
Robotic Arm Modelling and Framework for Offline

Programming

Bachelor’s thesis

Valkeakoski
Electrical and Automation Engineering

Fall 2019

Dat Huynh

ABSTRACT

Electrical and Automation Engineering
Valkeakoski

Author Dat Huynh Year 2019

Subject Robotic Modelling and Offline Programming Framework

Supervisor(s) Juhani Henttonen

ABSTRACT

Many manufacturing industries are embracing the trend of factory
automation and the adoption of robotic technology. As a result, this thesis
project aimed to encourage more participation from fellow Automation
Engineering students at Häme University of Applied Sciences, later
referred to as HAMK, in robotics-related activities and projects.

The early chapters of the thesis serve as introductory materials for
beginners in the robotic field. Later parts of the thesis introduce a 3D
modelling process and an offline programming (OLP) framework, both of
which can be continued as standalone development projects, or they can
be integrated into existing automation projects at HAMK.

Although the two products of this thesis project are far from being ready
to be used in the industry, they both have complete fundamental functions
that can be utilised immediately. Appealing topics from the author’s
perspective for future developments include robot calibrations and
improvements on the OLP framework and its implementations.

Keywords Robotic modelling, robotic programming, offline programming.

Pages 37 pages including appendices 4 pages

CONTENTS

1 INTRODUCTION ... 1

1.1 Preamble ... 1

1.2 Contents outline .. 2

2 ROBOTIC TECHNOLOGY ... 2

2.1 Robotics ... 2

2.2 Industrial robotics ... 4

2.3 Construction of robot manipulators: joints and links ... 6

2.4 Other components and structure ... 8

2.4.1 End-effectors ... 8

2.4.2 Power sources and control mechanism .. 10

3 ROBOT PROGRAMMING .. 13

3.1 Robot system ... 13

3.2 Robot control .. 14

3.2.1 Robot controller .. 14

3.2.2 Motion control ... 16

3.2.3 Connectivity of peripherals ... 17

3.2.4 Accuracy and repeatability .. 18

3.3 Robot programming .. 19

3.3.1 Online programming ... 20

3.3.2 Offline programming ... 21

4 MODELING OF DOBOT ROBOT ARM ... 23

4.1 Motivation ... 23

4.2 Geometric assests ... 24

4.3 Kinematic modelling .. 26

4.3.1 Geometry spliting .. 26

4.3.2 Kinematic offsets ... 27

4.3.3 Range offsets of joint angles ... 28

5 OFFLINE PROGRAMMING FRAMEWORK ... 29

5.1 Introduction... 29

5.2 Overview of the framework architecture and implementation 30

5.2.1 Architecture ... 30

5.2.2 Visual Components 4.1 .. 31

5.2.3 Python Dobot server/client ... 32

5.2.4 PLC-based control system ... 33

6 CONCLUSION ... 33

REFERENCES .. 35

Appendices
Appendix 1 DOBOT MODEL USAGE IN VISUAL COMPONENTS
Appendix 2 DEMO: LIVE MOTION CONTROL FROM SIMULATION

LIST OF FIGURES

Figure 1. Robot gripper in a flexible machining cell envelope (Peng & Zhou, 2003) 6

Figure 2. Common robot joints (Lynch & Park, 2017) ... 7

Figure 3. Symbolic representation of robot joints. Adapted from Spong et al., 2014. 8

Figure 4. Dual gripper. Photo courtesy of Robotiq (Robotiq). 9

Figure 5. Robot manipulator and wrist configuration (HAMK Moodle, 2017). 10

Figure 6. Reduction drives. Adapted from HAMK Moodle (HAMK Moodle, 2017). ... 13

Figure 7. A typical robotic system. Adapted from Spong et al., 2004 (Spong,
Hutchinson, & Vidyasagar, 2004) ... 14

Figure 8. Robot controller functions. Adapted from Kandray, 2010 (Kandray, 2010) 16

Figure 9. Programming methods and their required skills levels. Adapted from
Syrjänen, 2018 (Syrjänen, 2018). .. 20

Figure 10. The original Dobot robot arm (left) and the Dobot Magician (right) 24

Figure 11. Dobot Magician model (Gero_S, 2018). ... 25

Figure 12. Dobot Magician’s pen holder (left), suction cup (middle), gripper (right)
(Gero_S, 2018) .. 26

Figure 13. Original Dobot kinematic structure. ... 26

Figure 14. The new Dobot Magician geometries split... 27

Figure 15. Incorrect (left) and correct (right) kinematic arrangement of the model.
 28

Figure 16. DobotStudio interface. ... 30

Figure 17. System schemas. .. 31

Figure 18. OPC UA client from Visual Components. .. 32

LIST OF TABLES

Table 1. Robot classification (Bajd, Mihelj, Lenarčič, Stanovnik, & Munih, 2019) 4

Table 2. Industrial robot classification based on applications (Bajd, Mihelj, Lenarčič,
Stanovnik, & Munih, 2019) ... 6

Table 3. Programming methods. Adapted from Dolinsky, 2001 (Dolinsky, 2001). ... 21

Table 4. Dobot end-effectors (Dobot, 2019). .. 24

Table 5. Kinematic offsets. ... 28

Table 6. Dobot physical and modelled axes’ ranges. Adapted from Dobot (Dobot,
2019). 29

Table 7. Corresponding chosen platforms ... 31

Table 8. Visual Components product versions (columns) and supported features
(rows). Adapted from Visual Components (Visual Components, 2019) 32

LIST OF ABREVIATIONS

ADS – Automation Device Specification
AML – Automation Markup Language
CAD – Computer aided design
CAM – Computer aided manufacturing
CIM – Computer integrated manufacturing
CNC/DNC – Computer/Direct numerical control
DC/AC – Direct/Alternating current
EOAT – End-of-arm-tooling
FMI – Future Market Insights
HTML – Hypertext Markup Language
IFR – International Federation of Robotics
IPC – industrial personal computer
IR – Industrial robot
ISO – International Standards Organization
OLP – Offline programming
OPC UA – Open platform communications unified architecture
PAC – Programmable automation controller
PC – Personal computer
PLC – Programmable logic controller
RPL – Robot programming language
RTDE – Real-Time Data Exchange
SDK – Software development kit
SME – Small to medium sized enterprise
STEP – Standard for the Exchange of Product Data
STL – Stereolithography
UART – Universal Asynchronous Receiver/Transmitter
VAL – Variable Assembly Language or VicArm Language
VC – Visual Components

1

1 INTRODUCTION

1.1 Preamble

Industrial robot (IR) systems have seen a blossom during the past decade
in demands of consumption and level of complexity as standalone flexible
manufacturing units. According to the International Federation of
Robotics’ statistics department, over 400,000 robot installations were
realized in 2018 in comparison with an annual average of 115,000 units
between 2005 and 2008 (IFR, 2019). With the exclusion of software and
peripherals, this accounts for a total USD 16.5 billion in net worth solely in
2018, despite the recent trade conflict between China and North Americas
(IFR, 2019). With traditional manufacturers embracing the ongoing trends
towards computer-integrated manufacturing (CIM) and automation, IR
models specialized in material handling, assembly, welding, etc. is now
covering a wide variety of industries including automotive,
electrical/electronics, machinery, food and beverages, etc (IFR, 2019). The
potential and reputation of IRs have also reached small-and-medium-sized
enterprises (SME) and individuals outside of the industrial sector like
hardware shop owners. Many of which have begun to adapt IR systems
into multi-axis machining applications, e.g. multi-material milling or rapid
prototyping (Vergeest & Tangelder, 1996) (Shirase, Tanabe, Hirao, & Yasui,
1996). It is worth noting that this area was previously predominated by
computer and direct numerical control (CNC/DNC) systems, whereas only
3-4% of the total number of robots is used for machining purposes (Abele,
Kulok, & Weigold, 2005) (Pan & Zhang, 2008). This gradual migration of IR
units into the sector of numerically controlled (NC) machines and
machining tools is a result of each unit greater flexibility in task processing
and overall lower cost against e.g. an akin volume of machining cell
(Milutinovic, et al., 2010).

While there are similar fundamental traits between different types of IR
applications, their complexity level of tool trajectories may vary widely
(Milutinovic, et al., 2010). For this reason, conventional online task
programming assisted with teaching pendants is often an inefficient, time-
consuming, and expensive process in non-pick-and-place applications. To
simplify the teaching process, many proprietary high-level programming
languages such as VAL II, AML, RPL, etc. were developed to work in
conjunction with the teaching pendant at the shop-floor level. However,
there remain several limitations to the online task teaching approach
(Chan, Prof. Weston, & Case, 1988):

− Manufacturing downtime can be significant as a result of the
geometry definition in teach mode.

− Machine-level information on the process (CAD/CAM data) available
elsewhere in CIM facilities could not be utilized.

2

− Modern programming languages are more beneficial than their
proprietary counterparts mentioned above.

− Operators are at risk of the hazardous work-cell/workstation
Thus, SMEs with a wide variety of products requires an automatic
approach in generating NC code for their corresponding manufacturing
processes (Mitsi, Bouzakis, Mansour, Sagris, & Maliaris, 2005). Mitsi et al.
saw the potential of an offline programming (OPL) system using CAD/CAM
modules as a visual representation of the IR system to avoid problems of
the teaching stage. However, this approach has also proposed new
challenges, with the most common being the constraints in resource
planning in terms of process and product information. Without a proper
determination of IR systems (workspace elements, sensors, etc.) and CIM
facilities assistance, this approach is impractical for complex
manufacturing tasks (Chan, Prof. Weston, & Case, 1988). Kinematic
constraints and calibration are also key factors in realizing a systematic
approach to OPL solutions.

1.2 Outline of contents

This thesis project aimed to provide fundamental knowledge about the
topic of robotics while encouraging other fellow automation students at
Häme University of Applied Sciences, later referred to as HAMK, to
participate and get more involved in the robotic sector. Thus, chapter 2 of
the thesis will present the basic concepts and information on robotics and
the related technology. These include the concepts of robotics and
industrial robotics based on their applications, as well as the components
and structure of a robot manipulator. Chapter 3 introduces the controller
system for control and interact with a typical robot. This chapter also
includes the concept of robot programming and the various approaches to
the two categories of online and offline programming.

For the thesis project to be more interactive with other students, the
author constructed an offline programming (OLP) 3D model of the Dobot
Magician – a compact tabletop robot arm for education or use. Chapter 4
describes in detail the modelling process and the resulting product, which
is open sourced and can be used immediately. This 3D model can be used
as an example for the offline programming framework presented in
chapter 5.

2 ROBOTIC TECHNOLOGY

2.1 Robotics

Karel Capek in his 1920 science fiction play Rossumovi Univerzální Roboti
(Rossum's Universal Robots or R.U.R) describes the term “robot”,
originated from the Czech word “robota”, as an artificial labourer who

3

performs mundane and undesirable tasks for their owners. Modern robots
are also derived from the same idea, as defined by a standard dictionary:
“a machine that resembles a human and does mechanical, routine tasks
on command” (Dictionary.com, n.d.). Despite being a young and modern
sector, robotics encompasses the knowledge of many conventional
technology fields: mathematics, physics, electrical engineering,
mechanical engineering, automation and industrial engineering, and
computer science.

Over the past two decades, robotics research has grown tremendously,
with the underlying power of rapid developments in software and sensor
technology as well as theoretical progress in control engineering and
computer vision. This advance in complexity of interdisciplinary branches
like robotics and factory automation requires the emergence of the latest
disciplines of engineering such as manufacturing, systems and
applications, etc. (Spong, Hutchinson, & Vidyasagar, 2004).

While there are many aspects evolving the fields of robotics, this paper
only covers the fundamental and related concepts, including related
terminology as a basis, kinematics, computer-aided design, and different
types of robot programming, since the main subject evolves industrial
robot arm applications integrating into factory settings and infrastructure.
Nevertheless, the divergent science of robotics span across many domains,
such as locomotion (e.g. flying, skating, climbing robots, or legged,
wheeled robots, etc.), artificial intelligence, human interaction, legal and
ethical regulations, etc. This divergence concerning both technical and
social aspects ensures a balanced and effective integration of robots into
both professional and domestic areas of modern society (Leenes, et al.,
2017).

Robots are gradually replacing humans in mundane or hazardous tasks,
ranging from factory manufacturing, exploring mines and oceans, bomb
defusing to daily-basis household chores like vacuuming, washing, laundry,
etc. Moreover, in areas where accuracy and speed are demanding factors,
such as surgical operations and anatomy, the introduction of nano-size
robots is considered revolutionary (Carne, 2019). Based on their
characteristic features and applications, Bajd et al. classify the most
common types of robots into four main categories as demonstrated in
Table 1.

4

Table 1. Robot classification (Bajd, Mihelj, Lenarčič, Stanovnik, &
Munih, 2019)

Robots

Robot
Manipulators

Robot
Vehicles

Man-Robot
Systems

Biologically
Inspired Robots

Serial Land Haptic Robots Humanoids

Parallel Water Tele-manipulators Robots from
animal world Micro and Nano Air Exoskeletons

2.2 Industrial robotics

Over the last few years, the industrial-robotics market has been on the rise,
with over two million industrial robots installed and operated on factory
floors and other commercial sites in 2018 (IFR, 2019). This prevalent
growth is mainly driven by the gradually decreasing robot prices in
comparison with the upward rising labour costs. In his 2017 article
“Automation, robotics, and the factory of the future”, Tilley presented a
significant rise of nearly 120% in labour compensation from 1990 – 2017
in comparison with a gradual drop of 50% in the robotics counterpart
(Tilley, 2017). Another key factor in the adoption of robotics technology in
the industrial sector is social motivation. In situations where facing toxic
and hazardous working conditions is inevitable, the benefit robot as a
substitution for human workers can overshadow economic concerns (Bajd,
Mihelj, Lenarčič, Stanovnik, & Munih, 2019). Thus, many industrial robots
were originally designed to carry human-like characteristics while having
at least the same level of performance. Nevertheless, in terms of speed,
precision, repeatability, and reliability, their modern skills go far beyond
those of even the best worker. The human characteristics of the robot
include a mechanical arm, the ability to make decisions based on sensory
inputs, and the ability to communicate with its environment for industrial
applications. In addition, the ability to be programmed and reprogrammed
qualified IRs for the programmable automation category. Therefore, an
industrial robot is defined by the International Standards Organization
(ISO) in the ISO/TR/8373-2.3 standard as:

- …an automatically controlled, reprogrammable, multipurpose

manipulator, programmable in three or more axes, which can be either
fixed in place or mobile for use in industrial automation applications
(International Organization for Standardization, 2012).

Albeit the first industrial robot applications were intended to be
standalone solutions, many modern robotics systems are recognized for
their ease of integration into any factory implementations (Kandray, 2010).
Recent rapid progress in computer hardware, software development, and

5

networking technologies enables the maturity of the robotics field in terms
of reliability and capability while maintaining lower costs in robot
production. Accordingly, more and more robot manufacturers are
developing and shipping their related products as modular, plug-and-play
units with very competitive offerings and pricings (Tilley, 2017). A standard
IR system is designed for the ease of assembly, installation, and network
establishment. The components are compatible with most modern
standard network protocols and thus are able to automatically register
themselves to any production systems using straightforward network
wiring. Such simplicity becomes the main motivation for industrial
designers to integrate robots into the majority of their applications. This
approach increases the flexibility of the overall production system, as
commissioners are able to quickly apply modifications to a manufacturing
system for new production runs. As a result, companies can expect a much
faster return on capital investments, since less repetition is required in
single-task execution, equipment design, procurement, and
commissioning (Tilley, 2017).

In terms of process platform integration, Bajd et al. divided industrial
robots into three groups found in Table 2 using their applications. The first
two groups involve industrial robots working in automated manufacturing
cells. These automation work cells incorporate groups of manufacturing
stations, each assigned with a specific task or process (Kandray, 2010). As
demonstrated in Figure 1, typical robots in machining cell envelopes are
often seen working in conjunction with programmable logic controllers
(PLC), part feeders, CNC machines, conveyors, etc., either taking a leading
role or tending the manufacturing process (Peng & Zhou, 2003).

Master robots often take responsibility in tasks such as welding (spot, arc,
laser), coating, machining, etc., while the processes involving slave robots
may vary among different types of material handling such as palletizing,
press loading, parts feeding, etc. The third type of robot tackles
unconventional applications and industrial sectors: inspection and quality
assurance, maintenance and repair, food packaging and decorations,
textile and clothing, and construction (Bajd, Mihelj, Lenarčič, Stanovnik, &
Munih, 2019). Quality assurance and testing robots are commonly used in
the electronics industries, where electric parameters of every component
are frequently tested during production runs. The food and textile industry
propose unique challenges in material handling, since the workpiece
nature is often non-rigid, and certain hygiene requirements must be met
in food processing. Autonomous and teleoperated robots are opted-in for
maintenance and repair tasks unsafe for human, such as servicing and
maintenance for nuclear facilities, highways, power grids, etc.

6

Figure 1. Robot gripper in a flexible machining cell envelope (Peng &
Zhou, 2003)

Table 2. Industrial robot classification based on application (Bajd,
Mihelj, Lenarčič, Stanovnik, & Munih, 2019)

Industrial Robots

Work cell master Work cell slave Special applications

Welding
Material/Workpiece
handling

Quality assurance,
inspection, testing

Painting, coating,
sealing

Palletizing, parts
feeding

Maintenance and
repair

Machining Die casting Food industry

Assembly Flexible fixturing
Textile and clothing
industry

 Construction

2.3 Construction of robot manipulators: joints and links

As discussed above, the most effective and powerful robotics systems
today are the industrial robot arms or robot manipulators that can
substitute and outperform human workers in labour-heavy and
monotonous jobs or hazardous working environments. The robot
manipulator commonly consists of a set of rigid bodies, also known as links,
mechanically assembled together using different types of joints, as
demonstrated in Figure 2 by Lynch and Park (2017). According to Lynch
and Park, each joint is only allowed to connect two links simultaneously.

7

As can be seen from the graph, the revolute joint (R), also referred to as a
hinge, enables relative rotation between the two connected links;
meanwhile, links connected by the prismatic joint (P) are able to perform
relative linear movements. Aside from these two most typical joints, robot
manipulators may include other types of joints such as the helical (H) and
cylindrical joints (C), each allows simultaneous (H) and independent (C)
rotational and translational motion respectively; the universal joint (U)
which includes a double revolute joints in an orthogonal configuration; the
spherical or ball-and-socket joints (S), which allows a three-dimensional
rotation similar to a human shoulder. The chain combination of several
joints and links form a kinematic structure providing a mathematical and
geometrical approach to describe the spatial positioning of the
manipulator’s overall structure at a given time. Spong et al. in their book
Robot Dynamics and Control (2004) described the two links at any given
revolute or prismatic joint of a robot manipulator as 𝑙𝑖 and 𝑙𝑖+1, while the
rotational or translational axis that joint is denoted by 𝑧𝑖. The variable
describing the displacement of adjacent rigid segments is defined as 𝜃𝑖 for
the R-type joint or 𝑑𝑖 for the P-type counterpart (Spong, Hutchinson, &
Vidyasagar, 2004). As illustrated in Figure 3, these mathematical
representatives of a robot physical configuration answer the fundamental
question of robotics – identifying the robot position in the physical world.
As a result, precise controlled robot movements powered by motors and
actuators is achieved by converting the geometric information into
electrical signals.

Figure 2. Common robot joints (Lynch & Park, 2017)

8

Figure 3. Symbolic representation of robot joints. Adapted from Spong
et al., 2014.

2.4 Other components and structure

2.4.1 End-effectors

Aside from joints and links, industrial manipulators usually include an end-
effector or end-of-arm-tooling (EOAT) attached to a specific segment,
often called wrist. End-effectors are different tools extending the robot
capabilities and applications range, such as gripper or suction cup for
material/work-piece handling, milling tools for machining, spray nozzle for
paint coating, etc. In many applications, more than one end-effector per
manipulator is required, and the process of tool change is often carried out
automatically by the robot itself. Depending on the situations, a special
dual EOAT set up as shown in Figure 4 can be utilized for better efficiency
while trading the flexibility of the device. The diversity in EOATs and how
it dictates the robot application types is an advantage for small and
medium sized businesses (SMEs) with small batch sizes and large product
agglomeration (Tilley, 2017). The essential flexibility and simplicity of the
robot to be rapidly reconfigured and redeployed significantly reduces the
number of single task repetitions to justify the purchasing and
commissioning costs (Tilley, 2017). Simultaneously, the majority of end-
effector supplies in the market comes from independent manufacturers
with a significant product variety ranging from conventional formats
(mechanical, pneumatic, or magnet) to specialized tools for handling
specific materials (Aljarboua, Santhanam, Teulieres, Thomsen, & Tilley,
2019). Therefore, the cost of EOAT units may significantly vary from being
superficial to higher than the robot itself (Bajd, Mihelj, Lenarčič, Stanovnik,
& Munih, 2019). In cases where the various EOATs available on the market

9

cannot meet the specifications, special tools for particular applications are
often designed by engineers from scratch or from commercial EOATs base
models.

The kinematic chain linking between the robot manipulator and the end-
effector is described as a robot wrist. A typical wrist always consists of
revolute joints, and the most popular configuration commonly seen in
modern robot applications is a spherical wrist (Spong, Hutchinson, &
Vidyasagar, 2004). This configuration simplifies the spatial identification
process of a robot manipulator to a great extent by separating its overall
kinematic structure into two independent analyses. The first three
positional degrees of freedom are decoupled by examining three or more
joints of the robot arm. The remaining number of orientational degrees of
freedom is then determined by the degrees of freedom of the wrist. This
number is application dependent, and it usually varies from one, two, or
three. Figure 5 illustrates a typical robot manipulator attached with a three
degrees of freedom spherical wrist. The three revolute joints in this type
of wrist are denoted as roll, pitch, and yaw.

Figure 4. Dual gripper. Photo courtesy of Robotiq (Robotiq).

10

Figure 5. Robot manipulator and wrist configuration (Aimo, 2017).

2.4.2 Power sources and control mechanism

Reliability and availability are the fundamental requirements of any power
source actuating a robot arm. There are three main types of robotics
powering systems, namely electrical systems, hydraulic systems, and
pneumatic systems. The hydraulic system is a closed-loop system utilizing
the pressurized flow of oil-based hydraulic fluid to create translational or
rotational motions of actuators that enables the desired robot movements
(Kandray, 2010). The nature of pressurized fluid gains hydraulic systems a
high power-to-size ratio, hence they are considered unrivaled in terms of
responsiveness and torque delivery (Bajd, Mihelj, Lenarčič, Stanovnik, &
Munih, 2019). Thus, hydraulically actuated robots are the primary choice
in performing heavy loads lifting tasks. However, hydraulic-based power
systems present many serious concerns throughout the stages of their
lifecycle (Kandray, 2010). The upfront cost of hydraulic systems relatively
high, since they require extra support from different mechanical and
electrical components such as motorized pumps, pipelines, control valves,
etc. to function properly. These components also add up the energy and
emission footprint of the overall system during operations. Operators are
also at risk of component failure under high pressure and temperature,
potentially leading to severe injuries or death. Maintenance for hydraulic
systems is to be carried out frequently since the constructions are

11

subjected to leaks and degradation under constant heavy workloads. Fire-
resistance of the hydraulic fluid is another key factor to be considered
since they are oil-based and often not available on factory sites.

In terms of design language, pneumatic systems share some similar
fundamental principles and components in comparison with their
hydraulic counterparts (Kandray, 2010). Both types of actuators function
based on pressurized substance flow while being powered by an additional
support system consists of control valves, lines, etc. However,
performance capability is the key factor in diverging the two systems.
Accuracy in position control and speed of pneumatically powered robots
is difficult to achieve because of the unstable nature of compress air. This
constraint limits the application range of pneumatic robot systems to
simple pick-and-place type operations. Since pneumatic-based robots are
opened loop systems, they often use adjustable mechanical stops for
position control to some extent. On the other hand, opened loop designs
do not require a separate return pipeline; hence, the complete piping
structures are simplified, and costs are reduced in terms of installation and
maintenance. In addition, most factory floors provide their own air
compression system available for use immediately, further increasing the
savings. Air-based actuators are also subjected to leaks, but environmental
concerns are insignificant.

Currently, robots powered by electrical actuators are recognized as the
most popular systems of choice for often being cheaper, cleaner, and
quieter than other systems (Spong, Hutchinson, & Vidyasagar, 2004).
Precise control of electrically powered robots over their velocity,
acceleration, and position is achieved through a closed-loop system where
the relevant data is encoded into electrical command signals (Kandray,
2010). Electrical systems are driven by alternating current (AC) or direct
current (DC) motors. AC servomotors have the benefit of being stable and
light while requiring seldom maintenance. On the other hand, while relying
on frequent brush replacements to function properly, DC motors deliver
more torque, qualifying them for strength demanding tasks. Aside from
the motors, each electrical robot also includes a support system of
reduction drives. The supporting drives generate revolute speed reduction
and torque amplification to produce desired links and joints motions
(Kandray, 2010). The most prevalent types of reduction drives are
illustrated in Figure 6. Rotary motions are performed by synchronous belt
drives, train of spur, worm or bevel gears. Other than synchronous timing,
belt-type rotary drives can either be a v-groove or flat belt, although they
are seldom used in applications due to the high possibility of slippage.
Worm gear drives are used for 90 degrees rotational conversion, while
bevel gears may be used for both 45 and 90 degrees of axis rotation. For
linear or translational motions, the use of ball-screw gear drives provides
a high level of precision in a small form factor. For greater torque-to-size
ratio, harmonic drives are an appealing choice, although the mechanism
principle behind them is difficult to describe and thus will not be

12

mentioned in this paper. Every gear system can be described using the gear
ratio formula:

 𝐺𝑅 =
𝑁𝑂

𝑁𝐼
 (1)

Where:
𝑁𝑂 is the number of teeth on the output or driven gear.
𝑁𝐼 is the number of teeth on the input or driver gear.

Thus, the gear transfer function can be described as:

 𝑇𝑅 =
𝑉𝑂

𝑉𝐼
=

𝜃𝑂

𝜃𝐼
=

1

𝐺𝑅
 (2)

Where:
𝑉𝑂 is the revolutions per minute (rpm) of the driven gear.
𝑉𝐼 is the rpm of the driver gear.
𝜃𝑂 is the angular rotation of the driven gear.
𝜃𝐼 is the angular rotation of the driver gear.
𝐺𝑅 is the gear ratio

13

Figure 6. Reduction drives. Adapted from HAMK Moodle (Aimo, 2017).

3 ROBOT PROGRAMMING

3.1 Robot system

A typical robot system encompasses more than just a series of mechanical
bodies and linkages. As illustrated in Figure 7, a functioning robot system
consists of:

− Robot manipulator

− Power source system

− Controller

14

− Teach pendant

− Different end-effectors or end-of-arm tooling

− A wide range of connected devices, including internal and external
sensors and periphery equipment

− Network and storage system

Another essential integration of the system is the robot program and the
underlying software architecture, since the configuration and behaviour of
which can impact the overall performance and dictate the subsequent
application scope (Spong, Hutchinson, & Vidyasagar, 2004). In subchapter
2.4, we have already discussed different types of power sources and EOATs
in terms of technical arrangements, advantages, disadvantages, and
application niches. In the following subchapters, the focus would be to
describe different aspects of robot programming, from hardware
requirements and capabilities to the fundamentals of programming
software, methods, and techniques. The later section on programming
concepts and techniques will also serve as a guideline basis for the
upcoming empirical process.

Figure 7. A typical robotic system. Adapted from Spong et al., 2004
(Spong, Hutchinson, & Vidyasagar, 2004)

3.2 Robot control

3.2.1 Robot controller

A recent study from the Future Market Insights (FMI) reported a
sustainable growth in demands for the industrial robot controller market
motivated by the uprising trends and embracement of factory automation
(Future Market Insights, 2019). The year 2018 saw a relative approximate
market value of USD 632.6 million, which will receive another 9.1 percent

15

increase during the upcoming course of 2019 to 2029 according to FMI.
The automotive and electronics/semiconductor industry with their
continuous growing supply chains has been the two most dominant
customers throughout the market for industrial robots and robot
controllers (Brog˚ardh, 2009). The advent of Industrial Internet of Things
(IIoT) innovations and adoption of human-robot collaboration enables
better optimization for robot controllers while encouraging more open-
source solutions; thus, modern robot controllers are now commonly
integrated into programmable logic controller (PLC), programmable
automation controller (PAC), personal computer (PC), industrial PC (IPC),
embedded systems, etc. (Hoske, 2015). At its most basic form, a robot
controller is any computing hardware serving three main purposes as
described in Figure 8 (Kandray, 2010):

− Robot motion control

− Peripherals control

− Operator interface
The controller unit must first be able to control the manipulator motions
through its actuators. Secondly, the controller can recognize and
communicate with different input sensors, end-effectors, external
actuators, etc., bridging the gap between the robot and its periphery
devices. Finally, the controller is served as an entry point for manual robot
control and program editing and execution.

16

Figure 8. Robot controller functions. Adapted from Kandray, 2010
(Kandray, 2010)

3.2.2 Motion control

Industrial robots’ classification as discussed in subchapter 2.2 could also
be determined based on the type of trajectory motions generated by the
controller executors. The lowest level of control complexity for a robot
manipulator is known as the limited sequence control (Kandray, 2010).
Industrial robot systems at this level are opened loop devices with no
feedback system, and their movements are predefined with mechanical
hard stops (Spong, Hutchinson, & Vidyasagar, 2004). After the control
signals are sent to the actuators, the lack of feedback inputs prevents any
further subsequent verifications on the execution status and robot
position. Despite the limit in performance capabilities, this control method
simplifies the requirements for the controller, allowing standard units like
a programmable logic controller (PLC) to be sufficient for limited-sequence
controlled robots.

17

On the other hand, the performance level of closed-loop control robotic
systems is dictated by the capabilities of their feedback equipment and
systems. The simpler type of system in this category is the point-to-point
control robot (Spong, Hutchinson, & Vidyasagar, 2004). This type of robot
allows the end-effector to be sequentially positioned in accordance with a
predefined set of discrete spatial points. This demands only a certain level
of axes’ positioning feedback since there are no tool path restrictions. On
the controller side, the introduction of a spatial points set reserves a small
storage volume, while requiring a proper user interface, e.g. a teach
pendant, for teaching and editing the sequence. The next level of closed-
loop control method is continuous path control, where the entire tool
trajectory, velocity, and acceleration are planned ahead. The planning
process could be carried out manually or with the support of simulations
software. During run-time, the program requires more computing
resources than other control processes, since the continuous streams of
commands are being executed based on the simultaneous unceasing
encoded data of every individual axis movements. Thus, the level of
accuracy, performance, and capabilities of the robot system is a direct ratio
of the provided computational power. Such flexibility makes continuous
path control robots the most popular system of choice throughout various
industries. Their applications cover a wide variety of precision demanding
tasks, such as seam arc-welding, machining, special grasp and place jobs,
etc. (Kandray, 2010).

3.2.3 Connectivity of peripherals

Many industrial tasks mentioned throughout this paper are almost always
performed with the cooperation of an industrial robot and one or more
peripheral devices, including external sensors, external actuators, devices,
tools with their own sensors (Patent No. EP1749249A1, 2003). Thus, the
communication and control of the robot over these peripherals are an
important aspect of robot control (Kandray, 2010).

Along with other computer hardware equipment, the robot controller
continues to increase in speed and performance, enabling multitasking
and independence in robots through enhanced connection quality and
better diversity in periphery equipment (Godwin, 1998). Godwin stated in
his study that the state-of-the-art work-cells’ controller solutions are
getting better flexibility in implementation strategies, as they often share
similar functionality and fundamental design traits in microchip
architecture. Native robot controllers can now take on the leading role in
work-cells with low complexity in control hierarchy and little requirements
for speed-critical tasks. Aside from robot movements, controllers in these
applications handle also end-effector action, e.g. gripper open/close;
external devices such as sensors, slider, conveyor motors, etc. This type of
arrangement unifies the connections and software development into one
central platform; thus, it increases the simplicity and lowers the cost of
implementation.

18

In a larger manufacturing process involving a significant amount of
industrial equipment and/or multiple robots working in conjunction, the
robot controller can have interchangeable roles with a PLC or IPC. The
classifications and hierarchy decisions are made based on the robot
classification discussed in subchapter 2.2. Robot masters have their
controller focuses on complex axes’ movements, while other PLC handles
the local peripherals’ signals and processes. PLC masters control the
overall operation of the manufacturing process while sending high-level
commands for other local manipulator controllers to trigger sequences of
robot movements. In a distributed system, PLCs and robot controllers are
implemented with equal in control status to increase the flexibility of the
workstations, since they are most often designed to be independence from
others for the ease of reconfiguration and redeployment. In many
applications, one or more of the above-mentioned setups may co-exist in
the same hierarchy.

3.2.4 Accuracy and repeatability

Accuracy and repeatability are the two most important aspects in
assessing the performance of an industrial robot system (Dolinsky, 2001).
The term accuracy refers to the ability of a robot manipulator to achieve
the smallest deviation from the pre-programmed positions and
orientations of its tool or end-effector. Meanwhile, repeatability or
precision indicates the possibility of the robot to reproduce any previous
reference position of the end-effector in its workspace. Most modern
robotic systems while having great repeatability performance often
struggle to achieve an acceptable level of accuracy movements (Płaczek &
Piszczek, 2018) (Şirinterlikçi, et al., Spring 2019).

Płaczek and Piszczek pointed out that the problem is inevitable regardless
of a well-designed environment and a well-prepared program since the
main reason is coming from the limitations in the current feedback system.
A typical robot manipulator does not include a method to directly measure
the spatial positions and orientations of its end-effector. Rather, the
numbers are calculated using positional encoders throughout the robot
structure and dimensional measurements of the mechanical parts. This
exposes the process to errors and uncertainties in computation; robot
construction defects such as bending, compressing, etc.; moving parts
effects, e.g. gear backlash; etc. Thus, an excellent accuracy level of a robot
system must correspond to an extremely rigid mechanical structure, which
can be difficult and expensive to achieved (Spong, Hutchinson, &
Vidyasagar, 2004). However, methods such as robot teaching offsets,
calibration, and direct sensing with vision or laser could help improve the
accuracy level of a robotic system.

On the other hand, the repeatability level of a robot only depends on the
ability of its controller to deliver the same set of electrical signals with a
small margin of error. This feature is called controller resolution, which

19

refers to the smallest motion deviation a controller can generate (Spong,
Hutchinson, & Vidyasagar, 2004). Rapid advance and improvements in the
electronics and semiconductor industry allow increasingly better
controller resolutions, resulting in better robot performance in both
accuracy and repeatability.

3.3 Robot programming

The robot classifications in terms of applications, work-cell roles, motion
control, power sources, etc. discussed in previous chapters have a
significant impact on the choice of their programming method (Kandray,
2010). For an opened loop pneumatic robot in playback applications, the
workspace is contained using mechanical and electrical limit switches, and
the task sequence steps are relatively simple and usually executed by a
programmable logic controller (PLC). On the other hand, most modern
servo-driven robot systems are equipped with more complex controllers
and a separate system to communicate about the robot positions using
higher-level programming languages, thus provides more performance
and capabilities. At its core, robot programming boils down to two
fundamental tasks, regardless of their applications:

− Robot motion programming

− Sequencing/work-cycle programming

Although there are many programming methods, most can be
distinguished by the nature of the programming process, of which they
reside in the two categories of motion programming and robot language
programming (Kandray, 2010). In many cases, these two categories are
rephrased into online and offline programming respectively, to describe
the whereabouts of the programming process and personnel during the
period (Syrjänen, 2018). Online programming typically takes place at the
factory floor level or inside the robot work-cell, where the operators and
technical specialists interact directly with the robot. The offline
programming process does not require physical contact with the robot but
gets carried out and tested instead in simulations environment outside of
the manufacturing facilities. The following subchapter discusses more in
detail the two online and offline approaches/styles of robot programming,
as they are conventionally accepted and somewhat covers both motion
and robot language programming mentioned earlier. In fact, Syrjänen
suggests in his bachelor thesis (2018) an arrangement for these different
programming categories in the order of technical skills involved. This
arrangement is illustrated in the following Figure 9.

20

Figure 9. Programming methods and their required skills levels.
Adapted from Syrjänen, 2018 (Syrjänen, 2018).

3.3.1 Online programming

Online programming was adopted immediately early in the robot industry
for its simplicity and intuitiveness as a solution, while offline programming
methods and practices were still immature and underdeveloped (Yong,
Gleave, Green, & Bonney, 1985). As described in table 3, online
programming methods by nature can be classified into motion
teaching/programming and high-level robot language programming
(Dolinsky, 2001).

Motion teaching is the process of physically guiding the robot manipulator
through a set of desired positions and orientation, while simultaneously
defined program instructions (Kandray, 2010). The guiding methods vary
in levels of complexity depending on the control mechanism and
applications discussed in subchapter 5.2.2 (Dolinsky, 2001). For pick-and-
place pneumatic robots, the simplest manual method is used which often
involves basic equipment setup and adjustments for mechanical stops,
limit switch, etc. In continuous path control systems, the manual
walkthrough or leadthrough method is used. These two methods require
the operator to manually move the robot arm through a path of
continuous points. The points are stored locally and reserve a significant
amount of memory and storage of the controller. For situations where
manual guiding of the manipulator is impractical, a handheld teach
pendant is used to power-guide the robot, and hence the method is called
powered leadthrough. Regardless of the teaching methods, Kandray
described in his book the process of motion programming using a general
procedure as follow (Kandray, 2010):

− Define a start/home position of the manipulator and an instruction to
move the end-effector to such position.

21

− Input the logic instruction(s) for the end-effector/EOAT and/or
relevant peripheral devices as required in the process.

− Input a moving command to reach the next point in space with
correct orientations and relevant parameters such as velocity,
moving path, accelerations, etc. A previously stored continuous path,
if any, could be executed instead.

− Input the logic instruction(s) for the end-effector/EOAT and/or
relevant peripheral devices as required in the process.

− Repeat step three and four until the sequence is complete.
The above-mentioned process can often be tedious and time-consuming
while reducing the uptime and output of the robot. Some robot units are
double purchased for a given application as a result; one unit becomes the
programming and testing platform, while the other goes to production
(Kandray, 2010).

The use of higher-level robot programming languages eases the need for
significant service downtime, by isolating the logic programming process
outside of factory sites. The logic sequence program now takes a modern
shape and benefits from high-level/human-readable languages such as
better structure and abstract level, built-in support for native geometric
entities, high-level commands, etc. (Dolinsky, 2001). Although most
modern robot languages are proprietary, such as VAL, RCL, RPL, etc., they
were fundamentally similar and often simpler versions of modern
programming languages (Syrjänen, 2018). As a result, the programming
and testing process can be carried out more efficient while minimizing the
loss in the production time of the robot, which is mainly used for defining
the arm positions. Nevertheless, the many advantages of this approach
come at the cost of a higher level of sophistication and computation from
the robot controller side (Dolinsky, 2001). First, the controller must first be
able to interpret and execute the program during runtime. Second, the
robot controller often must implement an inverse kinematic model of the
manipulator structure to translate the end-effector positions to the axial
movements. This could result in the overall accuracy of the operation.

Table 3. Programming methods. Adapted from Dolinsky, 2001
(Dolinsky, 2001).

Robot Task
Motion programming

Manual

Walkthrough

Leadthrough

High-level programming

3.3.2 Offline programming

As the adoption and demand robotics in factory automation rises, a need
is raised for a more flexible, efficient, and intuitive approach for robot
programming other than the conventional online counterpart (Neto &
Mendes, 2013). The concept of offline programming (OLP) elevates the

22

method of robot language programming by completely isolating the
programming process from the physical robot manipulator, minimizing the
number of downtime interventions to lower costs (Dolinsky, 2001). OLP
solutions are often delivered in software packages called OLP software or
computer-aided robotics (CAR) software (Neto & Mendes, 2013). Most
manufacturers’ or aftermarket OPL software packages allow the
transformation of work-cells and robotic systems on factory floor level into
interactive simulations of environments and systems available remotely
and virtually. A typical OLP system encompasses the following
components, as suggested by Dolinsky:

− Computer-aided-design system/package contains libraries of
geometry, 3D module, 3D importer/exporter.

− Modelling and simulation modules are environments for kinematics
and dynamics modelling and simulation.

− Visualization/interaction viewport displays intuitive graphical 3D
representations of the factory environment and animations of the
manufacturing process

− Standard library of robot models is a collection of ready-made
modules provided by different robot manufacturers

− Program interpreter/generator create the robot-ready programming
sequence automatically from the simulation process.

Aside from the reduction in robot downtime, Carvalho et al. present some
other benefits of using the OLP approach (Carvalho, Siqueira, & Absi-
Alfaro, 1998):

− Reduction in human health-related risks caused by interaction with
hazardous manufacturing facilities.

− The flexibility of the overall work-cell and its units is increased.

− Tasks planning optimization and validations are carried out faster and
more efficiently

− Previously planned routines and other parts of the program can be
reused.

− The information model of the process, e.g. CAD/CAM data, can be
imported directly to the simulation to increase the system accuracy
in a straightforward manner.

In contrast, some drawbacks of the OLP approach are discussed by Neto
and Mendes as follow (Neto & Mendes, 2013):

− The relatively high upfront costs in software and staff training are
difficult to justify for many small and medium-sized enterprises
(SMEs).

− Accurate models of the robot manipulator and their working
environments, as well as information on the manufacturing process,
must be prepared in advance.

− Propper calibration between the simulation and the real-world
environment must be carried out by experienced technicians to avoid
significant inaccuracies of the robot system during runtime.

23

4 MODELING OF DOBOT ROBOT ARM

4.1 Motivation

In June 20015, Jerry Liu and his six other classmates launched a Kickstarter
project which raised USD 650 000 for a desktop robot arm named Dobot
(Sin, 2017). One year later, these Chinese students from the Academy of
Science in Jiangsu went on and released the second version of Dobot, the
“Magician”, with some upgrades in terms of look, size, performance, and
capability. This 4-axis robot arm has the maximum payload of 500 grams
with 0.2 millimeters of precision, weighing only 4 kilograms (Dobot, 2019).
The robot comes with 5 different types of end-effector, presented in Table
4. The aim of the company for this product was, according to Liu, “…to
make something affordable so people could create”. Thus, Dobot Magician
becomes a practical choice for robotics education and training across many
academies and universities.

The aim of this thesis project is to build an offline programming framework
for the Dobot platform, using Visual Components 4.1 (VC) as the main
offline programming (OLP) software package, which is discussed in
subchapter 3.3.2. However, at the time of implementation, the standard
library of robot models in VC only includes the early Kickstarter version,
which is different in size and lacks the support for the various end-effectors
on the Magician model. This inspired the author to implement the newer
3D model version of the Dobot arm to be utilised for the project. This
process is discussed in detail in the following subchapter. Figure 10
showcases the visual difference between the old (left) and new (right)
model of the Dobot Magician.

24

Figure 10. The original Dobot robot arm (left) and the
Dobot Magician (right). Photo courtesy of Dobot.

Table 4. Dobot end-effectors (Dobot, 2019).

3D printer kit Print size (L x W x H) 150 x 150 x 150 (mm)

3D printing material PLA

Resolution 0.1 mm

Laser engraver Power consumption 500 mw

Type 405 nm (blue laser)

Power 12V, TTL trigger (with
PWM driver)

Pen holder Pen diameter 10 mm

Vacuum suction cup Suction cup diameter 20 mm

Pressure -35 KPa

Gripper Range 27.5 mm

Drive Type Pneumatic

Force 8 N

4.2 Geometric assests

The actual construction of the Dobot Magician 3D model is out of the scope
of this project. Thus, the model demonstrated in Figure 11 was fetched

25

from the company’s customer support portal. The document includes both
STEP and STL format for the original model, and three out of five end-
effector models for the robot, which can be seen in Figure 12. However,
the model was not ready for situations, since there has not been any
kinematic structure integrated within. The following subchapter discusses
the implementation of the modelling process using Visual Components 4.1
as the simulation environment.

Figure 11. Dobot Magician model (Gero_S, 2018).

26

Figure 12. Dobot Magician’s pen holder (left), suction cup
(middle), gripper (right) (Gero_S, 2018)

4.3 Kinematic modelling

4.3.1 Geometry spliting

The kinematic template from the original Dobot model was utilized as a
base where the new model is constructed. The Dobot modelling
information can be obtained and interacted with through the Component
Graph located under the Modelling tab in Visual Components 4.1. As can
be seen from Figure 13, the old version kinematic structure contains six
levels of indentations, representing the hierarchy of the robot
components. Based on this structure, the geometries of the newer Dobot
Magician are split accordingly as demonstrated in Figure 14.

Figure 13. Original Dobot kinematic structure. Photo
courtesy of Visual Components and Dobot.

27

Figure 14. The new Dobot Magician geometries split.
Photo courtesy of Dobot and Visual Components.

4.3.2 Kinematic offsets

After splitting, the geometries of the Dobot Magician model could be
placed into the kinematic template from the older version model.
However, as can be seen from Figure 15 (left), the kinematic links (yellow
spheres) were not connected to the correct locations of the components’
geometries. To combat this problem, the spatial positions of the kinematic
links must be adjusted with offset values. These values are measured in
distances the displacements of the links in comparison with the base frame
of the robot model. This base frame is illustrated with the red, green, blue
arrows in Figure 15. The displacement distances were both taken from
actual measurements of the device and from the official physical
specifications of the robot arm. The measured offset values are then
edited accordingly as denoted in Table 5. After applying the offsets, the
kinematic links are now attached to the correct geometries as shown in
Figure 15 (right). The 3D model is now almost ready for further simulation
and offline programming related tasks. The following subchapter discusses
the deviation and adjustment in joints angles range between the 3D model
and the physical unit.

28

Figure 15. Incorrect (left) and correct (right) kinematic
arrangement of the model. Photo courtesy of Dobot and Visual
Components.

Table 5. Kinematic offsets.

Links coordinates New values

L01X 142.6

L12X 0

L12Y 0

L23X 97.676468

L23Z 93

L34X 85

L34Z 120.1

L45X -34.5

L45Z 30.99

L56X 100

L56Z 40.585

MountplateOffset -34.5

4.3.3 Range offsets of joint angles

This subchapter describes the joints’ angle range adjustment of the Dobot
Magician 3D model in accordance with the official specifications of the
real-world unit. As discussed in the previous subchapter, the model uses
the simulated based frame coordinates as a guide for its kinematic
structure. Therefore, the resulting joints angles correspond to a different
value range comparing to those specified and used by the manufacturer.

29

The default ranges for each axis of the Dobot Magician arm are showcases
in column 2 of Table 6. The readjusted values of the ranges as denoted in
column 3 are measured using the provided tools in Visual Components;
thus, they might affect the final accuracy of the simulation system.
However, robot calibration by itself is another potential thesis topic, and
hence, it will not be covered in this paper. Nevertheless, the construction
of a virtual representation of the robot arm provides a sufficient
foundation for the upcoming introduction of the offline programming
framework.

Table 6. Dobot physical and modelled axes’ ranges. Adapted from
Dobot (Dobot, 2019).

Axis Default range (degree) Simulated range (degree)

Joint 1 base -135 – 135 -135 – 135

Joint 2 rear arm 0 – 85 140 – 55

Joint 3 forearm -10 – 95 49 – -53

5 OFFLINE PROGRAMMING FRAMEWORK

5.1 Introduction

The aim of the framework is to presents a practical method of offline
programming (OLP) implementation for the Dobot robot arm. By default,
the robot manufacturer includes a free-to-use interface called
DobotStudio which can be downloaded directly from their official web site.
As can be seen from Figure 16, the software is a user-friendly portal for
beginners that provides easy access to the basic eight functions of the
robot arm. The interface supports basic playback teaching as well as
function blocks programming and scripting with Python. Users are also
able to integrate their own HTML/JavaScript applications into DobotStudio
using their extension framework. For advanced users with more complex
use cases, the included software development kit provides support for
most applications on modern platform, such as Matlab, PLC, Labview, etc.,
as well as an extensive collection of dynamic-link library files covering most
modern programming languages such as C++, Python, C#, Java, etc. This
opens up possibilities for various OLP methods and implementations for
the robot arm, which encourages the author to design and implement an
OLP framework.

30

Figure 16. DobotStudio interface. Photo courtesy of
Dobot

5.2 Overview of the framework architecture and implementation

5.2.1 Architecture

The overall architecture and schemas of the OLP framework shown in
Figure 17 were designed based on the robot programming knowledge
presented earlier in this document. At the heart of the system lies the OLP
software package which handles tasks-level programming and simulation,
and Visual Components 4.1 was chosen for this position. The server that
interacts with the simulation environment can either be the Dobot server
or the PLC server, depending on their roles in the corresponding
application. In the presence of a PLC server, a separate client connecting
with the Dobot arm is required. The Python programming language was
chosen for the implementation of the Dobot server and client. All
communications between the server(s) and the client(s) are carried out
using the open platform communications unified architecture (OPC UA)
since the author has previous knowledge and experience with the
protocol. The summary of platform and software choices are presented in
Table 7, while the reasoning and implementations are discussed later in
the following subchapters.

31

Figure 17. System schemas.

Table 7. Corresponding chosen platforms

Components Platforms

Simulation Visual Components 4.1

Dobot interface/gateway Python server/client

PLC portal Twincat 3

5.2.2 Visual Components 4.1

This software was chosen as the OLP package because of its availability and
capabilities. In terms of availability, the license for the premium version of
the product was kindly provided for student use by Häme University of
Applied Sciences. In terms of capabilities, visual Components 4.1 is a
powerful 3D manufacturing simulation software with support for CAD
compatibility, process modelling, component modelling, simple and
advanced robotics, etc. based on three levels of version distribution
described in Table 8. In subchapters 4.2 and 4.3 the component modelling
and robotics features were used for the construction of the Dobot
Magician model and its kinematic structure. For robotics programming,
the software provides a dynamic, accurate, and intuitive 3D environment
with an application programming interface written in Python. Visual
Components also encourages different OLP related workflows, since they
also provide connectivity add-ons for communications with PLCs (Beckhoff
ADS), Universal Robots (RTDE), and OPC UA remote servers. The latest
method will be used since the main communication protocols for the
framework is OPC UA. Through this add-on, VC becomes a client that
exposes the behaviours and properties of the robot as shown in Figure 18
to any connecting OPC UA server. However, these exposed entities are
local and required corresponding variables from the server to pair with
them.

32

Figure 18. OPC UA client from Visual Components. Photo
courtesy of Visual Components.

Table 8. Product versions (columns) and supported features (rows) of
Visual Components. Adapted from Visual Components (Visual
Components, 2019)

 Essentials Professional Premium

Layout configuration x x x

Process modelling x x x

CAD compatibility x x x

Project ready deliverables x x x

Simple robotics x x x

Component modelling x x

Advanced robotics x

5.2.3 Python Dobot server/client

The Dobot server/client program is a combination of the python-opcua
library from FreeOpcUa and the Python SDK from Dobot. The Dobot
python SDK allows direct interface and communications with the robot
arm through a UART port (universal asynchronous receiver-transmitter)
which are normally included in many modern computers and micro-
controllers. An example from the SDK is the point-to-point (PTP) control
library. The library allows simultaneous axes control over the robot using
their angles coordinates or the more common Cartesian coordinates,
which describes the positions of an object in terms of its displacements
along the three x, y, z coordinate axes. The functions from these libraries

33

take these coordinates along with other information on the desired
movements such as movement types, velocity, acceleration, etc. to
effectively control the robot physical structure. This information and
parameters could be extracted directly from the visualization or by
subscription to a PLC OPC UA server. Accordingly, the python OPC UA
server/client can be customized as required by the application.

5.2.4 PLC-based control system

The introduction of a PLC server between the simulation and the robot
interface, while increases the complexity level of the system, provides
better integration to the existing projects at Häme University of Applied
Sciences (HAMK). Most laboratory-scale training platforms and systems at
HAMK uses Beckhoff or Siemens PLCs as their controllers to communicate
with conveyors, actuators, sensors, etc. Both PLC systems include support
for the OPC UA protocol either through their standard programming library
or high-end modules and devices. In addition, the purpose of this thesis
project as stated earlier is to encourage robotics involvement of students
from the automation department. Thus, the inclusion of a PLC system in
the design schemas can be justified. In terms of working principles, the PLC
connection to Visual Components simulation using the OPC UA protocol
could be carried out in a straightforward manner. The other connection
from the PLC to Dobot could be implemented in two ways. The first
method involves direct communications between the PLC and the input-
output (IO) array integrated into the Dobot Magician arm. This array
includes ten IO units (Analog input or Pulse Width Modulation output),
four controllable 12V power output, a UART interface, etc. (Dobot, 2019).
The second method utilises the OPC UA architecture previously used by
the PLC with the simulation software, but it requires a separately
developed program as a gateway to Dobot using its various SDKs.

6 CONCLUSION

The purpose of this thesis project was to encourage the Automation
Engineering students of Häme University of Applied Sciences to get some
practice in the robotic field. This was also a great opportunity for the
author to improve his knowledge base regarding the topic.

To realize this goal, a 3D simulation model was built, and a framework was
designed for the offline programming (OLP) process of the Dobot Magician
robot arm. Although the final result is far from being ready to be used in
the industry, the two products of the thesis have completed the
fundamental features of OLP, which can be used to build upon or
implemented immediately for coming projects at HAMK. Aside from the
empirical part, the earlier chapters of the thesis are written as introductory

34

material in robotics for future automation students. They cover the
fundamental concept of a robot in terms of components, structure,
applications, and functions. The later chapters also provide an overview of
different robotic programming methods as to their concepts,
requirements, as well as the advantages and disadvantages of each
programming approach.

For future development projects, robot calibrations, improvement, and
practical implementations of the OLP framework would be appealing
topics for future students from the author’s perspective. Since the 3D
representation of the robot was constructed using simple measurements,
the accuracy level of the robot is not completely reliable. To combat this,
Dolinsky’s Ph.D. thesis (2001) – “The Development of a Genetic
Programming Method for Kinematic Robot Calibration” – would be a great
starting point and excellent learning material on the topic for future thesis
projects. In addition, although the OLP framework was not implemented
completely here in this project due to time constraints, demo versions of
the concept were developed and tested.

35

REFERENCES

Abele, E., Kulok, M., & Weigold, M. (2005). Analysis of a machining industrial robot. 10th
International Scientific Conference on Production Engineering, II, pp. 1-11.
Lumbarda, Croatia. Retrieved November 4, 2019

Aimo, A. (2017). Robotics. Retrieved November 19, 2019, from HAMK Moodle:
www.moodle.hamk.fi

Aljarboua, Z., Santhanam, N., Teulieres, M., Thomsen, J., & Tilley, J. (2019, February).
Industrial robotics: Opportunities for manufacturers of end effectors. McKinsey
& Company. Retrieved November 19, 2019, from
https://www.mckinsey.com/industries/advanced-electronics/our-
insights/industrial-robotics-opportunities-for-manufacturers-of-end-effectors

Bajd, T., Mihelj, M., Lenarčič, J., Stanovnik, A., & Munih, M. (2019). Robotics (2nd ed.,
Vol. 1). Springer Nature. doi:10.1007/978-3-319-72911-4

Brog˚ardh, T. (2009). Robot Control Overview: An Industrial Perspective. Modeling,
Identification and Control, 30(3), 167-180. doi:10.4173/mic.2009.3.7

Carne, N. (2019, March 08). Researchers make a million tiny robots. Cosmos magazine.
Retrieved November 12, 2019, from
https://cosmosmagazine.com/technology/researchers-make-a-million-tiny-
robots

Carvalho, G. C., Siqueira, M. L., & Absi-Alfaro, S. C. (1998). Offline programming of
flexible welding manufacturing cells. Journal of Materials Processing Technology,
78(1-3), 24-28.

Chan, S. F., Prof. Weston, R. H., & Case, K. (1988, August). Robot simulation and off-line
programming. Computer-Aided Engineering Journal 5, 157-162.
doi:10.1049/cae.1988.0035

Dictionary.com. (n.d.). Dictionary.com. Retrieved from Dictionary.com:
https://www.dictionary.com/browse/robot?s=t

Dobot. (2019). DOBOT Magician Specifications. Retrieved from Dobot:
https://www.dobot.cc/dobot-magician/specification.html

Dolinsky, J.-U. (2001). The Development of a Genetic Programming Method for
Kinematic Robot Calibration . PhD Thesis, John Moores University, Liverpool.

Future Market Insights. (2019). Industrial Robot Controllers Market - Steering the Future
of Industrial Productivity. Retrieved November 21, 2019, from
https://www.futuremarketinsights.com/reports/industrial-robot-controllers-
market

Gentzell, T., Kjellsson, J., Strand, M., & Johansson, H. (2003). Patent No. EP1749249A1.
Retrieved November 22, 2019, from
https://patents.google.com/patent/EP1749249A1/en

Gero_S. (2018, August). 3D Model of Dobot Magician with Tools (STEP & STL). Retrieved
from Customer support for Magician: https://forum.dobot.cc/t/3d-model-of-
dobot-magician-with-tools-step-stl/1126

Godwin, L. E. (1998). Controller Interfaces for Robotic Surface Finishing Applications. The
4th Annual RIA Grinding, Deburring and Finishing Workshop. Novi, Michigan.
Retrieved November 24, 2019

Hoske, M. T. (2015, July 14). Industrial robot trends and types. Control Engineering.
Retrieved November 21, 2019, from

36

https://www.controleng.com/articles/industrial-robot-trends-and-
types/?fbclid=IwAR1aNJsaJpJ6eJII3YV46fanNB5lOUCxJn37wkYBoTdRd_nJocU3
OnSEok8

IFR. (2019). International Federation of Robotics statistics. Retrieved October 30, 2019,
from International Federation of Robotics statistics: https://ifr.org/free-
downloads/

International Organization for Standardization. (2012). Robots and robotic devices.
Retrieved November 17, 2019, from
https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en

Kandray, D. E. (2010). Programmable Automation Technologies: An introduction to CNC,
Robotics and PLCs. New York: Industrial Press Inc.

Leenes, R., Palmerini, E., Koops, B.-J., Bertolini, A., Salvini, P., & Lucivero, F. (2017).
Regulatory challenges of robotics: some guidelines for addressing legal and
ethical issues. Law, Innovation and Technology, 9(1), 1-44.
doi:10.1080/17579961.2017.1304921

Lynch, K. M., & Park, C. F. (2017). MODERN ROBOTICS: MECHANICS, PLANNING, AND
CONTROL (Vol. 1). Cambridge University Press.

Milutinovic, D., Glavonjic, M., Slavkovic, N., Dimic, Z., Zivanovic, S., Kokotovic, B., &
Tanovic, L. (2010, September 10). Reconfigurable robotic machining system
controlled and programmed in a machine tool manner. International Journal of
Advanced Manufacturing Technology 53, 1217-1229. doi:DOI: 10.1007/s00170-
010-2888-8

Mitsi, S., Bouzakis, K.-D., Mansour, G., Sagris, D., & Maliaris, G. (2005, August). Off-line
programming of an industrial robot for manufacturing. International Journal of
Advanced Manufacturing Technology, 26(3), 262-267. doi:10.1007/s00170-003-
1728-5

Neto, P., & Mendes, N. (2013, August). Direct off-line robot programming via a common
CAD package. Robotics and Autonomous Systems, 61(8), 896-910.
doi:10.1016/j.robot.2013.02.005

Pan, Z., & Zhang, H. (2008). Robotics machining from programming to process control:
a complete solution by force control. Ind Robot Int J, 35(5), 400-409.
doi:10.1108/01439910810893572

Peng, S., & Zhou, M. (2003). Sensor-based stage Petri net modelling of PLC logic
programs for discrete-event control design. International Journal of Production
Research, 41(3), 629-644. doi:10.1080/0020754021000042364

Płaczek, M., & Piszczek, Ł. (2018). Testing of an industrial robot’s accuracy and
repeatability in off and online environment. Maintenance and Reliability, 20(3),
455–464. doi:10.17531/ein.2018.3.15

Robotiq. (n.d.). Retrieved from https://robotiq.com/search?content-
type=photos&query=dual%20gripper

Shirase, K., Tanabe, N., Hirao, M., & Yasui, T. (1996). Articulated robot application in end
milling of sculptured surface. JSME international journal, 39(2), 308-316.
doi:10.1299/jsmec1993.39.308

Sin, B. (2017, April 25). Chinese Robotics Start-Up Used Tech From Its Robot Arms To
Make A Super Steady Gimbal. Forbes.

Şirinterlikçi, A., Tiryakioğlu, M., Bird, Adam, Harris, A., & Kweder, K. (Spring 2019).
Repeatability and Accuracy of an Industrial Robot: Laboratory Experience for a

37

Design of Experiments Course. The Technology Interface Journal, 9(2). Retrieved
November 24, 2019

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2004). Robot Dynamics and Control (Vol.
1). Retrieved November 11, 2011

Syrjänen, A. (2018). TASK LEVEL ROBOT PROGRAMMING: BACKGROUND, METHODS
AND CURRENT STATE. Bachelor of Science Thesis, Tampere University of
Technology, Automation Engineering, Tampere. Retrieved November 25, 2019,
from
https://trepo.tuni.fi/bitstream/handle/123456789/26967/syrjanen.pdf?sequen
ce=4&isAllowed=y

Tilley, J. (2017, September). Automation, robotics, and the factory of the future.
McKinsey&Company. Retrieved November 17, 2019, from
https://www.mckinsey.com/business-functions/operations/our-
insights/automation-robotics-and-the-factory-of-the-future

Vergeest, J., & Tangelder, J. (1996). Robot machines rapid prototype. Industrial Robot,
23(5), 17-20. doi:10.1108/01439919610130328

Visual Components. (2019). VISUAL COMPONENTS. Retrieved from VISUAL
COMPONENTS: https://www.visualcomponents.com/products/visual-
components/

Yong, Y. F., Gleave, J. A., Green, J. L., & Bonney, M. C. (1985). Off-line Programming of
Robots. In J. Wiley, & sons, Handbook of Industrial Robotics (S. Nof ed., pp. 381-
382). New York.

38

Appendix 1
DOBOT MODEL USAGE IN VISUAL COMPONENTS

The Dobot 3D model described in this paper can be retrieved from the
following link:
https://github.com/hamk-automation/dobot-opcua

The model can be accessed by opening the “DobotProgram.vcmx” file in
Visual Components 4.1+. Users can save this model into the eCatalog of
the program by follow the steps listed below:

Step 1: Double-click the “DobotProgram.vcmx” file to open the model in
Visual Components

Step 2: Select the model by clicking, then navigate to the modelling tab as
shown in the following picture.

(Photo courtesy of Visual Components and Dobot)

Step 3: In the “Component” section (red box), click on “Save As”

(Photo courtesy of Visual Components and Dobot)

https://github.com/hamk-automation/dobot-opcua

39

Step 4: A saving dialog will open on the right hand-side. In the “Basic Info”
section, select the “File” field and change it into the following, with
<Username> replaced by the name of the user on their device:

C:\Users\<Username>\Documents\Visual Components\4.1\My
Models\DobotMagician.vcmx

(Photo courtesy of Visual Components and Dobot)

Step 5: Close and re-open Visual Components. The model should appear
under the “My Models” directory from the eCatalog as shown in the
following picture:

(Photo courtesy of Visual Components and Dobot)

40

Appendix 1
DEMO: LIVE MOTION CONTROL FROM SIMULATION

General idea

The architecture behind this demo is illustrated in the following picture. In
this situation, the PLC acts as a server for communication between the
simulation environment and the robot controller. This controller
continuously drives the motion of the robot by polling the joints
coordination form the PLC server. This information is obtained from the
simulation continuously by the PLC.

Implementation

The related programs and code can be retrieved from the following link:
https://github.com/hamk-automation/dobot-opcua

This demo can be deployed by following the steps listed below:

Steps 1: Prerequisite
Navigate to the above link and retrieve the repository. Follow the
prerequisite to install the following:

− Visual Components 4.1 (Premium version with “Connectivity add-on”)

− Twincat 3

− Python 3.7+

− Python-opcua library

Steps 2: PLC server setup
Create a new project in Twincat 3 and add the following variables as shown
in the following picture:

https://github.com/hamk-automation/dobot-opcua

41

Compile and log in to execute the server.

Step 3: Simulation start-up
Open the “DobotProgram.vcmx” file in Visual Components 4.1+ and
navigate to the “Connectivity” tab. On the left hand-side in the
“Connectivity Configuration” panel click on the white circle next to
“Server” to connect to the PLC server.

(Photo courtesy of Visual Components)

After a successful connection, the “Connected Variables” panel at the
bottom would display as shown in the following picture when simulation
starts.

(Photo courtesy of Visual Components)

Step 4: Dobot client start-up
The Dobot robot arm must be connected to the user’s device in advance
through any USB port. Afterwards, the user can use the relative python
command to execute the “livepolling-client.py” file. The program will
automatically detect and connect to the robot arm.

Step 5: Start the simulation
If the above program yields no error, the simulation in Visual Components
can be started. The robot will start moving according to the predefined
program in the simulation. This program can be edited by navigating to the
“Program” tab in Visual Components.

