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ABSTRACT 
 

Many manufacturing industries are embracing the trend of factory 
automation and the adoption of robotic technology. As a result, this thesis 
project aimed to encourage more participation from fellow Automation 
Engineering students at Häme University of Applied Sciences, later 
referred to as HAMK, in robotics-related activities and projects.  
 
The early chapters of the thesis serve as introductory materials for 
beginners in the robotic field. Later parts of the thesis introduce a 3D 
modelling process and an offline programming (OLP) framework, both of 
which can be continued as standalone development projects, or they can 
be integrated into existing automation projects at HAMK.  
 
Although the two products of this thesis project are far from being ready 
to be used in the industry, they both have complete fundamental functions 
that can be utilised immediately. Appealing topics from the author’s 
perspective for future developments include robot calibrations and 
improvements on the OLP framework and its implementations.  
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1 INTRODUCTION 

1.1 Preamble 

Industrial robot (IR) systems have seen a blossom during the past decade 
in demands of consumption and level of complexity as standalone flexible 
manufacturing units. According to the International Federation of 
Robotics’ statistics department, over 400,000 robot installations were 
realized in 2018 in comparison with an annual average of 115,000 units 
between 2005 and 2008 (IFR, 2019). With the exclusion of software and 
peripherals, this accounts for a total USD 16.5 billion in net worth solely in 
2018, despite the recent trade conflict between China and North Americas 
(IFR, 2019). With traditional manufacturers embracing the ongoing trends 
towards computer-integrated manufacturing (CIM) and automation, IR 
models specialized in material handling, assembly, welding, etc. is now 
covering a wide variety of industries including automotive, 
electrical/electronics, machinery, food and beverages, etc (IFR, 2019). The 
potential and reputation of IRs have also reached small-and-medium-sized 
enterprises (SME) and individuals outside of the industrial sector like 
hardware shop owners. Many of which have begun to adapt IR systems 
into multi-axis machining applications, e.g. multi-material milling or rapid 
prototyping (Vergeest & Tangelder, 1996) (Shirase, Tanabe, Hirao, & Yasui, 
1996). It is worth noting that this area was previously predominated by 
computer and direct numerical control (CNC/DNC) systems, whereas only 
3-4% of the total number of robots is used for machining purposes (Abele, 
Kulok, & Weigold, 2005) (Pan & Zhang, 2008). This gradual migration of IR 
units into the sector of numerically controlled (NC) machines and 
machining tools is a result of each unit greater flexibility in task processing 
and overall lower cost against e.g. an akin volume of machining cell 
(Milutinovic, et al., 2010).  
 
While there are similar fundamental traits between different types of IR 
applications, their complexity level of tool trajectories may vary widely 
(Milutinovic, et al., 2010). For this reason, conventional online task 
programming assisted with teaching pendants is often an inefficient, time-
consuming, and expensive process in non-pick-and-place applications. To 
simplify the teaching process, many proprietary high-level programming 
languages such as VAL II, AML, RPL, etc. were developed to work in 
conjunction with the teaching pendant at the shop-floor level. However, 
there remain several limitations to the online task teaching approach 
(Chan, Prof. Weston, & Case, 1988):  

− Manufacturing downtime can be significant as a result of the 
geometry definition in teach mode. 

− Machine-level information on the process (CAD/CAM data) available 
elsewhere in CIM facilities could not be utilized.  
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− Modern programming languages are more beneficial than their 
proprietary counterparts mentioned above.  

− Operators are at risk of the hazardous work-cell/workstation 
Thus, SMEs with a wide variety of products requires an automatic 
approach in generating NC code for their corresponding manufacturing 
processes (Mitsi, Bouzakis, Mansour, Sagris, & Maliaris, 2005). Mitsi et al. 
saw the potential of an offline programming (OPL) system using CAD/CAM 
modules as a visual representation of the IR system to avoid problems of 
the teaching stage. However, this approach has also proposed new 
challenges, with the most common being the constraints in resource 
planning in terms of process and product information. Without a proper 
determination of IR systems (workspace elements, sensors, etc.) and CIM 
facilities assistance, this approach is impractical for complex 
manufacturing tasks (Chan, Prof. Weston, & Case, 1988). Kinematic 
constraints and calibration are also key factors in realizing a systematic 
approach to OPL solutions.  

1.2 Outline of contents 

This thesis project aimed to provide fundamental knowledge about the 
topic of robotics while encouraging other fellow automation students at 
Häme University of Applied Sciences, later referred to as HAMK, to 
participate and get more involved in the robotic sector. Thus, chapter 2 of 
the thesis will present the basic concepts and information on robotics and 
the related technology. These include the concepts of robotics and 
industrial robotics based on their applications, as well as the components 
and structure of a robot manipulator. Chapter 3 introduces the controller 
system for control and interact with a typical robot. This chapter also 
includes the concept of robot programming and the various approaches to 
the two categories of online and offline programming.  
 
For the thesis project to be more interactive with other students, the 
author constructed an offline programming (OLP) 3D model of the Dobot 
Magician – a compact tabletop robot arm for education or use. Chapter 4 
describes in detail the modelling process and the resulting product, which 
is open sourced and can be used immediately. This 3D model can be used 
as an example for the offline programming framework presented in 
chapter 5.  

2 ROBOTIC TECHNOLOGY 

2.1 Robotics 

Karel Capek in his 1920 science fiction play Rossumovi Univerzální Roboti 
(Rossum's Universal Robots or R.U.R) describes the term “robot”, 
originated from the Czech word “robota”, as an artificial labourer who 
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performs mundane and undesirable tasks for their owners. Modern robots 
are also derived from the same idea, as defined by a standard dictionary: 
“a machine that resembles a human and does mechanical, routine tasks 
on command” (Dictionary.com, n.d.). Despite being a young and modern 
sector, robotics encompasses the knowledge of many conventional 
technology fields: mathematics, physics, electrical engineering, 
mechanical engineering, automation and industrial engineering, and 
computer science.  
 
Over the past two decades, robotics research has grown tremendously, 
with the underlying power of rapid developments in software and sensor 
technology as well as theoretical progress in control engineering and 
computer vision. This advance in complexity of interdisciplinary branches 
like robotics and factory automation requires the emergence of the latest 
disciplines of engineering such as manufacturing, systems and 
applications, etc. (Spong, Hutchinson, & Vidyasagar, 2004).  
 
While there are many aspects evolving the fields of robotics, this paper 
only covers the fundamental and related concepts, including related 
terminology as a basis, kinematics, computer-aided design, and different 
types of robot programming, since the main subject evolves industrial 
robot arm applications integrating into factory settings and infrastructure. 
Nevertheless, the divergent science of robotics span across many domains, 
such as locomotion (e.g. flying, skating, climbing robots, or legged, 
wheeled robots, etc.), artificial intelligence, human interaction, legal and 
ethical regulations, etc. This divergence concerning both technical and 
social aspects ensures a balanced and effective integration of robots into 
both professional and domestic areas of modern society (Leenes, et al., 
2017).  
 
Robots are gradually replacing humans in mundane or hazardous tasks, 
ranging from factory manufacturing, exploring mines and oceans, bomb 
defusing to daily-basis household chores like vacuuming, washing, laundry, 
etc. Moreover, in areas where accuracy and speed are demanding factors, 
such as surgical operations and anatomy, the introduction of nano-size 
robots is considered revolutionary (Carne, 2019). Based on their 
characteristic features and applications, Bajd et al. classify the most 
common types of robots into four main categories as demonstrated in 
Table 1.  
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Table 1. Robot classification  (Bajd, Mihelj, Lenarčič, Stanovnik, & 
Munih, 2019) 

Robots 

Robot 
Manipulators 

Robot 
Vehicles 

Man-Robot 
Systems 

Biologically  
Inspired Robots 

Serial Land Haptic Robots Humanoids 

Parallel Water Tele-manipulators Robots from 
animal world Micro and Nano Air Exoskeletons 

 

2.2 Industrial robotics 

Over the last few years, the industrial-robotics market has been on the rise, 
with over two million industrial robots installed and operated on factory 
floors and other commercial sites in 2018 (IFR, 2019). This prevalent 
growth is mainly driven by the gradually decreasing robot prices in 
comparison with the upward rising labour costs. In his 2017 article 
“Automation, robotics, and the factory of the future”, Tilley presented a 
significant rise of nearly 120% in labour compensation from 1990 – 2017 
in comparison with a gradual drop of 50% in the robotics counterpart 
(Tilley, 2017). Another key factor in the adoption of robotics technology in 
the industrial sector is social motivation. In situations where facing toxic 
and hazardous working conditions is inevitable, the benefit robot as a 
substitution for human workers can overshadow economic concerns (Bajd, 
Mihelj, Lenarčič, Stanovnik, & Munih, 2019). Thus, many industrial robots 
were originally designed to carry human-like characteristics while having 
at least the same level of performance. Nevertheless, in terms of speed, 
precision, repeatability, and reliability, their modern skills go far beyond 
those of even the best worker. The human characteristics of the robot 
include a mechanical arm, the ability to make decisions based on sensory 
inputs, and the ability to communicate with its environment for industrial 
applications. In addition, the ability to be programmed and reprogrammed 
qualified IRs for the programmable automation category. Therefore, an 
industrial robot is defined by the International Standards Organization 
(ISO) in the ISO/TR/8373-2.3 standard as:  
 
- …an automatically controlled, reprogrammable, multipurpose 

manipulator, programmable in three or more axes, which can be either 
fixed in place or mobile for use in industrial automation applications 
(International Organization for Standardization, 2012). 

 
Albeit the first industrial robot applications were intended to be 
standalone solutions, many modern robotics systems are recognized for 
their ease of integration into any factory implementations (Kandray, 2010). 
Recent rapid progress in computer hardware, software development, and 
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networking technologies enables the maturity of the robotics field in terms 
of reliability and capability while maintaining lower costs in robot 
production. Accordingly, more and more robot manufacturers are 
developing and shipping their related products as modular, plug-and-play 
units with very competitive offerings and pricings (Tilley, 2017). A standard 
IR system is designed for the ease of assembly, installation, and network 
establishment. The components are compatible with most modern 
standard network protocols and thus are able to automatically register 
themselves to any production systems using straightforward network 
wiring. Such simplicity becomes the main motivation for industrial 
designers to integrate robots into the majority of their applications. This 
approach increases the flexibility of the overall production system, as 
commissioners are able to quickly apply modifications to a manufacturing 
system for new production runs. As a result, companies can expect a much 
faster return on capital investments, since less repetition is required in 
single-task execution, equipment design, procurement, and 
commissioning (Tilley, 2017).  
 
In terms of process platform integration, Bajd et al. divided industrial 
robots into three groups found in Table 2 using their applications. The first 
two groups involve industrial robots working in automated manufacturing 
cells. These automation work cells incorporate groups of manufacturing 
stations, each assigned with a specific task or process (Kandray, 2010). As 
demonstrated in Figure 1, typical robots in machining cell envelopes are 
often seen working in conjunction with programmable logic controllers 
(PLC), part feeders, CNC machines, conveyors, etc., either taking a leading 
role or tending the manufacturing process (Peng & Zhou, 2003).  
 
Master robots often take responsibility in tasks such as welding (spot, arc, 
laser), coating, machining, etc., while the processes involving slave robots 
may vary among different types of material handling such as palletizing, 
press loading, parts feeding, etc. The third type of robot tackles 
unconventional applications and industrial sectors: inspection and quality 
assurance, maintenance and repair, food packaging and decorations, 
textile and clothing, and construction (Bajd, Mihelj, Lenarčič, Stanovnik, & 
Munih, 2019). Quality assurance and testing robots are commonly used in 
the electronics industries, where electric parameters of every component 
are frequently tested during production runs. The food and textile industry 
propose unique challenges in material handling, since the workpiece 
nature is often non-rigid, and certain hygiene requirements must be met 
in food processing. Autonomous and teleoperated robots are opted-in for 
maintenance and repair tasks unsafe for human, such as servicing and 
maintenance for nuclear facilities, highways, power grids, etc.  
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Figure 1. Robot gripper in a flexible machining cell envelope (Peng & 
Zhou, 2003) 

Table 2. Industrial robot classification based on application (Bajd, 
Mihelj, Lenarčič, Stanovnik, & Munih, 2019) 

Industrial Robots 

Work cell master Work cell slave Special applications 

Welding 
Material/Workpiece 
handling 

Quality assurance, 
inspection, testing 

Painting, coating, 
sealing 

Palletizing, parts 
feeding 

Maintenance and 
repair 

Machining Die casting Food industry 

Assembly  Flexible fixturing 
Textile and clothing 
industry 

  Construction  

2.3 Construction of robot manipulators: joints and links 

As discussed above, the most effective and powerful robotics systems 
today are the industrial robot arms or robot manipulators that can 
substitute and outperform human workers in labour-heavy and 
monotonous jobs or hazardous working environments. The robot 
manipulator commonly consists of a set of rigid bodies, also known as links, 
mechanically assembled together using different types of joints, as 
demonstrated in Figure 2 by Lynch and Park (2017). According to Lynch 
and Park, each joint is only allowed to connect two links simultaneously. 
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As can be seen from the graph, the revolute joint (R), also referred to as a 
hinge, enables relative rotation between the two connected links; 
meanwhile, links connected by the prismatic joint (P) are able to perform 
relative linear movements. Aside from these two most typical joints, robot 
manipulators may include other types of joints such as the helical (H) and 
cylindrical joints (C), each allows simultaneous (H) and independent (C) 
rotational and translational motion respectively; the universal joint (U) 
which includes a double revolute joints in an orthogonal configuration; the 
spherical or ball-and-socket joints (S), which allows a three-dimensional 
rotation similar to a human shoulder. The chain combination of several 
joints and links form a kinematic structure providing a mathematical and 
geometrical approach to describe the spatial positioning of the 
manipulator’s overall structure at a given time. Spong et al. in their book 
Robot Dynamics and Control (2004) described the two links at any given 
revolute or prismatic joint of a robot manipulator as 𝑙𝑖 and 𝑙𝑖+1, while the 
rotational or translational axis that joint is denoted by 𝑧𝑖. The variable 
describing the displacement of adjacent rigid segments is defined as 𝜃𝑖  for 
the R-type joint or 𝑑𝑖 for the P-type counterpart (Spong, Hutchinson, & 
Vidyasagar, 2004). As illustrated in Figure 3, these mathematical 
representatives of a robot physical configuration answer the fundamental 
question of robotics – identifying the robot position in the physical world. 
As a result, precise controlled robot movements powered by motors and 
actuators is achieved by converting the geometric information into 
electrical signals.  
 

 

Figure 2. Common robot joints (Lynch & Park, 2017) 
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Figure 3. Symbolic representation of robot joints. Adapted from Spong 
et al., 2014. 

2.4 Other components and structure 

2.4.1 End-effectors 

Aside from joints and links, industrial manipulators usually include an end-
effector or end-of-arm-tooling (EOAT) attached to a specific segment, 
often called wrist. End-effectors are different tools extending the robot 
capabilities and applications range, such as gripper or suction cup for 
material/work-piece handling, milling tools for machining, spray nozzle for 
paint coating, etc. In many applications, more than one end-effector per 
manipulator is required, and the process of tool change is often carried out 
automatically by the robot itself. Depending on the situations, a special 
dual EOAT set up as shown in Figure 4 can be utilized for better efficiency 
while trading the flexibility of the device. The diversity in EOATs and how 
it dictates the robot application types is an advantage for small and 
medium sized businesses (SMEs) with small batch sizes and large product 
agglomeration (Tilley, 2017). The essential flexibility and simplicity of the 
robot to be rapidly reconfigured and redeployed significantly reduces the 
number of single task repetitions to justify the purchasing and 
commissioning costs (Tilley, 2017). Simultaneously, the majority of end-
effector supplies in the market comes from independent manufacturers 
with a significant product variety ranging from conventional formats 
(mechanical, pneumatic, or magnet) to specialized tools for handling 
specific materials (Aljarboua, Santhanam, Teulieres, Thomsen, & Tilley, 
2019). Therefore, the cost of EOAT units may significantly vary from being 
superficial to higher than the robot itself (Bajd, Mihelj, Lenarčič, Stanovnik, 
& Munih, 2019). In cases where the various EOATs available on the market 
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cannot meet the specifications, special tools for particular applications are 
often designed by engineers from scratch or from commercial EOATs base 
models.  

 
The kinematic chain linking between the robot manipulator and the end-
effector is described as a robot wrist. A typical wrist always consists of 
revolute joints, and the most popular configuration commonly seen in 
modern robot applications is a spherical wrist (Spong, Hutchinson, & 
Vidyasagar, 2004). This configuration simplifies the spatial identification 
process of a robot manipulator to a great extent by separating its overall 
kinematic structure into two independent analyses. The first three 
positional degrees of freedom are decoupled by examining three or more 
joints of the robot arm. The remaining number of orientational degrees of 
freedom is then determined by the degrees of freedom of the wrist. This 
number is application dependent, and it usually varies from one, two, or 
three. Figure 5 illustrates a typical robot manipulator attached with a three 
degrees of freedom spherical wrist. The three revolute joints in this type 
of wrist are denoted as roll, pitch, and yaw.  
 

 

Figure 4. Dual gripper. Photo courtesy of Robotiq (Robotiq).  
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Figure 5. Robot manipulator and wrist configuration (Aimo, 2017).  

2.4.2 Power sources and control mechanism 

Reliability and availability are the fundamental requirements of any power 
source actuating a robot arm. There are three main types of robotics 
powering systems, namely electrical systems, hydraulic systems, and 
pneumatic systems. The hydraulic system is a closed-loop system utilizing 
the pressurized flow of oil-based hydraulic fluid to create translational or 
rotational motions of actuators that enables the desired robot movements 
(Kandray, 2010). The nature of pressurized fluid gains hydraulic systems a 
high power-to-size ratio, hence they are considered unrivaled in terms of 
responsiveness and torque delivery (Bajd, Mihelj, Lenarčič, Stanovnik, & 
Munih, 2019). Thus, hydraulically actuated robots are the primary choice 
in performing heavy loads lifting tasks. However, hydraulic-based power 
systems present many serious concerns throughout the stages of their 
lifecycle (Kandray, 2010). The upfront cost of hydraulic systems relatively 
high, since they require extra support from different mechanical and 
electrical components such as motorized pumps, pipelines, control valves, 
etc. to function properly. These components also add up the energy and 
emission footprint of the overall system during operations. Operators are 
also at risk of component failure under high pressure and temperature, 
potentially leading to severe injuries or death. Maintenance for hydraulic 
systems is to be carried out frequently since the constructions are 
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subjected to leaks and degradation under constant heavy workloads. Fire-
resistance of the hydraulic fluid is another key factor to be considered 
since they are oil-based and often not available on factory sites.  
 
In terms of design language, pneumatic systems share some similar 
fundamental principles and components in comparison with their 
hydraulic counterparts (Kandray, 2010). Both types of actuators function 
based on pressurized substance flow while being powered by an additional 
support system consists of control valves, lines, etc. However, 
performance capability is the key factor in diverging the two systems. 
Accuracy in position control and speed of pneumatically powered robots 
is difficult to achieve because of the unstable nature of compress air. This 
constraint limits the application range of pneumatic robot systems to 
simple pick-and-place type operations. Since pneumatic-based robots are 
opened loop systems, they often use adjustable mechanical stops for 
position control to some extent. On the other hand, opened loop designs 
do not require a separate return pipeline; hence, the complete piping 
structures are simplified, and costs are reduced in terms of installation and 
maintenance. In addition, most factory floors provide their own air 
compression system available for use immediately, further increasing the 
savings. Air-based actuators are also subjected to leaks, but environmental 
concerns are insignificant.  
 
Currently, robots powered by electrical actuators are recognized as the 
most popular systems of choice for often being cheaper, cleaner, and 
quieter than other systems (Spong, Hutchinson, & Vidyasagar, 2004). 
Precise control of electrically powered robots over their velocity, 
acceleration, and position is achieved through a closed-loop system where 
the relevant data is encoded into electrical command signals (Kandray, 
2010). Electrical systems are driven by alternating current (AC) or direct 
current (DC) motors. AC servomotors have the benefit of being stable and 
light while requiring seldom maintenance. On the other hand, while relying 
on frequent brush replacements to function properly, DC motors deliver 
more torque, qualifying them for strength demanding tasks. Aside from 
the motors, each electrical robot also includes a support system of 
reduction drives. The supporting drives generate revolute speed reduction 
and torque amplification to produce desired links and joints motions 
(Kandray, 2010). The most prevalent types of reduction drives are 
illustrated in Figure 6. Rotary motions are performed by synchronous belt 
drives, train of spur, worm or bevel gears. Other than synchronous timing, 
belt-type rotary drives can either be a v-groove or flat belt, although they 
are seldom used in applications due to the high possibility of slippage. 
Worm gear drives are used for 90 degrees rotational conversion, while 
bevel gears may be used for both 45 and 90 degrees of axis rotation. For 
linear or translational motions, the use of ball-screw gear drives provides 
a high level of precision in a small form factor. For greater torque-to-size 
ratio, harmonic drives are an appealing choice, although the mechanism 
principle behind them is difficult to describe and thus will not be 
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mentioned in this paper. Every gear system can be described using the gear 
ratio formula:  
 

 𝐺𝑅 =
𝑁𝑂

𝑁𝐼
  (1) 

 
Where:  
𝑁𝑂 is the number of teeth on the output or driven gear.  
𝑁𝐼 is the number of teeth on the input or driver gear.  
 
Thus, the gear transfer function can be described as:  
 

 𝑇𝑅 =
𝑉𝑂

𝑉𝐼
=

𝜃𝑂

𝜃𝐼
=

1

𝐺𝑅
 (2) 

 
Where: 
𝑉𝑂 is the revolutions per minute (rpm) of the driven gear. 
𝑉𝐼 is the rpm of the driver gear. 
𝜃𝑂 is the angular rotation of the driven gear. 
𝜃𝐼  is the angular rotation of the driver gear. 
𝐺𝑅 is the gear ratio 
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Figure 6. Reduction drives. Adapted from HAMK Moodle (Aimo, 2017). 

3 ROBOT PROGRAMMING 

3.1 Robot system 

A typical robot system encompasses more than just a series of mechanical 
bodies and linkages. As illustrated in Figure 7, a functioning robot system 
consists of:  

− Robot manipulator 

− Power source system 

− Controller  
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− Teach pendant 

− Different end-effectors or end-of-arm tooling 

− A wide range of connected devices, including internal and external 
sensors and periphery equipment 

− Network and storage system 
 
Another essential integration of the system is the robot program and the 
underlying software architecture, since the configuration and behaviour of 
which can impact the overall performance and dictate the subsequent 
application scope (Spong, Hutchinson, & Vidyasagar, 2004). In subchapter 
2.4, we have already discussed different types of power sources and EOATs 
in terms of technical arrangements, advantages, disadvantages, and 
application niches. In the following subchapters, the focus would be to 
describe different aspects of robot programming, from hardware 
requirements and capabilities to the fundamentals of programming 
software, methods, and techniques. The later section on programming 
concepts and techniques will also serve as a guideline basis for the 
upcoming empirical process.  
 

 

Figure 7. A typical robotic system. Adapted from Spong et al., 2004 
(Spong, Hutchinson, & Vidyasagar, 2004) 

3.2 Robot control 

3.2.1 Robot controller 

A recent study from the Future Market Insights (FMI) reported a 
sustainable growth in demands for the industrial robot controller market 
motivated by the uprising trends and embracement of factory automation 
(Future Market Insights, 2019). The year 2018 saw a relative approximate 
market value of USD 632.6 million, which will receive another 9.1 percent 
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increase during the upcoming course of 2019 to 2029 according to FMI. 
The automotive and electronics/semiconductor industry with their 
continuous growing supply chains has been the two most dominant 
customers throughout the market for industrial robots and robot 
controllers (Brog˚ardh, 2009). The advent of Industrial Internet of Things 
(IIoT) innovations and adoption of human-robot collaboration enables 
better optimization for robot controllers while encouraging more open-
source solutions; thus, modern robot controllers are now commonly 
integrated into programmable logic controller (PLC), programmable 
automation controller (PAC), personal computer (PC), industrial PC (IPC), 
embedded systems, etc. (Hoske, 2015). At its most basic form, a robot 
controller is any computing hardware serving three main purposes as 
described in Figure 8 (Kandray, 2010):  

− Robot motion control  

− Peripherals control 

− Operator interface  
The controller unit must first be able to control the manipulator motions 
through its actuators. Secondly, the controller can recognize and 
communicate with different input sensors, end-effectors, external 
actuators, etc., bridging the gap between the robot and its periphery 
devices. Finally, the controller is served as an entry point for manual robot 
control and program editing and execution.  
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Figure 8. Robot controller functions. Adapted from Kandray, 2010 
(Kandray, 2010) 

3.2.2 Motion control 

Industrial robots’ classification as discussed in subchapter 2.2 could also 
be determined based on the type of trajectory motions generated by the 
controller executors. The lowest level of control complexity for a robot 
manipulator is known as the limited sequence control (Kandray, 2010). 
Industrial robot systems at this level are opened loop devices with no 
feedback system, and their movements are predefined with mechanical 
hard stops (Spong, Hutchinson, & Vidyasagar, 2004). After the control 
signals are sent to the actuators, the lack of feedback inputs prevents any 
further subsequent verifications on the execution status and robot 
position. Despite the limit in performance capabilities, this control method 
simplifies the requirements for the controller, allowing standard units like 
a programmable logic controller (PLC) to be sufficient for limited-sequence 
controlled robots.  
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On the other hand, the performance level of closed-loop control robotic 
systems is dictated by the capabilities of their feedback equipment and 
systems. The simpler type of system in this category is the point-to-point 
control robot (Spong, Hutchinson, & Vidyasagar, 2004). This type of robot 
allows the end-effector to be sequentially positioned in accordance with a 
predefined set of discrete spatial points. This demands only a certain level 
of axes’ positioning feedback since there are no tool path restrictions. On 
the controller side, the introduction of a spatial points set reserves a small 
storage volume, while requiring a proper user interface, e.g. a teach 
pendant, for teaching and editing the sequence. The next level of closed-
loop control method is continuous path control, where the entire tool 
trajectory, velocity, and acceleration are planned ahead. The planning 
process could be carried out manually or with the support of simulations 
software. During run-time, the program requires more computing 
resources than other control processes, since the continuous streams of 
commands are being executed based on the simultaneous unceasing 
encoded data of every individual axis movements. Thus, the level of 
accuracy, performance, and capabilities of the robot system is a direct ratio 
of the provided computational power. Such flexibility makes continuous 
path control robots the most popular system of choice throughout various 
industries. Their applications cover a wide variety of precision demanding 
tasks, such as seam arc-welding, machining, special grasp and place jobs, 
etc. (Kandray, 2010).  

3.2.3 Connectivity of peripherals 

Many industrial tasks mentioned throughout this paper are almost always 
performed with the cooperation of an industrial robot and one or more 
peripheral devices, including external sensors, external actuators, devices, 
tools with their own sensors (Patent No. EP1749249A1, 2003). Thus, the 
communication and control of the robot over these peripherals are an 
important aspect of robot control (Kandray, 2010).  
 
Along with other computer hardware equipment, the robot controller 
continues to increase in speed and performance, enabling multitasking 
and independence in robots through enhanced connection quality and 
better diversity in periphery equipment (Godwin, 1998). Godwin stated in 
his study that the state-of-the-art work-cells’ controller solutions are 
getting better flexibility in implementation strategies, as they often share 
similar functionality and fundamental design traits in microchip 
architecture. Native robot controllers can now take on the leading role in 
work-cells with low complexity in control hierarchy and little requirements 
for speed-critical tasks. Aside from robot movements, controllers in these 
applications handle also end-effector action, e.g. gripper open/close; 
external devices such as sensors, slider, conveyor motors, etc. This type of 
arrangement unifies the connections and software development into one 
central platform; thus, it increases the simplicity and lowers the cost of 
implementation.  
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In a larger manufacturing process involving a significant amount of 
industrial equipment and/or multiple robots working in conjunction, the 
robot controller can have interchangeable roles with a PLC or IPC. The 
classifications and hierarchy decisions are made based on the robot 
classification discussed in subchapter 2.2. Robot masters have their 
controller focuses on complex axes’ movements, while other PLC handles 
the local peripherals’ signals and processes. PLC masters control the 
overall operation of the manufacturing process while sending high-level 
commands for other local manipulator controllers to trigger sequences of 
robot movements. In a distributed system, PLCs and robot controllers are 
implemented with equal in control status to increase the flexibility of the 
workstations, since they are most often designed to be independence from 
others for the ease of reconfiguration and redeployment. In many 
applications, one or more of the above-mentioned setups may co-exist in 
the same hierarchy.  

3.2.4 Accuracy and repeatability 

Accuracy and repeatability are the two most important aspects in 
assessing the performance of an industrial robot system (Dolinsky, 2001). 
The term accuracy refers to the ability of a robot manipulator to achieve 
the smallest deviation from the pre-programmed positions and 
orientations of its tool or end-effector. Meanwhile, repeatability or 
precision indicates the possibility of the robot to reproduce any previous 
reference position of the end-effector in its workspace. Most modern 
robotic systems while having great repeatability performance often 
struggle to achieve an acceptable level of accuracy movements (Płaczek & 
Piszczek, 2018) (Şirinterlikçi, et al., Spring 2019).  
 
Płaczek and Piszczek pointed out that the problem is inevitable regardless 
of a well-designed environment and a well-prepared program since the 
main reason is coming from the limitations in the current feedback system. 
A typical robot manipulator does not include a method to directly measure 
the spatial positions and orientations of its end-effector. Rather, the 
numbers are calculated using positional encoders throughout the robot 
structure and dimensional measurements of the mechanical parts. This 
exposes the process to errors and uncertainties in computation; robot 
construction defects such as bending, compressing, etc.; moving parts 
effects, e.g. gear backlash; etc. Thus, an excellent accuracy level of a robot 
system must correspond to an extremely rigid mechanical structure, which 
can be difficult and expensive to achieved (Spong, Hutchinson, & 
Vidyasagar, 2004). However, methods such as robot teaching offsets, 
calibration, and direct sensing with vision or laser could help improve the 
accuracy level of a robotic system.  
 
On the other hand, the repeatability level of a robot only depends on the 
ability of its controller to deliver the same set of electrical signals with a 
small margin of error. This feature is called controller resolution, which 



19 
 

 
 

refers to the smallest motion deviation a controller can generate (Spong, 
Hutchinson, & Vidyasagar, 2004). Rapid advance and improvements in the 
electronics and semiconductor industry allow increasingly better 
controller resolutions, resulting in better robot performance in both 
accuracy and repeatability.  

3.3 Robot programming 

The robot classifications in terms of applications, work-cell roles, motion 
control, power sources, etc. discussed in previous chapters have a 
significant impact on the choice of their programming method (Kandray, 
2010). For an opened loop pneumatic robot in playback applications, the 
workspace is contained using mechanical and electrical limit switches, and 
the task sequence steps are relatively simple and usually executed by a 
programmable logic controller (PLC). On the other hand, most modern 
servo-driven robot systems are equipped with more complex controllers 
and a separate system to communicate about the robot positions using 
higher-level programming languages, thus provides more performance 
and capabilities. At its core, robot programming boils down to two 
fundamental tasks, regardless of their applications:  

− Robot motion programming 

− Sequencing/work-cycle programming  
 
Although there are many programming methods, most can be 
distinguished by the nature of the programming process, of which they 
reside in the two categories of motion programming and robot language 
programming (Kandray, 2010). In many cases, these two categories are 
rephrased into online and offline programming respectively, to describe 
the whereabouts of the programming process and personnel during the 
period (Syrjänen, 2018). Online programming typically takes place at the 
factory floor level or inside the robot work-cell, where the operators and 
technical specialists interact directly with the robot. The offline 
programming process does not require physical contact with the robot but 
gets carried out and tested instead in simulations environment outside of 
the manufacturing facilities. The following subchapter discusses more in 
detail the two online and offline approaches/styles of robot programming, 
as they are conventionally accepted and somewhat covers both motion 
and robot language programming mentioned earlier. In fact, Syrjänen 
suggests in his bachelor thesis (2018) an arrangement for these different 
programming categories in the order of technical skills involved. This 
arrangement is illustrated in the following Figure 9.  
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Figure 9. Programming methods and their required skills levels. 
Adapted from Syrjänen, 2018 (Syrjänen, 2018). 

3.3.1 Online programming 

Online programming was adopted immediately early in the robot industry 
for its simplicity and intuitiveness as a solution, while offline programming 
methods and practices were still immature and underdeveloped (Yong, 
Gleave, Green, & Bonney, 1985). As described in table 3, online 
programming methods by nature can be classified into motion 
teaching/programming and high-level robot language programming 
(Dolinsky, 2001).  
 
Motion teaching is the process of physically guiding the robot manipulator 
through a set of desired positions and orientation, while simultaneously 
defined program instructions (Kandray, 2010). The guiding methods vary 
in levels of complexity depending on the control mechanism and 
applications discussed in subchapter 5.2.2 (Dolinsky, 2001). For pick-and-
place pneumatic robots, the simplest manual method is used which often 
involves basic equipment setup and adjustments for mechanical stops, 
limit switch, etc. In continuous path control systems, the manual 
walkthrough or leadthrough method is used. These two methods require 
the operator to manually move the robot arm through a path of 
continuous points. The points are stored locally and reserve a significant 
amount of memory and storage of the controller. For situations where 
manual guiding of the manipulator is impractical, a handheld teach 
pendant is used to power-guide the robot, and hence the method is called 
powered leadthrough. Regardless of the teaching methods, Kandray 
described in his book the process of motion programming using a general 
procedure as follow (Kandray, 2010):  

− Define a start/home position of the manipulator and an instruction to 
move the end-effector to such position.  
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− Input the logic instruction(s) for the end-effector/EOAT and/or 
relevant peripheral devices as required in the process.  

− Input a moving command to reach the next point in space with 
correct orientations and relevant parameters such as velocity, 
moving path, accelerations, etc. A previously stored continuous path, 
if any, could be executed instead.  

− Input the logic instruction(s) for the end-effector/EOAT and/or 
relevant peripheral devices as required in the process.  

− Repeat step three and four until the sequence is complete.  
The above-mentioned process can often be tedious and time-consuming 
while reducing the uptime and output of the robot. Some robot units are 
double purchased for a given application as a result; one unit becomes the 
programming and testing platform, while the other goes to production 
(Kandray, 2010).  
 
The use of higher-level robot programming languages eases the need for 
significant service downtime, by isolating the logic programming process 
outside of factory sites. The logic sequence program now takes a modern 
shape and benefits from high-level/human-readable languages such as 
better structure and abstract level, built-in support for native geometric 
entities, high-level commands, etc. (Dolinsky, 2001). Although most 
modern robot languages are proprietary, such as VAL, RCL, RPL, etc., they 
were fundamentally similar and often simpler versions of modern 
programming languages (Syrjänen, 2018). As a result, the programming 
and testing process can be carried out more efficient while minimizing the 
loss in the production time of the robot, which is mainly used for defining 
the arm positions. Nevertheless, the many advantages of this approach 
come at the cost of a higher level of sophistication and computation from 
the robot controller side (Dolinsky, 2001). First, the controller must first be 
able to interpret and execute the program during runtime. Second, the 
robot controller often must implement an inverse kinematic model of the 
manipulator structure to translate the end-effector positions to the axial 
movements. This could result in the overall accuracy of the operation.  

Table 3. Programming methods. Adapted from Dolinsky, 2001 
(Dolinsky, 2001). 

Robot Task 
Motion programming 

Manual 

Walkthrough 

Leadthrough 

High-level programming 

3.3.2 Offline programming 

As the adoption and demand robotics in factory automation rises, a need 
is raised for a more flexible, efficient, and intuitive approach for robot 
programming other than the conventional online counterpart (Neto & 
Mendes, 2013). The concept of offline programming (OLP) elevates the 
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method of robot language programming by completely isolating the 
programming process from the physical robot manipulator, minimizing the 
number of downtime interventions to lower costs (Dolinsky, 2001). OLP 
solutions are often delivered in software packages called OLP software or 
computer-aided robotics (CAR) software (Neto & Mendes, 2013). Most 
manufacturers’ or aftermarket OPL software packages allow the 
transformation of work-cells and robotic systems on factory floor level into 
interactive simulations of environments and systems available remotely 
and virtually. A typical OLP system encompasses the following 
components, as suggested by Dolinsky:  

− Computer-aided-design system/package contains libraries of 
geometry, 3D module, 3D importer/exporter. 

− Modelling and simulation modules are environments for kinematics 
and dynamics modelling and simulation. 

− Visualization/interaction viewport displays intuitive graphical 3D 
representations of the factory environment and animations of the 
manufacturing process 

− Standard library of robot models is a collection of ready-made 
modules provided by different robot manufacturers 

− Program interpreter/generator create the robot-ready programming 
sequence automatically from the simulation process.  

 
Aside from the reduction in robot downtime, Carvalho et al. present some 
other benefits of using the OLP approach (Carvalho, Siqueira, & Absi-
Alfaro, 1998):  

− Reduction in human health-related risks caused by interaction with 
hazardous manufacturing facilities. 

− The flexibility of the overall work-cell and its units is increased. 

− Tasks planning optimization and validations are carried out faster and 
more efficiently 

− Previously planned routines and other parts of the program can be 
reused.  

− The information model of the process, e.g. CAD/CAM data, can be 
imported directly to the simulation to increase the system accuracy 
in a straightforward manner.  

 
In contrast, some drawbacks of the OLP approach are discussed by Neto 
and Mendes as follow (Neto & Mendes, 2013):  

− The relatively high upfront costs in software and staff training are 
difficult to justify for many small and medium-sized enterprises 
(SMEs).  

− Accurate models of the robot manipulator and their working 
environments, as well as information on the manufacturing process, 
must be prepared in advance.  

− Propper calibration between the simulation and the real-world 
environment must be carried out by experienced technicians to avoid 
significant inaccuracies of the robot system during runtime.  
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4 MODELING OF DOBOT ROBOT ARM  

4.1 Motivation 

In June 20015, Jerry Liu and his six other classmates launched a Kickstarter 
project which raised USD 650 000 for a desktop robot arm named Dobot 
(Sin, 2017). One year later, these Chinese students from the Academy of 
Science in Jiangsu went on and released the second version of Dobot, the 
“Magician”, with some upgrades in terms of look, size, performance, and 
capability. This 4-axis robot arm has the maximum payload of 500 grams 
with 0.2 millimeters of precision, weighing only 4 kilograms (Dobot, 2019). 
The robot comes with 5 different types of end-effector, presented in Table 
4. The aim of the company for this product was, according to Liu, “…to 
make something affordable so people could create”. Thus, Dobot Magician 
becomes a practical choice for robotics education and training across many 
academies and universities.  
 
The aim of this thesis project is to build an offline programming framework 
for the Dobot platform, using Visual Components 4.1 (VC) as the main 
offline programming (OLP) software package, which is discussed in 
subchapter 3.3.2. However, at the time of implementation, the standard 
library of robot models in VC only includes the early Kickstarter version, 
which is different in size and lacks the support for the various end-effectors 
on the Magician model. This inspired the author to implement the newer 
3D model version of the Dobot arm to be utilised for the project. This 
process is discussed in detail in the following subchapter. Figure 10 
showcases the visual difference between the old (left) and new (right) 
model of the Dobot Magician.  
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Figure 10. The original Dobot robot arm (left) and the 
Dobot Magician (right). Photo courtesy of Dobot.   

 

Table 4. Dobot end-effectors (Dobot, 2019).  

3D printer kit Print size (L x W x H) 150 x 150 x 150 (mm) 

3D printing material PLA 

Resolution 0.1 mm 

Laser engraver Power consumption 500 mw 

Type  405 nm (blue laser) 

Power 12V, TTL trigger (with 
PWM driver) 

Pen holder Pen diameter 10 mm 

Vacuum suction cup Suction cup diameter 20 mm 

Pressure -35 KPa 

Gripper Range 27.5 mm 

Drive Type Pneumatic 

Force 8 N 

 

4.2 Geometric assests 

The actual construction of the Dobot Magician 3D model is out of the scope 
of this project. Thus, the model demonstrated in Figure 11 was fetched 
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from the company’s customer support portal. The document includes both 
STEP and STL format for the original model, and three out of five end-
effector models for the robot, which can be seen in Figure 12. However, 
the model was not ready for situations, since there has not been any 
kinematic structure integrated within. The following subchapter discusses 
the implementation of the modelling process using Visual Components 4.1 
as the simulation environment.   
 

 

Figure 11. Dobot Magician model (Gero_S, 2018). 
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Figure 12. Dobot Magician’s pen holder (left), suction cup 
(middle), gripper (right) (Gero_S, 2018) 

4.3 Kinematic modelling 

4.3.1 Geometry spliting 

The kinematic template from the original Dobot model was utilized as a 
base where the new model is constructed. The Dobot modelling 
information can be obtained and interacted with through the Component 
Graph located under the Modelling tab in Visual Components 4.1. As can 
be seen from Figure 13, the old version kinematic structure contains six 
levels of indentations, representing the hierarchy of the robot 
components. Based on this structure, the geometries of the newer Dobot 
Magician are split accordingly as demonstrated in Figure 14.  
 

 

Figure 13. Original Dobot kinematic structure. Photo 
courtesy of Visual Components and Dobot.  
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Figure 14. The new Dobot Magician geometries split. 
Photo courtesy of Dobot and Visual Components.  

4.3.2 Kinematic offsets 

After splitting, the geometries of the Dobot Magician model could be 
placed into the kinematic template from the older version model. 
However, as can be seen from Figure 15 (left), the kinematic links (yellow 
spheres) were not connected to the correct locations of the components’ 
geometries. To combat this problem, the spatial positions of the kinematic 
links must be adjusted with offset values. These values are measured in 
distances the displacements of the links in comparison with the base frame 
of the robot model. This base frame is illustrated with the red, green, blue 
arrows in Figure 15. The displacement distances were both taken from 
actual measurements of the device and from the official physical 
specifications of the robot arm. The measured offset values are then 
edited accordingly as denoted in Table 5. After applying the offsets, the 
kinematic links are now attached to the correct geometries as shown in 
Figure 15 (right). The 3D model is now almost ready for further simulation 
and offline programming related tasks. The following subchapter discusses 
the deviation and adjustment in joints angles range between the 3D model 
and the physical unit.  
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Figure 15. Incorrect (left) and correct (right) kinematic 
arrangement of the model. Photo courtesy of Dobot and Visual 
Components.  

 

Table 5. Kinematic offsets. 

Links coordinates New values 

L01X 142.6 

L12X 0 

L12Y 0 

L23X 97.676468 

L23Z 93 

L34X 85 

L34Z 120.1 

L45X -34.5 

L45Z 30.99 

L56X 100 

L56Z 40.585 

MountplateOffset -34.5 

4.3.3 Range offsets of joint angles  

This subchapter describes the joints’ angle range adjustment of the Dobot 
Magician 3D model in accordance with the official specifications of the 
real-world unit. As discussed in the previous subchapter, the model uses 
the simulated based frame coordinates as a guide for its kinematic 
structure. Therefore, the resulting joints angles correspond to a different 
value range comparing to those specified and used by the manufacturer. 
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The default ranges for each axis of the Dobot Magician arm are showcases 
in column 2 of Table 6. The readjusted values of the ranges as denoted in 
column 3 are measured using the provided tools in Visual Components; 
thus, they might affect the final accuracy of the simulation system. 
However, robot calibration by itself is another potential thesis topic, and 
hence, it will not be covered in this paper. Nevertheless, the construction 
of a virtual representation of the robot arm provides a sufficient 
foundation for the upcoming introduction of the offline programming 
framework.  

Table 6. Dobot physical and modelled axes’ ranges. Adapted from 
Dobot (Dobot, 2019). 

Axis Default range (degree) Simulated range (degree) 

Joint 1 base -135 – 135 -135 – 135 

Joint 2 rear arm 0 – 85 140 – 55 

Joint 3 forearm -10 – 95 49 – -53 

 

5 OFFLINE PROGRAMMING FRAMEWORK  

5.1 Introduction 

The aim of the framework is to presents a practical method of offline 
programming (OLP) implementation for the Dobot robot arm. By default, 
the robot manufacturer includes a free-to-use interface called 
DobotStudio which can be downloaded directly from their official web site. 
As can be seen from Figure 16, the software is a user-friendly portal for 
beginners that provides easy access to the basic eight functions of the 
robot arm. The interface supports basic playback teaching as well as 
function blocks programming and scripting with Python. Users are also 
able to integrate their own HTML/JavaScript applications into DobotStudio 
using their extension framework. For advanced users with more complex 
use cases, the included software development kit provides support for 
most applications on modern platform, such as Matlab, PLC, Labview, etc., 
as well as an extensive collection of dynamic-link library files covering most 
modern programming languages such as C++, Python, C#, Java, etc. This 
opens up possibilities for various OLP methods and implementations for 
the robot arm, which encourages the author to design and implement an 
OLP framework.  
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Figure 16. DobotStudio interface. Photo courtesy of 
Dobot 

5.2 Overview of the framework architecture and implementation 

5.2.1 Architecture  

The overall architecture and schemas of the OLP framework shown in 
Figure 17 were designed based on the robot programming knowledge 
presented earlier in this document. At the heart of the system lies the OLP 
software package which handles tasks-level programming and simulation, 
and Visual Components 4.1 was chosen for this position. The server that 
interacts with the simulation environment can either be the Dobot server 
or the PLC server, depending on their roles in the corresponding 
application. In the presence of a PLC server, a separate client connecting 
with the Dobot arm is required. The Python programming language was 
chosen for the implementation of the Dobot server and client. All 
communications between the server(s) and the client(s) are carried out 
using the open platform communications unified architecture (OPC UA) 
since the author has previous knowledge and experience with the 
protocol. The summary of platform and software choices are presented in 
Table 7, while the reasoning and implementations are discussed later in 
the following subchapters.  
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Figure 17. System schemas.  

 

Table 7. Corresponding chosen platforms  

Components Platforms 

Simulation Visual Components 4.1 

Dobot interface/gateway Python server/client 

PLC portal Twincat 3 

 

5.2.2 Visual Components 4.1 

This software was chosen as the OLP package because of its availability and 
capabilities. In terms of availability, the license for the premium version of 
the product was kindly provided for student use by Häme University of 
Applied Sciences.  In terms of capabilities, visual Components 4.1 is a 
powerful 3D manufacturing simulation software with support for CAD 
compatibility, process modelling, component modelling, simple and 
advanced robotics, etc. based on three levels of version distribution 
described in Table 8. In subchapters 4.2 and 4.3 the component modelling 
and robotics features were used for the construction of the Dobot 
Magician model and its kinematic structure. For robotics programming, 
the software provides a dynamic, accurate, and intuitive 3D environment 
with an application programming interface written in Python. Visual 
Components also encourages different OLP related workflows, since they 
also provide connectivity add-ons for communications with PLCs (Beckhoff 
ADS), Universal Robots (RTDE), and OPC UA remote servers. The latest 
method will be used since the main communication protocols for the 
framework is OPC UA. Through this add-on, VC becomes a client that 
exposes the behaviours and properties of the robot as shown in Figure 18 
to any connecting OPC UA server. However, these exposed entities are 
local and required corresponding variables from the server to pair with 
them.  
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Figure 18. OPC UA client from Visual Components. Photo 
courtesy of Visual Components.  

 

Table 8. Product versions (columns) and supported features (rows) of 
Visual Components. Adapted from Visual Components (Visual 
Components, 2019) 

 Essentials Professional Premium 

Layout configuration x x x 

Process modelling x x x 

CAD compatibility x x x 

Project ready deliverables x x x 

Simple robotics x x x 

Component modelling  x x 

Advanced robotics   x 

5.2.3 Python Dobot server/client 

The Dobot server/client program is a combination of the python-opcua 
library from FreeOpcUa and the Python SDK from Dobot. The Dobot 
python SDK allows direct interface and communications with the robot 
arm through a UART port (universal asynchronous receiver-transmitter) 
which are normally included in many modern computers and micro-
controllers. An example from the SDK is the point-to-point (PTP) control 
library. The library allows simultaneous axes control over the robot using 
their angles coordinates or the more common Cartesian coordinates, 
which describes the positions of an object in terms of its displacements 
along the three x, y, z coordinate axes. The functions from these libraries 
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take these coordinates along with other information on the desired 
movements such as movement types, velocity, acceleration, etc. to 
effectively control the robot physical structure. This information and 
parameters could be extracted directly from the visualization or by 
subscription to a PLC OPC UA server. Accordingly, the python OPC UA 
server/client can be customized as required by the application.  

5.2.4 PLC-based control system 

The introduction of a PLC server between the simulation and the robot 
interface, while increases the complexity level of the system, provides 
better integration to the existing projects at Häme University of Applied 
Sciences (HAMK). Most laboratory-scale training platforms and systems at 
HAMK uses Beckhoff or Siemens PLCs as their controllers to communicate 
with conveyors, actuators, sensors, etc. Both PLC systems include support 
for the OPC UA protocol either through their standard programming library 
or high-end modules and devices. In addition, the purpose of this thesis 
project as stated earlier is to encourage robotics involvement of students 
from the automation department. Thus, the inclusion of a PLC system in 
the design schemas can be justified. In terms of working principles, the PLC 
connection to Visual Components simulation using the OPC UA protocol 
could be carried out in a straightforward manner. The other connection 
from the PLC to Dobot could be implemented in two ways. The first 
method involves direct communications between the PLC and the input-
output (IO) array integrated into the Dobot Magician arm. This array 
includes ten IO units (Analog input or Pulse Width Modulation output), 
four controllable 12V power output, a UART interface, etc. (Dobot, 2019). 
The second method utilises the OPC UA architecture previously used by 
the PLC with the simulation software, but it requires a separately 
developed program as a gateway to Dobot using its various SDKs.  

6 CONCLUSION  

The purpose of this thesis project was to encourage the Automation 
Engineering students of Häme University of Applied Sciences to get some 
practice in the robotic field. This was also a great opportunity for the 
author to improve his knowledge base regarding the topic.  
 
To realize this goal, a 3D simulation model was built, and a framework was 
designed for the offline programming (OLP) process of the Dobot Magician 
robot arm. Although the final result is far from being ready to be used in 
the industry, the two products of the thesis have completed the 
fundamental features of OLP, which can be used to build upon or 
implemented immediately for coming projects at HAMK. Aside from the 
empirical part, the earlier chapters of the thesis are written as introductory 
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material in robotics for future automation students. They cover the 
fundamental concept of a robot in terms of components, structure, 
applications, and functions. The later chapters also provide an overview of 
different robotic programming methods as to their concepts, 
requirements, as well as the advantages and disadvantages of each 
programming approach.  
 
For future development projects, robot calibrations, improvement, and 
practical implementations of the OLP framework would be appealing 
topics for future students from the author’s perspective. Since the 3D 
representation of the robot was constructed using simple measurements, 
the accuracy level of the robot is not completely reliable. To combat this, 
Dolinsky’s Ph.D. thesis (2001) – “The Development of a Genetic 
Programming Method for Kinematic Robot Calibration” – would be a great 
starting point and excellent learning material on the topic for future thesis 
projects. In addition, although the OLP framework was not implemented 
completely here in this project due to time constraints, demo versions of 
the concept were developed and tested.  
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Appendix 1 
DOBOT MODEL USAGE IN VISUAL COMPONENTS 
 

The Dobot 3D model described in this paper can be retrieved from the 
following link:  
https://github.com/hamk-automation/dobot-opcua 
 
The model can be accessed by opening the “DobotProgram.vcmx” file in 
Visual Components 4.1+. Users can save this model into the eCatalog of 
the program by follow the steps listed below:  
 
Step 1: Double-click the “DobotProgram.vcmx” file to open the model in 
Visual Components 
 
Step 2: Select the model by clicking, then navigate to the modelling tab as 
shown in the following picture.  
 

 
(Photo courtesy of Visual Components and Dobot) 
 
Step 3: In the “Component” section (red box), click on “Save As” 
 

 
(Photo courtesy of Visual Components and Dobot) 

https://github.com/hamk-automation/dobot-opcua
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Step 4: A saving dialog will open on the right hand-side. In the “Basic Info” 
section, select the “File” field and change it into the following, with 
<Username> replaced by the name of the user on their device: 
 
C:\Users\<Username>\Documents\Visual Components\4.1\My 
Models\DobotMagician.vcmx  
 

 
(Photo courtesy of Visual Components and Dobot) 
 
Step 5: Close and re-open Visual Components. The model should appear 
under the “My Models” directory from the eCatalog as shown in the 
following picture:  
 

 
(Photo courtesy of Visual Components and Dobot) 
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Appendix 1 
DEMO: LIVE MOTION CONTROL FROM SIMULATION 
 
General idea 
 

The architecture behind this demo is illustrated in the following picture. In 
this situation, the PLC acts as a server for communication between the 
simulation environment and the robot controller. This controller 
continuously drives the motion of the robot by polling the joints 
coordination form the PLC server. This information is obtained from the 
simulation continuously by the PLC.  
 

  
 
Implementation 
 

The related programs and code can be retrieved from the following link:  
https://github.com/hamk-automation/dobot-opcua 
 
This demo can be deployed by following the steps listed below:  
 
Steps 1: Prerequisite 
Navigate to the above link and retrieve the repository. Follow the 
prerequisite to install the following:  

− Visual Components 4.1 (Premium version with “Connectivity add-on”) 

− Twincat 3 

− Python 3.7+ 

− Python-opcua library 
 
Steps 2:  PLC server setup 
Create a new project in Twincat 3 and add the following variables as shown 
in the following picture:  
 

 

https://github.com/hamk-automation/dobot-opcua
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Compile and log in to execute the server.  
 
Step 3: Simulation start-up 
Open the “DobotProgram.vcmx” file in Visual Components 4.1+ and 
navigate to the “Connectivity” tab. On the left hand-side in the 
“Connectivity Configuration” panel click on the white circle next to 
“Server” to connect to the PLC server.  
 

 
(Photo courtesy of Visual Components)  
 
After a successful connection, the “Connected Variables” panel at the 
bottom would display as shown in the following picture when simulation 
starts.  
 

 
(Photo courtesy of Visual Components) 
 
Step 4: Dobot client start-up 
The Dobot robot arm must be connected to the user’s device in advance 
through any USB port. Afterwards, the user can use the relative python 
command to execute the “livepolling-client.py” file. The program will 
automatically detect and connect to the robot arm.  
 
Step 5: Start the simulation 
If the above program yields no error, the simulation in Visual Components 
can be started. The robot will start moving according to the predefined 
program in the simulation. This program can be edited by navigating to the 
“Program” tab in Visual Components.   

 


