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ABSTRACT 

 
This thesis project illustrated a Raspberry Pi microcontroller being used as 
a replacement for an industrial-grade programmable logic controller (PLC) 
in a data-collection application. The application, Inspector, is a tool for 
factory production monitoring provided by a Finnish automation company 
InSolution Oy, which was the commissioning party of the thesis project. 
Inspector is comprised of a PLC application collecting real-time data and a 
web application. The PLC data-collection application normally uses PLCs 
manufactured by Beckhoff, whereas in this project a program with the 
same functionality was implemented on a Raspberry Pi in CODESYS 
programming environment.  
 
The theoretical part of the thesis includes information on the hardware, 
programming tools, languages and communication protocols used during 
the empirical part of the project. 
 
In the implementation part of the project, changes were made to the 
original program to transfer it from TwinCAT to CODESYS environment. 
Most of the modifications were related to reference libraries, 
communication to the web client application over TCP/IP and the date and 
time interface. This part of the project also included the configuration of 
the inputs and outputs using Raspberry Pi GPIO and Horter I2C input 
modules. 
 
Finally, the Raspberry Pi program was tested by establishing a connection 
to a web application, which revealed several issues related to the reliability 
of the new application in cases of power and network failures. Data 
persistence was added to the project along with other improvements 
which eliminated the discovered issues and enhanced the reliability of the 
application. 
 
As an outcome of the project, a reliable and well-functioning solution was 
developed for possible use of Raspberry Pi instead of a Beckhoff PLC in the 



Inspector tool. The developed solution provided the possibility of a 
significant increase in the cost-efficiency and flexibility of the tool. It was 
concluded that a Raspberry Pi can be a feasible replacement for a PLC in 
certain industrial automation applications. Moreover, the commissioning 
company decided to continue the project by conducting tests on the new 
product to prepare it to be released for customer projects. 
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1 INTRODUCTION 

The commissioning company of the thesis project, InSolution Oy, provides 
automation solutions for industry and education. One of the company’s 
main products is Inspector – a software tool for production monitoring, 
that allows users to trace the productivity, availability and efficiency of the 
machinery at a factory. Inspector collects production data using 
programmable logical controllers (PLCs) and sends the data to a web 
application interface. The web application displays numerical information 
and different figures that allow users to analyse and optimise production 
processes. 
 
Inspector tool performs data collection using PLCs from Beckhoff, which 
are programmed in the TwinCAT environment. Beckhoff PLCs provide 
sufficient reliability and durability for the Inspector application. However, 
InSolution has faced several difficulties in the implementation of Inspector 
data-collection application using Beckhoff products. Firstly, all of the used 
controller models have limitations on the size of the code, which in some 
cases makes it necessary to reduce the functionality of the program. 
Expanding the functionality of the application often requires more 
expensive controller models, which increases the price of the final product. 
Secondly, the PLC program requires modifications when it is implemented 
on different controller models, which leads to having several versions of 
the same program. Therefore, it was decided to look for a solution to 
replace Beckhoff PLCs in the application. (Katajisto, 2019) 
 
The main idea of the thesis project was to replace a PLC in Inspector with 
a Raspberry Pi microcontroller. Raspberry Pi can execute PLC code in 
CODESYS, which is a hardware-independent programming environment. 
The microcontroller provides sufficient computing power and memory for 
the Inspector application, and, therefore, would eliminate the issued 
described above. 
 
Both CODESYS and TwinCAT comply with the IEC 61131-3 standard that 
includes regulations for PLC programming languages and interfaces. The 
original PLC code had been written using Structured Text (ST) as the 
programming language, which can be used in both of these programming 
environments. Therefore, it is possible to implement the same code on a 
Beckhoff PLC and Raspberry Pi. However, there are differences in writing 
and execution of a program, which are related to reference libraries and 
device hardware. (Codesys, 2019) (TwinCAT, 2019) 
 
 
However, Beckhoff PLCs are specifically designed to be used in automation 
and industry, while Raspberry Pi is made mainly for testing and educational 
purposes. That means that there are significant differences in the 
hardware design of PLCs and educational microcontrollers, and a 
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Raspberry cannot fulfil the same requirements as an industrial controller. 
Another setback of the project is that there is no sufficient information 
about the limitations and possibilities of Raspberry Pi being used as a PLC 
and it is difficult to estimate whether it is possible to use a Raspberry Pi for 
a specific application. The goal of this research project was to check how 
and to what extent it is feasible to replace a Beckhoff PLC in the Inspector 
tool.  

2 THEORETICAL BACKGROUND 

This chapter includes theoretical information on the topics covered in the 
thesis. Understanding the terms and concepts described in the chapter is 
essential for the comprehension of the workflow and ideas of the project. 
The chapter also describes the hardware and software that was utilised in 
the thesis project, as well as gives information on the used communication 
protocols. 

2.1 PLC programming 

The following section provides basic information about what 
programmable logic controllers are, their cases of use, features, 
manufacturers and history. It also describes the programming language 
and environment that were used in the thesis project. 

2.1.1 Introduction to programmable logic controllers 

A programmable logic controller is a special form of microprocessor-based 
controller that uses programmable memory to store instructions and to 
implement functions such as logic, sequencing, timing, counting, and 
arithmetic in order to control machines and processes. (Bolton, 2015, p. 5) 
  
Figure 1 describes the general idea of a PLC: it executes a program that 
receives real-time input information, processes it and gives obtained 
results as output signals. 
 

 

Figure 1. Programmable logic controller (Bolton, 2015, p. 5). 
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PLC controllers are similar to normal computers, but they are optimized 
for industrial use, which results in several differences. Firstly, the 
programming environments of PLCs are simplified to be operated by 
factory workers and operators who are not necessarily familiar with 
programming. Therefore, they use graphical programming languages such 
as Ladder Logic or Function Block Diagram, or simplified textual languages, 
for instance, Instruction List and Structured Text. These languages use 
simple logical expressions that can be understood intuitively. Secondly, 
PLCs are designed to withstand harsh conditions of production 
environments, such as vibrations, moisture, noise and temperature. Lastly, 
PLCs have built-in interfacing for inputs and outputs for monitoring, 
controlling and communicating with other devices. (Bolton, 2015, p. 5), 
(John & Tiegelkamp, 2010). 
 
The first PLC was invented in 1968 by Dick Morley in response to the 
request from a US automobile manufacturer GM Hydramatic. The PLC was 
created as a replacement for old relay logic systems, which needed to be 
re-wired every time manufacturing process was updated. The first PLC, 
Modicon 084, was designed to be programmed with ladder logic, which 
bore resemblance to the relay logic diagrams, in order to be 
comprehensible for the people used to work with the old systems. Later 
on, PLC  development continued by the introduction of Modbus 
communication, Manufacturing Automation Protocol, PLC programming 
PC software, different programming languages and standardisation by 
International Electrotechnical Commission (IEC). (History of the 
Programmable Logic Controller (PLC), n.d.). 
 
Nowadays, there is a high variety of PLCs with different characteristics and 
capabilities available on the market.  For instance, the world’s best-known 
PLC manufacturers include ABB, Siemens, Beckhoff, Schneider Electric, 
Omron, Allen-Bradley. 

2.1.2 Structured Text programming language 

“So why not just go ahead and use ST all the way? The answer to this is 
that you can” (Hanssen, 2015, p. 396). 
  
According to John and Tiegelkamp (2010, p.10), classical PLC programming 
methods that existed earlier, such as Instruction List, Ladder Logic or 
Control System Function chart had reached their limits. What is more, 
there were certain differences in both software and hardware of products 
from different manufacturers, even for the ones, that used the same 
programming language. These differences were escalating with the 
development of PLC programming, and, therefore, there was a need for a 
standardisation of PLC programming, hardware requirements, and 
manufacturer-independent language concepts. (Hanssen, 2015, p. 20). 
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International standard IEC 61131 was introduced in 1993 by the IEC and 
stands for “Industrial-process measurement and control – programmable 
controllers”. The standard regulates PLC hardware, programming 
languages and interfaces. The latest version of the standard is IEC 61131-3 
which was released in 2013. (Hanssen, 2015, p. 20), (Budimir, 2018). 
 
There are three graphical programming languages and three textual 
languages defined by the IEC 61131-3 standard. The graphical languages 
are Ladder Diagram, Function Block Diagram and Sequential Function 
Chart (graphical version). The textual languages are Instruction List, 
Structured Text and Sequential Function Chart (textual version). (John & 
Tiegelkamp, 2010, p. 97). 
 
In this project, ST was used as the main programming language, both in the 
source Inspector code and in the modified code for Raspberry Pi. ST 
programs consist of statements divided by semicolons. Statements control 
the program flow, change the values and manage the calls for program 
execution units (POUs). 
 
Out of the PC programming languages, ST is comparable to PASCAL and C. 
Therefore, many programmers who have worked with these languages, 
find it easy to adapt to the syntax of ST. Structured Text is a High-Level 
programming language, which means it uses abstract statements 
describing complex functionality in a very compressed way. An example of 
the ST code is given in Figure 2. (John & Tiegelkamp, 2010, p. 116).  
 

 

Figure 2. Example of ST code (Hanssen, 2015, p. 395). 

 
John and Tiegelkamp (2010, 116) describe three main advantages of 
Structured Text when comparing it to Instruction List. Firstly, it provides a 
very compressed formulation of the programming task. Secondly, there is 
a clear construction of the program in the statement blocks. Lastly, it has 
powerful constructs to control the command flow. 
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On the other hand, these advantages lead to the fact that programs 
written using ST need to be compiled, and translation to the machine code 
cannot be accessed directly. Compilation of the code, as well as abstract 
statements, reduce the efficiency of the code execution. (John & 
Tiegelkamp, 2010, p. 116). 
 
Moreover, Hanssen states that “ST is first and foremost with arithmetic 
calculations, processing numbers and in handling structured data types” 
(Hanssen, 2015). They also mention that when compared to LD, writing 
code in Structured Text faster and more concise. In addition, some 
operations cannot be implemented in a graphical programming language. 
(Hanssen, 2015). 

2.1.3 CODESYS 

Raspberry Pi was programmed using the CODESYS 3.5 programming tool, 
developed by Smart Software Solutions GmbH. CODESYS stands for 
Controller Development System, it is a hardware-independent 
programming system for industrial automation technology that complies 
to IEC 61131-3 standard. It supports all five languages described by the 
standard, as well as other basic PLC programming attributes and features. 
(Hanssen, 2015, p. 486). 
 
CODESYS is compatible with more than 1 000 device types from over 400 
different manufacturers. It is available as a modular single-source runtime 
system for different device platforms. CODESYS provides multiple add-on 
components and libraries for it to be used in various types of automation 
systems. The software is available in complete version for free of charge 
download on the CODESYS official website. However, some of the 
additional modules require paid licences. The integration of different 
editors and add-ons in the CODESYS Development System is illustrated in 
Figure 3. (Why CODESYS?, 2019). 
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Figure 3. Integration of CODESYS system  (Why CODESYS?, 2019). 

In the implementation of the thesis, CODESYS runtime system was 
installed and programmed on a Raspberry PI microcontroller using 
CODESYS Control for Raspberry Pi SL extension. The package supports 
multiple communication interfaces of Raspberry Pi, such as I2C, GPIO, One-
wire, etc., as well as CODESYS WebVisu visualisation, and several fieldbus 
protocols. (CODESYS Control for Raspberry Pi SL, 2019). 

2.2 Controller selection and requirements 

This section describes the requirements of the project for the controller in 
the Inspector application and provides parameters of the currently used 
controller and its replacement options. The commissioning company 
suggested using a Raspberry Pi microcontroller. Moreover, two other 
controller options were considered – Allen-Bradley Micro800 PLC and 
Arduino microcontroller. The section also provides information on the 
choice that was made and its reasoning. 

2.2.1 Required parameters 

The main idea of the project was to develop a solution to replace the 
Beckhoff PLC in the Inspector application. Normally, Beckhoff BC9020 is 
used as a controller in the application. Depending on the project 
specifications, other controller models can be used, such as BC9050 or 
CX8090, and input/output (IO) cards are added.   
 
The BC9020 Ethernet TCP/IP “Economy plus” Bus Terminal Controller is a 
Bus Coupler with built-in PLC functionality and a bus interface for Ethernet. 
It is programmed with TwinCAT software which complies to IEC 61131-3. 
The image of the controller is given in Figure 4 and its technical 
specifications are provided in Table 1. (BC9020, 2017). 
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Figure 4. Beckhoff BC9020 (BC9020, 2017). 

Table 1. Beckhoff BC9020 specifications (BC9020, 2017). 

Program memory 128 kbytes 

Data memory 128 kbytes 

Remanent data 2 kbytes 

Persistent data 1 kbyte 

Runtime system 1 PLC task 

PLC cycle time approx. 1 ms for 1,000 instructions 
(without I/O cycle, K-bus) 

Programming languages IEC 61131-3 (IL, LD, FBD, SFC, ST) 

Programming software TwinCAT 

Ethernet connection RJ45 

 
 
BC9020 is suitable for Inspector application with its speed and computing 
power. However, there are two main setbacks of the implementation with 
Beckhoff products. Firstly, there are limitations on the program size, which 
can restrict the functionality of the application from being expanded. 
Secondly, there is a lack of flexibility when using different controller 
models. All the Beckhoff controllers are programmed in TwinCAT 
environment, which has two active versions: TwinCAT 2 and TwinCAT 3. 
Even though TwinCAT 2 and 3 use the same programming languages and 
structures, in some cases they require different reference libraries for the 
same functionality. This leads to having to write several versions of code 
with the same functionality, which is inconvenient.  
 
The new implementation needs to resolve the issues mentioned above 
without adding any other restrains to the application. Inspector 
application requires the controller to be able to perform communication 
over TCP/IP and have extendable IO.  
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Several controller models that could fulfil the requirements of the 
Inspector application have been found. Their parameters are described in 
the sections below. 

2.2.2 Raspberry Pi microcontroller 

Raspberry Pi is a low cost, credit-card sized computer which can be 
connected to a monitor, mouse and keyboard and is capable of performing 
all the standard functions of a desktop computer with additional 
possibilities for interaction with the outside world.  
 
This microcontroller was designed by Raspberry Pi educational charity 
foundation to promote programming in education. The microcontroller is 
supplied with an affordable price, around USD 35, plentiful of 
understandable instructions and inspirational ideas, which makes it a good 
platform to learn programming for people of all ages. Moreover, the 
manufacturer promotes the idea that learning programming can be seen 
as entertainment or hobby, both for children and adults. (What is a 
Raspberry Pi?, n.d.). 
 
The promotional video on the official Raspberry PI website claims: “…we 
have seen examples of people using the Pi in a variety of amazing 
interesting projects taking advantage of its size, portability, cost, 
programmability and connectability” (What is a Raspberry Pi?, n.d.). 
 
Raspberry Pi is a Linux-based computer which has a set of general-purpose 
input/output (GPIO) pins for controlling electronic components and 
interaction with the Internet of Things, as illustrated in Figure 5.  Even 
though Raspberry Pi is designed mainly for developing practical skills in 
programming and building hardware, it is also used in home automation 
and industrial applications. (Raspberry Pi, 2019). 
 
 
 

 

Figure 5. Raspberry Pi GPIO pins (Raspberry Pi, 2019). 
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The commissioning company provided Raspberry Pi 3 Model B v1.2 for the 
thesis project. This model, released in 2016, is the earliest model of the 
third generation of Raspberry Pi. Table 2 provides the specifications of the 
microcontroller. 

Table 2. Specifications of Raspberry Pi 3 model B. (Raspberry Pi 3 
Model B, n.d.) 

Processor Quad-Core 1.2GHz Broadcom BCM2837 64bit 

RAM 1GB 

Wireless 
connections 

BCM43438 wireless LAN and Bluetooth Low 
Energy (BLE) 

Ethernet 
connection 

100 Base Ethernet 

GPIO 40 pins, extended 

USB connections 4 ports 

Media outputs 4 Pole stereo output and composite video port 

Screen output Full-size HDMI 

Port for SD card Micro SD port for loading your operating 
system and storing data 

Power supply  Micro USB power source up to 2.5A 

Other ports CSI camera port for connecting a Raspberry Pi 
camera; DSI display port for connecting a 
Raspberry Pi touchscreen display 

 
 

2.2.3 Allen-Bradley Micro800 programmable logic controllers 

The Micro800 PLCs from Allen-Bradley are designed for low-cost 
standalone automation applications. The controllers of the series are 
shown in Figure 6.  All the models in the series are programmed in the 
same programming environment which supports the following IEC61131-
3 programming languages:  Ladder Diagram, Function Block Diagram and 
Structured Text. The models Micro820, Micro850 and Micro870 have 
embedded Ethernet ports and support communication over TCP/IP. 
Micro820 PLC has similar specifications to the Beckhoff BC9020, whereas 
Models 850 and 870 provide more IO points, program memory and 
computing power. Allen-Bradley Micro800 PLCs already have embedded 
IO, size of which varies for different models, unlike the Beckhoff controller, 
that requires additional IO cards. Thus, different controller models of 
Micro800 series can be used depending on the project requirements, 
providing the application with flexibility. (Micro800 Programmable 
Controller Family Selection Guide, 2019). 
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Figure 6. Allen-Bradley Micro800 controllers (Micro800 
Programmable Controller Family Selection Guide, 2019).  

2.2.4 Arduino microcontroller 

Arduino is an open-source platform, which contains a microcontroller and 
an integrated development environment software for programming the 
controller from a computer. Arduino can be used in various electronics 
applications by students, teachers, programmers, artists and scientist. 
Arduino provides an integrated development environment (IDE) software 
that allows to connect and program to the microcontroller via USB from a 
computer. Arduino IDE uses C/C++ programming languages. However, 
there also exists other software for programming Arduino boards using 
different programming languages. For example, Visual Studio provides an 
IDE specifically for Arduino. Arduino can also be programmed using IEC 
61311-3 languages with logi.CAD 3 software. (What is Arduino?, 2019) 

 
Arduino UNO WIFI Rev2 was chosen for this project. This board has an 
embedded Wi-Fi module that provides the possibility of communication 
over TCP/IP for the Inspector application. The technical specifications of 
the selected board are given in Table 3. (Arduino UNO WiFi Rev2, 2019) 
 

Table 3. Specifications of Arduino UNO WIFI Rev2 board (Arduino 
UNO WiFi Rev2, 2019). 

 

Microcontroller ATMEGA4809 

Operating Voltage 5V 

Input Voltage (recommended) 7 - 12V 
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Input Voltage (limit) 6 - 12V 

Digital I/O Pins 14 — 5 Provide PWM Output 

PWM Digital I/O Pins 5 

Analogue Input Pins 6 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 48 KB (ATMEGA4809) 

SRAM 6,144 B (ATMEGA4809) 

EEPROM 256 Bytes (ATMEGA4809) 

Clock Speed 16 MHz 

LED_BUILTIN 25 

Length 68.6 mm 

Width 53.4 mm 

Weight 25 g 

 

2.2.5 Selection 

After comparing the parameters of the controllers described above, it was 
decided to use a Raspberry Pi. Allen-Bradley PLCs could improve more 
program memory and flexibility for the Inspector application, but they 
would not improve its cost-efficiency. Microcontrollers have significantly 
lower prices than industrial PLCs from Beckhoff and Allen-Bradley. 
Raspberry Pi has more IO pins, RAM and flash memory and more powerful 
processor, than Arduino. It also does not have any limitations for program 
size specified. Having considered all the facts stated above, it was decided 
by the author of the thesis and the commissioning company to use 
Raspberry Pi microcontroller for this project. 

2.3 Inspector software tool 

This section provides information on Inspector software, part of which will 
be transferred from Beckhoff PLC to be implemented on a Raspberry Pi. It 
provides a general description of the functionality and usage of the tool. In 
addition, it gives technical information about the implementation of the 
tool and its features used in this thesis project. 

2.3.1 Functional description of Inspector software 

The increase in production profitability is the main target of the Inspector 
software tool. The tool collects information about the production losses 
and their reasons, resources utilization and other performance indicators. 
Based on the collected data, Inspector gives an overview of the production 
processes. A visual representation of performance indicators provided by 
Inspector is shown in Figure 7. 
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Figure 7. Inspector software in production (Inspector Production 
monitoring). 

Inspector does not only show the production losses but also helps to 
identify and analyse their causes. The chart in Figure 8 illustrates how 
losses can cut down the production time. There are six main losses in the 
production: stops, setup and adjustment, idle time, reduced speed, quality 
errors and remachining and startup errors. These losses affect the three 
factors of overall equipment effectiveness (OEE): availability, speed and 
quality. The chart shows how the theoretical production time of 8760 
hours per year is reduced to actual production time, which is always 
smaller than the theoretical, due to planned stops and the six big losses. 
 

  

Figure 8. Anatomy of production loss (Inspector Production 
monitoring).  

What is more, Inspector can perform quality monitoring and resource 
organising. It can be integrated with existing factory systems such as MES 
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(Manufacturing Execution Systems), Maintenance and ERP (Enterprise 
Resource Planning). The software provides a modular system, which can 
be adjusted to the needs of a particular customer. (Inspector Production 
monitoring).   

2.3.2 Technical information on Inspector software 

Inspector software uses automated data collection (ADC) to gather real-
time information about production states. Production data is acquired by 
PLCs. The application uses PLCs manufactured by Beckhoff which are 
programmed using TwinCAT 2 or TwinCAT 3 software. Depending on the 
requirements of a specific project, different controller models are used. 
Most used PLC models are BC9020, BC9050 and CX8090. In some cases, 
the PLC is placed in the Inspector Box – a box containing all the hardware 
components and wiring necessary for PLC setup. Inspector Box also has 
three status LEDs and nine buttons for manual inputs, which are controlled 
by the PLC. 
 
PLCs collect data from machine signals and sensors and send real-time 
information about machine state to the Inspector web application. The 
web application checks whether the state is productive, idle or 
unproductive and logs the information to the database. In the graphical 
user interface (GUI) of the application, the states can be configured, which 
means the input signals, name, meaning and colour of a state can be set. 
 
The users of Inspector can give reason codes to the unproductive and idle 
states. A reason code gives a short explanation of why the production has 
been stopped, for instance, “break”, “maintenance”, “emergency”, etc. 
The reason codes can be added manually using GUI or by pressing a button 
of a reason code box. 
 
Inspector software also provides condition monitoring (CM) module for 
tracking analogue input data. Collected data can be retraced from graphs 
drawn in the GUI or be “transferred” to ADC data, which means that 
machine states can be read based on analogue input values. CM data can 
be scaled and have its sample rate set in a way that would provide most 
informative and simplified image of the production.  
 
In the Inspector application, PLCs communicate with the web application 
over TCP/IP protocol, which is described more in detail in the next chapter.    

2.4 Communication protocols 

Communication protocols are formal descriptions of digital message 
formats and rules, required to exchange messages in or between 
computing systems. The protocols describe communication by defining 
the rules its of authentication, error handling, signalling, syntax, semantics 
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and synchronisation. (Communicatoin Protocol, 2019). The section below 
provides descriptions of the communication protocols used in this project. 

2.4.1 TCP/IP  

TCP/IP, or the Transmission Control Protocol/Internet Protocol, is a family 
of network protocols that are used for connection and communication of 
devices in the Internet or private networks. TCP/IP regulates data 
exchange by specifying how it can be divided into packets, addressed, 
transmitted, routed and received at the destination. TCP/IP protocols were 
developed to provide network reliability and sustainability. (Rouse, 2019) 
 
TCP/IP group has two main protocols. TCP is responsible for the assembly 
of the data into packets before transmission and reading of those packets 
on the receiving devices. IP describes the addressing and routing of data 
packets to ensure that they reach the correct destination. Gateway 
computers use IP addresses to find where to forward the data. (Rouse, 
2019) 
 
TCP/IP protocol uses the client/server model, in which the server 
computer provides service to another machine or user. TCP/IP 
communication happens at several different levels, and it can be divided 
into four layers. The physical layer contains protocols that operate on link 
and are responsible for physical connections inside the network, such as 
Ethernet or Address Resolution Protocol. The network layer, sometimes 
referred as the Internet level, is related to interconnection of independent 
networks, data packets and their transmission across the networks. The 
network layer includes IP and Control Message Protocol, the protocol for 
reporting of errors. The transport layer maintains end-to-end 
communication between hosts and provides flow control, multiplexing and 
reliability. The protocols of the transport layer are TCP and User Datagram 
Protocol, which can sometimes replace TCP. The application layer is 
needed for standardised data exchange between applications. It consists 
of such protocols as Hypertext Transfer Protocol, File Transfer Protocol, 
Post Office Protocol 3, Simple Mail Transfer Protocol and Simple Network 
Management Protocol. (Rouse, 2019). 
 
The TCP/IP protocols are stateless, i.e., each request is unrelated to the 
previous one and is considered new. Being stateless allows the network 
paths to be used continuously. However, the transport layer is stateful, 
because it needs to transfer a message in packets and keep the connection 
alive until the whole message is received and reassembled. (Rouse, 2019). 

2.4.2 Secure Shell (SSH) protocol  

Secure Shell is a communication protocol that provides a secure login to a 
remote computer. SSH uses the client/server model, where the connection 
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to the server computer is initiated by the client. The SSH client operates 
the setup of the connection and uses public-key cryptography to verify the 
identity of the SSH server. The simplified model of an SSH connection is 
illustrated in Figure 9. (Ylonen, 1996, pp. 37-42). 
 

 

Figure 9. SSH connection scheme (SSH (Secure Shell), 2018). 

The most common uses of SSH include providing secure access for users 
and automated processes, interactive and automated file transfers, issuing 
remote commands and managing network infrastructure and other 
mission-critical system components (Ylonen, 1996, pp. 37-42). 

 
The SSH protocol was invented in 1995 by Tatu Ylonen because of a 
hacking event in the Finnish university network. A password sniffer had 
been installed to a server that was connected to the backbone, it had 
stolen thousands of usernames and passwords before it was noticed. 
Ylonen’s company was among the ones that were affected by the incident, 
and he developed a solution which would help him perform a secure 
remote login over the Internet. Later on, the protocol was improved and 
standardised. Nowadays Secure Shell protocol is utilised for managing 
more than half of web servers in the world and almost every Linux or Unix 
computer. (SSH (Secure Shell), 2018). 

2.4.3 I2C protocol 

Inter-Integrated Circuit (I2C), sometimes also referred as Inter-IC, IIC or I²C, 
is a widely used serial bus protocol designed by Philips in the early 1980s. 
The protocol is used for communication between electrical components 
on the same board, low-speed devices, such as microcontrollers, IO 
modules or other peripherals in the embedded systems. (I2C – What’s 
That?, n.d.), (I2C Info – I2C Bus, Interface and Protocol, 2019). 
 
The protocol is flexible and easy to use, as it is based on simple master-
slave relationships between the components and requires only two wires 
to connect an almost unlimited number of controllers. The bus lines are 
SDA (serial data) and SCL (serial clock). Both of them require pull-up 
resistors to the positive supply voltage. Since the bus clock is generated by 
the master device, I2C bus communication does not have strict 
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specifications for baud rate as, for instance, RS232 protocol. What is more, 
I2C bus is a true multi-master that provides collision detection and 
arbitration. An example of an I2C bus connection is shown in Figure 10. 
(I2C – What’s That?, n.d.), (I2C Info – I2C Bus, Interface and Protocol, 2019). 
 

 

Figure 10. Example of I2C bus connection (I2C, n.d.). 

The clock frequency in I2C is 100kHz, which means that the speed of 
communication is 100kbit/s. However, there also exists 400kHz Fast mode, 
3.4 MHz High-speed mode and 5 MHz Ultra-fast mode. (I2C Info – I2C Bus, 
Interface and Protocol, 2019) 
 
Communication over the I2C protocol happens by transferring 8-bit 
messages. All the slave devices on I2C bus need to have unique 7-bit 
addresses by which masters can identify the devices on the bus. Data is 
transferred over SDA and the message frames are regulated by SCL. The 
scheme of a message transferred over SDA and SCA lines is shown in Figure 
11, where S is the start condition, P – stop condition and  B1, B2 .. Bn are 
the bits of data. (I2C Info – I2C Bus, Interface and Protocol, 2019) 
 

  

Figure 11. Message transfer over I2C protocol (I2C Info – 
I2C Bus, Interface and Protocol, 2019). 

3 IMPLEMENTATION 

This chapter illustrates the practical part of the project. It describes the 
actions that were taken in order to achieve the goals of the project. The 
implementation part of the thesis includes software installations on 
Raspberry Pi and the PC, exporting the program from the TwinCAT 
environment to CODESYS and adjusting it to work on the microcontroller.  
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3.1 Setup preparations 

Several preparations needed to be done on the computer and Raspberry 
Pi before the Inspector code could be executed on Raspberry Pi. Firstly, the 
basic settings and installations were performed on Raspberry Pi. Secondly, 
installations on the computer side were performed. Finally, the Inspector 
PLC program was exported from the TwinCAT environment and imported 
to CODESYS.  
 
At the beginning, hardware prototyping was done on Raspberry Model B 
Revision 2.0. This model is older and has lower hardware specifications 
than Raspberry Pi 3 Model B v1.2 used in the final setup. However, both 
models support the CODESYS Control Module and can provide all the 
needed functionality. The newer model was used in the final setup, where 
it was placed in the Inspector Box and connected to the IO modules and 
the reason code buttons.  

3.1.1 Preparation of Raspberry PI 

First of all, an operating system (OS) had to be installed on the Raspberry 
Pi. NOOBS, which stands for New Out Of the Box Software, is a simple OS 
installer, provided by Raspberry Pi Foundation. It can be downloaded from 
the official Raspberry Pi website and extracted to an empty SD card.  Once 
the card with NOOBS is inserted to a Raspberry Pi, it prompts a selection 
of operating systems that can be installed on the Raspberry Pi. The 
installation of an operational system with NOOBS can be performed online 
or offline, depending on the desired OS and NOOBS version. 
 
The microcontroller was connected to the office network using Ethernet 
cable, which also provided the Internet connection for the Raspberry Pi. 
The Raspberry Pi also had a keyboard and a mouse connected to it via 
standard USB, and an HDMI connection to a monitor. The SD card with 
NOOBS v3.2.1. was inserted into the microcontroller. Finally, Raspberry Pi 
was powered by a mini-USB 5V supply. The Raspberry Pi with these 
connections is pictured in Figure 12. 
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Figure 12. Raspberry Pi connections. 

When the Raspberry Pi was turned on, the OS selection was made in 
NOOBS – Raspbian, the desktop version without additional software. 
Raspbian is the official supported Linux-based OS for Raspberry Pi. More 
information about the OS version can be found from the screenshot in 
Figure 13. 
 

 

Figure 13. Raspberry Pi OS version. 

 
Once OS installation was completed, some of the basic settings needed to 
be checked. Firstly, the localisation of the Raspberry Pi was set to Helsinki, 
Finland. Since Raspberry Pi does not have real-time clock, it synchronizes 
its time settings with the Internet. Localisation settings configure it to use 
the right time zone. Secondly, the interfacing values were checked and SSH 
and I2C communication interfaces were enabled, as shown in Figure 14. 
 

Screen (HDMI) 

Keyboard 

LAN (Ethernet) 
Power supply 
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Figure 14. Configuration of the communication interfaces 
of Raspberry Pi. 

Lastly, it was necessary to find the IP address of the Raspberry Pi so that 
the microcontroller could be accessed and controlled from the computer, 
connected to the same network. Command “ifconfig” was used to check 
the parameters of the network interfaces on the Raspberry Pi. Figure 15 
shows the information that was returned by this command, including the 
IP address of the device: 192.168.1.181.    

 

Figure 15. Network interfaces of the Raspberry Pi. 
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After the steps described above had been completed, the Raspberry Pi was 
prepared and accessible for further installations, which were performed 
from the computer side. 

3.1.2 Installations on computer 

On the computer side CODESYS software was installed, version 3.5 SP14 
Patch 2. In addition to that, “CODESYS Control for Raspberry Pi SL” module 
was downloaded from official CODESYS store and installed. The 
functionality of this package allows to connect to the Raspberry Pi from PC 
and install CODESYS runtime on it. With this package installed, the PLC 
code written in the software on the computer can be downloaded to the 
microcontroller and executed, the same way as on common PLCs. 
 
In order to allow CODESYS software to execute commands and download 
data to the Raspberry Pi, SSH connection needed to be established 
between the computer and the microcontroller. For this purpose, an open-
source software named PuTTY was used. Version 0.72 for Windows x64, 
released in July 2019 was downloaded and installed to the computer. The 
screenshots in Figure 16 and Figure 17 illustrate establishing a connection 
and log in to the Raspberry Pi using PuTTY. 
 

 

Figure 16. Establishing an SSH connection to Raspberry Pi 
using PuTTY. 
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Figure 17. Log in to Raspberry Pi via SSH using PuTTY. 

After the SSH connection was established, the Raspberry Pi could be 
accessed and controlled by the CODESYS computer software. CODESYS 
runtime was installed on the Raspberry Pi directly from the computer 
application. Figure 18 shows the interface for installation and control of 
CODESYS runtime on Raspberry Pi. 
 

 

Figure 18. Control of Raspberry Pi runtime in CODESYS. 

When the CODESYS Control runtime system had been installed on the 
Raspberry Pi, it was possible to log in to the runtime, download a program 
and execute it. Figure 19 shows the connection to the Raspberry Pi as a 
target device.  
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Figure 19. Connection to Raspberry Pi from CODESYS. 

3.1.3 Exporting Inspector code from TwinCAT to CODESYS 

InSolution Oy has developed several versions of Inspector program for 
different PLC types, which correspond to different project requirements. 
In this project, it was decided to use the version written for TwinCAT 3 
environment for CX8090. Unlike TwinCAT 2, TwinCAT 3 has the 
functionality to export files in the PLCopenXml format, which allows the 
whole code to be imported directly to CODESYS.  

 
After the code had been imported in CODESYS, the whole PLC project, 
including all the programs, functions and function blocks, as well as global 
variables and custom data types were present in the new project. The new 
program was named Inspector RPi.  

3.2 Adjusting Inspector code for Raspberry Pi 

The imported Inspector program could not be built in the CODESYS 
environment due to almost two hundred compilation errors, as shown in 
the screenshot in Figure 20. Most of the errors were caused by functions 
or function blocks not being defined. The reason for it was that the 
TwinCAT libraries used in the original code were not imported to CODESYS 
and therefore functionality defined in those libraries was not available in 
the new code. 
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Figure 20. Compilation errors after importing TwinCAT 
program to CODESYS environment. 

The first thing that was tried in order to fix the references, was to add the 
TwinCAT libraries to the CODESYS project. It was possible as one of the 
TwinCAT library extensions, “.lib”, is also supported by CODESYS. However, 
when the library files were added, there were still two compilation errors. 
The errors were inside the “Standard” library, which meant that the library 
was not supported by the CODESYS environment. Other TwinCAT libraries 
in the project were dependent on the “Standard” library and each other. 
Therefore, the TwinCAT libraries could not be used in the CODESYS project 
and it was reasonable to use the equivalent libraries from CODESYS official 
store. 

3.2.1 Replacing libraries 

First of all, CODESYS libraries that provide functionality that is equivalent 
to the TwinCAT libraries used in the initial application needed to be found. 
Table 4 illustrates the tables that were used in the old Inspector PLC 
program and their versions. 

Table 4. TwinCAT libraries. 

Name Effective version 

Tc2_Standard 3.3.2.0 

Tc2_System 3.4.18.0 

Tc2_TcpIp 3.3.3.0 

Tc2_Utilities 3.3.27.0 

Tc3_Module 3.3.18.0 
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Every function and function block that caused a compilation error needed 
to be found in a CODESYS library and then the library was added Inspector 
RPi project. If the names of the functions/function blocks were different 
from the old ones, they were changed using the “Find and Replace” 
function. In some cases, new functions/function blocks required different 
arguments and data types, so they were modified manually. 
 
The search for libraries was performed in CODESYS official documentation, 
store and Library Manager. There was no information on the usage of the 
libraries available other than official documentation, which in some cases 
was insufficient. Therefore, different libraries had been tested, until 
suitable ones were found.  
 
The changes to the Inspector RPi were done so that the project could be 
compiled with the least possible changes to its original implementation. 
Table 5 contains the list of libraries that were added to the final version of 
the CODESYS project. 

Table 5. CODESYS libraries. 

Name Effective version 

CmpErrors 3.3.1.40 

CommonPacketFormat Interfaces 3.5.6.0 

MemoryUtils 3.3.13.0 

Standard 3.5.14.0 

SysSocket 3.5.14.0 

Time and Date 3.5.7.0 

Util 3.5.14.0 

CAA Memory 3.5.12.0 

IODrvEthernet 3.5.14.0 

 
It can be seen from Table 4 and Table 5 that TwinCAT and CODESYS 
libraries used in the PLC and Raspberry Pi programs are completely 
different in both names and functionality. Also, the CODESYS project 
required a bigger number of libraries than the original project. Due to 
these significant differences in the dependences of the programs, it was 
challenging to find suitable libraries for Inspector RPi. 
 
Moreover, some of the errors could not be fixed by adding libraries and 
changing names of the functions/function blocks, which meant that some 
parts of the program would have to be rewritten in a new way. This 
problem concerned getting the current time on the controller and TCP/IP 
communication. The process of rewriting these sections is described in 
detail in the sections 3.2.2 and 3.2.3. 
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3.2.2 Rewriting date and time functions 

Getting the current time of the controller is important for the Inspector 
tool because it needs to register the accurate time when changes in a 
production process happen. It allows the tool to retrace the process and 
perform calculations concerning, for example, durations of 
productive/non-productive states. 
 
Unlike Beckhoff PLCs, Raspberry Pi microcontrollers do not have real-time 
clock and synchronise their current time with the Internet. Also, data types 
related to date and time and their handling are different in CODESYS and 
TwinCAT environments. Therefore, it was necessary to find some 
functionality in CODESYS libraries that would provide the program with the 
current date and time of the controller. 
 
Several libraries and functions for retrieving the current time from the 
controller are available in CODESYS environment. Not all of them are 
suitable for Raspberry Pi, but after testing a few different approaches, a 
function block that returns current time on the Raspberry Pi was created 
and called GetDT. 
  
GetDT is based on DTU library. A function block called GetDateAndTime 
from this library returns UTC (Coordinated Universal Time). To get local 
time, time zone information is set during the initialisation of GetDT using 
SetTimeZoneInformation function block. Moreover, information about 
Daylight Saving Time is checked from GetDateAndTime before returning 
the result. During the summer period, one hour is added to the result. As 
a result, GetDT returns current local time with Daylight Saving Time taken 
into account. The full code of the function block can be found in Appendix 
1. 

3.2.3 Rewriting TCP/IP communication   

Communication of the controller with the Inspector web application is 
essential for the data collection application, as the web application filters 
and saves the collected data to the database for future retracing and 
analysis. Thus, all the data acquired by the controller needs to be sent to 
the web application server. The part of the program responsible for TCP/IP 
communication had to be rewritten completely, when the program was 
transferred from TwinCAT to CODESYS environment, due to significant 
changes in hardware and libraries.  
 
The main difference between the new implementation and the old 
communication logic was related to the control of the network sockets. In 
the old code, TCP socket is opened and closed on each transmission, 
whereas in the new implementation the connection is established during 
initialisation of the program and the socket is never closed by the client. 
Other than that, the new function blocks follow the logic of the old 
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program and used mostly the same variables. The POUs were composed in 
such way that they could easily be integrated into the program, without 
requiring changes in the other parts of the code. 
 
The section of the program responsible for TCP/IP communication consists 
of three function blocks: CONNECT, SEND and RECEIVE. Their 
communication functionality is based on SysSocketCom library. All three 
function blocks are called constantly as soon as the program is initialised. 
Each of them is comprised of several steps. The function blocks 
communicate with each other and with the rest of the program via shared 
and global variables, so that the steps inside them are changed 
accordingly. They also update the information about the communication 
status and errors on the global program level. 
  
Each of the function blocks is described more in detail and illustrated 
schematically below. The full text of the of CONNECT, SEND and RECEIVE 
function blocks written for Inspector RPi can be found in Appendices 2, 3, 
and 4 respectively.  
 
First function block, CONNECT, is based on SysSockCreate and 
SysSockConnect functions. In the step 0 connection parameters are 
initialised and a new socket is created on the controller. As soon as 
everything is ready for connection, the function block proceeds to step 10 
where the controller attempts to connect to the socket. If the connection 
is successful, the step changes to 11, which is as simple as microcontroller 
staying in the connected state. If the attempt to connect fails in step 10 or 
the connection gets lost in step 11, the function block goes to the error 
state, step 999. In this step, the code of the error gets logged so that the 
problem can be found and analysed afterwards. After the error is 
recorded, the program returns to step 0 and tries to establish the 
connection again. The graphical representation of the logic of the 
CONNECT function block can be found in Figure 21. 
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Figure 21. Scheme of the CONNECT function block. 

Second function block, SEND, begins with Step 0, in which it is waiting until 
the program has data to send. When the function block gets the data, it 
checks that there is an active connection to the server and the controller 
is not receiving data over TCP at the moment. As soon as both of these 
conditions are true, the function block goes to step 11. In this step, the 
data is sent by SysSockSend function, and the send counter is incremented 
to signify that the data has been sent. After that, the program returns to 
step 0.  However, if an error or a timeout happens during sending, the 
function block goes to step 999 to log the error, and then proceeds to step 
0. The graphical representation of the logic of the SEND function block can 
be found from Figure 22. 
 

 

Figure 22. Scheme of the SEND function block. 
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Third function clock, RECEIVE, also begins with step 0. In this step receive 
buffer is initialised. If the controller is connected but is not sending data to 
the server, the function block proceeds to step 10, where the data is 
received. In this step, SysSockRecv function is used. If the data is obtained 
successfully, it is parsed and saved to buffer. If the receiving is not 
successful, then the error gets logged in step 999. In the end, the function 
block returns to step 0. The graphical representation of the logic of the 
RECIEVE function block can be found from Figure 23. 
 

 

Figure 23. Scheme of the RECIEVE function block. 

3.3 IO setup 

Inspector RPi uses analogue and digital inputs to collect data from the 
monitored devices. Also, the Inspector Box has nine reason code buttons 
which are configured as digital inputs for the controller and three status 
LEDs as digital outputs. 
 
17 out of 40 GPIO pins of the Raspberry Pi B can be used as digital inputs 
or outputs in the CODESYS program. In Inspector RPi these pins were 
connected to buttons and LEDs of the Inspector Box. The IO of the 
Raspberry Pi was extended by adding digital and analogue input modules 
from Horter. The modules were used to collect information from external 
devices. Configuration of the IO is described more in detail in the sections 
below. 
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3.3.1 GPIO of Raspberry Pi 

The interface for the control of Raspberry PI GPIO allows the pins to be 
configured as inputs or outputs. It also shows the memory addresses 
where the IO values are stored and provides the possibility to link variables 
to them. The variables for buttons and LEDs were linked to corresponding 
pins via memory addresses as shown in the screenshot in Figure 24. 
 

 

Figure 24. Declaration of variables linked to GPIO. 

When the program was running, the output variables were turning on and 
off the LEDs, whereas the values of the input variables changed when the 
corresponding buttons were pressed. However, some of the buttons did 
not affect the variables they were linked to, even though they were wired 
and configured in the same way as the correctly functioning buttons. The 
reason for that was that not all of the GPIO input pins do have internal pull-
up resistors enabled by default. 
 
Creating a pull-up circuit was necessary in this case because the pins were 
wired to the ground through the buttons. In this case, voltage is supplied 
to the input pin through a large (~50 kOhms) resistor, which makes the 
input value HIGH by default. When the button is pressed the circuit is 
closed to the ground making the value switch to LOW.  
 
Raspberry Pi has built-in resistors that can be connected to the pins when 
needed. Figure 25 shows the default state of the input pins. The pins with 
fsel value “0” are configured as inputs, and their level value shows whether 
they are high or low by default. 
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Figure 25. Default state of GPIO input pins. 

It can be seen that the IO pins have different values by default. The pull-up 
resistors of Raspberry Pi cannot be controlled from CODESYS. Therefore, 
they needed to be enabled on the microcontroller itself. The following 
lines were added to /boot/config.txt file, as shown in Figure 26. 
 

 

Figure 26. Enabling pull-up resistors on Raspberry Pi. 

The commands in this file are executed when the microcontroller boots 
up. The line above enables pull-up resistors for stated GPIO pins, which 
makes the reading of the button states consistent and reliable. 

3.3.2 Additional IO modules 

Raspberry Pi provides a limited number of GPIO pins, which might not be 
sufficient for connecting external devices. What is more, the maximum 
input voltage for the pins is 3.3 V. Therefore, it was beneficial to extend 
the IO by adding external modules. In this solution, I2C digital and analogue 
modules from Horter were used. They were connected to Raspberry Pi via 
Horter I2C repeater, which  “raises the level of the SCL and SDA pins so that 
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they are recognized clean 5V I2C slaves to 5V” (Kit I2C repeater for 
Raspberry Pi, n.d.).  
 
Digital and analogue input modules were connected in a daisy chain which 
could be extended with more modules if needed. The modules were added 
to the Inspector RPi project as I2C devices. For the controller to identify 
the modules, their I2C ids needed to be found. Figure 27 shows checking 
the IDs of the available I2C device on Raspberry Pi with the i2cdetet tool. 
 

 

Figure 27. i2cdetect tool. 

The values in the Figure 27 were converted from the hexadecimal to 
decimal numeral system and added to the project.  
 
Finally, the input variables for I2C input modules were declared with 
memory addresses provided in the module configuration as shown in 
Figure 28.  
 

 

Figure 28. Declaration of the variables linked to GPIO. 

4 TESTS AND IMPROVEMENTS 

When the Inspector code in the Raspberry could finally be compiled, it was 
important to test it upon connecting to the web client application.  This 
chapter describes how the tests were conducted as well as their results. 
Furthermore, it portrays the issues that were detected during tests and the 
actions that were taken to prevent them. 
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4.1 Connection to  Inspector Web and testing 

Inspector RPi was tested upon the Office instance of Inspector Web 
deployed on InSolution’s server which is normally used for development 
and debugging purposes. 
 
Firstly, to establish the connection between the Raspberry Pi and the 
server, such parameters as the IP address, the host port and the client 
name were set to the CODESYS program. Moreover, the IP and MAC-
addresses of the microcontroller were hardcoded in the program. With 
these parameters, Raspberry PI was able to connect to the server and 
initiate the communication over TCP. 
 
Secondly, a virtual machine called “Raspberry Pi” was created in the 
Inspector Web Client application: the MAC-address and other parameters 
of the microcontroller were entered. Provided that the Web Client 
application knows the MAC-address, it expects a message from a device 
with this address and proceeds with communication with the “machine”. 
 
Lastly, the IO parameters were configured in the Web Client application. 
These configurations were necessary for associating the physical channels 
with the meanings of the input and output signals. Some of the channels 
set as inputs provided the Client application with information about the 
current state of the “machine” whereas other inputs were linked to the 
reason code buttons. The output channels were linked to the LEDs on the 
reason code box, which indicated the state of the “machine”. 
 
The setup described above was tested by sending the physical signals and 
checking their representation in the user interface of the Web Client. 
 
The illustration of different machine states and reason codes sent from the 
Raspberry Pi can be seen in the screenshots below.  Figure 29 shows the 
state view with a state chart and provides availability and utilization 
figures. State durations, comments and reason codes can be found in the 
table in Figure 30. The graph in Figure 31 shows the comparison of 
durations of different machine states.   
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Figure 29. Inspector state view. 

 
 

 

Figure 30. Inspector comments and durations. 
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Figure 31. Inspector state charts. 

 
What is more, analogue input was configured to test the CM data. The 
graph of the input value changing over time is shown in Figure 32. 

 
 

 

Figure 32. Inspector CM data. 

 
Even though the numbers shown in the figures represent test input data 
and do not have any real meaning, they provide good examples of how 
production data can be collected and analysed using Inspector RPi. It was 
important to see that the application was reacting to the test inputs 
correctly and rapidly. 
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4.2 Improving reliability of the data collection 

When collecting data on a real production site, there may be network or 
power failures. Moreover, sometimes the power at a plant is shut down 
when the production is stopped, for example, at night. It is also possible 
that the local network of the production site is slow or has connection 
interruptions. These situations are common for the production sites, 
where the Inspector tool is installed, and they can lead to data loss or 
corruption. The PLC Inspector code can take the potential network and 
power failures into consideration and, therefore, does not lose collected 
data in these situations. It was essential to provide the same reliability of 
the data collection for the Inspector RPi application. 

4.2.1 Data collection in case of network failure 

The logic in the program for Raspberry Pi of TCP/IP communication (see 
3.2.3) states that in case the connection to the server is lost, send/receive 
operations are not performed while the controller is trying to re-establish 
the connection. However, when the connection issue was simulated by 
unplugging the Ethernet cable from the Raspberry Pi with running 
Inspector program, the result was different from expected.  
 
After connecting the Raspberry Pi back, it was found that the CODESYS 
runtime service had been stopped on the microcontroller. The log of the 
service is shown in Figure 33. 

 

  

Figure 33. CODESYS log. 

According to the screenshot above, after the communication timeout, the 
Raspberry Pi tried to close the connection, which caused an exception in 
CommCycleHook. That led to the system being in an inconsistent state and 
shutdown of CODESYS Control service was performed. Search on what 
CommCycleHook is and what could have caused the exception returned no 
results. 
 
It was decided to stay logged into the Raspberry Pi program from the PC 
when the connection to the server is interrupted. By using breakpoints and 
watching online values of the variables it would possible to see what 
happens in the program before the exception.  
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The Raspberry Pi was connected to an Ethernet hub, which provided it with 
two wired connections: one to the office network, and one to the PC. That 
way, when the network cable was pulled out from the hub, the 
microcontroller lost its connection to the network and the server, but still 
could be accessed from the PC. However, with this setup, there was no 
exception when the connection to the server was lost and Raspberry Pi 
was able to reconnect to the server and send the data that was stored in 
the buffer. However, the exception repeated when the ethernet cable was 
disconnected from the Raspberry Pi. Consequently, this result meant that 
the exception only happened when there was not any network connection 
at all. It could be related to the fact that when there is no network 
connection, the microcontroller does not have an IP address, and 
attempting to connect to the server over a non-existing adapter drives the 
CODESYS Control service to an inconsistent state. 
 
Based on that, it was decided to check the network adapters before trying 
to connect to the server. The library that was used for TCP communication, 
SysSocket, has function blocks for checking network adapters called 
SysSockGetFirstAdapterInfo and SysSockGetNextAdapterInfo. They return 
information on the MAC, IP and default gateway addresses of the device 
over its different adapters. 
  
A small function block based on this functionality was created in a separate 
test program and was added to Inspector RPi after it was able to return 
correct network adapter information. The function block was tested both 
with and without network connection. To test how the program works in 
case there is no connection, a simple on-delay was used, so that the 
program was started, then the Ethernet cable was disconnected from the 
Raspberry Pi, and the adapter information check was executed one minute 
later. After connecting back to the microcontroller, it was possible to see 
the data returned by the function block during the offline state. 
 
The adapter returned by the SysSockGetFirstAdapterInfo was always the 
Loopback adapter with IP address 127.0.0.1, independently on whether 
there was network connection or not. The SysSockGetNextAdapterInfo 
returned the correct information about the connection to the office 
network over the Ethernet cable when it existed. The third adapter 
belonged to the Wi-Fi connection. And when the connection to the 
network did not exist, zeros were returned for the IP and default gateway 
addresses. This way the network adapter information could be checked 
before trying to connect to the server without the possibility of causing an 
exception.  
 
Moreover, retrieving the adapter information is benefitting for the 
Inspector application as it allows the Raspberry Pi to continue 
communication with the server even the IP address of the device is 
changed. It is possible because Inspector web-application identifies the 
connected machines by their MAC addresses, and also updates their IP 
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address to the database and GUI, which can be useful for network 
configuration and debugging purposes. 
 
The function block was added to the Inspector code with the name 
“GetAdapterInfo” and has is called in two places. Firstly, in the main 
program during the initialisation of the program for obtaining the MAC 
address of the device. Secondly, in TCP_IP_CONNECTION function block 
before trying to connect to the server to check whether the second 
adapter exists. 
 
At the end of the created function block several conversion operations 
were performed to obtain the MAC, IP and default gateway addresses in 
string format which helped to integrate the function block into the 
Inspector program. The full code of the function block can be found in 
Appendix 5. 
 
After adding the GetAdapterInfo function block to the program, the test 
with unplugging the Ethernet cable from the Raspberry Pi was performed 
again. The microcontroller was able to reconnect to the server successfully 
without losing the data in the buffer, which means that the problem was 
solved.  

4.2.2 Retaining variables in case of power failures 

If the power is disconnected from the Raspberry Pi when there is data in 
the send and receive buffers, the data will be lost unless it is retained. The 
PLC Inspector has the buffer and other important variables declared with 
the keyword RETAIN.  
 
Beckhoff PLCs write retain variables in the Non-Volatile Random Access 
Memory (NOVRAM, can also be referred as NVRAM) area, which is a 
specific memory component for persistent storage of data in a flash ROM 
(Read-Only Memory) but additionally has no write-cycle limitation. A 
capacitor, integrated into the NOVRAM chip, supplies the energy for 
copying recent data from the also internally integrated RAM to the ROM 
section during external power-loss situations. The application itself (in this 
case TwinCAT) writes only to the RAM section of the IC, cyclically. Storing 
variables in the NOVRAM memory allows their values to be retained in 
case of uncontrolled termination, application reset cold and program 
download. (Remanent Variables - PERSISTENT, RETAIN, n.d.), (Generic 
NOV-RAM, n.d.). 
 
Raspberry Pi does not provide a NOVRAM memory area or UPS, which 
means that the data might be lost in case of a power failure, even if it is 
declared as retain or persistent. When performing Inspector tests, both 
retain and persistent data was saved by the microcontroller, only when it 
was shut down via the command line, and it had enough time to save the 
values. (Remanent Variables - RETAIN, PERSISTENT, n.d.). 
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Therefore, a Raspberry Pi would require additional hardware or an 
uninterruptible power supply (UPS) to save the values of the variables 
declared as PERSISTENT or RETAIN in case of power failure. 
 
However, CODESYS provides two more mechanisms for data persistence 
besides Declaration of VAR Persistent: Persistence Manager of the 
Application Composer and Recipes. Both of these mechanisms do not 
require UPS or NOVRAM and therefore could be used to retain data on 
Raspberry Pi. It was decided to use the Persistence Manager, as its usage 
appeared simpler and more comprehensive then Recipes’. (Data 
Persistence, n.d.) 

 
The Persistence manager requires the Application Composer which is a 
development tool for applications that use recurring function blocks. 
Application Composer was downloaded from CODESYS Store and a free 
licence for it was obtained. 
 
In the Modules tab, a new Persistence Manager was created with a 
Persistence Channel linked to it, as shown in Figure 34. 
 

  

Figure 34. Persistence manager in Inspector RPi project 

Variables that needed to have their values retained in case of power failure 
were added to the persistence channel by adding the following attribute 
to their declaration: 
 

{attribute= ‘ac_persist‘ :=‘PersistenceChannel‘} 
 
The channel was configured to save data every time changes are made to 
the variables and read their values during initialisation of the application. 
 
When the new implementation of the data persistence was tested in the 
Inspector tool, the retain data was not lost even when the power cable was 
disconnected from the microcontroller. That proves that the Persistence 
Manager is an effective solution for making Inspector RPi more reliable. 
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4.3 Prevention of cycle time increase in case of connection problems  

After the issue of CODESYS Runtime Service shutting down on losing 
network connection (see 4.2.1) was fixed, another problem was detected. 
When the connection to the server was lost and the Raspberry was making 
attempts to reconnect, the cycle time of the program increased 
dramatically: from around 0.5ms up to 6s.  It was caused by the fact that 
the function block tries to establish the connection for a few seconds 
before it returns timeout error, and TCP communication was performed in 
the same task with the rest of the program. Thus, the TCP connection 
function block was slowing down the whole program cycle. What is more, 
it could be seen that the LEDs that normally were blinking fast to indicate 
that the Raspberry Pi is trying to connect to the server, were blinking much 
slower due to the delay in the task. 
 
To eliminate this problem, it was decided to put TCP/IP communication to 
a separate task. A new task was created for communication where the 
CONNECT, SEND and RECEIVE function blocks were called continuously 
after the initialization of the program. Thus, even if the execution of the 
communication function blocks was slow, it did not affect the rest of the 
program, including managing of the LED outputs, and the program 
execution proceeded at normal speed. 

5 CONCLUSION 

The main goal of the thesis project was achieved successfully: Inspector 
PLC code was transferred to the CODESYS environment and executed on a 
Raspberry Pi microcontroller. With the adjustments, described in chapters 
3 and 4, the new Raspberry Pi application was able to meet the 
requirements for the Inspector PLC application. Therefore, Raspberry Pi 
can become a replacement for a PLC in the Inspector tool. 
 
The implementation of a PLC code on a Raspberry Pi in the CODESYS 
environment consisted of three main parts: firstly, software installations 
and preparations on the computer and Raspberry Pi, secondly, adjusting 
the program and its references to be compilable for CODESYS, and lastly, 
resolving the issues related to the hardware and improving the reliability 
of the application. 
 
Due to a lack of documentation and research on the topic, finding suitable 
libraries and functionality was only possible by searching through CODESYS 
official documentation and experimentation with different approaches. 
Multiple tests and examinations were necessary to find the best solutions 
and to discover potential bugs and issues. The problems that were found 
during the tests required, in some cases, considerable adjustments to the 
program. 
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However, it was proved that a Raspberry Pi microcontroller with the 
CODESYS Control module can be used as a replacement for an industrial 
PLC. Whereas it is still not recommended to use Raspberry Pi for industrial 
solutions that require high precision or which control heavy machinery, the 
microcontroller can be a sufficient replacement for a PLC with smaller 
applications such as data collection, monitoring, testing, etc. as it proved 
to be for the Inspector tool. 
 
Using a Raspberry Pi instead of an industrial-grade Beckhoff PLC will allow 
the case company, InSolution Oy, to significantly reduce the price of 
production of the Inspector tool without any losses in the reliability and 
the functionality of the end product. Unlike Beckhoff PLCs, Raspberry Pi 
does not have strict limitations to the code size, which allows the 
application functionality to be extended freely. The Inspector RPi 
application is more flexible in comparison to the Beckhoff PLC application 
since it does not depend on the controller model.  Therefore, using 
Raspberry Pi as a controller would prevent issues that are faced when using 
Beckhoff PLCs. 
 
As a result of the project success, InSolution Oy is planning to prepare 
Inspector Boxes with Raspberry Pi to be released for real-life customer 
applications. It is planned to make the first batch of 10 pieces and to 
conduct stress-tests to ensure the durability of the new product. The 
application can also be modified and improved over time by the author of 
the thesis or the other employees of the company, depending on future 
customer needs. 
 
What is more, the CODESYS version of the Inspector PLC application, with 
necessary modifications, can be used on controllers from different 
manufacturers, other than Beckhoff, as CODESYS is a hardware-
independent programming environment. 
 
Finally, the knowledge gathered during the research and implementation 
of the thesis project can be useful for creating other automation projects 
with Raspberry Pi. As the thesis project has demonstrated, for some 
applications a Raspberry Pi can be a very cost-efficient alternative for an 
industrial-grade PLC, providing equivalent functionality and computing 
power.   
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Appendix 1 

GET DATE AND TIME FUNCTION BLOCK 
 

 
  

POU: GetDT 

 
 

1 FUNCTION_BLOCK GetDT 

2 VAR_OUTPUT 

3 res : DT ; 

4 END_VAR 

5 VAR 

6 fbGetDateTime : DTU . GetDateAndTime ; 

7 fbTimezone : DTU . SetTimeZoneInformation ; 

8 periode : RTCLK . PERIODE ; 

9 clk : BOOL := FALSE ; 

10 clk2 : BOOL ; 

11  tzInfo : RTCLK . RTCLK_TIME_ZONE_INFO := DTU . GlobalConstants.        

gc_tziTimeZoneCET ; 

12 END_VAR 

13 

 

1 IF NOT fbGetDateTime . xDone AND fbTimezone . xDone THEN 

2 (*trigger for fbGetDateTime*) 

3 clk := TRUE ; 

4 ELSE 

5 (* return result, add one hour during daylight period*) 

6 IF periode = RTCLK . PERIODE . DAYLIGHT THEN 

7 res := fbGetDateTime . dtDateAndTime + T#1H ; 

8 ELSE 

9 res := fbGetDateTime . dtDateAndTime ; 

10 END_IF 

11 clk := FALSE ; 

12 END_IF 

13 

14 (*get current time vaue time*) 

15 fbGetDateTime ( 

16 xExecute := clk , 

17 xDone => , 

18 xBusy => , 

19 xError => , 

20 eError => , 

21 dtDateAndTime => , 

22 ePeriode => periode ) ; 

23 

24 (*set timezone info*) 

25 fbTimezone ( xExecute := clk2 , tziInfo := tzInfo ) ; 

26 IF NOT fbTimezone . xDone THEN 

27 tzInfo . iBias := TimezoneBias * 60 ; 

28 clk2 := TRUE ; 

29 END_IF 

30 
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Appendix 2/1 
TCP/IP CONNECT FUNCTION BLOCK 
 

 
  

POU: TCP_IP_SOCKET_CONNECTION 

insp15.project 

5.12.2019 10:31 
Page 1 of 2 

 

 

 

 

1 FUNCTION_BLOCK TCP_IP_SOCKET_CONNECTION 

2 VAR_IN_OUT 

3 Flags : TCP_IP_Flags ; 

4 END_VAR 

5 VAR 

6 //SOCKET_CONNECT: FB_SocketConnect; 

7 //SOCKET_CLOSE: FB_SocketClose; 

8 GetAdapterInfo : GetAdapterInfo ; 

9 Step : INT := - 1 ; 

10 NextStep : INT ; 

11 PrevStep : INT ; 

12 StepChg : BOOL ; 

13 ErrorID : STRING ( 32 ) ; 

14 oldErrorID : STRING ( 32 ) ; 

15 closeCounter : WORD ; 

16 END_VAR 

17 

 

1 CASE Step OF 

2 0 : (* Waiting for connect command *) 

3 IF StepChg THEN 

4 Flags . Connected := FALSE ; 

5 IF PrevStep = 11 THEN 

6 Flags . ConnectStatus := 'Waiting for connect command, timeout' ; 

7 ELSE 

8 Flags . ConnectStatus := 'Waiting for connect command' ; 

9 END_IF 

10 END_IF 

11 (*Initialize connection*) 

12 //check if adapter exists 

13 GetAdapterInfo ( ) ; 

14 //proceed with connection only if adapter exists 

15 //if trying to connect when Pi is not connected to the network, 

16 //it will throw an exception an shut down codesys runtime 

17 IF GetAdapterInfo . connected THEN 

18 flags . iSocketHandle := SysSockCreate ( 

19 iAddressFamily := SOCKET_AF_INET , 

20 diType := SOCKET_STREAM , 

21 diProtocol := SOCKET_IPPROTO_IP , 

22 pResult := ADR ( flags . SocketHandleError ) ) ; 

23 flags . rIP REF= flags . IPAddress ; 

24 SysSockInetAddr ( 

25 szIPAddress := flags . rIP , 

26 pInAddr := ADR ( flags . inaddr ) ) ; 

27 flags . stSockAddress . sin_addr := flags . inaddr ; 

28 flags . stSockAddress . sin_family := SOCKET_AF_INET ; 

29 flags . stSockAddress . sin_port := 

30 SysSockHtons ( usHost := flags . Port ) ; 

31 NextStep := 10 ; 

32 END_IF 

33 

34 10 : (* Connect to TCP/IP socket *) 

35 IF StepChg THEN 

36 Flags . Connecting := TRUE ; 

37 Flags . ConnectStatus := 'Connecting' ; 

38 END_IF 



47 
 

 
 

Appendix 2/2 
TCP/IP CONNECT FUNCTION BLOCK 

 
  

 

34 (*connect*) 

35 flags . ConnectionStatus := SysSockConnect ( 

36 hSocket := flags . iSocketHandle , 

37 pSockAddr := ADR ( flags . stSockAddress ) , 

38 diSockAddrSize := SIZEOF ( flags . stSockAddress ) ) ; 

44 

45 

46 IF flags . ConnectionStatus = CmpErrors . Errors . ERR_PENDING 

47 OR flags . ConnectionStatus = CmpErrors . Errors . ERR_SOCK_TIMEDOUT 

48 OR flags . ConnectionStatus = CmpErrors . Errors . ERR_TIMEOUT THEN 

49 NextStep := 0 ; 

50 (*Error state, log error**) 

51 ELSIF flags . ConnectionStatus <> 0 THEN 

52 ErrorID := UDINT_TO_STRING ( flags . ConnectionStatus ) ; 

53 NextStep := 999 ; 

54 (* No Error *) 

55 ELSE 

56 NextStep := 11 ; 

57 ErrorID := '' ; 

58 END_IF 

59 IF Step <> NextStep THEN 

60 Flags . Connecting := FALSE ; 

61 END_IF 

62 

63 11 : (* Connected*) 

64 IF StepChg THEN 

65 Flags . Connected := TRUE ; 

66 Flags . ConnectStatus := CONCAT ( CONCAT ( CONCAT ( 

67 'Connected to: ' , Flags . IPAddress ) , ':' ) , 

68 WORD_TO_STRING ( Flags . Port ) ) ; 

69 END_IF 

70 IF NOT flags . Connected THEN 

71 nextStep := 0 ; 

72 END_IF 

73 

74 999 : (* Error *) 

75 Flags . ErrorCounter := Flags . ErrorCounter + 1 ; 

76 Flags . LastError := CONCAT ( CONCAT ( CONCAT ( 

77 'Connect error with ID: ' , ErrorID ) , ', last status: ' ) , 

78 Flags . ConnectStatus ) ; 

79 Flags . ConnectStatus := CONCAT ( CONCAT ( CONCAT ( 

80 'Error with ID: ' , ErrorID ) , ', last status: ' ) , 

81 Flags . ConnectStatus ) ; 

82 NextStep := 0 ; 

83 END_CASE 

84 

85 (*Changing steps*) 

86 StepChg := Step <> NextStep ; 

87 IF StepChg THEN 

88 PrevStep := Step ; 

89 Step := NextStep ; 

90 END_IF 

91 IF Flags . Reset THEN 

92 Step := 0 ; 

93 END_IF 

94 
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TCP/IP SEND FUNCTION BLOCK 
 

 
  

POU: TCP_IP_SOCKET_SEND 

insp15.project 

5.12.2019 12:56 
Page 1 of 2 

 

 

 

 

1 FUNCTION_BLOCK TCP_IP_SOCKET_SEND 

2 VAR_IN_OUT 

3 Flags : TCP_IP_Flags ; 

4 httpcom : HttpComm ; 

5 END_VAR 

6 VAR CONSTANT 

7 MaxSendBufferBytes : WORD := 20480 ; 

8 END_VAR 

9 VAR 

10 Step : INT := - 1 ; 

11 NextStep : INT ; 

12 PrevStep : INT ; 

13 StepChg : BOOL ; 

14 ErrorID : STRING ; 

15 

16 SendBuffer : ARRAY [ 1 .. MaxSendBufferBytes ] OF BYTE ; 

17 BufferLen : WORD ; 

18 END_VAR 

19 

 

 

1 CASE Step OF 

2 

3 0 : (* Idle *) 

4 IF StepChg THEN 

5 Flags . Sending := FALSE ; 

6 Flags . SendStatus := 'Waiting for send command' ; 

7 ErrorID := '' ; 

8 END_IF 

9 IF Flags . Send AND 

10 NOT Flags . SendReceiveInProgress AND 

11 flags . Connected THEN 

12 NextStep := 11 ; 

13 Flags . SendReceiveInProgress := TRUE ; 

14 END_IF 

15 

16 11 : (* Send data *) 

17 IF StepChg THEN 

18 Flags . Sending := TRUE ; 

19 Flags . SendStatus := 'Sending data' ; 

20 END_IF 

21 BufferLen := HTTP_DataToByteBuffer ( SIZEOF ( SendBuffer ) , 

22 ADR ( SendBuffer ) , httpcom . DataToSend ) ; 

23 (*Send command*) 

24 flags . BytesSent := SysSockSend ( 

25 hSocket := flags . iSocketHandle , 

26 pbyBuffer := ADR ( SendBuffer ) , 

27 diBufferSize := BufferLen , 

28 diFlags := SOCKET_MSG_NONE , 

29 pResult := ADR ( flags . DataSendError ) ) ; 

30 (*error or timeout*) 

31 IF flags . DataSendError <> 0 THEN 

32 ErrorID := UDINT_TO_STRING ( flags . DataSendError ) ; 

33 NextStep := 999 ; 

34 (*message sent*) 

35 ELSIF flags . BytesSent <> 0 THEN 
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TCP/IP SEND FUNCTION BLOCK 

 
  

 

16 Flags . DataSendCounter := Flags . DataSendCounter + 1 ; 

17 flags . SendReceiveInProgress := FALSE ; 

18 Flags . Send := FALSE ; 

19 Flags . Sending := FALSE ; 

20 NextStep := 0 ; 

21 END_IF 

42 

43 999 : (* Error *) 

44 flags . Sending := FALSE ; 

45 flags . SendReceiveInProgress := FALSE ; 

46 Flags . ErrorCounter := Flags . ErrorCounter + 1 ; 

47 Flags . LastError := CONCAT ( CONCAT ( CONCAT ( 

48  'Send error with ID: ' , ErrorID ) , ', last status: ' ) , Flags . 

SendStatus ) ; 

49 Flags . SendStatus := CONCAT ( CONCAT ( CONCAT ( 

50  'Error with ID: ' , ErrorID ) , ', last status: ' ) , Flags . 

SendStatus ) ; 

51 flags . Connected := FALSE ; 

52 NextStep := 0 ; 

53 END_CASE 

54 

55 (*Step change*) 

56 StepChg := Step <> NextStep ; 

57 IF StepChg THEN 

58 PrevStep := Step ; 

59 Step := NextStep ; 

60 END_IF 

61 
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Appendix 4/1 
TCP/IP RECEIVE FUNCTION BLOCK 
 

 
 
 
  

POU: TCP_IP_SOCKET_RECEIVE_FROM_HOST 

TwinCAT Project2.project 

06.12.2019 1:34 
Page 1 of 3 

 

 

 

 

1 FUNCTION_BLOCK TCP_IP_SOCKET_RECEIVE_FROM_HOST 

2 VAR_IN_OUT 

3 Flags : TCP_IP_Flags ; 

4 httpcom : HttpComm ; 

5 END_VAR 

6 VAR CONSTANT 

7 TotalBufferSize : DWORD := 81920 ; 

8 MaxReceiveBufferBytes : WORD := 20480 ; 

9 StepMaxTime : TIME := TIME#2m0s0ms ; 

10 END_VAR 

11 VAR 

12 Step : INT := 0 ; 

13 NextStep : INT ; 

14 StepChg : BOOL ; 

15 ErrorID : STRING ; 

16 TotalBuffer : ARRAY [ 1 .. TotalBufferSize ] OF BYTE ; 

17 TotalBufferString : ARRAY [ 1 .. 100 ] OF STRING ( 255 ) ; 

18 ReceiveBuffer : ARRAY [ 1 .. MaxReceiveBufferBytes ] OF BYTE ; 

19 ReceivedBytes : DWORD ; 

20 recieve : BOOL := FALSE ; 

21 TotalReceivedBytes : DWORD := 0 ; 

22 ReceiveTimes : WORD ; 

23 iREcTime : INT ; 

24 irec : DWORD ; 

25 END_VAR 

26 
 

 

1 CASE Step OF 

2 0 : (* Idle *) 

3 IF StepChg THEN 

4 Flags . SendReceiveInProgress := FALSE ; 

5 Flags . ReceiveStatus := 'Idle' ; 

6 ErrorID := '' ; 

7 END_IF 

8 IF Flags . Connected AND NOT flags . SendReceiveInProgress 

9 AND flags . BytesSent <> 0 THEN 

10 (* New receive, reset *) 

11 MEMUtils . MemSet ( ADR ( httpcom . DataReceived ) 

12 , 0 , SIZEOF ( httpcom . DataReceived ) ) ; 

13 MEMUtils . MemSet ( ADR ( TotalBuffer ) , 

14 0 , TotalBufferSize ) ; 

15 MEMUtils . MemSet ( ADR ( TotalBufferString ) , 

16 0 , SIZEOF ( TotalBufferString ) ) ; 

17 ReceiveTimes := 0 ; 

18 TotalReceivedBytes := 0 ; 

19 NextStep := 11 ; 

20 flags . BytesSent := 0 ; 

21 recieve := TRUE ; 

22 flags . SendReceiveInProgress := TRUE ; 

23 END_IF 

24 11 : (* Trying to receive data from host *) 

25 IF StepChg THEN 

26 MEMUtils . MemSet ( ADR ( ReceiveBuffer ) , 0 , MaxReceiveBufferBytes ) ; 

27 Flags . ReceiveStatus := 'Trying to receive data from host' ; 

28 END_IF 

29 flags . Receiving := TRUE ; 
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TCP/IP RECEIVE FUNCTION BLOCK 
 

 

  

3 ReceivedBytes := SysSockRecv ( 

4 hSocket := flags . iSocketHandle , 

5 pbyBuffer := ADR ( ReceiveBuffer ) , 

6 diBufferSize := MaxReceiveBufferBytes , 

7 diFlags := SOCKET_MSG_DONTWAIT , 

8 pResult := ADR ( flags . DataRecieveError ) ) ; 

9 (*Error State*) 

10 IF flags . DataRecieveError <> 0 AND flags . DataRecieveError <> 518 THEN 

11 ErrorID := UDINT_TO_STRING ( flags . DataRecieveError ) ; 

12 NextStep := 999 ; 

13 (*Timeout, go to error state*) 

14 ELSE 

15 (*recieved a message*) 

16 IF ReceivedBytes > 0 THEN 

17 flags . SendReceiveInProgress := FALSE ; 

18 flags . Receiving := false ; 

19 IF TotalReceivedBytes < TotalBufferSize THEN 

20 MEMUtils . MemCpy ( ADR ( TotalBuffer ) + 

21 TotalReceivedBytes , 

22 ADR ( ReceiveBuffer ) , ReceivedBytes + 

23 MIN ( TotalBufferSize - TotalReceivedBytes - 

24 ReceivedBytes , 0 ) ) ; 

25 MEMUtils . MemCpy ( ADR ( TotalBufferString ) + 

26 TotalReceivedBytes , 

27 ADR ( ReceiveBuffer ) , ReceivedBytes + 

28 MIN ( TotalBufferSize - TotalReceivedBytes - 

29 ReceivedBytes , 0 ) ) ; 

30 TotalReceivedBytes := MIN ( TotalReceivedBytes + 

31 ReceivedBytes , 

32 TotalBufferSize ) ; 

33 ParseByteBufferToHTTP_Data ( TotalReceivedBytes , 

34 ADR ( TotalBuffer ) , httpcom . DataReceived ) ; 

35 Flags . DataReceiveCounter := Flags . DataReceiveCounter + 1 ; 

36 ReceiveTimes := ReceiveTimes + 1 ; 

37 NextStep := 0 ; 

38 ELSE (*buffer overflow error*) 

39 ErrorID := 'overflow' ; 

40 NextStep := 999 ; 

41 END_IF 

42 END_IF 

43 END_IF 

71 

72 999 : (* Error *) 

73 IF StepChg THEN 

74 Flags . Receiving := FALSE ; 

75 Flags . Reset := TRUE ; 

76 Flags . ErrorCounter := Flags . ErrorCounter + 1 ; 

77 Flags . LastError := CONCAT ( CONCAT ( CONCAT ( 

78 'Receive error with ID: ' , ErrorID ) , ', last status: ' ) , 

79 Flags . ReceiveStatus ) ; 

80 Flags . ReceiveStatus := CONCAT ( CONCAT ( CONCAT ( 

81 'Error with ID: ' , ErrorID ) , ', last status: ' ) , 

82 Flags . ReceiveStatus ) ; 

83 END_IF 

84 flags . Connected := FALSE ; 

85 NextStep := 0 ; 
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73 END_CASE 

87 

88 (*Step cange*) 

89 StepChg := Step <> NextStep ; 

90 IF StepChg THEN 

91 Step := NextStep ; 

92 END_IF 

93 
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1 FUNCTION_BLOCK GetAdapterInfo 

2 VAR_INPUT 

3 END_VAR 

4 VAR_OUTPUT 

5 connected : BOOL := FALSE ; 

6 END_VAR 

7 VAR 

8 FirstAdapterHandle : UDINT ; 

9 SecondAdapterHandle : udint ; 

10 size : UXINT ; 

11 mac : STRING ; 

12 i : BYTE ; 

13 END_VAR 

14 

 

1 //getting first adapter, returnd loopback 

2 size := SIZEOF ( AdapterInfo ) ; 

3 FirstAdapterHandle := SysSockGetFirstAdapterInfo ( 

4 pAdapterInfo := ADR ( AdapterInfo ) , 

5 puxiAdapterInfoSize := ADR ( size ) , 

6 pResult := ADR ( udiAdapterInfoError ) ) ; 

7 

8 //getting the second adapter, returns cable network connection 

9 size := SIZEOF ( AdapterInfo ) ; 

10 SecondAdapterHandle := SysSockGetNextAdapterInfo ( 

11 hPrevAdapter := FirstAdapterHandle , 

12 pAdapterInfo := ADR ( AdapterInfo ) , 

13 puxiAdapterInfoSize := ADR ( size ) , 

14 pResult := ADR ( udiAdapterInfoError ) ) ; 

15 

16 // if cable connection not found, check WiFi connection 

17 IF AdapterInfo . IpAddr . ulAddr = 0 THEN 

18 SysSockGetNextAdapterInfo ( hPrevAdapter := SecondAdapterHandle , 

19 pAdapterInfo := ADR ( AdapterInfo ) , 

20 puxiAdapterInfoSize := ADR ( size ) , 

21 pResult := ADR ( udiAdapterInfoError ) ) ; 

22 END_IF 

23 

24 //convert IP address to string 

25 sIPaddr := IoDrvEthernet . UDINT_TO_IPSTRING ( 

26 udiIPAddress := MEM . ReverseBYTEsInDWORD ( 

27 dwInput := AdapterInfo . IpAddr . ulAddr ) ) ; 

28 

29 //convert default gateway to string 

30 sDefaultGateway := IoDrvEthernet . UDINT_TO_IPSTRING ( 

31 udiIPAddress := MEM . ReverseBYTEsInDWORD ( 

32 dwInput := AdapterInfo . DefaultGateway . ulAddr ) ) ; 

33 

34 //conver MAC address to string 

35 mac := BYTE_TO_hexSTRING ( ADApterInfo . abyMac [ 0 ] ) ; 

36 FOR i := 1 TO 5 DO 

37 mac := concat ( 

38 concat ( mac , '-' ) , 

39 BYTE_TO_hexSTRING ( AdapterInfo . abyMac [ i ] ) ) ; 

40 END_FOR 

41 
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34 FOR i := 1 TO 5 DO 

35 mac := concat ( 

36 concat ( mac , '-' ) , 

37 BYTE_TO_hexSTRING ( AdapterInfo . abyMac [ i ] ) ) ; 

38 END_FOR 

41 

42 DeviceID := mac ; 

43 //true only if there is a valid network connection 

44 connected := AdapterInfo . IpAddr . ulAddr <> 0 ; 

45 


