

Teemu Ropilo

TEACHING A MACHINE LEARNING
AGENT TO SURVIVE IN A 2D TOP-

DOWN ENVIRONMENT

Bachelor’s thesis
Information technology / Game programming

2019

Author (authors)

Degree

Time

Teemu Ropilo

Bachelor of Engineer-
ing

November 2019

Thesis title

Teaching a machine learning agent to survive in a 2D top-down
environment

26 pages

Commissioned by

GameLab
Supervisor

Niina Mässeli
Abstract

Machine learning is not a new thing, but the rapid development of computer architecture
has brought the tools in the hands of regular users. At the same time, this has led to ad-
vances in machine learning assisted game development, introducing new elements to tradi-
tional scripted gameplay behaviour.

The objective of this thesis was to train an autonomous machine learning agent that can
survive inside a two-dimensional top-down environment, while performing the tasks re-
quired to reach the goals set for it. In addition to training the agent, different learning meth-
ods were examined and compared, to find the best method for training the agent.

Before the training environment was created, references were gathered, related to machine
learning, especially in the area of game development. The preliminary design for the imple-
mentation was then created, which was followed by outlining the documentation. To start
developing the training environment, the machine learning tools were configured, and initial
tests were made, as a proof of concept. At this point all the necessary elements were pre-
sent, so from this point forward the process continued with improving on each element.
During the training of the machine learning agent, statistics were gathered to examine the
efficiency of each learning method. Finally, the statistics were compared alongside the ma-
chine learning models, to find on the best learning method for the purposes of this thesis.

The findings showed that imitation learning assisted reinforcement learning was the best
learning methods. Even though further tuning of the parameters and environment could
have given better results, the obtained results were deemed a success. Reinforcement
learning and curriculum learning methods also showed promise, but they were not as effi-
cient. The most significant result of this thesis was the accumulated knowledge on the sub-
ject, opening new possibilities in the area of machine learning and game development.

Keywords

machine learning, unity, reinforcement learning, imitation learning, top-down, 2D

TABLE OF CONTENTS

GLOSSARY ... 5

1 INTRODUCTION .. 6

1.1 Specification of the implementation .. 7

2 MACHINE LEARNING .. 7

2.1 Machine learning versus traditional AI .. 8

2.2 Machine learning in game development ... 8

2.3 Machine learning methods used ... 9

3 SOFTWARE AND OTHER ASSETS .. 11

4 SETUP OF THE AGENT CHARACTER AND ENVIRONMENT 12

4.1 Setting up the agent-controlled character ... 12

4.2 Levels and the environment architecture .. 13

5 MACHINE LEARNING IMPLEMENTATION AND RESULTS 14

5.1 Reinforcement and curriculum learning .. 14

5.2 Results of reinforcement and curriculum learning ... 18

5.3 Imitation learning assisted reinforcement learning .. 19

5.4 Results of imitation learning assisted reinforcement learning 20

6 ANALYZING THE RESULTS .. 20

6.1 Comparing the statistics ... 21

7 EXTRA FUNCTIONALITIES ... 24

8 CONCLUSIONS ... 24

REFERENCES .. 26

GLOSSARY

AI: Artificial Intelligence

BC: Behavioural Cloning

GAIL: Generative Adversarial Imitation Learning

IL: Imitation Learning

ML: Machine Learning

PPO: Proximal Policy Optimization

RL: Reinforcement Learning

6

1 INTRODUCTION

AI (artificial intelligence) has been around for quite some time and as such is

used for many purposes, including game development. One subset of AI is

machine learning, which has been gaining mainstream popularity in the recent

years. Even though it might not be evident, it is use in many day-to-day appli-

cations of our lives, including games.

Even though game industry has still ways to go in how to best take advantage

of machine learning, more and more tools are becoming available for public

use, creating new possibilities and ideas. One of these tools is ML-agents

toolkit (Unity Machine Learning Agents toolkit). ML-agents toolkit enables eve-

ryone to start learning about machine learning and creating their own projects,

assisted by a great set of online documentation, created by Unity.

This thesis covers the topic of creating an autonomous machine learning con-

troller agent, by using different learning methods. These methods have their

own strengths and weaknesses, which bring up the question, what is best

method for the purposes of this thesis? Is there a way to train the agent faster,

by using a certain learning method? Which parameters are best for getting

working behavior models? These questions will be answered when the logic

and overall configuration of the agent is successful, and models are generated

for comparison and examination.

The first part of the thesis starts by introducing the topic of machine learning

and the different methods used for creating the models. The second part co-

vers the setup and the assets used in creating the training environment and

the machine learning agent. The third part covers the implementation and re-

sults of the different machine learning methods. The last chapters cover the

extra functionalities, which were originally planned for the thesis, and finally

the conclusion of the thesis.

7

1.1 Specification of the implementation

The requirement set for this thesis was to create a working autonomous ma-

chine learning agent, capable of surviving in a top down shooter environment,

where the goal is to evade hazards, while collecting all the collectables to

open the exit door. Different machine learning methods were examined, to find

the differences between the methods. Requirement for survival was that the

agent was capable to reach the goals set for it. The expected result did not

need to be perfect, but the agent behavior needed to show clear progress and

understanding of the offered challenges.

To reach the set requirements, an environment was created by using Unity

framework in addition to ML-agents toolkit, which also included the necessary

tools to verify and examine the results of the machine learning training- The

tools also included the means to create visual presentations of the progress of

the training. This made it possible to meet the requirements for the thesis, in-

cluding setting up the test environment and examining the results.

The training environment was a top-down 2D rectangle area, which was filled

with hazards and collectables. The environment and its elements, combined

with the programming, offered the necessary observations for the training of

the machine learning agent.

In addition to the machine learning tools, the ML-agents toolkit included the

tools to create statistics from the training phase. The statistics were then used

to compare the different learning methods, to examine which method worked

best for the implementation of this thesis.

2 MACHINE LEARNING

In machine learning, the learning agent is trained to come up with a set of ac-

tions to take, in the current state of the environment. This is also called a pol-

icy. The better the policy, the more performant the agent is. This policy is cre-

8

ated by feeding the learning brain data that it can then use to connect the cor-

rect actions to the changing environment, as shown in figure 1 (What is Ma-

chine Learning, 2019). This is same as neurons being connected in a human

brain when learning new tasks, meaning that machine learning makes it possi-

ble for the machine to evolve and get better, in the programmed tasks (Dzhin-

garov B. 2019).

Figure 1 Creating a policy through training

2.1 Machine learning versus traditional AI

Machine learning defines that the machine is learning by itself, compared to

the so-called traditional AI, where the machine only follows a prewritten pro-

gramming to do certain tasks. This means that traditional AI does not evolve,

and therefore is limited to accomplishing tasks only in a certain way.

The important thing to understand, when talking about AI and machine learn-

ing, is that machine learning is actually a subset of AI, not a separate thing.

Machine learning is the part of AI that interprets the data fed to it, either for

training the AI to understand the data, or later for finding the patterns in the

data (Mueller & Massaron 2016, 20).

2.2 Machine learning in game development

This chapter is based on the WWW-article by Stephenson (2018).

Use of machine learning in game development has been gaining popularity in

the past few years. This is mainly due to new GPU architectures making it

9

possible to achieve better and better results, and because of the big-data era

which produced significant amounts of data, there exists significant amounts

of data to be used for training the machine learning algorithms.

Using machine learning in game development means more unpredictable

game world behavior, making environments and actions more dynamic, in-

stead of using pre-scripted actions, in addition to many other ways for using

machine learning in game development, as listed in in figure 2. Truly new

ways of experience traditional gaming can be invented, when using machine

learning.

Figure 2 Ways how machine learning can benefit game development (Stephenson J. 2018)

2.3 Machine learning methods used

In this thesis two methods were used, reinforcement learning, and reinforce-

ment learning combined with imitation learning. These methods were chosen,

because they were suitable for the purposes of the learning environment and

to the prior level of knowledge on the subject.

Reinforcement learning

In reinforcement learning, the machine learning agent is given data of the

state of the environment, while it takes actions that can affect the state. It also

has preset goals which it tries to achieve by taking these actions that are re-

lated to the state of the environment (Sutton & Barto, 2017, 1). The agent is

then given rewards, depending on the actions it takes, and by trial and error, it

tries to achieve the optimal policy (Adan, Y. 2018).

10

In this thesis, Proximal Policy Optimization algorithm was used, as the rein-

forcement learning algorithm, mainly due to the fact that the ML-agents toolkit,

uses this algorithm. This algorithm has been selected by Unity as it has been

shown to be a good general-purpose reinforcement algorithm (Getting Started

with the 3D Balance Ball Environment. 2019).

Curriculum learning

Curriculum learning is very familiar to humans, as it is how subjects are taught

in school. The idea is to introduce easy concepts at first and then build on top

of them, to improve on what has already been learned. A good example of this

is mathematics, where first numbers are learned, arithmetic skills, then alge-

bra and lastly calculus. This same principle can be used with machine learn-

ing, as is done in curriculum learning, teaching the machine learning the re-

quired skills one at a time, from easiest to the most difficult.

Figure 3 Example of curriculum learning

To make curriculum learning efficient, the learning environment cannot start

from an environment with too high complexity, because otherwise the agent

would never receive the reward needed to the improve the policy

Imitation learning

In imitation learning, the learning agent is given samples of data to learn from,

for example by observing a human play the game, either from offline record-

ings or in real time. The agent uses this knowledge to perform actions in the

same environment, trying to achieve the most performant way to function

(Adan, Y. 2018). So, the agent already has prior knowledge of the actions it

should take in the environment it is in, which, compared to reinforcement

learning, gives a head start for the evolution of the agent. It is possible to com-

bine imitation learning with reinforcement learning, and this is what was done

11

in this thesis, to compare the difference between regular reinforcement learn-

ing and imitation learning assisted reinforcement learning.

3 SOFTWARE AND OTHER ASSETS

Creating the environment for the machine learning was done by using the

Unity game engine framework. Machine learning portion was created using

the ML-agents toolkit. The charts created by Tensorflow were used for the

evaluation of the machine learning agent progress.

Unity Machine Learning Agents Toolkit

ML-agents toolkit is a project created by Unity, which has made it possible for

everyone to start creating their own machine learning projects. The ML-agents

toolkit enables the use of many different methods of machine learning, but in

this thesis, imitation and reinforcement learning were the chosen methods.

Tensorflow

Tensorflow is an open source library that is used by the ML-agents toolkit, to

create behavior models, also called policies. It is currently not possible, for

ML-agents toolkit to use any other library for the models, so there were no op-

tions on which library to choose for this project (Background: Tensorflow,

2019).

Tensorboard

Examining the results created by Tensorflow was done using Tensorboard,

which is a part of Tensorflow suite. This was crucial for optimizing the agent

behavior and comparing the gathered results on how well the agent performed

(Background: Tensorflow, 2019).

Art and code

The art used in the project is from a Unity asset called Pixel TopDown Shooter

Engine (Stache M. 2018). Many of the used code scripts of Pixel TopDown

Shooter were modified, to suit the needs of this project. In addition of the Pixel

12

TopDown scripts, also new code was created, to tie everything together and to

create the necessary programming for the machine learning.

4 SETUP OF THE AGENT CHARACTER AND ENVIRONMENT

The machine learning agent assets and level environment, including its ele-

ments, were created by modifying existing asset, to suite the needs of the the-

sis, even though these were initially not meant for this purpose.

4.1 Setting up the agent-controlled character

The programming of the character control was derived from the Pixel

TopDown Shooter Engine. The control system was mainly modified in how the

ML-agents toolkit had access to it. The character controls were setup in the

same way for both reinforcement and imitation learning methods, as the only

difference was, what was controlling the character, the computer, or the hu-

man player. Having human controls was also a prerequisite for creating the

pretraining material, for imitation learning to work.

Basic functionalities created for the character were moving horizontally and

vertically, not including combinations of the axis's, which was a limitation of

the discrete action space, as discussed in chapter 5.1. Using discrete action

space made moving the character much more efficient, for the machine learn-

ing agent to learn from. The other option instead of discrete action space was

continuous action space, but this proved to be very inefficient in this use case.

The programming of the agent was modified in such a way that co-evolution

would be possible. Co-evolution was used to speed up the training, meaning

that multiple copies of the levels, including the agent, were used during the

training phase. This significantly improved the training speed, making the

overall process more efficient.

13

4.2 Levels and the environment architecture

The initial testing level, which can be seen in figure 4, was a small rectangular

area with surrounding walls. As the training of the machine learning required

as much randomization as possible, while still having control over the varia-

bles, it was necessary to have the elements inside the levels change program-

matically. This was accomplished by creating a randomization function that

changed the positioning, amount and state of the level elements.

Figure 4 First testing environment

The elements used in the level setup were

1. Collectibles
2. Pit hazards
3. Spike trap hazards that were set to spring the spikes up between set

time periods
4. Door for exiting the level after collecting all the collectibles

After the initial tests had proved that the concept was working, a bigger level,

shown in figure 5, was created.

14

Figure 5 The environment used for training

The bigger level made room for more hazards and made it possible to prove

that using machine learning was feasible in a more complex environment. This

level setup was kept as the main test environment during the project, for all

learning methods.

5 MACHINE LEARNING IMPLEMENTATION AND RESULTS

One of the goals was to compare the results between the different learning

methods. Chosen methods were reinforcement, reinforcement with curriculum

learning and reinforcement learning combined with imitation learning.

5.1 Reinforcement and curriculum learning

In reinforcement learning, to make the training of the agent possible, three en-

tities needed to be defined, which were observations, actions and rewards

(Running Example: Training NPC Behaviors. 2019).

The observation data fed to the agent at all times:

 List of close-proximity objects, including hazards, collectibles and the
exit door

15

 The amount of collectable items
 The normalized position of the next target, being either a collectible or

the exit door
 The status of the level exit door (open or closed)
 The state of the spike traps (spikes up or down)
 The time before the spike trap spikes spring up

The actions the agent could take:

 Movement action, either up, down, left, right or staying still
 Collecting the collectables (passive action combined with movement)

The reward signals for training the agent:

 Positive reward for crossing a spike trap without dying
 Positive reward for picking up collectables
 Positive reward for picking up the last collectable in the level
 Positive reward for reaching the exit after picking up all the collectables
 Negative reward for reaching the exit before picking up all the collecta-

bles
 Negative reward for death (falling to the pit, dying on spikes)

For curriculum learning, a curriculum list needed to be specified. This included

the information on when the difficulty of the level would increase, based on the

success of the agent, offering the next goal for the agent to reach. Increasing

the difficulty meant adding more simultaneous obstacles, where first just the

collectibles were present, then pits were added and finally the spike hazards

(Training with Curriculum Learning. 2019).

The end goal for using reinforcement with curriculum learning, was to find out

if the agent could successfully learn all the tasks in one training session. For

this to work, the challenges set for the agent were first tested separately, mak-

ing sure they were achievable. This approach offered to possibility to find any

issues in the logic or programming and was also a part of the best practices.

The challenges from the easiest to the most difficult:

1. Find the exit door. The door changes its position between levels
2. Find all the collectibles. Collectibles are positioned randomly, then exit

the level
3. Evade pits, while finding the collectibles and then the exit
4. Evade spike traps and pits, while finding the collectibles and the exit

16

Initially the action space, used by the brain to move the character, were con-

tinuous, which meant that the numeric values were floating numbers, ranging

between zero and one. This caused the movement of the machine learning

controller agent to be too limited, causing it to mostly stay in a small area of

the map, never finding rewards. This was remedied by changing the move-

ment actions from continuous to discrete, which meant that the values were

now fixed values of minus one, zero and positive value of one. Values of mi-

nus and plus one moved the agent to opposite directions on either vertical or

horizontal axis and zero kept the agent still. Another important step taken to

achieve working results, was normalizing the values fed to the brain. When

the agent tried to find the next object to reach, it was given a normalized vec-

tor, a unit vector, instead of feeding it the full length of a vector.

As seen in figure 6, the vector from the agent to door has a length value of

five, but when the value is normalized, it changes to a unit vector with a value

of one, still pointing to the same direction. This way the agent was given infor-

mation for which way to move, and the values fed to the brain stayed inside

one and zero, being uniform. Normalizing the values was also important for

the algorithm to keep all the information on the same level of importance. This

method was also suggested in the best practices by Unity (Environment De-

sign Best Practices. 2019). After these changes, the agent movement was

more coherent and started to create positive results.

Figure 6 Normalizing a vector

17

When programming the reinforcement learning, many different variations of

the implementation were tested, mainly on what kind of observations and re-

wards worked well for creating a working policy. To successfully get a working

policy, additional parameters, called hyperparameters were adjusted during

the process, to the final values seen in table 1. During the early reinforcement

phase, it was observed that it was necessary to increase the amount of en-

tropy, to help the agent explore the level properly. More entropy was intro-

duced by increasing the hyperparameter called beta. In addition to increasing

the beta value, one of the reward signals available in hyperparameters, called

curiosity, was set as true, which encouraged the agent in exploration. The use

of curiosity was suggested especially for situations, where there aren’t many

rewards signals available (Hyperparameters. 2019). This configuration signifi-

cantly improved the results of the training.

Table 1 Final hyperparameters used for reinforcement learning

trainer ppo

batch_size 128

beta 1.0e-1

buffer_size 2048

epsilon 0.2

gamma 0.99

hidden_units 512

lambd 0.95

learning_rate 3.0e-4

max_steps 5.0e5

memory_size 256

normalize false

num_epoch 3

num_layers 2

time_horizon 64

sequence_length 128

summary_freq 2000

use_recurrent false

use_curiosity true

18

curiosity_strength 0.01

curiosity_enc_size 256

5.2 Results of reinforcement and curriculum learning

When initially testing only reinforcement learning, the agent did not always find

the exit, but as the hyperparameters were fine-tuned, a working policy was

achieved. This resulted in policy that could guide the agent through the level,

where there were only collectibles and pit hazards present. An issue with pit

hazards was observed, where evading pit hazards did not work when the pit

was located at the top of the level, with the top of the pit blocked by a wall, as

seen in figure 7. During the reinforcement learning phase, adding the spike

hazards in the level at the same time with all the other elements, resulted in a

non-working policy.

Figure 7 Challenging pit location

After this, curriculum learning was implemented, to examine the success rate

compared to pure reinforcement learning. After the initial training sessions, the

agent seemed to have very limited success on any action it was supposed to

take. Eventually the issue was observed as being the so called "catastrophic

forgetting", which is a known issue related to deep learning, where the agent

forgets what it had learned in the previous step. As a method to try to prevent

this, earlier steps were introduced again during the training process. This

helped to a certain degree but did not fully remedy the problem.

19

This phase of the thesis was deemed a partial success, as the curriculum

learning was clearly learning, even though the resulting policy did not achieve

the optimal end results.

5.3 Imitation learning assisted reinforcement learning

After training with reinforcement learning and curriculum learning, the next

step was to train the machine learning agent using imitation learning assisted

reinforcement learning. The implementation was mostly built upon the already

existing reinforcement learning setup, so most of the ground work was already

done.

With ML-agents toolkit, it was possible to use pre-recorded demonstrations to

help the agent learn. For the purpose of reinforcement learning combined with

imitation learning, pretraining combined with small amount of GAIL reward sig-

nal was the suggested way by Unity (How to Choose, 2019).

Doing the necessary modifications on top the existing setup comprised of re-

cording the necessary gameplay demonstrations and configuring the ML-

agents toolkit parameters. Additional parameters seen in table 2 were used for

this training phase.

Table 2 Additional parameters used for imitation learning assisted reinforcement learning

pretraining

demo_path /demos/Pretrain.demo

strength 0.5

steps 10000

reward_signals

extrinsic

strength 1.0

gamma 0.99

curiosity

strength 0.02

gamma 0.99

20

encoding_size 256

gail

strength 0.01

gamma 0.99

encoding_size 128

demo_path /demos/Pretrain.demo

5.4 Results of imitation learning assisted reinforcement learning

The first tests with added imitation learning, using pretraining combined with

reinforcement learning and a small GAIL value, were run with a four-minute

recording of gameplay demonstration. The training phase showed positive re-

sults, as the agent was able to find the location and evade hazards from the

start, but the first resulting model was not very efficient, as reaching the exit

door took quite long. The agent movement was also very sporadic, even

though the actions were clearly correct. Given enough time, the agent was

able to reach collectables and mostly evade hazards but moved too slow and

did not always reach the end goal, sometimes getting stuck, moving in a cir-

cle.

Next the four-minute demonstration was replaced with a 10-minute demon-

stration, which resulted to the agent moving less hesitantly, being able to ac-

complish the level more often. It was clear that the biggest issue was the

model not fully comprehending the observations set for the spike trap. This

phase of the thesis was clearly more successful, compared to reinforcement

learning without imitation learning.

6 ANALYZING THE RESULTS

The imitation learning assisted phase of the thesis was a better solution for

this type of environment, as the resulting policies created during all the train-

ing sessions were more successful and consistent, compared to reinforcement

learning methods. This was mostly due to the imitation learning guiding the

agent to the first positive rewards, compared to the reinforcement learning

21

methods, which either needed a lot more time to achieve meaningful amount

of rewards, or in the worst case, did not find rewards at all.

Training sessions, which resulted in non-working models, were observed in

the very first reinforcement learning training sessions, when only the exit door

goal was present. After the collectables were added, which significantly in-

creased the odds of finding positive rewards, the training sessions became

successful, which worked as a guidance on how to continue improving the im-

plementation, in all training methods. It was evident that to create a working

policy, there either needed to be enough rewards or training had to be as-

sisted with imitation, to guide the brain to the right path, as was done in this

thesis.

6.1 Comparing the statistics

Tensorboard has multiple charts that can be used to better understand how

successful the training phase has been. The statistics shown below represent

the information necessary to get an understanding on the basic level.

Environment Statistics

 Environment/Cumulative Reward – The mean cumulative reward per
episode. If training is successful, the value increases.

 Environment/Episode Length – Indicated the mean length of each epi-
sode in the environment.

Policy Statistics

 Policy/Entropy (PPO; BC) - The randomness of the model decisions. If
training is successful, the value decreases.

 Policy/Value Estimate (PPO) - Indicates the mean value estimate of the
states the agent has visited. If training is successful, the value in-
creases.

(Using TensorBoard to Observe Training, 2019).

Looking at the Tensorboard statistics for reinforcement learning with curricu-

lum learning, as seen in figure 8, we can see that at first, the average value of

cumulative reward is gradually decreasing, which indicates that at first the

training is not very successful. At about 300k steps it stars to increase, which

indicates that the model has more understanding of what it should do to get

positive rewards. The environment/episode length chart shows that the

22

lengths of the episodes, meaning individual runs when the agent either

reaches the goal or fails trying, vary quite much. This is to be expected at first

and should get shorter, the longer the training has been running.

Figure 8 Reinforcement learning environment statistics

As can be seen in figure 9, the policy/entropy values for curriculum learning

show that the decisions of the model start to be less random, as more steps

have been taken, but the policy/value estimate indicates that the training is not

very successful, since the value should be as close to 1.0 as possible.

Figure 9 Reinforcement learning policy statistics

The statistics support the findings of curriculum learning, where the model is

working to some extent, but failing to successfully reach all the set goals.

Contrary to curriculum learning, the statistics for the imitation learning assisted

reinforcement learning show that the training is advancing well. This can be

seen when looking at figure 10, where the environment/cumulative reward

value is clearly increasing, and the episode length is gradually decreasing.

23

This shows that the agent is both gaining more rewards and reaching the

goals faster, as more episodes have been completed.

Figure 10 Imitation learning assisted reinforcement learning environment statistics

The policy/entropy values for imitation assisted reinforcement learning, in fig-

ure 11 show that the actions are less random, as more episodes are finished.

This also supports the finding that the agent is learning correct behaviour. In

addition to the policy/entropy values, the policy/GAIL value estimate indicates

that the mean value estimate is increasing for the states the agent has visited,

further pointing to a successful training session.

Figure 11 Imitation learning assisted reinforcement learning policy statistics

Examining the Tensorboard charts during and after the training process was

an important part of the thesis, giving valuable information on which configura-

tions work best. Comparing the charts between different methods also gave

good information on how efficient the different methods were comparatively.

24

7 EXTRA FUNCTIONALITIES

This project had plans for extra functionalities that were not implemented, due

to them being lower priority, compared to getting the basic functionalities

working and reaching the primary goals. The extra functionalities are listed be-

low, in no order of importance.

 Additional character actions were created, including rolling, to dodge

enemies and obstacles, and shooting projectiles to kill enemies.

 The initial plan for the implementation of imitation learning, was to use

a web frontend configured in AWS, servicing a build of the game for hu-

man players to play using a web browser, accessible from anywhere in

the world. This gameplay would then have served as the training data,

used inn imitation learning offline training phase. This was left out, as

the setup of the environment would have taken too much time, com-

pared to the benefit received from it.

 Level plans included the use of procedural levels, but this was left out,

as the randomized environment elements served the purpose of intro-

ducing randomization.

 Collectable items for the agent to pick up, for boosting the character in

different way, were planned, but this was left out because of the lower

priority compared to other areas that needed development.

8 CONCLUSIONS

The machine learning tools and methods used in this thesis proved to be ap-

plicable means for reaching the goals of this thesis. Imitation learning assisted

reinforcement learning was the best working option out of the researched

methods, even though other methods also showed promise. The next steps to

get better results, would have been to tune the observations fed to the brain

and to test different hyperparameters. Running longer training sessions could

have also created better results.

25

As a conclusion, it can be said that all the necessary elements for creating a

successful machine learning model, for the top-down environment, were pre-

sent. The resulting models were able to examine the environment and reach

the set goals to an acceptable degree, sometimes even commendably. Con-

sidering the level of knowledge on the subject, at the beginning of the thesis,

the results were a success, and the amount of accumulated knowledge serv-

ers as a stepping stone for further development.

26

REFERENCES

Nigretti, A. 2017. Using Machine Learning Agents Toolkit in a real game: a be-
ginner’s guide. Blog. Updated 11.12.2017. Available:
https://blogs.unity3d.com/2017/12/11/using-machine-learning-agents-in-a-real-
game-a-beginners-guide/ [accessed 23.5.2019]

Dzhingarov, B. 2019. Traditional AI vs Machine Learning and Where Data La-
beling Comes into Place. Blog. Updated 6.2.2019. Available:
https://www.datasciencecentral.com/profiles/blogs/traditional-ai-vs-machine-
learning-and-where-data-labeling-comes [accessed 23.5.2019]

Mueller, J. P. & Massaron, L. 2016. Machine Learning for Dummies. For Dum-
mies. E-book. John Wiley & Sons, Incorporated. Available: https://kaak-
kuri.finna.fi/ [accessed 23.5.2019]

Stephenson J. 2018. 6 Ways Machine Learning will be used in Game Devel-
opment. WWW-document. Updated 29.11.2018. Updated 29.07.2018 Availa-
ble: https://www.logikk.com/articles/machine-learning-in-game-development/
[accessed 23.5.2019]

Sutton,R.S. & Barto, A.G. 2017. Reinforcement Learning: An Introduction. E-
book. The MIT Press. Available: http://incom-
pleteideas.net/book/bookdraft2017nov5.pdf [accessed 30.05.2019]

Adan, Y. 2018. What is the difference between imitation learning and rein-
forcement learning? Discussion group website. Available:
https://qr.ae/TiNY2J [accessed 30.5.2019]

Multiple. 2019. Unity Technologies, Background: Tensorflow. WWW-docu-
ment. Updated 1.2.2019. Available: https://github.com/Unity-Technologies/ml-
agents/blob/master/docs/Background-TensorFlow.md [accessed 6.6.2019]

Multiple. 2019. Unity Technologies, Running Example: Training NPC Behav-
iors. WWW-document. Updated 1.2.2019. Available: https://github.com/Unity-
Technologies/ml-agents/blob/master/docs/ML-Agents-Overview.md#running-
example-training-npc-behaviors [accessed 6.6.2019]

Multiple. 2019. Unity Technologies, Training With Curriculum. WWW-docu-
ment. Updated 1.2.2019. Available: https://github.com/Unity-Technologies/ml-
agents/blob/master/docs/Training-Curriculum-Learning.md#how-to [accessed
6.6.2019]

Multiple. 2019. Unity Technologies, Environment Design Best Practices.
WWW-document. Updated 1.2.2019 Available: https://github.com/Unity-Tech-
nologies/ml-agents/blob/master/docs/Learning-Environment-Best-Prac-
tices.md [accessed 6.6.2019]

Multiple. 2019. Unity Technologies, How to Choose. WWW-document. Up-
dated 1.2.2019. Available: https://github.com/Unity-Technologies/ml-

27

agents/blob/master/docs/Training-Imitation-Learning.md#how-to-choose [ac-
cessed 25.11.2019]

Multiple. 2019. Unity Technologies, Using TensorBoard to Observe Training.
WWW-document. Updated 24.10.2019. Available: https://github.com/Unity-
Technologies/ml-agents/blob/master/docs/Using-Tensorboard.md [accessed
26.11.2019]

Multiple. 2019. Unity Technologies, Hyperparameters. WWW-document. Up-
dated 1.2.2019. Available: https://github.com/Unity-Technologies/ml-
agents/blob/master/docs/Training-PPO.md#hyperparameters [accessed
6.6.2019]

Stache M. 2018. Moose Stache. Pixel TopDown Shooter Engine. Game
framework asset. Updated 14.11.2018. Available: https://as-
setstore.unity.com/detail/templates/systems/pixel-topdown-shooter-engine-
131989 [accessed 6.6.2019]

Multiple. 2019. Unity Technologies, ML-Agents Toolkit Overview. WWW-docu-
ment. Updated 1.2.2019. Available: https://github.com/Unity-Technologies/ml-
agents/blob/master/docs/ML-Agents-Overview.md#running-example-training-
npc-behaviors [accessed 6.6.2019]

Multiple. 2019. Unity Technologies, Getting Started with the 3D Balance Ball
Environment. WWW-document. Updated 1.2.2019. Available:
https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Getting-
Started-with-Balance-Ball.md [accessed 9.6.2019]

Multiple. 2019. Unity Technologies, Training Imitation Learning. WWW-docu-
ment. Updated 19.2.2019. Available: https://github.com/Unity-Technolo-
gies/ml-agents/blob/master/docs/Training-Imitation-Learning.md [accessed
18.6.2019]

