and
the functionality of the end product. Unlike Beckhoff PLCs, Raspberry Pi
does not have strict limitations to the code size, which allows the
application functionality to be extended freely. The Inspector RPi
application is more flexible in comparison to the Beckhoff PLC application
since it does not depend on the controller model. Therefore, using
Raspberry Pi as a controller would prevent issues that are faced when using
Beckhoff PLCs.

As a result of the project success, InSolution Oy is planning to prepare
Inspector Boxes with Raspberry Pi to be released for real-life customer
applications. It is planned to make the first batch of 10 pieces and to
conduct stress-tests to ensure the durability of the new product. The
application can also be modified and improved over time by the author of
the thesis or the other employees of the company, depending on future
customer needs.

What is more, the CODESYS version of the Inspector PLC application, with
necessary modifications, can be used on controllers from different
manufacturers, other than Beckhoff, as CODESYS is a hardware-
independent programming environment.

Finally, the knowledge gathered during the research and implementation
of the thesis project can be useful for creating other automation projects
with Raspberry Pi. As the thesis project has demonstrated, for some
applications a Raspberry Pi can be a very cost-efficient alternative for an
industrial-grade PLC, providing equivalent functionality and computing
power.

42

REFERENCES

Arduino UNO WiFi Rev2. (2019). Retrieved December 21, 2019, from
Arduino: https://store.arduino.cc/arduino-uno-wiFi-rev2

BC9020. (2017). Retrieved December 15, 2019, from Beckhoff:
https://www.beckhoff.com/BC9020/

Bolton, W. (2015). Programmable Logic Controllers (6th ed.). Oxford:
Elsevier Ltd. Retrieved from https://ebookcentral-proquest-
com.ezproxy.hamk.fi/lib/hamk-
ebooks/reader.action?docID=1985959&query=programmable%2Blogic%
2Bcontrollers&ppg=1

Budimir, M. (2018, February 23). What are IEC 61131-3 and PLCopen?
Retrieved from Motion Control Tips:
https://www.motioncontroltips.com/iec-61131-3-plcopen/

Codesys. (2019). Retrieved August 25, 2019, from Codesys:
https://www.codesys.com/

CODESYS Control for Raspberry Pi SL. (2019). Retrieved September 5,
2019, from CODESYS Store: https://store.codesys.com/codesys-control-
for-raspberry-pi-sl.html?___store=en#Product%20Description

Communicatoin Protocol. (2019). Retrieved December 08, 2019, from
Tecnopedia:
https://www.techopedia.com/definition/25705/communication-protocol

Data Persistence. (n.d.). Retrieved October 27, 2019, from CODESYS
Online Help: https://help.codesys.com/api-
content/2/codesys/3.5.13.0/en/_cds_f_setting_data_persistence/

Generic NOV-RAM. (n.d.). Retrieved October 27, 2019, from Beckhoff
Information System:
https://infosys.beckhoff.com/english.php?content=../content/1033/tcsys
temmanager/reference/FCNovRam.htm&id=

Hanssen, D. H. (2015). Programmable Logic Controllers: A Practicap
Approach to IEC 61231-3 using CODESYS : (1st ed.). Chichester: Wiley.

History of the Programmable Logic Controller (PLC). (n.d.). Retrieved
September 15, 2019, from PLCmentor:
https://www.plcmentor.com/Articles/Newsletters/Programmable-Logic-
Controller-PLC-History

43

I2C. (n.d.). Retrieved December 04, 2019, from Sparkfun:
https://learn.sparkfun.com/tutorials/i2c/all

I2C – What’s That? (n.d.). Retrieved December 04, 2019, from I2C-BUS:
https://www.i2c-bus.org/

I2C Info – I2C Bus, Interface and Protocol. (2019). Retrieved December 03,
2019, from I2C Info: https://i2c.info/

Inspector Production monitoring. (n.d.). Retrieved September 5, 2019,
from InSolution: https://insolution.fi/inspectoresite/

John, K.-H., & Tiegelkamp, M. (2010). IEC61131-3: Programming
Industrial Automation Systems (2nd ed.). Berlin: Springer-Verlag.

Kabelová, A., & Dostálek, L. (2006). Understanding TCP/IP : A Clear and
Comprehensive Guide. Brimingham, UK: Packt Publishing.

Katajisto, J. (2019).

Kit I2C repeater for Raspberry Pi. (n.d.). Retrieved December 1, 2019,
from Horter & Kalb Online Shop: https://www.horter-shop.de/en/i2c-din-
rail-modules/173-kit-i2c-repeater-for-raspberry-pi-4260404261155.html

LocalDateTime (FUN). (n.d.). Retrieved from CODESYS Online Help:
https://help.codesys.com/webapp/D7UP-0urPzTyvbICO-
3JvJB27cQ%2FLocalDateTime;product=Util;version=3.5.14.0

Micro800 Programmable Controller Family Selection Guide. (2019,
March). Retrieved December 15, 2019, from Rockwell Automation:
https://literature.rockwellautomation.com/idc/groups/literature/docum
ents/sg/2080-sg001_-en-p.pdf

Micro820 Programmable Logic Controller Systems. (2019). Retrieved
December 15, 2019, from Rockwell Automation:
https://ab.rockwellautomation.com/Programmable-
Controllers/Micro820#overview

Raspberry Pi. (2019). Retrieved September 5, 2019, from Open Source:
https://opensource.com/resources/raspberry-pi

Raspberry Pi 3 Model B. (n.d.). Retrieved November 29, 2019, from
RaspberryPi.org: https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/

Remanent Variables - PERSISTENT, RETAIN. (n.d.). Retrieved October 25,
2019, from Beckhoff Information System:

44

https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_
plc_intro/18014401038285451.html&id=

Remanent Variables - RETAIN, PERSISTENT. (n.d.). Retrieved October 27,
2019, from CODESYS Oline Help: https://help.codesys.com/api-
content/2/codesys/3.5.12.0/en/_cds_vartypes_retain_persistent/

Rouse, M. (2019, July). TCP/IP (Transmission Control Protocol/Internet
Protocol). Retrieved September 14, 2019, from TechTarget:
https://searchnetworking.techtarget.com/definition/TCP-IP

SSH (Secure Shell). (2018). Retrieved September 14, 2019, from SSH:
https://www.ssh.com/ssh/?utm_source=s&utm_medium=nav&utm_cam
paign=head#sec-History-of-the-SSH-protocol

TwinCAT. (2019, January 15). Retrieved from Beckhoff:
https://www.beckhoff.com/twincat/

What is a Raspberry Pi? (n.d.). Retrieved September 5, 2019, from
Raspberry Pi: https://www.raspberrypi.org/help/what-%20is-a-raspberry-
pi/

What is Arduino? (2019). Retrieved December 21, 2019, from Arduino:
https://www.arduino.cc/en/guide/introduction

Why CODESYS? (2019). Retrieved August 31, 2019, from CODESYS:
https://www.codesys.com/the-system/why-codesys.html

Ylonen, T. (1996). SSH - Secure Login Connections over the Internet.
Proceedings of the 6th USENIX Security Symposium,. USENIX, (pp. 37-42).
Retrieved from https://www.ssh.com/ssh/protocol/

45

Appendix 1

GET DATE AND TIME FUNCTION BLOCK

POU: GetDT

1 FUNCTION_BLOCK GetDT

2 VAR_OUTPUT

3 res : DT ;

4 END_VAR

5 VAR

6 fbGetDateTime : DTU . GetDateAndTime ;

7 fbTimezone : DTU . SetTimeZoneInformation ;

8 periode : RTCLK . PERIODE ;

9 clk : BOOL := FALSE ;

10 clk2 : BOOL ;

11 tzInfo : RTCLK . RTCLK_TIME_ZONE_INFO := DTU . GlobalConstants.

gc_tziTimeZoneCET ;

12 END_VAR

13

1 IF NOT fbGetDateTime . xDone AND fbTimezone . xDone THEN

2 (*trigger for fbGetDateTime*)

3 clk := TRUE ;

4 ELSE

5 (* return result, add one hour during daylight period*)

6 IF periode = RTCLK . PERIODE . DAYLIGHT THEN

7 res := fbGetDateTime . dtDateAndTime + T#1H ;

8 ELSE

9 res := fbGetDateTime . dtDateAndTime ;

10 END_IF

11 clk := FALSE ;

12 END_IF

13

14 (*get current time vaue time*)

15 fbGetDateTime (

16 xExecute := clk ,

17 xDone => ,

18 xBusy => ,

19 xError => ,

20 eError => ,

21 dtDateAndTime => ,

22 ePeriode => periode) ;

23

24 (*set timezone info*)

25 fbTimezone (xExecute := clk2 , tziInfo := tzInfo) ;

26 IF NOT fbTimezone . xDone THEN

27 tzInfo . iBias := TimezoneBias * 60 ;

28 clk2 := TRUE ;

29 END_IF

30

insp15.project
Page 1 of 1

5.12.2019 10:23

46

Appendix 2/1
TCP/IP CONNECT FUNCTION BLOCK

POU: TCP_IP_SOCKET_CONNECTION

insp15.project

5.12.2019 10:31
Page 1 of 2

1 FUNCTION_BLOCK TCP_IP_SOCKET_CONNECTION

2 VAR_IN_OUT

3 Flags : TCP_IP_Flags ;

4 END_VAR

5 VAR

6 //SOCKET_CONNECT: FB_SocketConnect;

7 //SOCKET_CLOSE: FB_SocketClose;

8 GetAdapterInfo : GetAdapterInfo ;

9 Step : INT := - 1 ;

10 NextStep : INT ;

11 PrevStep : INT ;

12 StepChg : BOOL ;

13 ErrorID : STRING (32) ;

14 oldErrorID : STRING (32) ;

15 closeCounter : WORD ;

16 END_VAR

17

1 CASE Step OF

2 0 : (* Waiting for connect command *)

3 IF StepChg THEN

4 Flags . Connected := FALSE ;

5 IF PrevStep = 11 THEN

6 Flags . ConnectStatus := 'Waiting for connect command, timeout' ;

7 ELSE

8 Flags . ConnectStatus := 'Waiting for connect command' ;

9 END_IF

10 END_IF

11 (*Initialize connection*)

12 //check if adapter exists

13 GetAdapterInfo () ;

14 //proceed with connection only if adapter exists

15 //if trying to connect when Pi is not connected to the network,

16 //it will throw an exception an shut down codesys runtime

17 IF GetAdapterInfo . connected THEN

18 flags . iSocketHandle := SysSockCreate (

19 iAddressFamily := SOCKET_AF_INET ,

20 diType := SOCKET_STREAM ,

21 diProtocol := SOCKET_IPPROTO_IP ,

22 pResult := ADR (flags . SocketHandleError)) ;

23 flags . rIP REF= flags . IPAddress ;

24 SysSockInetAddr (

25 szIPAddress := flags . rIP ,

26 pInAddr := ADR (flags . inaddr)) ;

27 flags . stSockAddress . sin_addr := flags . inaddr ;

28 flags . stSockAddress . sin_family := SOCKET_AF_INET ;

29 flags . stSockAddress . sin_port :=

30 SysSockHtons (usHost := flags . Port) ;

31 NextStep := 10 ;

32 END_IF

33

34 10 : (* Connect to TCP/IP socket *)

35 IF StepChg THEN

36 Flags . Connecting := TRUE ;

37 Flags . ConnectStatus := 'Connecting' ;

38 END_IF

47

Appendix 2/2
TCP/IP CONNECT FUNCTION BLOCK

34 (*connect*)

35 flags . ConnectionStatus := SysSockConnect (

36 hSocket := flags . iSocketHandle ,

37 pSockAddr := ADR (flags . stSockAddress) ,

38 diSockAddrSize := SIZEOF (flags . stSockAddress)) ;

44

45

46 IF flags . ConnectionStatus = CmpErrors . Errors . ERR_PENDING

47 OR flags . ConnectionStatus = CmpErrors . Errors . ERR_SOCK_TIMEDOUT

48 OR flags . ConnectionStatus = CmpErrors . Errors . ERR_TIMEOUT THEN

49 NextStep := 0 ;

50 (*Error state, log error**)

51 ELSIF flags . ConnectionStatus <> 0 THEN

52 ErrorID := UDINT_TO_STRING (flags . ConnectionStatus) ;

53 NextStep := 999 ;

54 (* No Error *)

55 ELSE

56 NextStep := 11 ;

57 ErrorID := '' ;

58 END_IF

59 IF Step <> NextStep THEN

60 Flags . Connecting := FALSE ;

61 END_IF

62

63 11 : (* Connected*)

64 IF StepChg THEN

65 Flags . Connected := TRUE ;

66 Flags . ConnectStatus := CONCAT (CONCAT (CONCAT (

67 'Connected to: ' , Flags . IPAddress) , ':') ,

68 WORD_TO_STRING (Flags . Port)) ;

69 END_IF

70 IF NOT flags . Connected THEN

71 nextStep := 0 ;

72 END_IF

73

74 999 : (* Error *)

75 Flags . ErrorCounter := Flags . ErrorCounter + 1 ;

76 Flags . LastError := CONCAT (CONCAT (CONCAT (

77 'Connect error with ID: ' , ErrorID) , ', last status: ') ,

78 Flags . ConnectStatus) ;

79 Flags . ConnectStatus := CONCAT (CONCAT (CONCAT (

80 'Error with ID: ' , ErrorID) , ', last status: ') ,

81 Flags . ConnectStatus) ;

82 NextStep := 0 ;

83 END_CASE

84

85 (*Changing steps*)

86 StepChg := Step <> NextStep ;

87 IF StepChg THEN

88 PrevStep := Step ;

89 Step := NextStep ;

90 END_IF

91 IF Flags . Reset THEN

92 Step := 0 ;

93 END_IF

94

48

Appendix 3/1
TCP/IP SEND FUNCTION BLOCK

POU: TCP_IP_SOCKET_SEND

insp15.project

5.12.2019 12:56
Page 1 of 2

1 FUNCTION_BLOCK TCP_IP_SOCKET_SEND

2 VAR_IN_OUT

3 Flags : TCP_IP_Flags ;

4 httpcom : HttpComm ;

5 END_VAR

6 VAR CONSTANT

7 MaxSendBufferBytes : WORD := 20480 ;

8 END_VAR

9 VAR

10 Step : INT := - 1 ;

11 NextStep : INT ;

12 PrevStep : INT ;

13 StepChg : BOOL ;

14 ErrorID : STRING ;

15

16 SendBuffer : ARRAY [1 .. MaxSendBufferBytes] OF BYTE ;

17 BufferLen : WORD ;

18 END_VAR

19

1 CASE Step OF

2

3 0 : (* Idle *)

4 IF StepChg THEN

5 Flags . Sending := FALSE ;

6 Flags . SendStatus := 'Waiting for send command' ;

7 ErrorID := '' ;

8 END_IF

9 IF Flags . Send AND

10 NOT Flags . SendReceiveInProgress AND

11 flags . Connected THEN

12 NextStep := 11 ;

13 Flags . SendReceiveInProgress := TRUE ;

14 END_IF

15

16 11 : (* Send data *)

17 IF StepChg THEN

18 Flags . Sending := TRUE ;

19 Flags . SendStatus := 'Sending data' ;

20 END_IF

21 BufferLen := HTTP_DataToByteBuffer (SIZEOF (SendBuffer) ,

22 ADR (SendBuffer) , httpcom . DataToSend) ;

23 (*Send command*)

24 flags . BytesSent := SysSockSend (

25 hSocket := flags . iSocketHandle ,

26 pbyBuffer := ADR (SendBuffer) ,

27 diBufferSize := BufferLen ,

28 diFlags := SOCKET_MSG_NONE ,

29 pResult := ADR (flags . DataSendError)) ;

30 (*error or timeout*)

31 IF flags . DataSendError <> 0 THEN

32 ErrorID := UDINT_TO_STRING (flags . DataSendError) ;

33 NextStep := 999 ;

34 (*message sent*)

35 ELSIF flags . BytesSent <> 0 THEN

49

Appendix 3/2
TCP/IP SEND FUNCTION BLOCK

16 Flags . DataSendCounter := Flags . DataSendCounter + 1 ;

17 flags . SendReceiveInProgress := FALSE ;

18 Flags . Send := FALSE ;

19 Flags . Sending := FALSE ;

20 NextStep := 0 ;

21 END_IF

42

43 999 : (* Error *)

44 flags . Sending := FALSE ;

45 flags . SendReceiveInProgress := FALSE ;

46 Flags . ErrorCounter := Flags . ErrorCounter + 1 ;

47 Flags . LastError := CONCAT (CONCAT (CONCAT (

48 'Send error with ID: ' , ErrorID) , ', last status: ') , Flags .

SendStatus) ;

49 Flags . SendStatus := CONCAT (CONCAT (CONCAT (

50 'Error with ID: ' , ErrorID) , ', last status: ') , Flags .

SendStatus) ;

51 flags . Connected := FALSE ;

52 NextStep := 0 ;

53 END_CASE

54

55 (*Step change*)

56 StepChg := Step <> NextStep ;

57 IF StepChg THEN

58 PrevStep := Step ;

59 Step := NextStep ;

60 END_IF

61

50

Appendix 4/1
TCP/IP RECEIVE FUNCTION BLOCK

POU: TCP_IP_SOCKET_RECEIVE_FROM_HOST

TwinCAT Project2.project

06.12.2019 1:34
Page 1 of 3

1 FUNCTION_BLOCK TCP_IP_SOCKET_RECEIVE_FROM_HOST

2 VAR_IN_OUT

3 Flags : TCP_IP_Flags ;

4 httpcom : HttpComm ;

5 END_VAR

6 VAR CONSTANT

7 TotalBufferSize : DWORD := 81920 ;

8 MaxReceiveBufferBytes : WORD := 20480 ;

9 StepMaxTime : TIME := TIME#2m0s0ms ;

10 END_VAR

11 VAR

12 Step : INT := 0 ;

13 NextStep : INT ;

14 StepChg : BOOL ;

15 ErrorID : STRING ;

16 TotalBuffer : ARRAY [1 .. TotalBufferSize] OF BYTE ;

17 TotalBufferString : ARRAY [1 .. 100] OF STRING (255) ;

18 ReceiveBuffer : ARRAY [1 .. MaxReceiveBufferBytes] OF BYTE ;

19 ReceivedBytes : DWORD ;

20 recieve : BOOL := FALSE ;

21 TotalReceivedBytes : DWORD := 0 ;

22 ReceiveTimes : WORD ;

23 iREcTime : INT ;

24 irec : DWORD ;

25 END_VAR

26

1 CASE Step OF

2 0 : (* Idle *)

3 IF StepChg THEN

4 Flags . SendReceiveInProgress := FALSE ;

5 Flags . ReceiveStatus := 'Idle' ;

6 ErrorID := '' ;

7 END_IF

8 IF Flags . Connected AND NOT flags . SendReceiveInProgress

9 AND flags . BytesSent <> 0 THEN

10 (* New receive, reset *)

11 MEMUtils . MemSet (ADR (httpcom . DataReceived)

12 , 0 , SIZEOF (httpcom . DataReceived)) ;

13 MEMUtils . MemSet (ADR (TotalBuffer) ,

14 0 , TotalBufferSize) ;

15 MEMUtils . MemSet (ADR (TotalBufferString) ,

16 0 , SIZEOF (TotalBufferString)) ;

17 ReceiveTimes := 0 ;

18 TotalReceivedBytes := 0 ;

19 NextStep := 11 ;

20 flags . BytesSent := 0 ;

21 recieve := TRUE ;

22 flags . SendReceiveInProgress := TRUE ;

23 END_IF

24 11 : (* Trying to receive data from host *)

25 IF StepChg THEN

26 MEMUtils . MemSet (ADR (ReceiveBuffer) , 0 , MaxReceiveBufferBytes) ;

27 Flags . ReceiveStatus := 'Trying to receive data from host' ;

28 END_IF

29 flags . Receiving := TRUE ;

51

Appendix 4/2
TCP/IP RECEIVE FUNCTION BLOCK

3 ReceivedBytes := SysSockRecv (

4 hSocket := flags . iSocketHandle ,

5 pbyBuffer := ADR (ReceiveBuffer) ,

6 diBufferSize := MaxReceiveBufferBytes ,

7 diFlags := SOCKET_MSG_DONTWAIT ,

8 pResult := ADR (flags . DataRecieveError)) ;

9 (*Error State*)

10 IF flags . DataRecieveError <> 0 AND flags . DataRecieveError <> 518 THEN

11 ErrorID := UDINT_TO_STRING (flags . DataRecieveError) ;

12 NextStep := 999 ;

13 (*Timeout, go to error state*)

14 ELSE

15 (*recieved a message*)

16 IF ReceivedBytes > 0 THEN

17 flags . SendReceiveInProgress := FALSE ;

18 flags . Receiving := false ;

19 IF TotalReceivedBytes < TotalBufferSize THEN

20 MEMUtils . MemCpy (ADR (TotalBuffer) +

21 TotalReceivedBytes ,

22 ADR (ReceiveBuffer) , ReceivedBytes +

23 MIN (TotalBufferSize - TotalReceivedBytes -

24 ReceivedBytes , 0)) ;

25 MEMUtils . MemCpy (ADR (TotalBufferString) +

26 TotalReceivedBytes ,

27 ADR (ReceiveBuffer) , ReceivedBytes +

28 MIN (TotalBufferSize - TotalReceivedBytes -

29 ReceivedBytes , 0)) ;

30 TotalReceivedBytes := MIN (TotalReceivedBytes +

31 ReceivedBytes ,

32 TotalBufferSize) ;

33 ParseByteBufferToHTTP_Data (TotalReceivedBytes ,

34 ADR (TotalBuffer) , httpcom . DataReceived) ;

35 Flags . DataReceiveCounter := Flags . DataReceiveCounter + 1 ;

36 ReceiveTimes := ReceiveTimes + 1 ;

37 NextStep := 0 ;

38 ELSE (*buffer overflow error*)

39 ErrorID := 'overflow' ;

40 NextStep := 999 ;

41 END_IF

42 END_IF

43 END_IF

71

72 999 : (* Error *)

73 IF StepChg THEN

74 Flags . Receiving := FALSE ;

75 Flags . Reset := TRUE ;

76 Flags . ErrorCounter := Flags . ErrorCounter + 1 ;

77 Flags . LastError := CONCAT (CONCAT (CONCAT (

78 'Receive error with ID: ' , ErrorID) , ', last status: ') ,

79 Flags . ReceiveStatus) ;

80 Flags . ReceiveStatus := CONCAT (CONCAT (CONCAT (

81 'Error with ID: ' , ErrorID) , ', last status: ') ,

82 Flags . ReceiveStatus) ;

83 END_IF

84 flags . Connected := FALSE ;

85 NextStep := 0 ;

52

Appendix 4/3
TCP/IP RECEIVE FUNCTION BLOCK

73 END_CASE

87

88 (*Step cange*)

89 StepChg := Step <> NextStep ;

90 IF StepChg THEN

91 Step := NextStep ;

92 END_IF

93

53

Appendix 5/1

GET NETWORK ADAPTERS FUNCTION BLOCK

POU: GetAdapterInfo

insp15.project

5.12.2019 10:22
Page 1 of 2

1 FUNCTION_BLOCK GetAdapterInfo

2 VAR_INPUT

3 END_VAR

4 VAR_OUTPUT

5 connected : BOOL := FALSE ;

6 END_VAR

7 VAR

8 FirstAdapterHandle : UDINT ;

9 SecondAdapterHandle : udint ;

10 size : UXINT ;

11 mac : STRING ;

12 i : BYTE ;

13 END_VAR

14

1 //getting first adapter, returnd loopback

2 size := SIZEOF (AdapterInfo) ;

3 FirstAdapterHandle := SysSockGetFirstAdapterInfo (

4 pAdapterInfo := ADR (AdapterInfo) ,

5 puxiAdapterInfoSize := ADR (size) ,

6 pResult := ADR (udiAdapterInfoError)) ;

7

8 //getting the second adapter, returns cable network connection

9 size := SIZEOF (AdapterInfo) ;

10 SecondAdapterHandle := SysSockGetNextAdapterInfo (

11 hPrevAdapter := FirstAdapterHandle ,

12 pAdapterInfo := ADR (AdapterInfo) ,

13 puxiAdapterInfoSize := ADR (size) ,

14 pResult := ADR (udiAdapterInfoError)) ;

15

16 // if cable connection not found, check WiFi connection

17 IF AdapterInfo . IpAddr . ulAddr = 0 THEN

18 SysSockGetNextAdapterInfo (hPrevAdapter := SecondAdapterHandle ,

19 pAdapterInfo := ADR (AdapterInfo) ,

20 puxiAdapterInfoSize := ADR (size) ,

21 pResult := ADR (udiAdapterInfoError)) ;

22 END_IF

23

24 //convert IP address to string

25 sIPaddr := IoDrvEthernet . UDINT_TO_IPSTRING (

26 udiIPAddress := MEM . ReverseBYTEsInDWORD (

27 dwInput := AdapterInfo . IpAddr . ulAddr)) ;

28

29 //convert default gateway to string

30 sDefaultGateway := IoDrvEthernet . UDINT_TO_IPSTRING (

31 udiIPAddress := MEM . ReverseBYTEsInDWORD (

32 dwInput := AdapterInfo . DefaultGateway . ulAddr)) ;

33

34 //conver MAC address to string

35 mac := BYTE_TO_hexSTRING (ADApterInfo . abyMac [0]) ;

36 FOR i := 1 TO 5 DO

37 mac := concat (

38 concat (mac , '-') ,

39 BYTE_TO_hexSTRING (AdapterInfo . abyMac [i])) ;

40 END_FOR

41

54

Appendix 5/2
GET NETWORK ADAPTERS FUNCTION BLOCK

POU: GetAdapterInfo

insp15.project

5.12.2019 10:22
Page 1 of 2

34 FOR i := 1 TO 5 DO

35 mac := concat (

36 concat (mac , '-') ,

37 BYTE_TO_hexSTRING (AdapterInfo . abyMac [i])) ;

38 END_FOR

41

42 DeviceID := mac ;

43 //true only if there is a valid network connection

44 connected := AdapterInfo . IpAddr . ulAddr <> 0 ;

45

