"T’) Tampere University of Applied Sciences

Development of Robust SDKs
for REST APIs in PHP

How to Effectively Develop, Maintain and Release
REST API SDKs

Yaroslav Shestakov

BACHELOR’S THESIS
January 2020

Business Information Systems
Software Production

TIVISTELMA

Tampereen ammattikorkeakoulu
Tietojenkasittely
Ohjelmistotuotanto

SHESTAKOV, YAROSLAV:
Development of robust SDKs for REST APIs in PHP
How to effectively develop, maintain and release REST API SDKs

Opinnaytety6 40 sivua
Tammikuu 2020

Nykyaikaisessa talouselamassa ohjelmointirajapintojen (API) suosio on noussut
sen ansiosta, ettd ne mahdollistavat digitaalisen ja automatisoidun
vuorovaikutuksen organisaatioiden valilla. Usein, kun jarjestelma integroidaan
APIn kanssa, kehitetddn kaksi osaa: SDK (Software Development Kit) ja
yhdistdvd koodi. SDK on ohjelmistokehitystyOkalujen kokoelma, jonka
tavoitteena on yksinkertaistaa kehittajan tyotd APIn kanssa ja tehda siita
intuitiivisempaa.

Tama opinnaytetyd tutki, mallinsi ja dokumentoi toimintavarman SDK:n
kehitysprosessia PHP-ohjelmointikielella seka osoitti, mita positiivisia vaikutuksia
hyvin suunnitellulla ja dokumentoidulla SDK:lla on integraation laatuun,
kehitysnopeuteen ja kehittajakokemukseen.

Tutkimus toteutettiin kehittajan nakokulmasta havainnoituna
ohjelmistoprojektina, jossa kehitettin Tampere Journey Planner APla kattava
SDK. Tutkimuksen teoreettisessa osassa paneuduttin API-konseptiin,
kaytettyihin teknologioihin ja mallinnettin SDK:n rakennetta. Kaytannon
osuudessa kuvattiin SDK:n kehitysta, dokumentointia, testausta, pakkaamista ja
julkaisemista Composer-paketinhallintatydkalun avulla seka selvitettiin, kuinka
SDK:ta on kaytetty uudessa projektissa.

Tulokset osoittavat, etta teknisten yksityiskohtien sisallyttdminen SDK:hon seka
intuitiivisten abstraktioiden ja funktioiden tarjoaminen yksinkertaistavat
integraatioiden kehitysprosesseja ja tekevat niista siksi nopeampia. Koodin
dokumentoinnin ansiosta automaattinen taydennys koodieditorissa on
mahdollista, mika puolestaan auttaa kehittamaan integraatiota ja vahentaa
virheiden maaraa. Ohjelmistopakettina julkaiseminen ja versiohallinta
mahdollistavat ohjelmiston tehokkaan uudelleenkayttamisen ja yllapitamisen
tiimien ja projektien valilla. Lisaksi liketoiminnan nakékulmasta laadukas SDK voi
tehostaa APIl-palvelun omaksumista markkinoille ja olla tarkea menestyvan
liketoiminnan osatekija.

Avainsanat: php, api, sdk, rest, integraatio

ABSTRACT

Tampere University of Applied Sciences
Business Information Systems
Software Production

SHESTAKOV, YAROSLAV:
Development of Robust SDKs for REST APIs in PHP
How to Effectively Develop, Maintain and Release REST API SDKs

Bachelor's thesis 40 pages
January 2020

In modern economy, APls (Application Programming Interface) have gained pop-
ularity due to the fact that they enable digital automation of cross-organizational
interactions. In order to integrate a system with an APIl, commonly two parts are
required: an SDK (Software Development Kit) and a glue code. SDK is a set of
software tools aiming to simplify a developer’s work with an APl and making the
work more intuitive.

This thesis researches, wireframes and documents the process of robust SDK
creation in PHP programming language, and demonstrates what positive impact
a well-designed, documented SDK could have on the integration quality, speed
and developer experience.

The research was carried out as a software project, where an SDK was devel-
oped for Tampere Journey Planner APl and then analyzed through observation
from an end-developer’s perspective. The theoretical aspect covered the API
concept, the technologies used and multiple SDK design approaches. The prac-
tical aspect covered programming, documenting, testing and packaging of an
SDK, releasing it as a Composer dependency and using the package in a new
project.

The results suggest that encapsulating technicalities of the APl and providing in-
tuitive abstractions and methods, significantly simplifies the process of integration
development and therefore makes development faster. Code documentation en-
ables autocompletion in code editors, which in turn helps with the integration de-
velopment and reduces the number of errors. Releasing an SDK as a package
and versioning it allows for better re-use and maintenance across teams and pro-
jects. Furthermore, from a business perspective a high-quality SDK can boost
market adoption for an API service, potentially making it one of the key tools of a
successful business.

Key words: php, api, sdk, rest, integration

CONTENTS

7

INTRODUCTION ... 6
1.1 Rising popularity of APIS ... 6
1.2 SDKSs help to tap into APl potentialccoooeiiiiiiiiiii, 9
AT S L 10
THEORY BEHIND APL.....oeiiiii e 11
3.1 Definition Of APeeiiiiiiii e 11
3.2 Characteristics Of APL...........uuuuiiiiiiiiiiiiiiiieee 11
3.2 API ProtocCol: SOAP ... 12
3.3 API protocol: REST ... 13
3.4 API protocol: GraphQL............uueeeeuimiiiiiiiiiiiiiiiiiieneenees 14
DEVELOPMENT TOOLS FOR SDK CREATIONccoovvvviiiiiiieieeeee 15
4.1 Choosing the right development environment................ccccooeeee. 15
4.2 Composer - PHP package managerc.cccuvvvieeeeeeeeeeeeiiiinn. 17
4.3 IDE to make programming interactiveccccoeeeii . 18
4.4 Version CONTIOLccooeiiiiiiiiee e 18
REST API SDK DESIGN APPROACHES..........ooiviiiiiiiiiiiiieeeeeeeeeee 20
5.1 Simple straightforward integration using HTTP Client.................. 20
5.2 Minimalistic SDK with type-hinted response data........................ 21
5.3 Advanced REST API SDK architecture...........cccccccvvuvmennnnnnnnnnnnnns 22
DEVELOPING SDK FOR TAMPERE JOURNEYS APIccccvvvee.... 25
6.1 Setting up a package development projectccccceeeeiiiieiinnnn, 25
6.2 Setting up Git for version control.............cccoooeeiiiiiiiiiii, 28
6.3 Writing SOUICE COUEuuuuiiiiiiiiiiiiiiiii e 29
6.4 Writing automated tests with PHPUnNItoooiiiiii, 30
6.5 Preparing the package forreleaseccccooeeeiiiiiiiiiiiciiiiieeeee, 33
6.6 Submitting the package to Packagist.org............cccccceuiiiiiininnnnnne 35
6.7 Using the package in a new projectccoveiiiiiiiiiiieviiiien e, 36
6.8 Future development and maintenance..........cc.cc.coooiiiiiiiiiiniene, 36
DISCUSSION ...ttt 38

REFERENCES ...t 39

ABBREVIATIONS AND TERMS

API

CLI
Composer
Docker
DTO
FTP
GUI
HTTP
IDE
JMS
JSON
Laravel
PHP
SDK
SemVer
SMTP
TDD

ul

XML

Application Programming Interface

Command Line Interface (shell or terminal)
Package manager for PHP

Virtualization tool, enables containerized software
Data Transfer Object

File Transfer Protocol

Graphical User Interface

HyperText Transfer Protocol

Integrated Development Environment

Java Message Service (API protocol)
JavaScript Object Notation

Web framework for PHP

Hypertext Preprocessor, Programming language
Software Development Kit

Semantic Versioning convention

Simple Mail Transfer Protocol

Test Driven Development

User Interface

Extensible Markup Language

1 INTRODUCTION

1.1 Rising popularity of APIs

The term API (Application Programming Interface) has gained much of popularity
in the world of technology and business in the past decade and it happened for a
reason. As of 2019, there were more than 4,5 billion Internet users, which
amounted approximately to 58% of the global population (Internet World Stats
2019). Such a large number of digitally connected people has led to an emer-
gence of a network, where participants can conveniently transact with each other

on a global scale, and the potential of such a network is enormous.

What participants of the network needed was to find a way to communicate with
each other utilizing the digitalization efficiently. Email services were extensively
used as a means of exchanging information, and while it is still an important tech-
nology, it usually requires human interaction on both sides for sending and re-
ceiving information. For large scale businesses, this was still inefficient, because
much manual work needed to be done. To facilitate a seamless communication

and to automate processes, web APIs came into being.

Essentially, a web API represents a digital socket for information exchange virtu-
ally accessible to anyone with an Internet connection. An API can also represent

a set of digital contracts, solidifying specific interactions between parties.

For instance, a shipping service provider would expose an API that accepts in-
formation about shipment and returns a PDF packing slip back to the customer.
An E-commerce platform would expose APIs for order and product management.
loT devices expose APIs to exchange sensor data. The benefit of it is that the
service becomes easily accessible, while at the same eliminating communication

overhead as no human labor is required.

APls are mostly used in data transfer and do not dictate what kind of user inter-
face is used as compared to monolithic systems with built-in user interface. This
approach gives flexibility to developers to design graphic user interfaces specifi-

cally optimized for certain business workflows.

7

Organizations started to see the value in this concept and to develop their own
APls. A research was conducted showing that the number of public APIs has
increased from none to 22000 over the years 2005-2019 (figure 1). Given that
there are many more private and unregistered APls, the pattern is clear — the API

space is flourishing. (Programmable Web 2019.)

GROWTH IN WEB APIS SINCE 2005

22000 _
20000 — Q ProgrammableWeb
18000
16000
14000
12000
10000
8000
6000
4000
2000

TOTAL API COUNT

0 JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY JANUARY
2006 2008 2010 2012 2014 2016 2018
MONTH

The growth over time of the ProgrammableWeb API directory to more than 22,000 entries

FIGURE 1. Rapid growth of public APIs since 2005 (Programmable Web 2019)

Another important aspect of APIs is enabling the possibility to create long and
sophisticated value chains. Value chain is a set of activities or processes needed
to be done in order to deliver a service or product. An application can consume

multiple APIs in order to aggregate multiple services into one longer value chain.

Modern web shops are an example of such a value chain - they are typically
integrated to payment and shipment services. It is convenient for customers, be-
cause the whole purchase process can be completed in one place. It is also con-
venient for merchants, because they can utilize ready-made solutions and focus
on what is important for them. With some creativity, those services can be ex-
tended. The merchant could add an analytics service, make purchase orders di-
rectly from their web shop, or publish their products on an external platform such
as Amazon. The business flow can be augmented with additional full-spectrum

services, enabled by the API concept.

8

These value chains can be long linear chains (figure 2) or sophisticated networks.
Some of the value chains serve a function of combining multiple services to cre-
ate a single streamlined business flow, while others aggregate similar-purpose
services under one API. Unifaun is an example of such an aggregator, uniting
services of over 200 carriers under a single API (Unifaun). The benefit of such
services is that only one API needs to be integrated to a system instead of many,

in order to get access to a large variety of services.

Digital Value Chain
P m— e —— — — —
USes
Digital API
Asset
Value Chain
Organization APl Owner

FIGURE 2. Scheme of a digital value chain (Paloviita S. 2018 on Medium.com)

The impact of APIs on business life has become so apparent that nowadays
building an API is viewed as a strategic move to operate on the market. Such a
move needs to be carefully planned, designed and implemented. (Woods, Brail,
Jacobson 2011, ch. 2.)

Terms “API Economy” and “AP1 Management” refer to the process of crafting and

maintaining an API of an organization (figure 3).

Business Assets Web APIs Developers Apps End Users
Exposable Provide access to Use APIs to Connect to the Provide new
services business assets create apps backend via APIs value and drive

revenue

e . e ::i

API Provider API Consumer End User/
Customer

FIGURE 3. The APl economy value chain (IBM, 2016)

9

To put the scale in perspective, in 2015 Salesforce.com generated 50% of its
revenue through API, eBay and Expedia.com generated 60% and 90% respec-

tively (Harvard Business Review 2015).

1.2 SDKs help to tap into API potential

APls are a powerful tool, since they have a massive scalable impact and are
gaining traction. APIs enable building entire service-augmented ecosystems and
turning them into revenue streams. Therefore, as a developer or a business
owner, it is worth learning more about APIs and learn how to integrate them into

systems in order to tap into their potential.

To simplify integration process to API services, Software Development Kits (SDK)
can be created. They resemble a set of software tools, intuitive abstractions and
functions written in a specific programming language. SDKs can be created by
an API service provider or unaffiliated developers, who intend to consume the
API.

Depending on the market or platform conditions, multiple SDKs might need to be
developed, each for separate platform or programming language. Not all API ser-
vice providers release SDKs for their APIs due to resource limitations. When this
is the case, other parties consuming the APIs develop and maintain their own
SDKs. Some of them are Open Source, some available on marketplaces and
most of them are kept private. In any case, there are significantly more APls out
there than SDKs implementing them, therefore making SDK development an im-

portant skill in software development.

Although SDKs bring API functionality closer to end-developers, building them
can be a labor-costly process. Therefore, one needs to ensure that the best type

of SDK is chosen when developing an integration.

10

2 AIMS

This thesis aims at researching and formulating a consistent method of robust
SDK creation in PHP programming language in order to efficiently integrate REST
API services. Such an SDK has a clear structure, automated tests and documen-
tation. The SDK is intuitive to use and intended to significantly speed up integra-

tion process.

The thesis consists of theoretical and practical parts. Theoretical part covers as-
pects of API concepts and SDK structure in general. Practical part demonstrates

step-by-step the process of SDK creation, release and re-use as a package.

PHP is the programming language of choice, because as of 2019, it powers
78,9% of all sites on the Internet (W3Techs 2019).

It is assumed that readers have an IT background and have some knowledge of

modern PHP programming in order to understand the subject.

The SDK architecture approaches described in this work can be especially ben-
eficial for developers, who work on API integration tasks to improve efficiency
and code quality. Teams can adopt this approach in order to better understand
each other’s code patterns, and to maintain and re-use modular parts using Com-
poser package manager. Business owners of APl-augmented services may find
an insight how publishing a well-designed SDK can be a strategic move to boost

market adoption.

11

3 THEORY BEHIND API

In order to integrate an API into a system, various important information needs to
be gathered first. API service providers typically offer a full documentation with
technical information and examples on API endpoint usage. This part covers the-

oretical aspects of APIs and their common types.

3.1 Definition of API

An APl is a software interface or communication protocol, that defines how com-
puter applications should communicate with each other over a network. An API
defines a contract in terms of protocol, data format and endpoint. (Brajesh 2017,
ch. 1.)

The main difference of APIs from web sites is that while web sites publish infor-
mation, which is consumed by user, they do not have contracts. The site’s layout,
structure and content may be changed at any time without prior notice to users.
An API, on the other hand, resembles a contract, which cannot be changed after
the release because many external applications may rely on it. (Brajesh 2017,
ch. 1.)

3.2 Characteristics of API
Essential characteristics, which should be specified by API providers:
¢ Functionality description (business logic)
e Location of the API (typically URL endpoint)
e |Input and output parameters (names, data types and formats)
e Service-level agreements (SLA) such as response time, throughput, avail-
ability
e Technical requirements about the rate limits
e Legal constraints, such as licensing terms and fees

e Documentation

(Brajesh 2017, ch. 1.)
All of these characteristics are useful for understanding the nature of API and for

developing Software Development Kits.

12

APIls can be categorized by exposure (figure 4). APIs can be private: used inter-
nally or shared to partners, and public — anyone with Internet connection can

have access.

and access of APIS

ree of visibiity

\ncreased deg

Private/Internal APIs

Public APIs
Open to all for use

Private/Partner APls

Used for internal application Used for B2B Partner integration

integrations and B2E apps

FIGURE 4. Types of API by publicity/exposure (Brajesh 2017)

3.2 API protocol: SOAP

SOAP (Simple Object Access Protocol) was designed in 1998. SOAP web ser-
vices usually use HTTP as a transport protocol, although they can operate over
JMS/FTP/SMTP protocol. A SOAP message structure (figure 5) consists of a
SOAP envelope, containing SOAP headers and the body. The body contains the
actual payload and is based on XML format. As a standard, SOAP is mature and
is used in many systems, although it does not utilize many features of HTTP pro-
tocol. (Brajesh 2017, ch. 1.)

POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/socap+xml; charset=utf-8
Content-Length: 299

SOAPAction: "http://www.w3.org/2003/@5/soap-envelope"

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.0rg/2003/85/soap-envelope" xmlns:m="http://www.example.org">
<soap:Header>
</soap:Header>
<soap:Body>
<m:GetStockPrice>
<m:StockName>GOOG</m:StockName>
</m:GetStockPrice>
</soap:Body>
</soap:Envelope>

FIGURE 5. Example of an outgoing SOAP message (Wikipedia)

13

SOAP API is usually strictly typed and validated, thus diminishing amount of er-
rors. However, verbosity of the protocol and slow parsing speed of XML stand as
disadvantages and adopting this protocol requires a sufficiently fast network
bandwidth and a fair amount of computing power for optimal performance. Due
to the performance requirements, SOAP is becoming more obsolete and is being

replaced by more agile counterparts. (Wikipedia.)

3.3 API protocol: REST

REST (Representational State Transfer) was first defined in 2000 and can ex-
change different types of data including XML and JSON (figure 6). REST exten-
sively utilizes HTTP features in order to function. For instance, using a full range
of HTTP verbs (GET, POST, PUT, PATCH, DELETE), header-based authentica-
tion, cacheability indication in responses and others. It was widely adopted be-
cause of its simplicity and performance, can be easily implemented and does not
require specific software. (Brajesh 2017, ch. 1.) URL endpoints usually represent

a data entity, that a client wants to interact with.

Since it is relatively easy to create an APl using REST architecture and it is a
popular approach at the time of writing, this thesis covers building SDKs for this
API type.

https://httpbin.org/get

Body

FIGURE 6. Example of JSON REST GET request and response

14

3.4 API protocol: GraphQL

GraphQL was internally developed by Facebook in 2012 and publicly released in
2015. This is the newest API protocol, which is not yet widely adapted but getting
a lot of attention - it allows to fetch the exact needed data in one HTTP request
(figure 7). This optimizes server and network performance as less data needs to

be computed and transferred. (Wikipedia.)

GraphiQI_ | 2 Prettify History @ Endpoint: | HSL ¢ | APl version: Production %
{
stop(id: "HSL:1173434") { "data": {
name "stop": {
lat "name": "Asemapdallikdnkatu",
lon "lat": 60.199135,
routes { "lon": 24.94007,
shortName "routes": [
agency { {
name "shortName": "9",
} "agency": {
} "name": "Helsingin seudun liikenne"
} ¥
}s
stops { {
name "shortName": "7",
} "agency": {
} "name": "Helsingin seudun liikenne"
}
s
{
"shortName": "7H",
"agency": {
"name": "Helsingin seudun liikenne"
¥
}
]
1,
"stops": [
{
"name": "Louhosmaki"
T
{
"name": "Solvik"
s
QUERY VARIABLES {

"mama'"+ "Fuitelac"

FIGURE 7. Example of GraphQL nested request and response from HSL API

15

4 DEVELOPMENT TOOLS FOR SDK CREATION
This chapter covers a set of basic tools required to develop a REST API SDK.

4.1 Choosing the right development environment

Local development stack

There are multiple methods for running a PHP application locally. The first
method involves installing a pre-packaged server software on the computer and
hosting a website locally. Ready-made solutions such as LAMP, WAMP and
MAMP are available for download and are easy to install. Abbreviations *AMP
stand for the stack of technologies Apache, MySQL and PHP, and the first letter
indicates an operating system Linux, Windows and MacOS). XAMPP is another
version of such an application, X stands for cross-platform approach. Figure 8

displays XAMPP control panel with stack module controls.

D){AMPP Control Panel v3.2.2 [Compiled: Nov 12th 2015] — O X
I I XAMPP Control Panel v3.2.2 J” Config
Modules
) Netstat
Service Module PID(s) Port{s) Actions _s
Apache Start Config Logs @ Shell
MySQL Start Config Logs Explorer
FileZilla art f - ¥ Services
Wercury 3 I S & Help
Tomcat 1 Quit

A [main] Checking for prerequisites a
A [main] All prerequisites found

A [main] Initializing Modules

A [main] The FileZilla module is disabled

| [main] The Mercury module is disabled

/J [main] The Tomcat module is disabled|

/| [main] Starting Check-Timer

| [main] Control Panel Ready

FIGURE 8. XAMPP control panel

This development environment approach is the most performant, because com-
puter’s operating system communicates directly to the stack software. However,
it lacks in flexibility in case of need to develop other projects having different ver-

sion requirements, as the stack parts cannot be easily updated.

16

Vagrant

Vagrant is a software that utilizes VirtualBox and is able to create a virtual oper-
ating system on a computer. A provision script containing installation and config-
uration is fed to the virtual operating system. Multiple virtual machines can co-
exist on the same hard drive. (Lambert, Aulakh & Rickard 2015.)

This approach is more advanced than a local development stack, as it allows to
create an isolated development environment for each separate project. Sharing
provision script as part of project code ensures that every member in the team
has up-to-date development environment. The drawback of using the virtual ma-
chine approach includes a diminished performance due to increased communi-
cation complexity in the system and a requirement to have enough storage on

the computer. Figure 9 demonstrates a common workflow of Vagrant.

SSH

Virtualbox

User — Vagrant Virtual Machine

Provisioners
(Puppet, chef, Ansible)

=
®
[+
B
=
=
=
(]

FIGURE 9. Scheme of a Vagrant workflow (Lambert, Aulakh & Rickard 2015)

Docker

The third method involves using Docker, which is similar to the virtual machine
approach in terms of flexibility, however different in infrastructure (figure 10).
Docker creates a network of isolated software containers that are able to com-
municate with each other and do not require a virtual operating system. In current
technology stack there would be interconnected containers for PHP, MySQL and

Apache modules.

- = =

Containerized Applications

App B

FIGURE 10. Docker vs Virtual Machines (from Docker.com)

Wirtual Machine Vireual Machine Wirtual Machine

17

The Docker approach offers the best flexibility for teamwork - containers are light-

weight as data snapshots contain only app-related information and container con-

figuration can be precisely tweaked.

4.2 Composer - PHP package manager

PHP world has its own package manager, Composer. It is a great addition to any

PHP project, as it allows installing ready-to-use packages as well as provides

class autoloading and an array of other useful features to augment development

process. Autoloading is especially important for efficient development as PHP

class files need to be included — and Composer does it automatically on demand

with only one line of code (figure 11).

sl
I__ il
[y
L]
o
[11]
H
)
[y
I
o
ke
0
=
0
[+
Q
)
[

about manual

+ e T
Lo reilax.

require _ DIR _.'/../vendor/autoload.php';

FIGURE 11. Enabling PHP class autoloading via Composer

18

4.3 IDE to make programming interactive

No specific code editor is required for PHP programming as PHP files contain
plain text and can be modified with any text editor. However, for professional de-
velopment it is wise to utilize professional tools that make navigation and code
inspection easier and augment the development with auto-completion. With the
help of an IDE, the development process becomes more efficient and interactive

(Wikipedia).

PHPStorm was the IDE used in the research, being one of the most robust tools
for professional PHP programming at the time of writing. It understands parses
the code in real time, has a plugin system and provides a powerful navigation

system. Figure 12 shows an example of PHPStorm’s graphical user interface.

File Edit View Navigate Code Refactor Run JTools VCS Window Help

php-packages app / ‘€ User.php

f — — 5
% Project ¥ (SR - ; User.php
s v php-packages <?php
—l () app
] namespace Rpp;
> Consale
> Exceptions use Illuminate\Notifications\Notifiable;
> Http use Illuminate\Contracts\Auth\MustVerifyFmail;
> Providers use Illuminate\Foundation\Auth\User as Authenticatable;
€ User.ph
php class User extends Authenticatable
> bootstran {
= n 359
Structure PHP S - I use Notifiable;
N f < ¥ : T ®
v € User * The attributes that are mass assignable
& *
var rr
c
f o protected $fillable = [

'name', 'email', 'password',

T

icture

f 1;

FIGURE 12. PHPStorm GUI

4.4 Version control

Working in a team in software development requires a version control system in
order to keep simultaneous work organized. A history of changes tracked by a
version control makes tracing issues easier. Git allows working on separate
branches and merge them. Example of such a workflow is called Gitflow and

demonstrated in figure 13.

19

Master

v0.1 v0.2 vi.0

FIGURE 13. Example of Gitflow (from Atlassian.com)

Git is a very robust and perhaps the most popular version control system. Pack-
age management service Packagist.org supports integration with GitHub (Git re-

pository service) and therefore Git is the version control system of choice.

20

5 REST API SDK DESIGN APPROACHES

API integrations may be implemented in various ways, depending on technical
aspects of API, team’s needs and resources. This chapter covers aspects of API
integration design and suggests a number of design approaches. A decision to
choose a specific design should be based on multiple factors such as APl schema
complexity, need to use the SDK across teams and applications, workload avail-

ability and the purpose of the SDK (internal / public).

5.1 Simple straightforward integration using HTTP Client

Since REST API is strongly bound to HTTP protocol, the bare minimum for writing
REST API integrations would be creating a HTTP Client abstraction (figure 14),
which exposes methods for making HTTP requests. The data received from the
API will be typically an array or stdClass (simple object) in PHP. In order to keep
the code in a DRY (Don’t Repeat Yourself) fashion, the HTTP Client would ac-
cept essential parameters, such as base URL and authentication credentials.
This way the object can be readily passed to other functions for reuse. In PHP
world, there is a composer package guzzle/guzzle, which provides a configurable

HTTP Client which well-suited for this purpose.

function tampere journeys api(): \GuzzleHttp\Client
{

static Sclient;
return S$client ?: ($client = new \GuzzleHttp\Client ([
'base uri' => 'http://data.itsfactory.fi/journeys/api/1’',
'headers' => [
'Accept' => ‘'application/json', //T=ll server that we accept json data

'Content-Type' => 'application/json', //Tell server that we send json data

1)):
}

Route: :get('/post-line', function () {
Sapi = tampere_ journeys api()-
try {

Sresponse = $api->post('lines', [
"body' => json_en:‘cde([
'name' => 'Test’'
1)
1)+
} catch (\Exception $e) {
dd(Se->getMessage ()); //Inspect exception message
}
)i

Route: :post('f/get-lines', function () {
%api = tampere_journeys api()s
Sresponse = Sapi->get('lines');

i

FIGURE 14. Example of straightforward integration with HTTP Client

21

The simplicity of this approach lies in the fact that the Client object does not con-
tain any other functionality than making HTTP functions accessible. Therefore, it
is fast and easy to implement at the expense of lacking abstractions and docu-
mentation. This approach is favorable where interactions with a specific API are

minimal and straightforward.

5.2 Minimalistic SDK with type-hinted response data

When API response schema has a sophisticated structure and the APl is used
extensively across application, it is advisable to provide abstractions. Modern
IDEs understand the programming code and provide autocompletion for methods
and properties. The autocompletion allows developers to quickly modify the code

without referring to original documentation and to avoid mistakes.

This integration model contains API Client abstraction (figure 15), which contains
HTTP Client and exposes intuitive methods for receiving type-hinted API data.
Data returned by the exposed APl methods can be type-hinted with simple Hint
classes in order to make IDE aware of the APl schema to offer autocompletion
for a developer as demonstrated in figure 16. Type-hinting on documentation
level rather than code level allows saving time on integration development as well

as a fair amount of computing power.

€ TamperelourneysApiClient.php € JourneyPatternHint.php
<?php

class TampereJourneysApicClient

q namespace Vikingmaster\TampereJourneysApis

protected $config;

0% Crpr @l / use Vikingmaster\TampereJourneysApiSdk\Hir

protected $http;
class JourneyPatternHint

public function _ construct (array Sconfig) 1
{ /** @var string */
Sthis->validateConfig(Sconfiq); public Surl;
Sthis->config = [/** @var string */
'baseUri' => rtrim($config['baseUri'], '/'), public §routeurl;

' timeout' 'timeout'] 22 30, /** @var string */

'userAgent' => Sconfig['userAgent'] 2? null, public §lineUrl;
1; /** @var string */
Sthis->http = new Client ([public $originStop;

'base uri' => Sthis->config['baseUri']

public $name;

*# @var array|StopPointHint
public $stopPoints;
public function getJourneyPatterns(array Sparams = []): array 3
1
Sresponse = Sthis—>http->get('journey-patterns', ['query' => Sparams]);
Sdata = \GuzzleHttp\json decode((string) $response->getBody()):
return $data—>body;
1

FIGURE 15. Simple API Client providing type-hinted response data

22

use Vikingmaster\TampereJourneysaApiSdk\TampereJourneysApiClient;

function tampere journeys_api(): TampereJourneysApiClient
{
static Sclient;
return Sclient ?: ($client = new TampereJourneysApicClient ([
'baseUri' => 'http://data.itsfactory.fi/journeys/api/1’',
IR

Route::get('/get-journey-patterns', function () {
Sapi = tampere journeys apil();
try {
Spatterns = Sapi->getJourneyPatterns();
foreach (Spatterns as Spattern) ({

= echo Spattern—>5topPoint5[G]—>L

}

} catch (\Exception Se) { f TeEs e string
dd(Se->getMessage()); //Insp f municipality Vikingmas...

: f name string

H f shortName string
f tariffZone string

Press Ctrl+Space again to see more variant 7T

FIGURE 16. Type-hinting makes PHPStorm aware of the API schema

Minimalistic SDK approach allows to create a REST API integration relatively
easily as it consists mostly from ApiClient and Hints (simple classes with public
properties). This approach is the most optimal for integrations where speed of
development, APl schema awareness and reliance on read-only operations are

required.

5.3 Advanced REST API SDK architecture

When an API contains many different endpoints, nested data structures, accepts
nested input and returns a large variety of errors, there needs to be an advanced
REST API SDK architecture, which is able to tackle the complexity of such an
API. These are requirements for SDK: it must encapsulate technical details of
message transportation, while providing integration APl documentation in the
IDE.

Although file structure becomes more complex, the architecture utilizes intuitive
abstractions which are related to HTTP and REST. The whole workflow starts
with just one entry — ApiClient, which has all the needed methods to access full
spectrum of API functions. ApiException classes are purposefully designed for
easy troubleshooting - after a request is made, it is possible to access all objects

23

involved in the API call: ApiClient, Request, Response and distinguish between

APl-related and server/network errors. This architecture allows developer to be

in control at every stage of interaction with an API.

In a nutshell, the structure would look like this:

e API Client, entry point

O

©)

©)

o

Configurable via constructor method
Holds an HTTP Client object, encapsulates transport logic
Exposes methods for creation of various Request objects

Expose DTO Factory singleton instance (optional)

e Request objects (Abstraction for API requests)

o

o

o

o

Contains fluent set-methods, which allow method-chaining
Exposes getHeaders, getBody, getParams, getEndpoint meth-
ods

Exposes send method, to return corresponding Response object

Exposes getApiClient method for back-tracing

e Response objects (Abstraction for API responses)

o

o

Exposes get-methods

Exposes getBody, getHeaders methods

e DTOs (Data Transfer Object)

o

o

Data containers with get-set methods for nested data

Can be part of Request and Response objects’ nested data

e DTO Factory

o

o

o

Exposes methods for creating API-schema related DTO objects
Allows to avoid namespace imports and new keyword while creat-
ing objects

Provides documentation for data types

o ApiException

o

o

Allows retrieving Request and Response for back-tracing
Exposes getApiError method, which allows to distinguish between
API and non-API errors (for networking and server errors the API

Error is empty)

UML scheme for Tampere Journey APl SDK is displayed on figure 17.

24

T HasData
m getData()
m getAttribute(key, default)

€) BaseResponse

m getApiError()

m getStatus()

m getHttpResponse()

m fromHttpResponse(httpResponse)

m getPaging()

€ GetJourneyPatternsResponse

m getlourneyPatterns()

€/ BaseRequest

m send()

m setStartindex(value)

m setindent{value)

m getBodyParam(key, default)
m toHttpRequest()

m setBodyParam(key, value)

m setQueryParam(key, value)

%

€ GetJourneyPatternsRequest

m getBodyParams()

=

€ GetlinesRequest

m setFirstStopPointld(value)

m send()
m send()
m setName(value)
m setDescription(value)

m setlineld(value)

m setlastStopPointld{value)

€ BaseDto

m fromData(data)

A A

€ GetlinesResponse
© JourneyPattern
m getlines()

y

A

4

€ Line

m getDescription()
m getUrl()

m getName()

€ Paging

€ ApiError

m hasMoreData()
m getStartindex()

m getPageSize()

m getMessage()
m getTitle()

€ TampereJourneysApiClient

m makeGetlinesRequest()

m getEndpointUrliendpoint)

m getHttp()

m setHttp(http)

m sendRequest(request, responseClass)
m getDefaultHttpHeaders()

m makeGetlourneyPatternsRequest()

4 TamperelourneyApiException
m getApiClient)
m getApikrror()
m getRequest()

m getResponse()

FIGURE 17. UML example of advanced REST API SDK architecture

This approach is the more labor-costly than simpler models, as it requires multiple

abstractions and test coverage. However, if a team rigorously uses an APl across

one or multiple applications or plans to release the SDK into public, this type of

SDK is the most optimal, as it brings the API very close to a developer.

25

6 DEVELOPING SDK FOR TAMPERE JOURNEYS API

This chapter covers practical aspects of integration development and demon-
strates how to implement an example SDK for Tampere Journeys API from
scratch. For the sake of demonstration, only a few APl methods are the covered
by the SDK. The package is covered with Unit tests and released to packagist.org
service, where it is publicly available. After that the package is tested from end

developer’s perspective in a new project.

Full source code:

https://qgithub.com/vikingmaster/tampere-journeys-api-sdk

Composer package:

https://packaqist.org/packages/vikingmaster/tampere-journeys-api-sdk

6.1 Setting up a package development project

Framework installation
Although no framework is required to create a software package in PHP, a frame-
work can simplify testing software parts. The choice of framework could be also

made depending on compatibility requirements.

There are many frameworks available for PHP, for example Symfony, PHPCake,
Codelgniter and Laravel. Due to my extensive experience with Laravel framework
as well as it being the most robust and popular at the time of writing (Clariontech

2019), Laravel is the framework of choice.

To set up a new Laravel-based project, the following command is executed:

composer create-project --prefer-dist laravel/laravel php-packages "5.7.*"

The command will create a new project directory php-packages, setup the pro-
ject structure and install packages into /vendor directory as shown in figure 18.
In Laravel, /public directory is the web folder, therefore it should be configured in
a server software (e.g. Apache) as a web root. Alternative to a full server setup,
Laravel provides a CLI command which can be used to instantly host an applica-

tion locally: php artisan serve.

https://github.com/vikingmaster/tampere-journeys-api-sdk
https://packagist.org/packages/vikingmaster/tampere-journeys-api-sdk

26

& MINGW64:/c/Users/yar...
5 composer create-project --prefer-dist laravel/laravel php-packages "5.7.*"

- Installing (v5.7.28): Downloading (1@@’

> @php -r "file exists('.env') || copy('.env.example', '.env');"

Installing (1.2.0): Downloading (1¢
Installing (v1.13.1): Downloading (
Installing (v 1 oadi

Installing

Installing

Installing

Installing

Installing 0 é

Installing Q. : ng (1
Tnstalling (.2): Downloading

FIGURE 18. Installation of a fresh Laravel project

Working with Composer

Composer resolves dependencies recursively from a file called composer.json.
The file contains version constraints, which tell composer what version to use and
up to which version a package can be updated. After sources and versions for all

packages are resolved, they are downloaded and installed into /vendor folder.

After packages are installed for the first time, Composer stores precise version
information to composer.lock file. When no lock file is present, Composer will
read requirements from composer.json and generate a new lock file. Subse-
quently, Composer checks precise version requirements form the lock file for de-
pendency installation. The lock file must be under version control, so all members

of a team will have exactly the same versions of dependencies installed.

Since we aim to develop our SDK as a separate Composer package, the pack-

age needs to have its composer.json file in the package root directory.

To initialize a package, the following needs to be decided:
e Package name in format vendor/package
o vikingmaster/tampere-journeys-api-sdk
e Namespace (advisable to mirror the package name, however arbitrary)
o \Vikingmaster\TampereJourneysApiSdk
e Package directory in the project (should mirror the package name)

o /packages/vikingmaster/tampere-journeys-sdk

27

In modern PHP development, the package root namespace should be mapped
to a source directory according to PSR-4 convention. When directory structure
follows the namespaces, it allows Composer to seamlessly autoload classes.
(PSR-4)

The information needs to be registered in composer.json of the package. Exe-
cuting command composer init and following the prompts will create the file,

which looks like in figure 19.

v php-packages This configuration file contains list of Composer dependencies
b4 app "name": "wvikingmaster/tampere-journeys-api-sdk",
> bootstrap "description": "PHP SDK for Tampere Journeys API",
> config "yersion": "0.1.2",
> database "type": "library",
"license'": "MIT",
packages . X X
"keywords": ["tampere", "journeys", "api", "php", "sdk", "smart-eity", "bus"],
vikingmaster " irel:
require": {
tampere-journeys-api-sdk "gquzzlehttp/guzzle": "A6.3",
> build "ext-jsen": "*",
src "php': "AT. 2"
> tests te
it "autoload": {
= .gitignore
gitig : "psr-4": |
v composerjson "Vikingmaster\\TampereJourneysApiSdk\\": "sre/"
&J composer.lock }
wp: LICENSE.md I
¢; phpunitxml "autoleoad-dev": {
" _qn.
42 README.md psx {
N bli "Vikingmaster\\TampereJourneysApiSdk\\Tests\\": "tests/"
public '
> resources }
.
> routes "require-dev": {
> storage "phpunit/phpunit": "~8.4"
> tests e
" ipts":
> vendor SeripEs t

1

FIGURE 19. Composer.json file of the SDK package

In the on project-level, the package is located in /packages directory and not
Ivendor because /vendor directory contains source code of external packages
and is usually ignored by version control. In order to preserve the package from
accidental deleting, the source code is kept in a separate directory and connected
to the project level composer.json using a symlink feature. The following figure
demonstrates how packages can be virtually present by utilizing the symlink fea-

ture as demonstrated on figure 20.

28

Project + € = £ — W@ composerjson
> database This configuration file contains list of Composer dependencies
> packages {
b public "name": "vikingmaster/php-packages",
> resources "type": "project”,
» routes "deseription": "The Laravel Framework.",
"keywords":
> storage ¥ [
"framework",
> tests " "
laravel
> vendor 1,
vikingmaster "repositories": {
= _editorconfig "tampere-journeys-api-sdk": {
. "type": "path",
"url": "./packages/vikingmaster/tampere-journeys-api-sdk",
= .env.example .
i i "options": {

= _gitattributes "symlink": true

= .gitignore 1

ane -Phpstorm.meta.php 1

one _ide_helper.php b,

. "license": "MIT",
php artisan
. "require": {
composer.json

& composer "php": "A7.1.3",

@ composer.lock "fideloper/proxy": "~4.0",

1} package json "laravel/framework": "5.7.*",

@51 Phpunitxml "laravel/tinker": "~1.0",

i1 readme.md "vikingmaster/tampere-journeys-api-sdk": "*"

I

convar nhn

FIGURE 20. Project-level composer.json registering the package locally

Upon requiring the package locally in the project-level composer.json, running
a command composer require vikingmaster-tampere-journeys-api-sdk in the pro-
ject directory will do installation, map namespaces to directories and create sym-

link under project-level /vendor folder.

6.2 Setting up Git for version control

Version control should be set up for a proper maintenance of the software.

It is optional whether the packages project should be under Git version control,
however the SDK package should have its own Git repository. To do so, Git re-
pository needs to be initialized in /packages/vikingmaster/tampere-journeys-

api-sdk using command git init (figure 21).

MINGW64:/c/Users/yaros/Projects/Yaro/php-packages/packages/vikingmaster/tampere-journeys-api-sdk —
& MINGWe4:/c/Users/yar.. & -

/php-pa
3 git init
Initialized empty Git repository in C:/Users/yaros/Projects/Yaro/php-packages/packages/vikingmaster/tampere-journeys-api-sdk/.git/

pi-sdk

s |

FIGURE 21. Initializing Git repository for the package

To make sure, that /lvendor folder does not accidently go under the source con-

trol, a .gitignore file needs to be present and have a line /vendor (figure 22).

29

Project ¥ G = ©& — = gitignore

e packages .phpunit.result.cache
v vikingmaster vendor/
v tampere-journeys-api-sdk I
> build
> src
> tests
> vendor

= .gitignore

= phpunitresult.cache
@ composer.json

@ composer.lock

wp LICENSE.md

2 phpunitxml

wp README.md

FIGURE 22. Initializing .gitignore file for the new package
The rest of the files can be committed to Git.

6.3 Writing source code
The SDK was implemented using advanced SDK architecture. The UML schema

is demonstrated in figure 23 and the file structure in figure 24.

) HasData
™ getDatal)

™ getAturibute(key, default)

& BaseResponse
m getApiError) & BaseDio
™ getStatus))

£ % data
m getHitpRe

m fromData(data)

fromHttpResponsefhttpResponse)
p— I ‘[‘[
2 a
=

@ Line
@ ApiError
© Getl P # getDescription()
 getMessage()
™ getlines(atterns) m geturly
i getTitle) .
 gethName()
@ BaseRequest & TamperelourneysApiClient & TampereloumeyApiException
@ sendl) i makeGetLinesRequest() getApiClient()
M setStartindex(value) # getEndpointUriendpoint) # getApiErron]
@ setindentival @ gethttp() getRequest(
& CanAskTokxcludefields setindentlvaluc) getrel gethequest)
m getBodyParamikey, default) m sethttpihttp) ™ getResponse]
M excludeFields{fields) N -
M toHttpRequest]) ™ sendRequestirequest, responseClass)

+
' ™ getDefaulthttpHeaders)
™ mokeGetloumeyPatternsRequest(]

@ GetlourneyPatternsRequest

@ setFirstStopPointidivalue)

& GetlinesRequest
 send()

 seth;

N # setDescription(value)
A setlineldivalue)

sstlastStopPaintidivalue)

& A & JoumneyPattem

™ set(array, key, value)

. key)
vay, key, default)

FIGURE 23. UML structure of Tampere Journeys APl SDK

30

v tampere-journeys-api-sdk
> build
v Dto
€ ApiError.php
€' BaseDto.php
€ JourneyPattern.php
€ Line.php
€ Paging.php
v Exceptions
% TamperelourneyApiException.php
v Messages
v Requests
€' BaseRequest.php
€ GetlourneyPatternsRequest.php
€ GetlinesRequest.php
v Responses
€' BaseResponse.php
€ GetlourneyPatternsResponse.php
€ GetlinesResponse.php
v Utilities
€ Arr.php
T’ CanAskToExcludeFields.php
T’ HasData.php
€ TamperelourneysApiClient.php

FIGURE 24. File structure of Tampere Journeys APl SDK

6.4 Writing automated tests with PHPUnit
The more complexity a software has, the more potential issues it can contain,
therefore it is a good idea to cover the SDK with automated tests. The modular

structure of the SDK makes it relatively easy to write unit tests.

Tests are executed by PHPUnit, which can be downloaded as a Composer de-
pendency by requiring phpunit/phpunit. PHPUnit is a standard module for test-

ing software in PHP.

In order to enable PHPUnit testing, a configuration file phpunit.xml is required.
It defines various parameters such as location of test files and target directory for

test coverage report (figure 25).

31

<?xml wversion="1.0" encoding="UTF-8" 7>
<phpunit backupGlobals="false"
backupStaticAttributes="false"
bootstrap="vendor/autoload.php"
colors="true"
convertErrorsToExceptions="true"
convertNoticesToExceptions="true"
convertWarningsToExceptions="true"
processlsclaticon="false"
stopOnFailure="false">
<testsuites>
<testsuite name="Unit">
<directory suffix="Test.php">./tests/Unit</directory>
</testsuite>
<testsuite name="Feature'>
<directory suffix="Test.php">./tests/Feature</directory>
</testsuite>
</testsuites>
<filter>
<whitelist processUncoveredFilesFromWhitelist="true">
<directory suffix=".php">./src</directory>
</whitelist>
</filter>
<logging>
<log type="coverage-html" target="./build/coverage"/>
</logging>
</phpunit>

FIGURE 25. Contents of phpunit.xml at the root directory of the package

In order to make sure that the SDK works correctly when its components interact
with each other, Feature tests are written. Feature tests are great for testing soft-
ware features from top-down approach. However, such Feature tests are not sup-
posed to make real API calls — HTTP responses are simulated or “mocked” with

response stubs instead (figure 26).

Project v € = 1@ — ([{jresponse-journey-patternsjson & GetlourneyPatternsFeatureTest.php
> Src 1 7 vers
"status": "suc ",
~ I tests ‘! “’ nen Temeeess » public function test_successful_request ()
~ Feature : :‘h;aae““ oy {
: Sapi = Sthis— clientHe
GetlourneyPatternsFeatureTest.php| “paging™: { Sapd = Sthis >g sntock ([
& GetlinesF Testph R, new Response (200, [), Sthis->getStubContents('response
etlinesFeatureTest.php sharbindests H , ['baseUri' => 'http://data.itsfactory.fifjourneys/api'l)
v stubs "pageSize": 1,
"moreData": true

{j response-failed json Srequest = Sapi->makeGstJourneyPatternsRequest();

is->assertInstanceof (GetJourneyPatternsRequest::class, 5

response-journey-pattems json

Srequest
() response-lines-success.json .
yresp 1 ->setStartIndex(12)

v Unit ->setFirstStopPointId(10)
> Utilities '\ vhttp://178.21 >setIndent (true)
& ApiErrorTest php w: whttp: /s ->setlastStopPointId(s)
& BaseDtoTestphp mttp: £/11 =P

N . ->setName (' PatternName')
& TamperelourneysApiClientTest.p http: 4
& TestCase.php

nationStep®: "K

"name"
> vendor "direction": "1",

"Nokian asems
est->toHttpRequest () ;

& citionore vatopBointer: 20f (Request: :class, ShttpRequest)s
= gitignore P! : st=>getUri () =>__toString();
phpunitresult.cache t

rtEqual 1/1 = ', sht
"url*: "http: quals('/3 /apifl/3 v hi

W composer json N >assertHasQueryParam(Suri, 'startIndex', 12):
. "location":

b composer lock X $this-»assertHasQueryParam($uri, 'indent', 'yes'};

FIGURE 26. Mocking API calls with stubs in Feature tests

32

When writing automated tests, developers should be interested in code cover-
age. Code coverage tells, to which degree a software is used during automated
testing. More code coverage means more software parts are tested. Although
code coverage does not necessarily tell about the quality of tests, one should
strive to maximize code coverage as it indicates the reliability of software to end-

developers.

PHPUnit has an ability to automatically generate code coverage reports after
testing. PHPDoc notations such as @coversDefaultClass and @covers regis-

ter specific software components for code coverage reporting (figure 27).

& ApiErrorTest.php

<?php
namespace Vikingmaster\TampereJourneysApiSdk\Tests\Unit;

use ...

* @coversDefaultclass \Vikingmaster\TamperedourneysApisdk\Dto\ApiError

class ApiErrorTest extends TestCase
{

* @covers ::getMessage
public function test get_message ()
{

Serror = new ApiError(['message' => 'MyMessage']);

Sthis-»assertEquals ('MyMessage', S$error->getMessage());

FIGURE 27. @coversDefaultClass and @covers notations

When the notations are correctly placed, a code coverage report can be gener-
ated by executing vendor/bin/phpunit --coverage-html. The generated code cov-

erage report is shown in figure 28.

33

Code Coverage

Lines Functions and Methods Classes and Traits
Total 75.74% 1037136 77.59% 45/58 80.00% 12/15
W Dio G 0000% 117117 (S cocos 10,10 (R 0000% 474
B £y ceptions G 100.00% 9/ (R 100.00% sos (R 100.00% 171
M Hints n/a 0/0 n/a 0/0 n/a 0/0
B \lessages 69.77% 30/43 68.00% 17/25 66.67% 476
B Utilities [44.44% 16,3 (M 440% 479 66.67% 2/3
B TampereJourneysapiClientphp ~ GHENEEEED 100.00% 37737 D 10000% 99 (NN 100.00% 171

Legend

Low: 0% to 50% Medium: 50% to 90% High: 90% to 100%

Generated by php-code-coverage 7.0.8 using PHP 7.2.22 with Xdebug 2.6.1 and PHPUnit 8.4.2 at Tue Nov 5 17:03:24 CET 2019.

FIGURE 28. Code coverage report generated by PHPUnit

6.5 Preparing the package for release

Knowing how to publish a package is very useful as it allows for better sharing
and collaboration. Additionally, it enables microarchitecture approach to software
development, when parts are modularized and developed separately. Business-
wise releasing a ready-made software allows to increase market adoption for a

specific API service.

Creating README.md

Package maintainers should provide a README file, which provide explanation
what the package is meant for and how it can be used. Documentation means
sharing of accumulated knowledge in an accessible form for others. The file must

be committed to the repository.

Creating LICENSE.md

LICENSE file is especially important for public software releases, as it will de-
scribe in what ways the software can be used and what are the terms and agree-
ments. Service Choosealicense.com offers a simple way to choose the needed
license. My SDK package has an MIT license, which is very permissive — allows
to modify, distribute, use software privately and commercially, provides no war-
ranty and includes a limitation on liability. Users are only required to include cop-
yright information. Like the README.md, the LICENSE.md must be committed

to the repository.

34

Semantic versioning and tagging
Composer uses semantic versioning convention (SemVer) in format:
MAJOR.MINOR.PATCH
¢ MAJOR is incremented, when backwards incompatible changes are in-
troduced.
¢ MINOR is incremented, when backwards compatible features are intro-
duced
e PATCH is incremented when backwards compatible bug fixes are intro-

duced

Version number should be specified in SemVer format in composer.json file.
After version increment, the file must be committed to version control and pushed

GitHub for new release drafting.

Version releases on Github are bound to tags in Git. Tags resemble labels point-
ing to a specific point in Git history. When drafting a release (figure 29), a new
tag must be created and it must be the same as version number specified in

composer.json. This way, Packagist.org will be able to serve package versions

correctly.
vikingmaster / tampere-journeys-api-sdk @Unwatch~ 1 Hestar | 0 ¥Fork | 0
<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security Insights Settings
0.1.3 @ [Target: master ~ Tagging suggestions

It's common practice to prefix your
version names with the letter v.

Excellent! This tag will be created from the target when you publish this release.

Release 0.1.3 Some good tag names might be
V1.0 Or v2.3.4.

Write Preview If the tag isn't meant for
production use, add a pre-release
version after the version name.

- Bugfix X Some good pre-release versions
might be ve.2-alpha or vs.9-
beta.3.

Semantic versioning

If you're new to releasing software,
we highly recommend reading
about semantic versioning.

Attach files by dragging & dropping, selecting or pasting them co

FIGURE 29. Creating a new version release on GitHub

35

6.6 Submitting the package to Packagist.org

After the release have been created, we head to Packagist.org, go through au-
thentication process and submit the package (figure 30). The service will register
existing releases and subscribe to the repository events such as new release

creation.

Packagist The PHP Pa ny Browse Submit vikingmaster

Search packages...

Submit package

/svn/|
Repository URL (Git/Svn/Hg) Please make sure you have read the package naming conventions before submitting

https://github.com/vikingmaster/tampere-journeys-api-sdk your package. The authoritative name of your package will be taken from the
composer.json file inside the master branch or trunk of your repository, and it can

“ A
Do not submit forks of existing packages. If you need to test changes to a package

that you forked to patch, use VCS Repositories instead. If however it is a real long-

o h i oK term fork you intend on maintaining feel free to submit it.
rying to share private code?
If you need help or if you have any questions please get in touch with the Composer

Use Private Packagist to share code through Composer without publishing it for community.

everyone on Packagist.org.

FIGURE 30. Submitting the SDK package to Packagist.org

When submission is completed, Packagist.org displays full information about the
package for anyone interested. It shows version numbers, required dependen-
cies, usage statistics and other information (figure 31).

3 composer require vikingmaster/tampere-journeys-api-sdk Maintainers
ANTE

PHP SDK for Tampere journeys APl §E§§§i
<isv

ESEE3 R pass

github.com/vikingmaster/tampere-jou...

Source
Issues
Installs: 3
Dependents: 0
Suggesters: 0
Security: 0
Stars: 0
Watchers: 1
Forks: 0
OpenIssues: 0
Language: HTML
0.1.2 2019-11-05 17:05 UTC dev-master
requires requires (dev) suggests 011
* guzzlehttp/guzzle: A6.3 + phpunit/phpunit: #8.4 None 0.1.0
* extjson: *
* php:27.2
This package is auto-updated
provides conflicts replaces Last update: 2020-01-05 18:41:17 UTC
None None None

FIGURE 31. View of a submitted Composer package

36

After submission, the package vikingmaster/tampere-journeys-api-sdk is

available for public use and can be required as a Composer dependency.

6.7 Using the package in a new project

In order to test the published package, a new Laravel project was created. To test
the latest version of the package, a command composer require vikingmas-
ter/tampere-journeys-api-sdk was executed (figure 32), after which the package

appeared under /vendor directory.

5 composer require vikingmaster
Using version

- Installing (0.1.2): Downloading (100%)
Package zendframework/zend-diactoros is abandoned, you should avoid using it. Use

FIGURE 32. Installation of new SDK package in a new project

After installation, the SDK functionality was tested by creating a Laravel-based
CLI command which used SDK to make an API call. As it is shown on the right
side of the figure 33, the result indicates that the feature functions correctly. Au-
tocompletion makes getting the API data a quick and trivial process.

& MINGW64:/c/Users/yar..

\Artisan::command('load-lines', function () {
Sapi = new \Vikingmaster\TampereJourneysApiSdk\TampereJourneysApiClient ([[
"baseUri' => 'http://data.itsfactory.fi/journeys/api'

1)

Srequest Sapi->makeGetLinesRequest () ;

$response = Srequest->send();
Slines = Sresponse->getLines ()
echo sprintf("Loaded %s lines", count($lines));

I

FIGURE 33. Testing an API call of SDK via a CLI command

6.8 Future development and maintenance
In order to make changes to a package, a developer needs to release a new
version, so it will be available to others. In a nutshell a new version is released
through these steps:

e Branch out of the desired version

e Make code changes

e Change version number in composer.json according to SemVer

37

e Commit and push changes

e Create a new release in GitHub with change documentation

Packagist.org will register a new release, after which, depending on version con-
straints, the new version of package can be installed by executing composer up-

date vikingmaster/tampere-journeys-api-sdk.

This concludes the cycle of REST APl SDK package development in PHP.

38

7 DISCUSSION

Scarcity of reference material for practical part

While most of the theory could be referenced to external sources, there was not
enough relevant material to back up the practical part of REST API SDK creation.
Wireframing different types of SDK design emerged from my web development

experience and therefore may be considered as subjective.

Practical part requires advanced web development knowledge

Originally it was thought that the thesis could be beneficial for beginners, however
it was later decided that the focus must be on SDK architecture rather than be-
ginner-friendly steps for getting the project up and running. Practical part might
contain missing intermediate steps, which can be obvious for experienced PHP

developers but confusing for beginners.

Slight mismatch of actual SDK code and architecture in practical part
The actual implementation has a hybrid approach to SDK creation: advanced

SDK architecture was used in addition to type-hinting as a part of research.

Quantitative research not available
The results of the impacts of a well-written SDK are judged with a common sense
and observations, however no quantitative research regarding speed is available

to tell the degree of the impact.

Advanced ORM SDK architecture revealed but not covered

One more REST API SDK design was revealed during writing of this thesis. ORM
(Object Relation Model) approach would be suited the best for integrations need-
ing to support full spectrum of CRUD operations on APl endpoints and heavy API
usage. This type of architecture was not covered due the need for extensive re-

search of its complex architecture.

The revealed SDK designs will be useful in the future

As a web developer | had done plenty of API integration tasks and there did not
seem to be a single perfect SDK design approach for all of them. The research
revealed and solidified multiple satisfactory approaches for the future adoption in
order to improve the development efficiency.

39

REFERENCES

Brajesh D. 2017. API Management: An Architect's Guide to Developing and
Managing APIs for Your Organization. Read 20.11.2019.

Clariontech. 2019. 10 Reasons Why Laravel Is the Best PHP Framework for
2019. Accessed 19.1.2020. https://www.clariontech.com/blog/10-reasons-why-

laravel-is-the-best-php-framework-for-2019

Harvard Business Review. 2015. The Strategic Value of APIs. Accessed
10.1.2020. https://hbr.org/2015/01/the-strategic-value-of-apis

IBM. 2016. APIl Monetization. Accessed 10.1.2020. https://www.ibm.com/down-
loads/cas/L5Q82XR0

Internet World Stats. 2019. Accessed 8.1.2020. https://www.internet-
worldstats.com/stats.htm

Lambert J., Aulakh N. & Rickard T. 2015. Virtualization with Vagrant. Accessed
20.01.20. https://computationalmodelling.bitbucket.io/tools/vagrant.html

McKinsey. 2017. What it really takes to capture the value of APIs. Accessed
9.1.2020. https://www.mckinsey.com/business-functions/mckinsey-digital/our-
insights/what-it-really-takes-to-capture-the-value-of-apis

Paloviita, S. 2018. Digital Value Chain in APl Economy. Accessed 9.1.2020.
https://medium.com/apinf/digital-value-chain-in-api-economy-37ce8771b54e

Programmable Web. 2019. Accessed 8.1.2020. https://www.programmable-
web.com/news/apis-show-faster-growth-rate-2019-previous-years/re-
search/2019/07/17

PSR-4. Class autoloading convention for PHP. Accessed 16.1.2020.
https://www.php-fig.org/psr/psr-4

Semantic Versioning 2.0.0. Accessed 16.1.2020. https://semver.org

Unifaun. Example of value chain service. Accessed 9.1.2020. https://www.uni-
faun.com/fi/tavarantoimittaja/saatavilla-olevat-kuljetusliikkeet

W3Techs. 2020. Market share of PHP. Accessed 11.1.2020.
https://w3techs.com/technologies/details/pl-php

Wikipedia. GraphQL. Accessed 21.01.20. https://en.wikipedia.org/wiki/GraphQL

Wikipedia. SOAP. Accessed 19.1.2020. https://en.wikipedia.org/wiki/SOAP

https://www.clariontech.com/blog/10-reasons-why-laravel-is-the-best-php-framework-for-2019
https://www.clariontech.com/blog/10-reasons-why-laravel-is-the-best-php-framework-for-2019
https://hbr.org/2015/01/the-strategic-value-of-apis
https://www.ibm.com/downloads/cas/L5Q82XR0
https://www.ibm.com/downloads/cas/L5Q82XR0
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://computationalmodelling.bitbucket.io/tools/vagrant.html
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/what-it-really-takes-to-capture-the-value-of-apis
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/what-it-really-takes-to-capture-the-value-of-apis
https://medium.com/apinf/digital-value-chain-in-api-economy-37ce8771b54e
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.php-fig.org/psr/psr-4
https://semver.org/
https://www.unifaun.com/fi/tavarantoimittaja/saatavilla-olevat-kuljetusliikkeet
https://www.unifaun.com/fi/tavarantoimittaja/saatavilla-olevat-kuljetusliikkeet
https://w3techs.com/technologies/details/pl-php
https://en.wikipedia.org/wiki/GraphQL
https://en.wikipedia.org/wiki/SOAP

Wikipedia. Integrated Development Environment. Accessed 19.1.2020.
https://en.wikipedia.org/wiki/Integrated development _environment

Woods D., Brail G., Jacobson D. 2011. APIs: A Strategy Guide. Read
28.11.2019.

40

https://en.wikipedia.org/wiki/Integrated_development_environment

