

Development of Robust SDKs

for REST APIs in PHP
How to Effectively Develop, Maintain and Release

REST API SDKs

Yaroslav Shestakov

BACHELOR’S THESIS
January 2020

Business Information Systems
Software Production

TIIVISTELMÄ

Tampereen ammattikorkeakoulu
Tietojenkäsittely
Ohjelmistotuotanto

SHESTAKOV, YAROSLAV:
Development of robust SDKs for REST APIs in PHP
How to effectively develop, maintain and release REST API SDKs

Opinnäytetyö 40 sivua
Tammikuu 2020

Nykyaikaisessa talouselämässä ohjelmointirajapintojen (API) suosio on noussut
sen ansiosta, että ne mahdollistavat digitaalisen ja automatisoidun
vuorovaikutuksen organisaatioiden välillä. Usein, kun järjestelmä integroidaan
APIn kanssa, kehitetään kaksi osaa: SDK (Software Development Kit) ja
yhdistävä koodi. SDK on ohjelmistokehitystyökalujen kokoelma, jonka
tavoitteena on yksinkertaistaa kehittäjän työtä APIn kanssa ja tehdä siitä
intuitiivisempaa.

Tämä opinnäytetyö tutki, mallinsi ja dokumentoi toimintavarman SDK:n
kehitysprosessia PHP-ohjelmointikielellä sekä osoitti, mitä positiivisia vaikutuksia
hyvin suunnitellulla ja dokumentoidulla SDK:lla on integraation laatuun,
kehitysnopeuteen ja kehittäjäkokemukseen.

Tutkimus toteutettiin kehittäjän näkökulmasta havainnoituna
ohjelmistoprojektina, jossa kehitettiin Tampere Journey Planner APIa kattava
SDK. Tutkimuksen teoreettisessa osassa paneuduttiin API-konseptiin,
käytettyihin teknologioihin ja mallinnettiin SDK:n rakennetta. Käytännön
osuudessa kuvattiin SDK:n kehitystä, dokumentointia, testausta, pakkaamista ja
julkaisemista Composer-paketinhallintatyökalun avulla sekä selvitettiin, kuinka
SDK:ta on käytetty uudessa projektissa.

Tulokset osoittavat, että teknisten yksityiskohtien sisällyttäminen SDK:hon sekä
intuitiivisten abstraktioiden ja funktioiden tarjoaminen yksinkertaistavat
integraatioiden kehitysprosesseja ja tekevät niistä siksi nopeampia. Koodin
dokumentoinnin ansiosta automaattinen täydennys koodieditorissa on
mahdollista, mikä puolestaan auttaa kehittämään integraatiota ja vähentää
virheiden määrää. Ohjelmistopakettina julkaiseminen ja versiohallinta
mahdollistavat ohjelmiston tehokkaan uudelleenkäyttämisen ja ylläpitämisen
tiimien ja projektien välillä. Lisäksi liiketoiminnan näkökulmasta laadukas SDK voi
tehostaa API-palvelun omaksumista markkinoille ja olla tärkeä menestyvän
liiketoiminnan osatekijä.

Avainsanat: php, api, sdk, rest, integraatio

ABSTRACT

Tampere University of Applied Sciences
Business Information Systems
Software Production

SHESTAKOV, YAROSLAV:
Development of Robust SDKs for REST APIs in PHP
How to Effectively Develop, Maintain and Release REST API SDKs

Bachelor's thesis 40 pages
January 2020

In modern economy, APIs (Application Programming Interface) have gained pop-
ularity due to the fact that they enable digital automation of cross-organizational
interactions. In order to integrate a system with an API, commonly two parts are
required: an SDK (Software Development Kit) and a glue code. SDK is a set of
software tools aiming to simplify a developer’s work with an API and making the
work more intuitive.

This thesis researches, wireframes and documents the process of robust SDK
creation in PHP programming language, and demonstrates what positive impact
a well-designed, documented SDK could have on the integration quality, speed
and developer experience.

The research was carried out as a software project, where an SDK was devel-
oped for Tampere Journey Planner API and then analyzed through observation
from an end-developer’s perspective. The theoretical aspect covered the API
concept, the technologies used and multiple SDK design approaches. The prac-
tical aspect covered programming, documenting, testing and packaging of an
SDK, releasing it as a Composer dependency and using the package in a new
project.

The results suggest that encapsulating technicalities of the API and providing in-
tuitive abstractions and methods, significantly simplifies the process of integration
development and therefore makes development faster. Code documentation en-
ables autocompletion in code editors, which in turn helps with the integration de-
velopment and reduces the number of errors. Releasing an SDK as a package
and versioning it allows for better re-use and maintenance across teams and pro-
jects. Furthermore, from a business perspective a high-quality SDK can boost
market adoption for an API service, potentially making it one of the key tools of a
successful business.

Key words: php, api, sdk, rest, integration

4

CONTENTS

1 INTRODUCTION .. 6

1.1 Rising popularity of APIs .. 6

1.2 SDKs help to tap into API potential .. 9

2 AIMS ... 10

3 THEORY BEHIND API .. 11

3.1 Definition of API ... 11

3.2 Characteristics of API ... 11

3.2 API protocol: SOAP .. 12

3.3 API protocol: REST .. 13

3.4 API protocol: GraphQL ... 14

4 DEVELOPMENT TOOLS FOR SDK CREATION 15

4.1 Choosing the right development environment 15

4.2 Composer - PHP package manager .. 17

4.3 IDE to make programming interactive .. 18

4.4 Version control ... 18

5 REST API SDK DESIGN APPROACHES ... 20

5.1 Simple straightforward integration using HTTP Client 20

5.2 Minimalistic SDK with type-hinted response data......................... 21

5.3 Advanced REST API SDK architecture .. 22

6 DEVELOPING SDK FOR TAMPERE JOURNEYS API 25

6.1 Setting up a package development project 25

6.2 Setting up Git for version control .. 28

6.3 Writing source code ... 29

6.4 Writing automated tests with PHPUnit ... 30

6.5 Preparing the package for release ... 33

6.6 Submitting the package to Packagist.org 35

6.7 Using the package in a new project ... 36

6.8 Future development and maintenance ... 36

7 DISCUSSION ... 38

REFERENCES .. 39

5

ABBREVIATIONS AND TERMS

API Application Programming Interface

CLI Command Line Interface (shell or terminal)

Composer Package manager for PHP

Docker Virtualization tool, enables containerized software

DTO Data Transfer Object

FTP File Transfer Protocol

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

JMS Java Message Service (API protocol)

JSON JavaScript Object Notation

Laravel Web framework for PHP

PHP Hypertext Preprocessor, Programming language

SDK Software Development Kit

SemVer Semantic Versioning convention

SMTP Simple Mail Transfer Protocol

TDD Test Driven Development

UI User Interface

XML Extensible Markup Language

6

1 INTRODUCTION

1.1 Rising popularity of APIs

The term API (Application Programming Interface) has gained much of popularity

in the world of technology and business in the past decade and it happened for a

reason. As of 2019, there were more than 4,5 billion Internet users, which

amounted approximately to 58% of the global population (Internet World Stats

2019). Such a large number of digitally connected people has led to an emer-

gence of a network, where participants can conveniently transact with each other

on a global scale, and the potential of such a network is enormous.

What participants of the network needed was to find a way to communicate with

each other utilizing the digitalization efficiently. Email services were extensively

used as a means of exchanging information, and while it is still an important tech-

nology, it usually requires human interaction on both sides for sending and re-

ceiving information. For large scale businesses, this was still inefficient, because

much manual work needed to be done. To facilitate a seamless communication

and to automate processes, web APIs came into being.

Essentially, a web API represents a digital socket for information exchange virtu-

ally accessible to anyone with an Internet connection. An API can also represent

a set of digital contracts, solidifying specific interactions between parties.

For instance, a shipping service provider would expose an API that accepts in-

formation about shipment and returns a PDF packing slip back to the customer.

An E-commerce platform would expose APIs for order and product management.

IoT devices expose APIs to exchange sensor data. The benefit of it is that the

service becomes easily accessible, while at the same eliminating communication

overhead as no human labor is required.

APIs are mostly used in data transfer and do not dictate what kind of user inter-

face is used as compared to monolithic systems with built-in user interface. This

approach gives flexibility to developers to design graphic user interfaces specifi-

cally optimized for certain business workflows.

7

Organizations started to see the value in this concept and to develop their own

APIs. A research was conducted showing that the number of public APIs has

increased from none to 22000 over the years 2005-2019 (figure 1). Given that

there are many more private and unregistered APIs, the pattern is clear – the API

space is flourishing. (Programmable Web 2019.)

FIGURE 1. Rapid growth of public APIs since 2005 (Programmable Web 2019)

Another important aspect of APIs is enabling the possibility to create long and

sophisticated value chains. Value chain is a set of activities or processes needed

to be done in order to deliver a service or product. An application can consume

multiple APIs in order to aggregate multiple services into one longer value chain.

Modern web shops are an example of such a value chain - they are typically

integrated to payment and shipment services. It is convenient for customers, be-

cause the whole purchase process can be completed in one place. It is also con-

venient for merchants, because they can utilize ready-made solutions and focus

on what is important for them. With some creativity, those services can be ex-

tended. The merchant could add an analytics service, make purchase orders di-

rectly from their web shop, or publish their products on an external platform such

as Amazon. The business flow can be augmented with additional full-spectrum

services, enabled by the API concept.

8

These value chains can be long linear chains (figure 2) or sophisticated networks.

Some of the value chains serve a function of combining multiple services to cre-

ate a single streamlined business flow, while others aggregate similar-purpose

services under one API. Unifaun is an example of such an aggregator, uniting

services of over 200 carriers under a single API (Unifaun). The benefit of such

services is that only one API needs to be integrated to a system instead of many,

in order to get access to a large variety of services.

FIGURE 2. Scheme of a digital value chain (Paloviita S. 2018 on Medium.com)

The impact of APIs on business life has become so apparent that nowadays

building an API is viewed as a strategic move to operate on the market. Such a

move needs to be carefully planned, designed and implemented. (Woods, Brail,

Jacobson 2011, ch. 2.)

Terms “API Economy” and “API Management” refer to the process of crafting and

maintaining an API of an organization (figure 3).

FIGURE 3. The API economy value chain (IBM, 2016)

9

To put the scale in perspective, in 2015 Salesforce.com generated 50% of its

revenue through API, eBay and Expedia.com generated 60% and 90% respec-

tively (Harvard Business Review 2015).

1.2 SDKs help to tap into API potential

APIs are a powerful tool, since they have a massive scalable impact and are

gaining traction. APIs enable building entire service-augmented ecosystems and

turning them into revenue streams. Therefore, as a developer or a business

owner, it is worth learning more about APIs and learn how to integrate them into

systems in order to tap into their potential.

To simplify integration process to API services, Software Development Kits (SDK)

can be created. They resemble a set of software tools, intuitive abstractions and

functions written in a specific programming language. SDKs can be created by

an API service provider or unaffiliated developers, who intend to consume the

API.

Depending on the market or platform conditions, multiple SDKs might need to be

developed, each for separate platform or programming language. Not all API ser-

vice providers release SDKs for their APIs due to resource limitations. When this

is the case, other parties consuming the APIs develop and maintain their own

SDKs. Some of them are Open Source, some available on marketplaces and

most of them are kept private. In any case, there are significantly more APIs out

there than SDKs implementing them, therefore making SDK development an im-

portant skill in software development.

Although SDKs bring API functionality closer to end-developers, building them

can be a labor-costly process. Therefore, one needs to ensure that the best type

of SDK is chosen when developing an integration.

10

2 AIMS

This thesis aims at researching and formulating a consistent method of robust

SDK creation in PHP programming language in order to efficiently integrate REST

API services. Such an SDK has a clear structure, automated tests and documen-

tation. The SDK is intuitive to use and intended to significantly speed up integra-

tion process.

The thesis consists of theoretical and practical parts. Theoretical part covers as-

pects of API concepts and SDK structure in general. Practical part demonstrates

step-by-step the process of SDK creation, release and re-use as a package.

PHP is the programming language of choice, because as of 2019, it powers

78,9% of all sites on the Internet (W3Techs 2019).

It is assumed that readers have an IT background and have some knowledge of

modern PHP programming in order to understand the subject.

The SDK architecture approaches described in this work can be especially ben-

eficial for developers, who work on API integration tasks to improve efficiency

and code quality. Teams can adopt this approach in order to better understand

each other’s code patterns, and to maintain and re-use modular parts using Com-

poser package manager. Business owners of API-augmented services may find

an insight how publishing a well-designed SDK can be a strategic move to boost

market adoption.

11

3 THEORY BEHIND API

In order to integrate an API into a system, various important information needs to

be gathered first. API service providers typically offer a full documentation with

technical information and examples on API endpoint usage. This part covers the-

oretical aspects of APIs and their common types.

3.1 Definition of API

An API is a software interface or communication protocol, that defines how com-

puter applications should communicate with each other over a network. An API

defines a contract in terms of protocol, data format and endpoint. (Brajesh 2017,

ch. 1.)

The main difference of APIs from web sites is that while web sites publish infor-

mation, which is consumed by user, they do not have contracts. The site’s layout,

structure and content may be changed at any time without prior notice to users.

An API, on the other hand, resembles a contract, which cannot be changed after

the release because many external applications may rely on it. (Brajesh 2017,

ch. 1.)

3.2 Characteristics of API

Essential characteristics, which should be specified by API providers:

• Functionality description (business logic)

• Location of the API (typically URL endpoint)

• Input and output parameters (names, data types and formats)

• Service-level agreements (SLA) such as response time, throughput, avail-

ability

• Technical requirements about the rate limits

• Legal constraints, such as licensing terms and fees

• Documentation

(Brajesh 2017, ch. 1.)

All of these characteristics are useful for understanding the nature of API and for

developing Software Development Kits.

12

APIs can be categorized by exposure (figure 4). APIs can be private: used inter-

nally or shared to partners, and public – anyone with Internet connection can

have access.

FIGURE 4. Types of API by publicity/exposure (Brajesh 2017)

3.2 API protocol: SOAP

SOAP (Simple Object Access Protocol) was designed in 1998. SOAP web ser-

vices usually use HTTP as a transport protocol, although they can operate over

JMS/FTP/SMTP protocol. A SOAP message structure (figure 5) consists of a

SOAP envelope, containing SOAP headers and the body. The body contains the

actual payload and is based on XML format. As a standard, SOAP is mature and

is used in many systems, although it does not utilize many features of HTTP pro-

tocol. (Brajesh 2017, ch. 1.)

FIGURE 5. Example of an outgoing SOAP message (Wikipedia)

13

SOAP API is usually strictly typed and validated, thus diminishing amount of er-

rors. However, verbosity of the protocol and slow parsing speed of XML stand as

disadvantages and adopting this protocol requires a sufficiently fast network

bandwidth and a fair amount of computing power for optimal performance. Due

to the performance requirements, SOAP is becoming more obsolete and is being

replaced by more agile counterparts. (Wikipedia.)

3.3 API protocol: REST

REST (Representational State Transfer) was first defined in 2000 and can ex-

change different types of data including XML and JSON (figure 6). REST exten-

sively utilizes HTTP features in order to function. For instance, using a full range

of HTTP verbs (GET, POST, PUT, PATCH, DELETE), header-based authentica-

tion, cacheability indication in responses and others. It was widely adopted be-

cause of its simplicity and performance, can be easily implemented and does not

require specific software. (Brajesh 2017, ch. 1.) URL endpoints usually represent

a data entity, that a client wants to interact with.

Since it is relatively easy to create an API using REST architecture and it is a

popular approach at the time of writing, this thesis covers building SDKs for this

API type.

FIGURE 6. Example of JSON REST GET request and response

14

3.4 API protocol: GraphQL

GraphQL was internally developed by Facebook in 2012 and publicly released in

2015. This is the newest API protocol, which is not yet widely adapted but getting

a lot of attention - it allows to fetch the exact needed data in one HTTP request

(figure 7). This optimizes server and network performance as less data needs to

be computed and transferred. (Wikipedia.)

FIGURE 7. Example of GraphQL nested request and response from HSL API

15

4 DEVELOPMENT TOOLS FOR SDK CREATION

This chapter covers a set of basic tools required to develop a REST API SDK.

4.1 Choosing the right development environment

Local development stack

There are multiple methods for running a PHP application locally. The first

method involves installing a pre-packaged server software on the computer and

hosting a website locally. Ready-made solutions such as LAMP, WAMP and

MAMP are available for download and are easy to install. Abbreviations *AMP

stand for the stack of technologies Apache, MySQL and PHP, and the first letter

indicates an operating system Linux, Windows and MacOS). XAMPP is another

version of such an application, X stands for cross-platform approach. Figure 8

displays XAMPP control panel with stack module controls.

FIGURE 8. XAMPP control panel

This development environment approach is the most performant, because com-

puter’s operating system communicates directly to the stack software. However,

it lacks in flexibility in case of need to develop other projects having different ver-

sion requirements, as the stack parts cannot be easily updated.

16

Vagrant

Vagrant is a software that utilizes VirtualBox and is able to create a virtual oper-

ating system on a computer. A provision script containing installation and config-

uration is fed to the virtual operating system. Multiple virtual machines can co-

exist on the same hard drive. (Lambert, Aulakh & Rickard 2015.)

This approach is more advanced than a local development stack, as it allows to

create an isolated development environment for each separate project. Sharing

provision script as part of project code ensures that every member in the team

has up-to-date development environment. The drawback of using the virtual ma-

chine approach includes a diminished performance due to increased communi-

cation complexity in the system and a requirement to have enough storage on

the computer. Figure 9 demonstrates a common workflow of Vagrant.

FIGURE 9. Scheme of a Vagrant workflow (Lambert, Aulakh & Rickard 2015)

Docker

The third method involves using Docker, which is similar to the virtual machine

approach in terms of flexibility, however different in infrastructure (figure 10).

Docker creates a network of isolated software containers that are able to com-

municate with each other and do not require a virtual operating system. In current

technology stack there would be interconnected containers for PHP, MySQL and

Apache modules.

17

FIGURE 10. Docker vs Virtual Machines (from Docker.com)

The Docker approach offers the best flexibility for teamwork - containers are light-

weight as data snapshots contain only app-related information and container con-

figuration can be precisely tweaked.

4.2 Composer - PHP package manager

PHP world has its own package manager, Composer. It is a great addition to any

PHP project, as it allows installing ready-to-use packages as well as provides

class autoloading and an array of other useful features to augment development

process. Autoloading is especially important for efficient development as PHP

class files need to be included – and Composer does it automatically on demand

with only one line of code (figure 11).

FIGURE 11. Enabling PHP class autoloading via Composer

18

4.3 IDE to make programming interactive

No specific code editor is required for PHP programming as PHP files contain

plain text and can be modified with any text editor. However, for professional de-

velopment it is wise to utilize professional tools that make navigation and code

inspection easier and augment the development with auto-completion. With the

help of an IDE, the development process becomes more efficient and interactive

(Wikipedia).

PHPStorm was the IDE used in the research, being one of the most robust tools

for professional PHP programming at the time of writing. It understands parses

the code in real time, has a plugin system and provides a powerful navigation

system. Figure 12 shows an example of PHPStorm’s graphical user interface.

FIGURE 12. PHPStorm GUI

4.4 Version control

Working in a team in software development requires a version control system in

order to keep simultaneous work organized. A history of changes tracked by a

version control makes tracing issues easier. Git allows working on separate

branches and merge them. Example of such a workflow is called Gitflow and

demonstrated in figure 13.

19

FIGURE 13. Example of Gitflow (from Atlassian.com)

Git is a very robust and perhaps the most popular version control system. Pack-

age management service Packagist.org supports integration with GitHub (Git re-

pository service) and therefore Git is the version control system of choice.

20

5 REST API SDK DESIGN APPROACHES

API integrations may be implemented in various ways, depending on technical

aspects of API, team’s needs and resources. This chapter covers aspects of API

integration design and suggests a number of design approaches. A decision to

choose a specific design should be based on multiple factors such as API schema

complexity, need to use the SDK across teams and applications, workload avail-

ability and the purpose of the SDK (internal / public).

5.1 Simple straightforward integration using HTTP Client

Since REST API is strongly bound to HTTP protocol, the bare minimum for writing

REST API integrations would be creating a HTTP Client abstraction (figure 14),

which exposes methods for making HTTP requests. The data received from the

API will be typically an array or stdClass (simple object) in PHP. In order to keep

the code in a DRY (Don’t Repeat Yourself) fashion, the HTTP Client would ac-

cept essential parameters, such as base URL and authentication credentials.

This way the object can be readily passed to other functions for reuse. In PHP

world, there is a composer package guzzle/guzzle, which provides a configurable

HTTP Client which well-suited for this purpose.

FIGURE 14. Example of straightforward integration with HTTP Client

21

The simplicity of this approach lies in the fact that the Client object does not con-

tain any other functionality than making HTTP functions accessible. Therefore, it

is fast and easy to implement at the expense of lacking abstractions and docu-

mentation. This approach is favorable where interactions with a specific API are

minimal and straightforward.

5.2 Minimalistic SDK with type-hinted response data

When API response schema has a sophisticated structure and the API is used

extensively across application, it is advisable to provide abstractions. Modern

IDEs understand the programming code and provide autocompletion for methods

and properties. The autocompletion allows developers to quickly modify the code

without referring to original documentation and to avoid mistakes.

This integration model contains API Client abstraction (figure 15), which contains

HTTP Client and exposes intuitive methods for receiving type-hinted API data.

Data returned by the exposed API methods can be type-hinted with simple Hint

classes in order to make IDE aware of the API schema to offer autocompletion

for a developer as demonstrated in figure 16. Type-hinting on documentation

level rather than code level allows saving time on integration development as well

as a fair amount of computing power.

FIGURE 15. Simple API Client providing type-hinted response data

22

FIGURE 16. Type-hinting makes PHPStorm aware of the API schema

Minimalistic SDK approach allows to create a REST API integration relatively

easily as it consists mostly from ApiClient and Hints (simple classes with public

properties). This approach is the most optimal for integrations where speed of

development, API schema awareness and reliance on read-only operations are

required.

5.3 Advanced REST API SDK architecture

When an API contains many different endpoints, nested data structures, accepts

nested input and returns a large variety of errors, there needs to be an advanced

REST API SDK architecture, which is able to tackle the complexity of such an

API. These are requirements for SDK: it must encapsulate technical details of

message transportation, while providing integration API documentation in the

IDE.

Although file structure becomes more complex, the architecture utilizes intuitive

abstractions which are related to HTTP and REST. The whole workflow starts

with just one entry – ApiClient, which has all the needed methods to access full

spectrum of API functions. ApiException classes are purposefully designed for

easy troubleshooting - after a request is made, it is possible to access all objects

23

involved in the API call: ApiClient, Request, Response and distinguish between

API-related and server/network errors. This architecture allows developer to be

in control at every stage of interaction with an API.

In a nutshell, the structure would look like this:

• API Client, entry point

o Configurable via constructor method

o Holds an HTTP Client object, encapsulates transport logic

o Exposes methods for creation of various Request objects

o Expose DTO Factory singleton instance (optional)

• Request objects (Abstraction for API requests)

o Contains fluent set-methods, which allow method-chaining

o Exposes getHeaders, getBody, getParams, getEndpoint meth-

ods

o Exposes send method, to return corresponding Response object

o Exposes getApiClient method for back-tracing

• Response objects (Abstraction for API responses)

o Exposes get-methods

o Exposes getBody, getHeaders methods

• DTOs (Data Transfer Object)

o Data containers with get-set methods for nested data

o Can be part of Request and Response objects’ nested data

• DTO Factory

o Exposes methods for creating API-schema related DTO objects

o Allows to avoid namespace imports and new keyword while creat-

ing objects

o Provides documentation for data types

• ApiException

o Allows retrieving Request and Response for back-tracing

o Exposes getApiError method, which allows to distinguish between

API and non-API errors (for networking and server errors the API

Error is empty)

UML scheme for Tampere Journey API SDK is displayed on figure 17.

24

FIGURE 17. UML example of advanced REST API SDK architecture

This approach is the more labor-costly than simpler models, as it requires multiple

abstractions and test coverage. However, if a team rigorously uses an API across

one or multiple applications or plans to release the SDK into public, this type of

SDK is the most optimal, as it brings the API very close to a developer.

25

6 DEVELOPING SDK FOR TAMPERE JOURNEYS API

This chapter covers practical aspects of integration development and demon-

strates how to implement an example SDK for Tampere Journeys API from

scratch. For the sake of demonstration, only a few API methods are the covered

by the SDK. The package is covered with Unit tests and released to packagist.org

service, where it is publicly available. After that the package is tested from end

developer’s perspective in a new project.

Full source code:

https://github.com/vikingmaster/tampere-journeys-api-sdk

Composer package:

https://packagist.org/packages/vikingmaster/tampere-journeys-api-sdk

6.1 Setting up a package development project

Framework installation

Although no framework is required to create a software package in PHP, a frame-

work can simplify testing software parts. The choice of framework could be also

made depending on compatibility requirements.

There are many frameworks available for PHP, for example Symfony, PHPCake,

CodeIgniter and Laravel. Due to my extensive experience with Laravel framework

as well as it being the most robust and popular at the time of writing (Clariontech

2019), Laravel is the framework of choice.

To set up a new Laravel-based project, the following command is executed:

composer create-project --prefer-dist laravel/laravel php-packages "5.7.*"

The command will create a new project directory php-packages, setup the pro-

ject structure and install packages into /vendor directory as shown in figure 18.

In Laravel, /public directory is the web folder, therefore it should be configured in

a server software (e.g. Apache) as a web root. Alternative to a full server setup,

Laravel provides a CLI command which can be used to instantly host an applica-

tion locally: php artisan serve.

https://github.com/vikingmaster/tampere-journeys-api-sdk
https://packagist.org/packages/vikingmaster/tampere-journeys-api-sdk

26

FIGURE 18. Installation of a fresh Laravel project

Working with Composer

Composer resolves dependencies recursively from a file called composer.json.

The file contains version constraints, which tell composer what version to use and

up to which version a package can be updated. After sources and versions for all

packages are resolved, they are downloaded and installed into /vendor folder.

After packages are installed for the first time, Composer stores precise version

information to composer.lock file. When no lock file is present, Composer will

read requirements from composer.json and generate a new lock file. Subse-

quently, Composer checks precise version requirements form the lock file for de-

pendency installation. The lock file must be under version control, so all members

of a team will have exactly the same versions of dependencies installed.

Since we aim to develop our SDK as a separate Composer package, the pack-

age needs to have its composer.json file in the package root directory.

To initialize a package, the following needs to be decided:

• Package name in format vendor/package

o vikingmaster/tampere-journeys-api-sdk

• Namespace (advisable to mirror the package name, however arbitrary)

o \Vikingmaster\TampereJourneysApiSdk

• Package directory in the project (should mirror the package name)

o /packages/vikingmaster/tampere-journeys-sdk

27

In modern PHP development, the package root namespace should be mapped

to a source directory according to PSR-4 convention. When directory structure

follows the namespaces, it allows Composer to seamlessly autoload classes.

(PSR-4)

The information needs to be registered in composer.json of the package. Exe-

cuting command composer init and following the prompts will create the file,

which looks like in figure 19.

FIGURE 19. Composer.json file of the SDK package

In the on project-level, the package is located in /packages directory and not

/vendor because /vendor directory contains source code of external packages

and is usually ignored by version control. In order to preserve the package from

accidental deleting, the source code is kept in a separate directory and connected

to the project level composer.json using a symlink feature. The following figure

demonstrates how packages can be virtually present by utilizing the symlink fea-

ture as demonstrated on figure 20.

28

FIGURE 20. Project-level composer.json registering the package locally

Upon requiring the package locally in the project-level composer.json, running

a command composer require vikingmaster-tampere-journeys-api-sdk in the pro-

ject directory will do installation, map namespaces to directories and create sym-

link under project-level /vendor folder.

6.2 Setting up Git for version control

Version control should be set up for a proper maintenance of the software.

It is optional whether the packages project should be under Git version control,

however the SDK package should have its own Git repository. To do so, Git re-

pository needs to be initialized in /packages/vikingmaster/tampere-journeys-

api-sdk using command git init (figure 21).

FIGURE 21. Initializing Git repository for the package

To make sure, that /vendor folder does not accidently go under the source con-

trol, a .gitignore file needs to be present and have a line /vendor (figure 22).

29

FIGURE 22. Initializing .gitignore file for the new package

The rest of the files can be committed to Git.

6.3 Writing source code

The SDK was implemented using advanced SDK architecture. The UML schema

is demonstrated in figure 23 and the file structure in figure 24.

FIGURE 23. UML structure of Tampere Journeys API SDK

30

FIGURE 24. File structure of Tampere Journeys API SDK

6.4 Writing automated tests with PHPUnit

The more complexity a software has, the more potential issues it can contain,

therefore it is a good idea to cover the SDK with automated tests. The modular

structure of the SDK makes it relatively easy to write unit tests.

Tests are executed by PHPUnit, which can be downloaded as a Composer de-

pendency by requiring phpunit/phpunit. PHPUnit is a standard module for test-

ing software in PHP.

In order to enable PHPUnit testing, a configuration file phpunit.xml is required.

It defines various parameters such as location of test files and target directory for

test coverage report (figure 25).

31

FIGURE 25. Contents of phpunit.xml at the root directory of the package

In order to make sure that the SDK works correctly when its components interact

with each other, Feature tests are written. Feature tests are great for testing soft-

ware features from top-down approach. However, such Feature tests are not sup-

posed to make real API calls – HTTP responses are simulated or “mocked” with

response stubs instead (figure 26).

FIGURE 26. Mocking API calls with stubs in Feature tests

32

When writing automated tests, developers should be interested in code cover-

age. Code coverage tells, to which degree a software is used during automated

testing. More code coverage means more software parts are tested. Although

code coverage does not necessarily tell about the quality of tests, one should

strive to maximize code coverage as it indicates the reliability of software to end-

developers.

PHPUnit has an ability to automatically generate code coverage reports after

testing. PHPDoc notations such as @coversDefaultClass and @covers regis-

ter specific software components for code coverage reporting (figure 27).

FIGURE 27. @coversDefaultClass and @covers notations

When the notations are correctly placed, a code coverage report can be gener-

ated by executing vendor/bin/phpunit --coverage-html. The generated code cov-

erage report is shown in figure 28.

33

FIGURE 28. Code coverage report generated by PHPUnit

6.5 Preparing the package for release

Knowing how to publish a package is very useful as it allows for better sharing

and collaboration. Additionally, it enables microarchitecture approach to software

development, when parts are modularized and developed separately. Business-

wise releasing a ready-made software allows to increase market adoption for a

specific API service.

Creating README.md

Package maintainers should provide a README file, which provide explanation

what the package is meant for and how it can be used. Documentation means

sharing of accumulated knowledge in an accessible form for others. The file must

be committed to the repository.

Creating LICENSE.md

LICENSE file is especially important for public software releases, as it will de-

scribe in what ways the software can be used and what are the terms and agree-

ments. Service Choosealicense.com offers a simple way to choose the needed

license. My SDK package has an MIT license, which is very permissive – allows

to modify, distribute, use software privately and commercially, provides no war-

ranty and includes a limitation on liability. Users are only required to include cop-

yright information. Like the README.md, the LICENSE.md must be committed

to the repository.

34

Semantic versioning and tagging

Composer uses semantic versioning convention (SemVer) in format:

MAJOR.MINOR.PATCH

• MAJOR is incremented, when backwards incompatible changes are in-

troduced.

• MINOR is incremented, when backwards compatible features are intro-

duced

• PATCH is incremented when backwards compatible bug fixes are intro-

duced

Version number should be specified in SemVer format in composer.json file.

After version increment, the file must be committed to version control and pushed

GitHub for new release drafting.

Version releases on Github are bound to tags in Git. Tags resemble labels point-

ing to a specific point in Git history. When drafting a release (figure 29), a new

tag must be created and it must be the same as version number specified in

composer.json. This way, Packagist.org will be able to serve package versions

correctly.

FIGURE 29. Creating a new version release on GitHub

35

6.6 Submitting the package to Packagist.org

After the release have been created, we head to Packagist.org, go through au-

thentication process and submit the package (figure 30). The service will register

existing releases and subscribe to the repository events such as new release

creation.

FIGURE 30. Submitting the SDK package to Packagist.org

When submission is completed, Packagist.org displays full information about the

package for anyone interested. It shows version numbers, required dependen-

cies, usage statistics and other information (figure 31).

FIGURE 31. View of a submitted Composer package

36

After submission, the package vikingmaster/tampere-journeys-api-sdk is

available for public use and can be required as a Composer dependency.

6.7 Using the package in a new project

In order to test the published package, a new Laravel project was created. To test

the latest version of the package, a command composer require vikingmas-

ter/tampere-journeys-api-sdk was executed (figure 32), after which the package

appeared under /vendor directory.

FIGURE 32. Installation of new SDK package in a new project

After installation, the SDK functionality was tested by creating a Laravel-based
CLI command which used SDK to make an API call. As it is shown on the right
side of the figure 33, the result indicates that the feature functions correctly. Au-
tocompletion makes getting the API data a quick and trivial process.

FIGURE 33. Testing an API call of SDK via a CLI command

6.8 Future development and maintenance

In order to make changes to a package, a developer needs to release a new

version, so it will be available to others. In a nutshell a new version is released

through these steps:

• Branch out of the desired version

• Make code changes

• Change version number in composer.json according to SemVer

37

• Commit and push changes

• Create a new release in GitHub with change documentation

Packagist.org will register a new release, after which, depending on version con-

straints, the new version of package can be installed by executing composer up-

date vikingmaster/tampere-journeys-api-sdk.

This concludes the cycle of REST API SDK package development in PHP.

38

7 DISCUSSION

Scarcity of reference material for practical part

While most of the theory could be referenced to external sources, there was not

enough relevant material to back up the practical part of REST API SDK creation.

Wireframing different types of SDK design emerged from my web development

experience and therefore may be considered as subjective.

Practical part requires advanced web development knowledge

Originally it was thought that the thesis could be beneficial for beginners, however

it was later decided that the focus must be on SDK architecture rather than be-

ginner-friendly steps for getting the project up and running. Practical part might

contain missing intermediate steps, which can be obvious for experienced PHP

developers but confusing for beginners.

Slight mismatch of actual SDK code and architecture in practical part

The actual implementation has a hybrid approach to SDK creation: advanced

SDK architecture was used in addition to type-hinting as a part of research.

Quantitative research not available

The results of the impacts of a well-written SDK are judged with a common sense

and observations, however no quantitative research regarding speed is available

to tell the degree of the impact.

Advanced ORM SDK architecture revealed but not covered

One more REST API SDK design was revealed during writing of this thesis. ORM

(Object Relation Model) approach would be suited the best for integrations need-

ing to support full spectrum of CRUD operations on API endpoints and heavy API

usage. This type of architecture was not covered due the need for extensive re-

search of its complex architecture.

The revealed SDK designs will be useful in the future
As a web developer I had done plenty of API integration tasks and there did not
seem to be a single perfect SDK design approach for all of them. The research
revealed and solidified multiple satisfactory approaches for the future adoption in
order to improve the development efficiency.

39

REFERENCES

Brajesh D. 2017. API Management: An Architect's Guide to Developing and
Managing APIs for Your Organization. Read 20.11.2019.

Clariontech. 2019. 10 Reasons Why Laravel Is the Best PHP Framework for

2019. Accessed 19.1.2020. https://www.clariontech.com/blog/10-reasons-why-

laravel-is-the-best-php-framework-for-2019

Harvard Business Review. 2015. The Strategic Value of APIs. Accessed
10.1.2020. https://hbr.org/2015/01/the-strategic-value-of-apis

IBM. 2016. API Monetization. Accessed 10.1.2020. https://www.ibm.com/down-
loads/cas/L5Q82XR0

Internet World Stats. 2019. Accessed 8.1.2020. https://www.internet-
worldstats.com/stats.htm

Lambert J., Aulakh N. & Rickard T. 2015. Virtualization with Vagrant. Accessed
20.01.20. https://computationalmodelling.bitbucket.io/tools/vagrant.html

McKinsey. 2017. What it really takes to capture the value of APIs. Accessed
9.1.2020. https://www.mckinsey.com/business-functions/mckinsey-digital/our-
insights/what-it-really-takes-to-capture-the-value-of-apis

Paloviita, S. 2018. Digital Value Chain in API Economy. Accessed 9.1.2020.
https://medium.com/apinf/digital-value-chain-in-api-economy-37ce8771b54e

Programmable Web. 2019. Accessed 8.1.2020. https://www.programmable-
web.com/news/apis-show-faster-growth-rate-2019-previous-years/re-
search/2019/07/17

PSR-4. Class autoloading convention for PHP. Accessed 16.1.2020.

https://www.php-fig.org/psr/psr-4

Semantic Versioning 2.0.0. Accessed 16.1.2020. https://semver.org

Unifaun. Example of value chain service. Accessed 9.1.2020. https://www.uni-
faun.com/fi/tavarantoimittaja/saatavilla-olevat-kuljetusliikkeet

W3Techs. 2020. Market share of PHP. Accessed 11.1.2020.
https://w3techs.com/technologies/details/pl-php

Wikipedia. GraphQL. Accessed 21.01.20. https://en.wikipedia.org/wiki/GraphQL

Wikipedia. SOAP. Accessed 19.1.2020. https://en.wikipedia.org/wiki/SOAP

https://www.clariontech.com/blog/10-reasons-why-laravel-is-the-best-php-framework-for-2019
https://www.clariontech.com/blog/10-reasons-why-laravel-is-the-best-php-framework-for-2019
https://hbr.org/2015/01/the-strategic-value-of-apis
https://www.ibm.com/downloads/cas/L5Q82XR0
https://www.ibm.com/downloads/cas/L5Q82XR0
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://computationalmodelling.bitbucket.io/tools/vagrant.html
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/what-it-really-takes-to-capture-the-value-of-apis
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/what-it-really-takes-to-capture-the-value-of-apis
https://medium.com/apinf/digital-value-chain-in-api-economy-37ce8771b54e
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.php-fig.org/psr/psr-4
https://semver.org/
https://www.unifaun.com/fi/tavarantoimittaja/saatavilla-olevat-kuljetusliikkeet
https://www.unifaun.com/fi/tavarantoimittaja/saatavilla-olevat-kuljetusliikkeet
https://w3techs.com/technologies/details/pl-php
https://en.wikipedia.org/wiki/GraphQL
https://en.wikipedia.org/wiki/SOAP

40

Wikipedia. Integrated Development Environment. Accessed 19.1.2020.
https://en.wikipedia.org/wiki/Integrated_development_environment

Woods D., Brail G., Jacobson D. 2011. APIs: A Strategy Guide. Read
28.11.2019.

https://en.wikipedia.org/wiki/Integrated_development_environment

