

Ly Hong Hoang

State Management Analyses of the
Flutter Application

Metropolia University of Applied Sciences

Bachelor of Engineering

Mobile Solutions

Bachelor’s Thesis

17 November 2019

 Abstract

Author
Title

Number of Pages
Date

Ly Hong Hoang
State management analyses of the Flutter application

39 pages + 15 appendices
17 November 2019

Degree Bachelor of Engineering

Degree Program Information Technology

Professional Major Mobile Solutions

Instructors

Kari Salo, Principal Lecturer

The purpose of the thesis is to analyze three of the most popular state-management sys-
tems: Redux, Scoped Model and BLoC. Another purpose is to recommend which of the three
is the most suitable for Flutter. As Flutter is a new development tool, the best practice for
state-management has not been analyzed yet. Therefore, the thesis provides the first step
in finding the best practice when choosing a state-management system for a Flutter project.

The study was conducted by gathering different properties of multiple GitHub projects. The
properties were gathered by analyzing the size of each project as well as evaluating the
amount of projects existing in certain size group. The data was then used to create graphs
that illustrate the results of the study.

In conclusion, the study shows that BLoC is the most suitable state-management system for
Flutter, since BLoC is highly customized for Dart, which is Flutter’s own programming lan-
guage. In addition, the findings of the study could be used as the starting point for future
application architects when deciding which state-management to use. Furthermore, the
study can be built upon to develop the concept into a generally accepted best practice for
the development of Flutter.

Keywords Scoped Model, Redux, BLoC, Flutter, state-management sys-
tem

Contents

1 Introduction 1

2 Background 2

2.1 Discussion 2

2.1.1 BLoC 2

2.1.2 Redux 8

2.1.3 Scoped Model 14

2.2 Conclusion 20

3 State Management in Practice 22

3.1 Overview 22

3.2 Discussion 22

3.2.1 Introduction 22

3.2.2 Data Gathering Process 24

3.2.3 Results 26

4 Result Summary 30

5 Discussion 32

6 Conclusion 35

References 37

List of Abbreviations

BLoC Business logic component. A state-management system that was intro-

duced by Google at the 2018 annual Google developer conference named

Google I/O 2018 and is currently recommended by Google for the Flutter

application.

DBMS Database management system. Software for maintaining, querying and up-

dating data and metadata in a database.

OS Operating system. A set of software products that manages a computer

system’s hardware and software resources while providing the user with

common services.

1

1 Introduction

The purpose of this document is to analyze three stage-management systems recom-

mended for Flutter by the Flutter Development Team as well as the developer community

(Angelov, 2019). Another purpose is to give a recommendation on which system is pref-

erable for most Flutter developers.

At the time of writing this document, the tool is relatively new to the developer community:

The first version of Flutter was released on 4th December 2018 (Google Development

Team, 2018), two months prior to the initial writing of this document. Thus, suitable and

reliable long-term real-case examples of a working Flutter application implementing any

of the three recommended state management systems was lacking. Therefore, this doc-

ument aims to provide an academic perspective as well as simple studies upon this new

subject.

This document is by no means a scientific paper or report. The results and suggestions

given in this paper are not facts. The thesis simply provides discussion upon the subject

and provides a small study to support the author’s conclusions. Therefore, readers

should thoroughly consider other sources as well before deciding their course of actions.

2

2 Background

2.1 Discussion

As a state-management system is, at its core, a theory, there have been many state-

management systems developed by hobbyists and professionals alike prior to the crea-

tion of Flutter. However, at the time of writing this thesis, the official Flutter website and

blog posts seems to suggest that the Flutter development team along with the developer

community have identified three viable state-management systems that Flutter develop-

ers can choose from: BLoC, Scoped Model and Redux (Angelov, 2019). Based on the

suggestions from the Flutter team and its community, the thesis will solely be focused on

these three systems despite having many other options.

2.1.1 BLoC

2.1.1.1 Theory

The Business Logic Component, or BLoC, was created by Google and announced at

Google I/O 2018, which was a developer conference held by Google in California, the

United States in 2018. It is a new concept, and to comprehend it, developers must first

understand the theory behind the system as well as the basic concepts that BLoC will

utilize.

In a nutshell, the BLoC acts as a middleman between the data layer and the UI layer.

The BLoC is where all the business logics of an application resides. The basic function-

ality of the BLoC is to receive data/events from sources of information (i.e. data from a

backend or events created by the user’s interactions from other UI elements), apply busi-

ness logic dictated by the developers, which is usually in the form of mapping these

data/events to the application’s states, and finally publish these states to the UI elements

that are interested in these changes (see figure 1). (Opia, 2018).

3

Figure 1. BLoC Architecture (Angelov, 2019)

2.1.1.2 Example

To further demonstrate how the BLoC pattern works with Flutter in practice, the thesis

will use a simple example: a common Counter App.

Figure 2. A Counter App

4

The idea of the Counter App is simple. The users of the application will be given two

floating action buttons; the plus button will increment the number in the middle while the

minus will decrement the number (see figure 2).

Figure 3. Counter App BLoC Architecture

Mirroring the theory part, the Counter App when implementing the BLoC pattern, will

consist of two main components: the BLoC and the UI layer (since it is a simple applica-

tion, there will be no backend). The BLoC will receive increment or decrement events

generated by the UI layer and change the counter number state accordingly. Afterwards

the BLoC will publish this state change to the UI layer. The UI layer, on the other hand,

will receive interaction events from the users generated by either the plus button or the

minus button, and notify BLoC of these events. Furthermore, the UI layer also constantly

observes the counter number state exposed by BLoC to re-render the correct UI compo-

nent as soon as there are any new changes. In addition, besides the two main parts, the

application’s events and states are also represented by Dart classes to increase clarity

(see Appendix 1).

The Counter App will be implementing the flutter_bloc library and therefore will introduce

two new concepts: BlocProvider and BlocBuilder. BlocProvider provides the BLoC to its

5

children using the current context while BlocBuilder handles automatic re-rendering of

UI elements when a new app state is provided (Angelov, 2019).

The easiest way to understand how the Counter App works is by simply following the

flow of data/events. The flow starts when the user decided to press one of the two buttons

from the UI layer.

FloatingActionButton(onPressed: () =>

 BlocProvider.of<CounterBloc>(context). onIncrement ()

…

FloatingActionButton(onPressed: () =>

 BlocProvider.of<CounterBloc>(context). onDecrement ()

Listing 1. Floating action buttons receiving user’s inputs

The two callbacks, onIncrement() and onDecrement(), as showed in listing 1 will then

dispatch new events which will notify the BLoC of incoming user interactions as shown

below.

void onIncrement() {

 dispatch (IncrementEvent());

 }

void onDecrement() {

 dispatch (DecrementEvent());

 }

Listing 2. Floating action buttons’ callbacks dispatching events

The BLoC will then map these events to the application state by applying any business

logic and mutate any inner-state necessary to provide the UI with a new correct applica-

tion state as shown in listing 3.

Stream<CounterState> mapEventToState(

 CounterState currentState,

 CounterEvent event,

) async* {

 if (event is IncrementEvent) {

 yield CounterState(counter: currentState.counter + 1);

 } else if (event is DecrementEvent) {

 yield CounterState(counter: currentState.counter - 1);

 }

 }

Listing 3. Events being mapped

6

After the new application state has been returned by the BLoC, the UI layer will listen to

the changes and automatically re-render the correct component accordingly using flut-

ter_bloc library’s BlocBuilder widget (see listing 4).

body: BlocBuilder (

 bloc: BlocProvider.of<CounterBloc>(context),

 builder: (context, CounterState state) {

 return Center (

 child: Column (

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget> [

 Text (

 'You have pushed the button this many times:',

),

 Text (

 '${state.counter}',

 style: Theme.of(context). textTheme.display1,

),

],

),

);

 })

Listing 4. UI update according to state

After the re-rendering is completed, the UI will await further interaction from users and

begin the data cycle again.

2.1.1.3 Discussion

Table 1. The BLoC was made by Google, the same developers that have developed Flutter. It
was heavily recommended by Google as the go-to state-management system for Flut-
ter (Google Developers, 2018). However, the BLoC is not perfect; there are ad-
vantages and disadvantages of using this pattern, which can be seen in table 1.

7

Summary of advantages and disadvantages of the BLoC

Advantages Disadvantages

• BLoC was built for Flutter (Hracek,
2018)

• Pure functions are often implemented
inside the BLoC (Hracek, 2018)

• Freedom of methods to introduce
BLoC to the UI layer (Hracek, 2018)

• Reusability across different platforms
(Coca, 2018)

• Large application required many
BLoCs (Coca, 2018)

There are many advantages to using the BLoC pattern. Firstly, as mentioned above, the

BLoC was built by the same developers that built Flutter and, therefore, the BLoC and

Flutter are compatible. Flutter is a declarative and reactive Framework, which means

Flutter built its UI to reflect the current state of the application (declarative part). When

the state changes, the UI will get rebuilt (reactive part) (Hracek, 2019). Following this

principle, BLoC leverages Dart two of the most powerful features: streams and asynchro-

nous functions to make sure the state is reactive with the declarative UIs and to embrace

the asynchronous nature of UIs. The second advantage of using the BLoC is in the way

the BLoC is built: it is mostly comprised of pure functions. Pure functions are functions

that have their output value influenced by and only by their input. Thus, the readability /

maintainability of the BLoC increases, as the component is easy to debug, test and fol-

low. The third advantage of the BLoC lies in its flexibility in injection. Developers can

choose which methods to use when introducing the BLoC to the UI layers to best suit

the current architecture, let it be through Flutter’s inherited widget, third party BLoC pro-

viders or simple constructor pass-on. Finally, since BLoC uses Dart language, it can be

used across different Dart applications, which means it is not just Flutter specific.

Despite many advantages, there is one considerably important disadvantage that the

BLoC has: due to the nature of the pattern, most of the application’s business logics are

incorporated into the BLoC. Therefore, bigger applications with many business logics will

also have many BLoCs if the application uses the BLoC as the application state man-

agement system. As the number of BLoCs grow alongside the application size, it will

quickly become difficult to keep track of which BLoC is in charge of which UI component.

Hence for bigger applications, the BLoC is more suitable for handling the local state,

8

rather than an application wide state. In addition, performance can be an issue, as the

core concept of BLoC revolves around streams and asynchronous operation. With a big-

ger project, this could lead to a performance heavy application that hinders user experi-

ence with loading screens and waiting time. In summary, it is easy to over-engineer the

architecture of a large application if using the BLoC. It is not necessarily a pit-fall for

developers, but overall is a disadvantage that a developer must be aware of when de-

ciding to use the BLoC pattern.

2.1.2 Redux

2.1.2.1 Theory

At its core, Redux is similar to the BLoC: an event created by the user’s interaction will

dispatch an action, which mutates the inner state of the component. The UI components

will listen to some part of this inner state and will change accordingly. The main difference

between Redux and the BLoC is that the BLoC is a more customized version of Redux

since BLoC can leverages Flutter’s stream and sink feature to increase performance.

Figure 4. Redux architecture (Tahir, 2018)

9

Figure 4 illustrates a more detail representation of a Redux pattern. Firstly, the UI com-

ponent will receive an interaction from a user, which in turn triggers an action to be sent

to a reducer where this action is interpreted. In general, the purpose of a reducer is to

interpret an action, mutate and return a new inner state according to the action, and

finally update the store, which contains all the states of the application. Finally, the UI

component that is registered to the specific state will be change accordingly. At the end

of this cycle, the UI component will be idle and await the next user interaction to trigger

a new action, thus continue the cycle.

2.1.2.2 Example

As with the BLoC example, the same simple Counter App will be used to demonstrate

how Flutter uses Redux to manipulate the application’s state.

Figure 5. Flutter Redux Architecture

Before analyzing the Redux Architecture, a small explanation of what a reducer is, is

needed. In a redux application, a reducer is nothing more than a pure function that re-

ceive an old state and an action as its parameters. The reducer will mutate this old state

based on the action it receives and return the new state.

10

As seen in Figure 5, in practice Redux used in Flutter mirrors almost perfectly the Redux

theory. Firstly, the UI components that are stored in main.dart will react to the user’s

interaction, triggering actions that are defined in actions.dart. Afterwards, the action will

get dispatched to a reducer inside reducers.dart, where the old application state will get

mutated and returned. Finally, after a new state has been returned and stored within

states.dart, the UI components inside main.dart that are observing the states will change

accordingly.

The example above will be implementing a third-party library called flutter_redux, which

will reduce boilerplate code and increase efficiency. However, the new library will also

introduce two new concepts: StoreProvider and StoreConnector. Similar to BLoCPro-

vider, StoreProvider is a base widget that will pass Redux’s store, or in other words,

states to all of the StoreProvider descendant widgets. The descendant widgets will use

StoreConnector to request the state from the closest StoreProvider. StoreConnector also

handles subscriptions, which in turn, means the widget will automatically get notified and

updated by StoreConnector when a new state from StoreProvider is returned. (Egan,

2019)

To further understand how Redux architecture works inside Flutter, it is easiest to follow

the dataflow of a user’s interaction.

floatingActionButton: new StoreConnector<CounterState, OnCounterChanged>(

 converter: (store) {

 return (count) => store.dispatch(IncrementAction(count));

 },

 builder: (context, callback) {

 return new FloatingActionButton(

 onPressed: () => callback(2),

 tooltip: 'Increment',

 child: new Icon(Icons.add),

);

 }

)

Listing 5. FloatingActionButton dispatching an event to the store

As seen in listing 5, when a user presses the floatingActionButton, a callback will dis-

patch an IncrementAction to the store. The action will carry the current state of this spe-

cific widget to the store, where it is used to mutate the inner state (see listing 6).

11

Due to the simplicity of this demonstration application, IncrementAction is nothing more

than a class with a variable and a constructor.

class IncrementAction {

 int count;

 IncrementAction(this.count);

}

Listing 6. A simple action class

Afterwards, the store will use reducers to identify the action and mutate the inner state

accordingly.

CounterState counterReducer(CounterState previousState, dynamic action) {

 if (action is IncrementAction) {

 return CounterState(previousState.count + action.count);

 } else if (action is DecrementAction) {

 return CounterState(previousState.count - action.count);

 } else {

 return previousState;

 }

}

Listing 7. The reducer mutating an old state into a new one

In listing 7 above, a reducer is a pure function, checking the action that is passed in and

mutating the old state accordingly. The reducer will return a new state if there is any

mutation, or the old state, if it cannot find any action that matched.

The CounterState class as seen in listing 7 is the application state, the state that the

store will be holding (see listing 8 below):

class CounterState {

 static var empty = CounterState(0);

 int count;

 CounterState(this.count);

}

Listing 8. The application’s state

After a new state is returned, StoreProvider will notify all of it descendant widgets that

subscribe to the store via StoreConnector (see listing 9), and the widget will re-render

12

itself automatically. Afterwards, the widget will become idle and await a new user’s inter-

action.

body: new Center(

 child: new Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 new Text(

 'You have pushed the button this many times:',

),

 new StoreConnector<CounterState, String>(

 converter: (store) => store.state.count.toString(),

 builder: (context, viewModel) {

 return new Text(

 viewModel,

 style: Theme.of(context).textTheme.display1,

);

 },

),

],

),

)

Listing 9. The Text widget subscribing to the store will be re-rendered once a new state is re-
turned

Using the flutter_redux library, most of the boilerplate codes have been hidden from the

developer. The library hides the most important component of all, the store component,

which in charge of holding the application’s state, receiving the reducers, mutating the

state, dispatching actions and handling UI subscriptions. Therefore, the developer only

needs to define the application state, the reducer which dictates how to mutate the ap-

plication state, the actions and finally which widget should subscribe to the store, As a

result, the library dramatically reduces the codes needed to build the Redux architecture.

2.1.2.3 Discussion

The discussion will briefly explain the main advantage and disadvantage of Redux com-

pared to the BLoC. This is specifically due to the fact that the two state management

systems have similar ways of handling states. BloC was built from Redux. Thus, in many

ways, Redux is similar to the BLoC. Despite the similarities, Redux does not has the

performance advantage that the BLoC has, since Redux is not customized for Flutter like

the BLoC, However, since Redux was built as an all-purpose state management system,

13

it benefits from being flexible and compatible with the Flutter application that is large and

complex.

The table below will further showcase the advantages and disadvantages of using Redux

in detail.

Table 2. Advantages and disadvantages of using the Redux architecture

Advantages Disadvantages

• Redux is used by many developers,
there is a lot of community support
(Coca, 2018)

• Data is centralized, only one source of
truth (Boelens, 2019)

• Redux architecture produces many
files (Boelens, 2019)

• There are performance issues due to
a lot of code execution (Boelens,
2019)

• It is highly complex (Boelens, 2019)

There are two main advantages of using Redux. Firstly, Redux is an old concept. It was

initially created in 2015 by Dan Abramov and Andrew Clark (Abramov, 2015). As with

any old concept that has withstood the test of time, Redux accumulates a large commu-

nity of developers. As a result, there are many resources online, tutorials, guides and

forums, which make finding a solution much easier. Furthermore, a large and lively com-

munity also means Redux will change and evolve from time to time into a better version

of itself, as many developers within this community also become contributors to Redux’s

library. Secondly, there are three principles that Redux has. The first principle is single

source of truth, the second is state is read-only and finally the third is changes can only

be made with pure functions. These principles mean the data of a Redux architecture is

centralized: there is only one version of the data at any given moment. In addition, the

data cannot be changed, instead a copy of the old data will be changed. This new copy

is what will be returned. Furthermore, only a pure function can change the data... As a

result of these three principles, there is only one version of the data at any given time.

Therefore, the risk of unexpected behavior will be reduced and the application’s scala-

bility increase.

However, there are still disadvantages of using Redux. As everything is encapsulated

and separated, a Redux project generates a large number of files and directories, thus

making file management a daunting task. Furthermore, the increasing number of files

14

also means a larger application size, which is especially a problem if it is a native appli-

cation. Consequently, this would lead to performance issues, as there is more code to

be executed, more files to run and more logic to be calculated. Finally, as the project has

many files and directories, it grew in complexity, making the maintenance process slow

and troublesome.

In the end, most of the disadvantages also stem from the three principles that Redux

proposes, as with the advantages. The three principles that lie at the core of every Redux

application are double edge swords, rewarding developers with flexibility and scalability

if used correctly, or becoming a burden to the development process if misused.

2.1.3 Scoped Model

2.1.3.1 Theory

Before going into detail of what the Scoped Model architecture pattern is, it is beneficial

to understand the history behind the pattern. At the Google annual developer conference

in 2019, , Google announced a new project they have been working on, a new operating

system called Fuchsia. It is an open-source operating system that is considered by

Google as “experiments and investments” (Li, 2019). As the OS is open source, Fuchsia

exposed its repository to the community of developers, and as a result, the code base

was analyzed and understood by the community. However, developers started to notice

a pattern appearing repeatedly across the code. It was a state management pattern that

Google has been using throughout the development process of Fuchsia. Furthermore,

since Fuchsia used the native Flutter widgets throughout its UI development, the newly

found state management pattern was also highly compatible with Flutter. Subsequently,

some talented members of the community decided to isolate and build a library for Flutter

that made use of this pattern. This pattern is called Scoped Model. (Tensor programing,

2018)

Scoped Model was the basis for building the Flutter Redux library (Tensor programing,

2018). Many similarities can be found between the two state management patterns. How-

ever, as Scoped Model is the parent pattern that Redux inherits from, the concepts that

15

Scope Model proposes are more general compared to Redux. Scoped Model consists

of three components: Model, ScopedModel and ScopeModelDescendant. Firstly, a

Model is relatively similar to a state in Redux: it holds the state variables that the view

will be using. However, differ from the BLoC or Redux, the Models also holds the busi-

ness logics of the application (for the BLoC the business logics were inside of it dedicated

BLoC component while for Redux the business logics were inside reducers). Secondly,

a ScopedModel function similar to StoreProvider for Redux: it is a widget wrapper. The

ScopedModel wraps all widgets that require access to a specific Model instance. Finally,

the widget can subscribe to the Model changes by using ScopeModelDescendant, simi-

lar to how UI components can use StoreConnector to communicate with the application

state in Redux’s store.

In the end, even though the three concepts scoped model proposes almost mirror Redux,

the main difference between Redux and Scoped Model is data centralization: it is possi-

ble to have many Models and many instances of the same Model which controls different

parts of the widget tree. In contrast, with Redux there can only be one store and one

source of truth. In other words, the Redux pattern is a specific instance of Scoped Model

that uses only one Model to control the whole application. Consequently, scoped model

leaves room for developers to be flexible in designing their own architecture. The flexi-

bility will in turn make it possible to reduce the boiler plate code and simplify a smaller

project’s architecture.

2.1.3.2 Example

As with other examples in this section, a simple Counter App will be used to explain how

the Scoped Model works.

16

Figure 1. ScopedModel architecture

Figure 6 illustrates one way of using Scoped Model to handle the state of the simple

Counter App. The bare minimum architecture required for Scoped Model to work, is sim-

pler than both Redux and the BLoC.

As mentioned in the theory section, applications that used the Scoped Model pattern will

be using the scoped_model third party library, which was extracted from the Fuchsia OS

repository and developed separately by the community. The library has three main clas-

ses corresponding to the three main concepts: Model, ScopedModel and ScopedMod-

elDescendant. The functionality of each class remains similar to what was discussed in

the theory section.

Before going into further detail, it is vital to understand how an instance of the data can

be passed down the widget tree. The main.dart file is the entry point of the application.

It acts as a bridge between the UI elements defined inside counter_home.dart and the

data that is stored inside counter_model.dart. Hence, we will find the ScopedModel class

inside the main.dart file, Model classes inside the counter_model.dart file and the

ScopedModelDescendant class inside counter_home.dart.

void main() {

 runApp(MyApp(

 model: CounterModel(),

));

}

17

class MyApp extends StatelessWidget {

 final CounterModel model;

 const MyApp({Key key, @required this.model}) : super(key: key);

 @override

 Widget build(BuildContext context) {

 // At the top level of our app, we'll, create a ScopedModel Widget. This

 // will provide the CounterModel to all children in the app that request

it

 // using a ScopedModelDescendant.

 return ScopedModel<CounterModel>(

 model: model,

 child: MaterialApp(

 title: 'Scoped Model Demo',

 home: CounterHome('Scoped Model Demo'),

),

);

 }

}

Listing 1. CounterModel initialization

As seen in listing 10, the application first creates an instance of CounterModel, which

inherits from the scoped_model library’s Model class (see listing 11). This instance then

gets passed down to the root widget MyApp. As a result, the child widgets of MyApp will

have reference to the instance of CounterModel. Afterwards, inside the CounterHome

class, the instance of CounterModel is retrieved by using ScopedModelDescendant (see

listing 12).

class CounterModel extends Model {

 int _counter = 0;

 int get counter => _counter;

 void increment() {

 // First, increment the counter

 _counter++;

 // Then notify all the listeners.

 notifyListeners();

 }

}

Listing 2. CounterModel class inherited from the Model class

18

floatingActionButton: ScopedModelDescendant<CounterModel>(

 builder: (context, child, model) {

 return FloatingActionButton(

 onPressed: model.increment,

 tooltip: 'Increment',

 child: Icon(Icons.add),

);

 },

)

Listing 3. Retrieving the CounterModel instance from the parent widget

By wrapping the parent widget with ScopedModel and wrapping the child widget that

needs access to the model with ScopedModelDescendant, the application has success-

fully passed the instance of the model to other widgets down the widget tree while making

sure that there is only one version of the instance exist at any given time.

body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text('You have pushed the button this many times:'),

 // Create a ScopedModelDescendant. This widget will get the

 // CounterModel from the nearest parent ScopedModel<CounterModel>.

 // It will hand that CounterModel to our builder method, and

 // rebuild any time the CounterModel changes (i.e. after we

 // `notifyListeners` in the Model).

 ScopedModelDescendant<CounterModel>(

 builder: (context, child, model) {

 return Text(

 model.counter.toString(),

 style: Theme.of(context).textTheme.display1,

);

 },

),

],

),

),

Listing 4. The Text widget wrapped by ScopedModelDescendant

Since the individual widget has access to the model instance, it is not difficult to under-

stand how the data flow inside a Scoped Model application. For example, when the user

clicks on the floating action button, a callback is fired. This callback connects directly to

the increment method of the model (see listing 12), which in turn changes the inner var-

iable of the model (see listing 11). Afterwards, the model will call a function notifying

ScopedModel that there is a data change and that the child widgets need to be refreshed

(see listing 10). Finally, the ScopedModel will notify all ScopedModelDescendant classes

19

of the new change, causing the text widget that is being wrapped by the ScopedMod-

elDescendant to refresh, showing the new data (see listing 13). In the end, the widgets

become idle again, awaiting new interaction from the user.

2.1.3.1 Discussion

As Scoped Model was initially developed by Google to be used for Fuchsia OS, there

are no major disadvantages to this management system. However, it is not perfect. The

table below summarizes the main advantages and disadvantages of using Scoped

Model:

Table 1. Advantages and disadvantages of using Scoped Model (Boelens, 2019)

Advantages Disadvantages

• Requires less file management

• Is simple to use

• Is flexible

• Model class stores both logic and
data

• There are performance issues due to
all components getting refreshed
when the model changes

• Difficult to find when to notify widgets
that that there is a data change

There are a few key advantages Scoped Model has compared to other state manage-

ment systems. Firstly, as seen in the example section, the architecture of a Scoped

Model application is simpler than that of a Redux or BLoC one. Scoped Model simply

requires less to set up, less files to manage and, as a result, a cleaner project structure.

As a result, a larger project that makes use of Scoped Model will be easier to understand

and study for new developers that want to join the team. In addition, Scoped Model is

also simpler to use. The state management system does not require understanding of

Stream / Sink similar to the BLoC, or Events, Reducers, Store similar to Redux. The

concept Scoped Model proposes is easy to understand and quick to apply. Thus, Scoped

Model is the most beginner-friendly pattern out of the three patterns mentioned. Finally,

as Scoped Model is the basis of Redux, and the BLoC is just a Flutter-customized version

of Redux, Scoped Model is the most generic state management system compared to

Redux and the BLoC. Hence, it is more flexible, and the developer can freely design an

architecture that is suitable for their application based on Scoped Model.

20

Even though being generic is one advantage of Scoped Model, many disadvantages

also stem from Scoped Model being too generic. While Scoped Model is simple and

flexible, and it leaves room for more design capability, using the bare Scoped Model itself

without any customization will cause problem cause problems. The most problematic

part of using Scoped Model is how to handle the Model class. By default, the Model class

stores both data and logic; thus, for a small to medium application where the Model class

never grows much in complexity, it is perfectly acceptable and sometime preferable.

However, as the application becomes big, the Model class becomes more complex.

Without any customization from the developers in the form of functionality separation

and encapsulation, the Model class will become unwieldy. In addition, as the Model class

also handles data change notifications (see listing 11), complex Model classes create a

problem with when and where to notify the widget listener. Incorrect data change notifi-

cations will result in a widget refresh that is populated with old data or no data at all.

Finally, some performance issues also stem from the Model class. As it is the only class

that holds data and logic, the Model class become the main data source to many com-

ponents, not just UI widgets but service and such. Therefore, when a data change noti-

fication is being fired, all components that are tied to the Model class get refreshed. This

could lead to performance issues, as in reality not all components need a refresh. In

conclusion, without proper design and customization, a large application that implements

Scoped Model will suffer more performance issues than those which implement the

BLoC or Redux.

2.2 Conclusion

So far, the concepts of the BLoC, Redux and Scoped Model have all been explained.

Based on the theory section, the three state management systems will be summarized

using two key criteria: performance and scalability.

Firstly, the performance of the three state management systems are different. For the

BLoC, as expected from a state management that is specifically customized to work with

Flutter (Hracek, 2018), the performance is high. One of the most prominent features of

the BLoC is that it makes used of Flutter’s Stream, which boost the speed in which events

are fired and received. In addition, as BLoC provided flexibility by letting developers de-

cide how to connect the business logic with the UI layer (Hracek, 2018), if configured

21

correctly, this flexibility could boost performance even more by reducing the amount of

code needed to be executed. As for Scoped Model, it is difficult to say anything about

the performance. Even though it is developed by Google for Fuchsia and thus some

compatibility has already been considered, Scoped Model performance is influenced by

the size of the application, and in most parts many customizations are required from the

developers for it to perform well. The Model class if used straight from the library without

any changes will create performance problems, especially for larger applications, due to

the fact that too many functionalities are being carried by the Model class. Furthermore,

as mentioned in previous section, since the Model class acts as the main data source

for multiple components and services, when data change is notified, not every compo-

nent requires a refresh. Therefore, it is safe to assume that the more the application

grows, the worse the performance of Scoped Model. Finally, for Redux, as expected

from a state management that has withstood the test of time, there are not a lot of per-

formance issues. Even though it is not as high performance as BLoC, one can still argue

that, since developers are more familiar with the concepts, it is easier and faster to de-

velop a high-performance architecture using Redux than other state management. How-

ever, one pitfall developers need to be mindful about is complexity. Redux is not as re-

fined for Flutter as BLoC and therefore could create many more files and folders. This

will increase the amount of code needed to be executed as well as create severe file

management problems for a larger size application.

Secondly, each state management system seems to work well with a specific application

size. Since Scoped Model is the simplest and require the least amount of code to set up,

a small to medium size application is favorable. However, when an application becomes

big, Redux and BLoC seem to work better. For Redux, the complexity is a trade-off for

scalability, as Redux can support complex architecture and, therefore, is suitable for a

big application. BLoC, however, it is not as complex as Redux, but it is more specific

than Scoped Model. Therefore, it does not excel in any type of application size but rather

is useful for all sizes.

22

3 State Management in Practice

3.1 Overview

The theory section has provided a closer look at the three prominent state management

systems, the advantages and disadvantages as well as how suitable each of the systems

is for different project types. However, these are assumptions made based on guides

and research documents. Therefore, in the practice section, these assumptions will be

further analyzed through real-case examples.

Before beginning the practical part, it is worth noting about a change in the thesis content.

Initially prior to the thesis, the practical section was planned to be an analysis of a me-

dium size project made by the author. Observations done based on the analyses were

to support the theory part. However, after finishing the theory part and having gathered

more information, the author has learned considerably more about the topic and con-

cluded that the initial plan was flawed, as it was unachievable: the author would have

needed to develop multiple examples to verify each assumption which would have taken

too much time. This made the project not feasible. Therefore, after reconsideration, the

practical part was changed so that real-case examples were taken from an outside

source instead, which would solve both problems.

3.2 Discussion

3.2.1 Introduction

As mentioned, multiple real-case projects taken from an outside source - specifically,

GitHub, - were used as data to validate the assumptions made in the theory part, with

each assumption being based on one specific characteristic. However, not all character-

istics are demonstrable by the current data gathering method. Therefore, some assump-

tions were not verifiable.

To summarize, nine assumptions were made based on three characteristics which pre-

sented in the table below.

23

Table 2. Assumptions made based on the theory section

Characteristics BLoC Scoped Model Redux

Complexity / Initial
setup size

Medium in complex-
ity, requires some
setup

Low in complexity,
simple and easy to
setup

High in complexity,
requires many initiali-
zations that will hin-
der performance if ar-
chitecture not de-
signed properly

Performance
High, made specifi-
cally for Flutter

Low, requires many
custom optimizations

Medium to high if de-
velopers have more
experience

Scalability / Flexibil-
ity

High, suitable for all
application sizes, alt-
hough prefers me-
dium to large project

Low, not suitable for
large size applica-
tions, a small to me-
dium project is pre-
ferred

High, suitable for me-
dium to large size ap-
plications, too com-
plex for a small pro-
ject

The three characteristics were not chosen by random. They were chosen by determining

the final goals of multiple software design principles. The author conducted a small study

to gather some of the most popular software design principles and to analyze what the

final goal each principle aims to achieve is. For example, the final goal of DRY (Don’t

Repeat Yourself) is to increase performance as well as make it scalable while SOLID

(Single responsibility, Open/closed/, Liskov substitution, Interface segregation, Depend-

ency inversion) is a combination of multiple smaller principles that aim to increase per-

formance, reduce code size and make the application scalable. However, analyzing what

these design principles mean and how they affect software is a different topic and out of

the scope of this document and therefore will not be addressed. Only the results of the

study are reported. In the end, the three characteristics mentioned in table 4 come up

repeatedly as the final goals of these design principles. As the design principles were

presented as guidelines to develop a good software product, the characteristics should

hold some high value toward creating quality software. Therefore, these characteristics

were used to determine the quality of the state-management system as well.

In the next section, the author will attempt to demonstrate these assumptions using data

from real-case projects. However, since it is too difficult to test the performance of multi-

ple applications in a short amount of time, the performance characteristic was excluded

24

from testing and the three assumptions correlating to the performance characteristics will

be considered as correct.

3.2.2 Data Gathering Process

Before analyzing the data, the gathering process of the data must be discussed first.

Since each characteristic required a different approach, the gathering process needs to

be explained separately in order to understand the results best.

Firstly, for the complexity characteristic, the sample size was nine projects, taken ran-

domly from the total repositories within GitHub, three for each of the state-management

systems. Complexity here means how difficult it is for new developers to understand the

code and how quick it is for new developers to utilize the already made state-manage-

ment architecture to create a new UI. Hence, complexity in this situation dictates how

easy to use the state-management is. In a nutshell, a good, easy-to-use library would

hide most of its abstractions and concepts, only exposing some simple functions for the

developer to interact with it. Therefore, the goal of this data gathering process is to return

the percentage that represents the amount of code taken up by the state management

development compared to the total amount of code for that project. The lower the per-

centage is, the better, as it means the library is efficient at hiding concepts difficult to

understand, making the code less complex and more understandable. Initially, the prop-

erty chosen to evaluate this percentage was the number of lines of code. However, this

proved to be a mistake as different developers have different coding styles, using slightly

different coding syntax. In addition, each project potentially has multiple developers and

collaborators. As a result, the data is inconsistent and incorrect as it is impossible to take

into account the coding style of each developer. Therefore, another property was chosen:

the size of the file in kilobytes. Instead of calculating the number of lines the state man-

agement code has taken up, the file size of the whole state management folder was

used, bypassing the developer’s coding style and returning more consistent data. Finally,

using a simple percentage formula, the amount of the project that the state management

code has taken up was calculated. These final percentages will be used to conclude

whether the assumption made in the theory part on the complexity characteristic is cor-

rect or not.

25

Secondly, for the scalability characteristic, the advance search API of GitHub was used

to expand the sample size to all repositories existing in GitHub. The goal for this data

gathering process is to return the percentage that represents the number of projects

within a project size group (small, medium or large size project group) compared to the

total number of projects. In order to retrieve these percentages, the process of gathering

data was as follows: the total number of GitHub repositories were divided into many small

groups based on the project size, with each group having the maximum size difference

of 2,000 KB. The only exception from this rule is the beginning and end group, which will

be “less than 1,000 KB” and “more than 19, 000 KB” respectively. Within each of these

small groups, the total amount of repositories was registered and used to calculate the

percentage of the number of projects this group has taken from the total amount of re-

positories on GitHub. Finally, these percentages will be used to judge the preciseness of

the scalability characteristic

The data gathering process for the scalability characteristic was particularly difficult, en-

countering many problems along the way. Initially, the process of choosing the sample

set was similar to the complexity characteristic, picking nine projects randomly from

GitHub with three projects for each state management system. However, further re-

search showed that it is possible to expand the sample size by using the GitHub advance

search engine. Even though this method produced much more data, the only property

that can be evaluated was the total size of the project. Therefore, it could not be used for

the complexity characteristic’s data gathering process. Thus, this data gathering method

was not brought over to be used for the complexity characteristic’s data. Another chal-

lenge occurring during the gathering process was determining the maximum difference

in size for each small group. Initially, the amount was set to 5,000 KB, which proved to

be incorrect. The data was not divided finely enough, and there was a big leap between

data points, which made it impossible to draw any conclusions. The second attempt was

to set the amount to 100 KB, which is incorrect also: the data was too finely divided,

producing many data points. In this case, the difference between data points was too

little which meant that the plotted graph was almost a horizontal line. The third attempt

to set the amount to 2,000 KB was successful, and it properly showed the changes in

the number of projects based on the project size, which is what the goal required. In the

end, even though many failed attempts resulted in a delay with the data gathering pro-

cess, the data points gathered are valid, and they enable drawing conclusions.

26

3.2.3 Results

After the data gathering process, the raw data can be summarized and roughly pro-

cessed to make sense of the data. The two tables below summarize what was gathered.

For the complexity characteristic, the raw data is summarized in the third and fourth col-

umn in the table below.

Table 3. Results of data gathering on the complexity characteristic

Project type Project link
Total code
size (in KB)

Total code size
for state manage-
ment (in KB)

Complexity
percentage

Scoped model My Movies 15.7 5.1 32.48%

Scoped model Flutter Products tutorial 23.8 4.84 20.33%

Scoped model Flutter Flip 29.1 7 24.05%

Redux inKino 79.7 28.9 36.26%

Redux Flutter Shopping-cart 9.53 3.51 36.83%

Redux Flutter Mobile 2920 655 22.43%

BLoC Flutter Shopping-cart 5.32 1 18.79%

BLoC Deer 232 44.98 19.38%

BLoC Chillify 88.2 9.05 10.2%

Based on columns 3 and 4 in table 5, it is possible to calculate the complexity percentage

of code dedicated to the development of state-management, which can be seen in col-

umn 5, by using the following formula:

https://github.com/SAGARSURI/MyMovies
https://github.com/rohan20/flutter-products-tutorial/
https://github.com/RedBrogdon/flutterflip
https://github.com/roughike/inKino
https://github.com/pszklarska/flutter_shopping_cart
https://github.com/invoiceninja/flutter-mobile
https://github.com/junjizhi/flutter-shopping-cart
https://github.com/aleksanderwozniak/deer
https://github.com/KarimElghamry/chillify

27

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑑𝑒 𝑠𝑖𝑧𝑒 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 𝑚𝑎𝑛𝑎𝑔𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑑𝑒 𝑠𝑖𝑧𝑒
× 100

The complexity percentages are independent of the individual project and were used to

analyze the results presented in the summary and discussion section.

For the scalability characteristic, the raw data is presented in table 6.

Table 4. Result of data gathering on the scalability characteristic

Size Type
Scoped Model (in

number of projects)
Redux (in num-
ber of projects)

BLoC (in number
of projects)

<1000kb 2643 896 7487

1000kb-3000kb 5203 2916 13999

3000kb-5000kb 2653 1371 4083

5000kb-7000kb 1568 702 3071

7000kb-9000kb 898 386 1742

9000kb-11000kb 505 252 695

11000kb-13000kb 310 146 634

13000kb-15000kb 200 92 349

15000kb-17000kb 119 58 187

17000kb-19000kb 91 50 38

>19000kb 316 116 393

28

To be able to compare the data of each column with each other, the data must be inde-

pendent of each row and, therefore, must be converted into percentage. Thus, each data

point can be further refined into percentage units by using the formula given below.

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑓𝑜𝑟 𝑎 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒

× 100

For example, to find the percentage of scoped model projects in group size <1000 KB

that had the total number of projects 2643 + 897 +7487 = 11026, we have:

2643

11026
× 100 = 23.97%

This process is repeated for all cells in table 6, and the results of the computation process

are shown in table 7 below.

Table 5. Results of data gathering regarding the scalability characteristic (refined)

Size Type
Scoped Model (in

percentage)
Redux (in per-

centage)
BLoC (in percent-

age)

<1000kb 23.97% 8.12% 67.91%

1000kb-3000kb 23.52% 13.18% 63.3%

3000kb-5000kb 32.72% 16.91% 50.37%

5000kb-7000kb 29.35% 13.14% 57.51%

7000kb-9000kb 29.67% 12.75% 57.58%

9000kb-11000kb 34.77% 17.35% 47.88%

29

11000kb-13000kb 28.44% 13.39% 58.17%

13000kb-15000kb 31.2% 14.35% 54.45%

15000kb-17000kb 32.69% 15.93% 51.38%

17000kb-19000kb 50.8% 27.93% 21.27%

>19000kb 38.3% 14.06% 47.64%

The percentages in table 7 are independent of each row and were used to analyze the

result in discussion section.

30

4 Result Summary

For the results of the complexity characteristic which was demonstrated in table 5, it is

possible to refine the data even more by calculating the average complexity percentage

of each state management system using the formula given below.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

=
𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑠 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑡𝑎𝑡𝑒 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑡𝑎𝑡𝑒 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡

The results of the calculation are illustrated in the table below.

Table 6. Average complexity percentage of each state management system

Scoped Model Redux BLoC

25.62% 31.84% 16.12%

Table 8 represents the data in its most concentrated form and will be used for the final

discussion of the practical section as well as the conclusion of the thesis.

For the results of the scalability characteristic, it was initially planned that the data will be

divided into three groups of projects depending on the size (small, medium and large

size projects) of each group. The average percentage will be calculated and used to

analyze the results. However, upon further research it is clear that the project size cate-

gorization is a wide topic on its own and that there are multiple variables such as the

number of technologies, the number of developers and developers’ various experiences

(Borysowich, 2010). In other words, it is not just the physical byte size of the project that

is important when calculating a project’s size. Therefore, to simplify the summary pro-

cess, the data was instead plotted into a graph and analyzed base on the graph’s trend.

The figures are illustrated in figure 7 below,

31

Figure 2. Difference in projects’ state management usage per size group

Figure 7 demonstrates the popularity of each state management when the size of the

project increases. This data will be used in the discussion section to analyze the validity

of the assumptions made about the scalability characteristic in the theory part.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scoped Model Redux BLoC

32

5 Discussion

Before analyzing the data, one should quickly be reminded of what assumptions need to

be proven. To evaluate the viability of the three state-management systems, this docu-

ment uses three characteristics: complexity / initial setup size, performance and scala-

bility. However, the performance characteristic is difficult to be verified. Therefore, the

performance assumption is considered to be correct. The performance assumption sug-

gests that BLoC will have the most performance as it is a special version of Redux that

takes advantages of Dart language’s properties such as streams and asynchronous

functions. Redux, as a generalized version of BLoC comes in second while Scoped

Model, due to its extreme simplicity, comes in last. For the other two assumptions, com-

plexity and scalability, these assumptions can be somewhat verified by gathering data of

projects from GitHub, and therefore, it is the focus of this discussion section. The com-

plexity and the scalability assumptions suggest that Redux is the most complicated to

setup and maintain, even though the trade-off would be it being easily scalable. On the

other hand, BLoC is a simpler version of Redux while still maintain the high scalability

Finally, Scoped Model is the simplest state management system out of the three, but it

is not as scalable.

For the complexity assumption, table 8 from the results summary section clearly demon-

strates that it is true Redux is the most complex out of the three, coming in at approxi-

mately 32%. However, interestingly the second place is taken by Scoped Model, and not

BLoC, with the complexity percentages being approximately 26% and 16% respectively.

This could be due to the Scoped Model in its purest form is too simple to be used on any

project that is not a prototype project. Therefore, developers must write additional code

to back up Scoped Model, which in turn increases the complexity percentage. Lastly,

BLoC seems to be the least complex, or at least it requires the smallest amount of setup

for the project to run. Again, this could be due to BLoC being made specifically for Flutter.

This means the code is cleaner, it requires less setup and it hides most of the complex

logic behind libraries, exposing only simple functions for developers to interact with. In a

nutshell, after evaluating the data, the complexity / initial setup assumption could be

modified. Redux is the most complicated state management system while BLoC is the

simplest and easiest to setup the state management system for Flutter.

33

Lastly, for the scalability assumption, figure 7 illustrates the popularity trend of the three-

state management systems when projects grow. However, the data from two ends of the

spectrum at <1,000 KB and >19,000 KB should be neglected due to these data being

inconsistent. These data does not have the 2,000 KB size difference similar to the other

data that the chart demonstrate. In addition, the data point at 17,000 KB-19,000 KB

should be bypassed as well, since the data point creates too great of a difference be-

tween the rest of the data points and is therefore most likely an outlier in the graph. In

the end, figure 7 can be modified to be figure 8, as shown below.

Figure 3. Difference in projects’ state management usage per size group after removing outliers

The results summarized in figure 8 could be used to validate the scalability assumption

by analyzing the popularity of the state management systems throughout the project size

group. For the BLoC, it seems the assumption is correct: the BLoC maintains around

50% popularity throughout all groups, from small to large, meaning the BLoC is highly

scalable and is the preferred choice of developers regardless of project size. However,

when it comes to Redux, the data show the opposite of the assumption: Redux is the

least popular state-management system throughout all group sizes. The reason behind

this could be that Scoped Model is not as bad with scalability and that the simplicity

Scoped Model brought to the project outweighs it disadvantages. The simple architecture

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Scoped Model Redux BLoC

34

Scoped Model provided will result in easier collaboration and faster development speed

for projects, which are two crucial aspects for open source projects, since these projects

often have a long list of collaborators and must constantly evolve to suit the needs of the

ever-growing community. Consequently, when choosing between Redux and Scoped

Model, the most logical choice for GitHub developers, while considering which state man-

agement their open source project would take, is Scoped Model. Therefore, on paper

Redux might be more scalable than Scoped Model code-wise; in reality when collabora-

tion and speed is emphasized, Scoped Model wins over. However, as a result, due to

the data source heavily influencing the data gathered, the results presented in the previ-

ous section cannot be used to validate the assumption anymore due to bias created by

lack of generalization. Despite the data being invalidated for a general use case, the

conclusion could still be drawn in the scope of open source projects. Therefore, the

scalability assumption can be modified as follows: for open source projects, the BLoC

has the highest scalability while Redux has the lowest scalability. This is due to the na-

ture of open source projects: open source projects required a lot of collaborations and

speed, both of which Scoped Model, with its simplicity, excel at.

In a nutshell, after analyzing the data and using it to validate the assumptions, the con-

clusion can be drawn: For open source projects, out of all state management systems,

BLoC is the simplest and easiest to setup, with a high performance and the highest

scalability to match. On the other hand, Redux is the most difficult and complex to setup,

with marginally high performance and the lowest scalability. Lastly, Scoped Model re-

quires medium setup with medium performance and medium scalability.

35

6 Conclusion

Initially, the goal of the thesis was to answer one question: between the three most com-

mon state management systems, BLoC, Redux and Scoped Model, what is the most

suitable state-management system for Flutter? In the end, the results of the research

managed to answer just that. While Redux is a high-performance model, it is too complex

and therefore not ideal in modern software development where collaboration is empha-

sized. As for Scoped Model, the state-management system is easy to understand, and

even though not too high in performance and scalability, Scoped Model’s trade-offs are

still mostly acceptable. Finally, BLoC, which is made for Dart, is a high-performance and

scalable state-management system built with simplicity in mind; hence, it inherits all the

advantages Scoped Model has with none of the disadvantages. Therefore, in conclu-

sion, BLoC is the most suitable state-management system for Flutter at the time of writing

this document.

As Flutter is relatively new in the software development community, not many best prac-

tices have been set yet. Thus, the conclusion above could potentially play an important

role as it represents the first step in creating a new best practice. In the end, after multiple

further studies have been conducted, the conclusion drawn based on the thesis could be

developed even more until it becomes a mature concept and could be added as a new

best practice for the development of Flutter. The productivity boost once the conclusion

has been developed into a best practice could be tremendous, as knowing beforehand

what the most ideal state-management system is could help an application architect de-

sign an application structure to be future-proof, which would save valuable development

time. However, for the time being, as the conclusion drawn from the thesis is not yet a

mature concept, developers should take the statement “BLoC is the most suitable state-

management system for Flutter” with precautions.

In conclusion, it is recommended for future studies based on this document to further

develop the conclusion into a mature concept. However, for future work, there are multi-

ple aspects of the research that should be improved to ensure higher accuracy. Firstly,

the sample size should be increased to include more projects: since time is restricted,

current research conducted for this thesis could not include as big sample size as needed

and therefore the final data could potentially be biased and contain more human error

36

than it should. Secondly, the project types should be expanded further beyond the scope

of GitHub to include also open-source projects from other platforms as well as closed-

projects made by senior developers. This will ensure the conclusion drawn will be uni-

versal and not tied to specific scope. Lastly, future research should be conducted

throughout a longer period. As with any young development tools, Flutter’s development

trend could fluctuate more than the development trend of an older, more mature tools;

hence, a longer data gathering process could average out this fluctuation.

37

References

Abramov, D., 2015. Three Devs and a Maybe [Interview] (6 November 2015).

Angelov, F., 2019. BLoC package. [Online]

Available at: https://pub.dev/packages/bloc

[Accessed 25th April 2019].

Angelov, F., 2019. Dart Packages. [Online]

Available at: https://pub.dartlang.org/packages/flutter_bloc

[Accessed 19 February 2019].

Angelov, F., 2019. Flutter. [Online]

Available at: https://flutter.io/docs/development/data-and-backend/state-mgmt/options

[Accessed 18 2 2019].

Boelens, D., 2019. Didier Boelens. [Online]

Available at: https://www.didierboelens.com/2019/04/bloc---scopedmodel---redux---

comparison/

[Accessed 21 June 2019].

Borysowich, C., 2010. Toolbox. [Online]

Available at: https://it.toolbox.com/blogs/craigborysowich/project-size-and-complexity-

calculation-form-template-060210

[Accessed 25 October 2019].

Coca, J., 2018. Let me help you to understand and choose a state management

solution for your app. [Online]

Available at: https://medium.com/flutter-community/let-me-help-you-to-understand-and-

choose-a-state-management-solution-for-your-app-9ffeac834ee3

[Accessed 26 February 2019].

38

Egan, B., 2019. Dart Packages. [Online]

Available at: https://pub.dev/packages/flutter_redux

[Accessed 17 June 2019].

Google Developers, 2018. Build reactive mobile apps with Flutter (Google I/O '18).

[Online]

Available at: https://youtu.be/RS36gBEp8OI

[Accessed 26 February 2019].

Google Developers, 2018. Technical Debt and Streams/BLoC (The Boring Flutter

Development Show, Ep. 4). [Online]

Available at: https://youtu.be/fahC3ky_zW0

[Accessed 26 February 2019].

Google Development Team, 2018. Google Developers. [Online]

Available at: https://developers.googleblog.com/2018/12/flutter-10-googles-portable-ui-

toolkit.html

[Accessed 18 2 2019].

Hracek, F., 2018. Build reactive mobile apps in Flutter — companion article. [Online]

Available at: https://medium.com/flutter-io/build-reactive-mobile-apps-in-flutter-

companion-article-13950959e381

[Accessed 26 February 2019].

Hracek, F., 2019. Start thinking declaratively. [Online]

Available at: https://flutter.dev/docs/development/data-and-backend/state-

mgmt/declarative

[Accessed 26 February 2019].

Li, A., 2019. 9TO5Google. [Online]

Available at: https://9to5google.com/2019/05/09/what-is-google-fuchsia/

[Accessed 16 June 2019].

39

Opia, C. E.-G., 2018. Medium Free Code Camp. [Online]

Available at: https://medium.freecodecamp.org/how-to-handle-state-in-flutter-using-the-

bloc-pattern-8ed2f1e49a13

[Accessed 19 February 2019].

Reso Coder, 2019. Flutter BLoC library tutorial. [Online]

Available at: https://github.com/ResoCoder/flutter-bloc-library-tutorial

[Accessed 19 February 2019].

Tahir, N., 2018. hackermoon. [Online]

Available at: https://hackernoon.com/lessons-learned-implementing-redux-on-android-

cba1bed40c41

[Accessed 16 June 2019].

Tensor programing, 2018. steemit. [Online]

Available at: https://steemit.com/utopian-io/@tensor/managing-state-with-the-scoped-

model-pattern-in-dart-s-flutter-framework

[Accessed 16 June 2019].

Appendix 1

 1 (15)

Appendix: Counter App code

Counter App code for BLoC

abstract class CounterEvent {}

class IncrementEvent extends CounterEvent {}

class DecrementEvent extends CounterEvent {}

counter_event.dart

class CounterState {

 final int counter;

 const CounterState({this.counter});

 factory CounterState.initial() => CounterState(coun-

ter: 0);

}

counter_state.dart

import 'package:bloc_library_tut/counter_bloc.dart';

import 'package:bloc_library_tut/counter_state.dart';

import 'package:flutter/material.dart';

import 'package:flutter_bloc/flutter_bloc.dart';

Appendix 1

 2 (15)

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Flutter Demo',

 theme: ThemeData(

 primarySwatch: Colors.blue,

),

 home: MyHomePage(title: 'Flutter Demo Home

Page'),

);

 }

}

class MyHomePage extends StatefulWidget {

 MyHomePage({Key key, this.title}) : super(key: key);

 final String title;

 @override

 _MyHomePageState createState() => _MyHomeP-

ageState();

}

class _MyHomePageState extends State<MyHomePage> {

 final _counterBloc = CounterBloc();

 @override

 Widget build(BuildContext context) {

 return BlocProvider(

 bloc: _counterBloc,

Appendix 1

 3 (15)

 child: CounterWidget(widget: widget),

);

 }

 @override

 void dispose() {

 _counterBloc.dispose();

 super.dispose();

 }

}

class CounterWidget extends StatelessWidget {

 const CounterWidget({

 Key,

 @required this.widget,

 }) : super(key: key);

 final MyHomePage widget;

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(widget.title),

),

 body: BlocBuilder(

 bloc: BlocProvider.of<CounterBloc>(context),

 builder: (context, CounterState state) {

 return Center(

 child: Column(

 mainAxisAlignment: MainAxisAlign-

ment.center,

 children: <Widget>[

 Text(

Appendix 1

 4 (15)

 'You have pushed the button this

many times:',

),

 Text(

 '${state.counter}',

 style: Theme.of(con-

text).textTheme.display1,

),

],

),

);

 }),

 floatingActionButton: Row(

 mainAxisAlignment: MainAxisAlignment.end,

 children: <Widget>[

 FloatingActionButton(

 onPressed: () =>

 BlocProvider.of<CounterBloc>(con-

text).onIncrement(),

 tooltip: 'Increment',

 child: Icon(Icons.add),

),

 SizedBox(width: 10),

 FloatingActionButton(

 onPressed: () =>

 BlocProvider.of<CounterBloc>(con-

text).onDecrement(),

 tooltip: 'Decrement',

 child: Icon(Icons.remove),

),

],

),

);

 }

Appendix 1

 5 (15)

}

main.dart

import 'package:bloc/bloc.dart';

import 'package:bloc_library_tut/counter_event.dart';

import 'package:bloc_library_tut/counter_state.dart';

class CounterBloc extends Bloc<CounterEvent, Counter-

State> {

 void onIncrement() {

 dispatch(IncrementEvent());

 }

 void onDecrement() {

 dispatch(DecrementEvent());

 }

 @override

 CounterState get initialState => CounterState.ini-

tial();

 @override

 Stream<CounterState> mapEventToState(

 CounterState currentState,

 CounterEvent event,

) async* {

 if (event is IncrementEvent) {

 yield CounterState(counter: currentState.counter

+ 1);

 } else if (event is DecrementEvent) {

Appendix 1

 6 (15)

 yield CounterState(counter: currentState.counter

- 1);

 }

 }

}

counter_bloc.dart

Appendix 1

 7 (15)

Counter App code for Redux

import 'package:flutter/material.dart';

import 'package:redux/redux.dart';

import 'package:flutter_redux/flutter_redux.dart';

import 'reducers.dart';

import 'actions.dart';

import 'states.dart';

void main() {

 final Store<CounterState> store = new Store<Counter-

State>(counterReducer, initialState: Counter-

State.empty);

 runApp(new MyApp(store));

}

class MyApp extends StatelessWidget {

 final Store<CounterState> store;

 MyApp(this.store);

 @override

 Widget build(BuildContext context) {

 return new StoreProvider<CounterState>(

 store: store,

 child: new MaterialApp(

 title: 'Flutter Demo',

 theme: new ThemeData(

 primarySwatch: Colors.blue,

),

 home: new MyHomePage(title: 'Flutter Demo Home

Page'),

),

);

Appendix 1

 8 (15)

 }

}

class MyHomePage extends StatefulWidget {

 MyHomePage({Key key, this.title}) : super(key: key);

 final String title;

 @override

 _MyHomePageState createState() => new _MyHomeP-

ageState();

}

class _MyHomePageState extends State<MyHomePage> {

 @override

 Widget build(BuildContext context) {

 return new Scaffold(

 appBar: new AppBar(

 title: new Text(widget.title),

),

 body: new Center(

 child: new Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 new Text(

 'You have pushed the button this many

times:',

),

 new StoreConnector<CounterState, String>(

 converter: (store) =>

store.state.count.toString(),

 builder: (context, viewModel) {

 return new Text(

 viewModel,

Appendix 1

 9 (15)

 style: Theme.of(con-

text).textTheme.display1,

);

 },

),

],

),

),

 floatingActionButton: new StoreConnector<Coun-

terState, OnCounterChanged>(// () -> Unit

 converter: (store) {

 return (count) => store.dispatch(Incremen-

tAction(count));

 },

 builder: (context, callback) {

 return new FloatingActionButton(

 onPressed: () => callback(2),

 tooltip: 'Increment',

 child: new Icon(Icons.add),

);

 },

),

);

 }

}

typedef OnCounterChanged = Function(int count);

main.dart

enum Action {

 Increment, Decrement

Appendix 1

 10 (15)

}

class IncrementAction { // sealed

 int count;

 IncrementAction(this.count);

}

class DecrementAction {

 int count;

 DecrementAction(this.count);

}

actions.dart

import 'actions.dart';

import 'states.dart';

CounterState counterReducer(CounterState previ-

ousState, dynamic action) {

 if (action is IncrementAction) {

 return CounterState(previousState.count + ac-

tion.count);

 } else if (action is DecrementAction) {

 return CounterState(previousState.count - ac-

tion.count);

 } else {

 return previousState;

 }

Appendix 1

 11 (15)

}

reducers.dart

import 'package:meta/meta.dart';

@immutable

class CounterState {

 static var empty = CounterState(0);

 int count;

 CounterState(this.count);

}

states.dart

Appendix 1

 12 (15)

Counter App code for Scoped Model

import 'package:flutter/material.dart';

import 'package:scoped_model/scoped_model.dart';

import 'counter_model.dart';

import 'counter_home.dart';

void main() {

 runApp(MyApp(

 model: CounterModel(),

));

}

class MyApp extends StatelessWidget {

 final CounterModel model;

 const MyApp({Key key, @required this.model}) : su-

per(key: key);

 @override

 Widget build(BuildContext context) {

 // At the top level of our app, we'll, create a

ScopedModel Widget. This

 // will provide the CounterModel to all children

in the app that request it

 // using a ScopedModelDescendant.

 return ScopedModel<CounterModel>(

 model: model,

 child: MaterialApp(

 title: 'Scoped Model Demo',

 home: CounterHome('Scoped Model Demo'),

),

);

 }

Appendix 1

 13 (15)

}

main.dart

import 'package:flutter/material.dart';

import 'package:scoped_model/scoped_model.dart';

class CounterHome extends StatelessWidget {

 final String title;

 CounterHome(this.title);

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(title),

),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text('You have pushed the button this many

times:'),

 // Create a ScopedModelDescendant. This

widget will get the

 // CounterModel from the nearest parent

ScopedModel<CounterModel>.

 // It will hand that CounterModel to our

builder method, and

 // rebuild any time the CounterModel

changes (i.e. after we

Appendix 1

 14 (15)

 // `notifyListeners` in the Model).

 ScopedModelDescendant<CounterModel>(

 builder: (context, child, model) {

 return Text(

 model.counter.toString(),

 style: Theme.of(con-

text).textTheme.display1,

);

 },

),

],

),

),

 // Use the ScopedModelDescendant again in order

to use the increment

 // method from the CounterModel

 floatingActionButton: ScopedModelDescend-

ant<CounterModel>(

 builder: (context, child, model) {

 return FloatingActionButton(

 onPressed: model.increment,

 tooltip: 'Increment',

 child: Icon(Icons.add),

);

 },

),

);

 }

}

counter_home.dart

Appendix 1

 15 (15)

import 'package:flutter/material.dart';

import 'package:scoped_model/scoped_model.dart';

// Start by creating a class that has a counter and a

method to increment it.

//

// Note: It must extend from Model.

class CounterModel extends Model {

 int _counter = 0;

 int get counter => _counter;

 void increment() {

 // First, increment the counter

 _counter++;

 // Then notify all the listeners.

 notifyListeners();

 }

}

counter_model.dart

