

Junjie Yin

Salesforce Lightning - Usability of
Lightning Web Components

Metropolia University of Applied Sciences

Bachelor of Engineering

Software Engineering

Bachelor’s Thesis

30.03.2019

 Abstract

Author
Title

Number of Pages
Date

Junjie Yin
Salesforce Lightning - Usability of Lightning Web Components

31 pages
23 Nov 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructor

Auvo Häkkinen, Principal Lecturer

The topic of the study is the Salesforce new programming model: Lightning Web Component
and its usability. The study also compares the new model with the original model, the Aura
component and Lightning Web Component.

All the developments were done in the Salesforce platform which is the most used Customer
Relationship Management (CRM) platform in the world. The development works were done
by using Intellij IDEA and Visual Studio Code as the development tools.

The thesis is divided into two parts: theoretical and practical. The theoretical part briefly
covers the Salesforce architecture, Lightning frameworks, and Apex. The practical part con-
centrates on how to build and test and application using the Lightning Web Components and
Aura components. The paper discusses the results and problems faced during the develop-
ment work.

As a result of the study, the research question as to the usability of Lightning Web Compo-
nents was answered thanks to the development of the application. The shortcomings of
Lightning Web Components are specifically pointed out at the end of the thesis.

Keywords Salesforce, CRM, Lightning Web Components, Lightning Aura
Components

Tekijä
Otsikko

Sivumäärä
Aika

Junjie Yin
Salesforce Lightning - Usability of Lightning Web Components

31 sivua
23. 11. 2019

Tutkinto Insinööri(AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaina Ohjelmistotuotanto

Ohjaajat

Yliopettaja Auvo Häkkinen

Insinöörityössä on tavoitteena soveltaa uutta Salesforcen ohjelmointimallia, Lightning Web
Components. Työn tarkoitus on tutkia ohjelmointimallin käyttökelpoisuus, sekä hyvät ja
huonot puolit vertailemalla edelliseen Lightning Aura Component – malliin.

Toteutusympäristönä oli Salesforce, joka on mailman käytetyin
asiakkuudenhalluntajärjestelmä(CRM). Kehitystyökaluna on käytössä sekä Intellij IDEA että
Visual Studio Code. Kaikki ohjelmointi kehitykset on tehty Salesforcen Developer Edition -
kehitysympäristössä.

Projekti on jaettu kahteen osaan: teoreettinen osuus ja käytännöllinen osuus. Teoreettisessa
osuudessa selitään lyhyesti Salesforcen perusosa-alueista: Salesforcen tietorakenne,
Lightning Aura Components, Lightning Web Components ja Apex. Käytännöllisessä
osuudessa syvennytään ohjelmointimalleihin, missä kehitetään kaksi sovellusta käyttäen
uutta ja vanhaa ohjelmointimallia. Samalla käsitellään myös Salesforcen ohjelmointimallien
hyviä käytäntöjä. Lopussa vertaillaan tuloksia molempien mallien kesken.

Insinöörityön tuloksien perusteella voidaan antaa jonkinlainen lopputulos, eli onko uuden
Salesforcen ohjelmointimallin käyttökelpoinen. Tuloksessa mainitaan erityisesti Lightning
Web Componentin kehityksen aikana esitetyistä rajoituksista.

Avainsanat Salesforce, CRM, Lightning Web Components, Lightning Aura
Components

Contents

List of Abbreviations

1 Introduction 1

2 Salesforce Environment 2

2.1 Salesforce Architecture 2

2.2 Lightning Aura Components 3

2.3 Lightning Web Component 5

2.4 Apex 8

3 Research Approach 9

3.1 Building Aura Component 10

 Salesforce Lightning Event 13

 Lightning Aura Components Testing and Result 15

3.2 Building Lightning Web Component 17

 Lightning Web Component Event 23

 Lightning Web Component Testing and Result 24

3.3 Results 26

4 Conclusions 27

References 29

List of Abbreviations

AI Artificial intelligence is intelligence demonstrated by machines.

CRM Customer Relationship Management. A way to manage a company’s rela-

tionships with customers and potential customers.

DML Data Manipulation Language, used for inserting, deleting or updating the

 data in a database.

LWC Lightning Web Component, new programming model for the Lightning com-

ponent.

SOQL Salesforce Object Query Language, similar to Structured Query Language

(SQL), but only used in Salesforce environment

ORG a.k.a., organization – a single client of the Salesforce application.

SOSL Salesforce Object Search Language, construct text-based queries that al-

low users to search based on for example text, email or phone numbers

UI User Interface in which a user may interact from an information device.

1

1 Introduction

Cloud computing delivers different kinds of computing services to end-users such as

software, databases, and services, over the internet. Nowadays, cloud computing is

commonly used in daily lives. Anyone online uses the cloud. Sharing documents via

drives, sending emails or posting photos on social media are made possible by cloud-

based computing.

CRM (Customer Relationship Management) might refer to technology, a strategy or a

process. All these are for managing a company’s relationships with (potential) custom-

ers. Salesforce is one of the most used platforms in the world which combines both CRM

and cloud computing. In 2019, Salesforce released a new programming model—Light-

ning Web Components—which has a different framework compared to the original

model, Aura Component.

The goal of this thesis was to investigate the usability of the Salesforce Lightning Web

Component. This thesis is divided into two parts: theoretical and practical. The theoretical

part briefly covers what Salesforce, Lightning frameworks, and Apex are. The practical

part concentrates on how to build and test the Lightning Web Components and Aura

components. The best practices of Lightning Components are summarized also in the

practical parts. How components communicate with each other and communicate with

the Apex controller are mentioned in this part. The purpose of this part is to describe how

to build two components with similar functionality using two different models.

At the end of the thesis, benefits or limitations arising from the new model are compared

with the original model. The thesis also analyzes the usability of the new model from a

business point of view. What are the possibilities to use the new model in real business

projects at Fluido Oy? What are the present limitations in using Lightning Web Compo-

nents? The thesis aims to give a good overview of the new Lightning model without re-

quiring previous understanding of the Lightning framework.

2

2 Salesforce Environment

Salesforce.com is an American cloud-based software company. Salesforce provides a

platform that helps companies understand their customers’ needs and solve problems

by managing customer information and interactions in a better way. It is the customer

success platform helping companies connect to their customers, prospects, and partners

by making easy-to-use business applications.

The practical parts of the present study are fully built in the Salesforce environment.

Salesforce has its own coding languages and frameworks, whose details are covered in

the next chapters.

2.1 Salesforce Architecture

Many people know salesforce from CRM and source offerings. Salesforce also offers a

platform as a service that allows users to build their own custom applications in a very

efficient way. The platform provides a rich set of capabilities and features that can help

users to build custom applications. The Salesforce platform structure is divided into five

different areas: Multitenant infrastructure, Data Platform, Einstein which is an AI (Artificial

intelligence) platform, Developer platform, and Salesforce applications. Figure 1 illus-

trates the most common way to show how Salesforce architecture is built.

Figure 1. Salesforce architecture [2].

3

One can imagine Figure 1 as a big building where each floor sits on top of each other.

Everything inside of the building is powered by metadata and made up of different parts,

for example, data service and AI. On the roof, users can see all the applications that

Salesforce developers have built on top of the platform. Salesforce highlights that eve-

rything has resided in the trusted, multitenant cloud.

Even if trust is the top priority at Salesforce, multitenancy is what makes cloud computing

a real possibity. That is why it is the second word that Salesforce highlights. For the

multitenancy, Salesforce uses the apartment building as an image to explain how it works.

Each company has its own room in the cloud or in the building, but they are not alone.

No matter the size of the company, they share and use the same resource. Trust and

multitenancy go side by side, and Salesforce is the key player in the house, to keep each

company data secure even when they are sharing spaces.

2.2 Lightning Aura Components

Lightning Aura Components is the original programming model for building Lightning

components. Aura components are self-contained and reusable units of an application.

The framework contains a lot of prebuilt components that developers can summon during

development. For example, in the Lightning Design System, styling is available in the

Lightning namespace. The difficult part of prebuilt components is customization. Every

customer wants different functionality, it is hard to use prebuilt components for every

customer. Depending on the needs, the prebuilt components are not always the best

options. No matter how complicated the application is, the basic structure is always the

same. Figure 2 shows the basic structure of the Lightning Component.

4

Figure 2. Lightning Component Basic Structure [10].

Figure 2 presents the Lightning Component basic structure, demonstrating how it com-

municates between the server and client-side in a Salesforce environment. The View is

basically the UI the user will see in the Org. Under the view, there are JavaScript con-

trollers and helpers. Controllers play a key role in the Lightning Components, which talk

to the server-side. On the server-side, the Apex controller or trigger takes the biggest

role. The user can call the Salesforce database using the Apex Controllers.

When building a lightning component, it is always good to consider using the standard

components before considering creating a custom. It will make development easier and

faster regardless of the limitations of the standard components. Figure 3 presents a sim-

ple Lightning Component which includes a standard Lightning input component.

Figure 3. Simple example of Aura Component.

5

The user can input a certain value inside the input field and the value will be populated

synchronously in the Output Value area. The code is very simple and clean using the

prebuilt standard component (Code example 1).

<aura:attribute name="exampleValue" type="String" />

<div class="slds">

 <lightning:card class="slds-p-around_x-small">

 <lightning:input type="text" label="Enter Some Value: " value="{!v.ex-

ampleValue}" />

 <ui:outputText value="{!'Output Value: ' + v.exampleValue}" />

 </lightning:card>

</div>

Code example 1. Simple prebuilt Aura Component example

As showns in Code example 1, developers are able to do this with only a few lines of

code. Aura attributes are variable where the value will be saved after the user has an

input and putting the same attribute as the outputText value will make the value populate

synchronously. Aura attributes can be different types, for example, strings, lists or even

sObjects. In Salesforce.com, any object either Standard or Custom is an sObject. An

sObject is generic and it can be used to represent any object type e.g. Account and

Location. In Code example 1, the component only has a string type attribute to save the

input value. More details about Aura Attributes and Expressions are discussed below.

2.3 Lightning Web Component

Salesforce has released a new programming model for building Lightning components,

Lightning Web Components. The feature was released in the Spring’19 release. After

Salesforce had released the Lightning Component framework in 2014, many web stack

features that required framework at that time are now standardized. That is also the rea-

son why Salesforce wanted to develop the Lightning Web Components, to bring the lat-

est improvements in JavaScript and web standards to the Lightning Component frame-

work. Lightning Web Components are based on modern web standards as Figure 4 pre-

sents.

6

Figure 4. Lightning Web Components is built on web standards [9].

Figure 4 shows, Lightning Web Components is built on top of the Web Standards fea-

tures and uses core Web Components standards. Because of this, it can be powered up

by ES6+, classes, modules, custom elements, templates and more. What Lightning Web

Components provide on top of the Web Standards is the latest of specialized Salesforce

service. The biggest benefit of the new programming model is exceptional performance

and only provides the necessary parts to make everything work well in all browsers.

Figure 5 shows how the 2014 web stack is built.

7

Figure 5 The 2014 Web Stack [9].

As mentioned before, the Web Standards only offered a limited foundation of full-stack.

The core language was ECMAScript 5, and standard elements did not support any cus-

tom elements. These are just a few examples of the limitations that 2014 Web Standards

has brought to developers. The cost for that is that developers or software vendors need

to jump in to fill the gaps. It is also one of the reasons why Salesforce launched the

Lightning Component framework in 2014. It came with its own component model and its

own modular programming model. The web stack for 2019 looks totally different in Figure

6.

8

Figure 6. The 2019 web stack [9].

Nowadays, the web stack looks different compared to the 2014 web stack. The 2019

web stack is more focused on standards. Many features that used to require frameworks

now become standard, for example, Web Components and a lot of Custom elements

were included in the Web Standards. Neither a proprietary component model nor propri-

etary extensions are necessary to the developers. That means no more filling the gaps.

Frameworks can focus on providing a thin layer of specialized service on top of the

standard stack.

2.4 Apex

Apex is a Salesforce object-oriented programming language based on familiar Java idi-

oms, such as variable and expression syntax. Apex allows developers to build a connec-

tion to Salesforce.com’s back-end database and client-server interface. Apex provides a

lot of built-in support, for example, DML (Data Manipulation Language) calls, such as

9

insert, update and delete data from the database. SOQL (Salesforce Object Query Lan-

guage) and SOSL (Salesforce Object Search Language) queries that return lists of sOb-

ject records.

An Apex class can also be tied to objects by using Apex Triggers. Developers use trig-

gers when DML call is affecting another record or need some validations. Apex triggers

can be executed before or after the DML calls.

3 Research Approach

As discussed in the previous chapter regarding the basic structure and theory of Light-

ning Aura Component and Lightning Web Components, the goal of the project were: 1)

to build two similar components or applications, one using the Lightning Aura Component

and the other using Lightning Web Components; 2) to discover the difference between

the two programming models; 3) to illustrate the process of building the component using

the best practice for each programming model; and 4) to highlight the pros and cons of

each model.

The initial design was to include as many functionalities as possible for both applications

using a different model. The application was to have several components. An event was

built to make components communicate with each other. Figure 7 represents the mockup

for the application

Figure 7. The application Mockup for Initial Design. The mock-up is built with Justinmind app.

10

. The idea was to build an application that has at least four different components. The

first component contains everything inside of the application as the main component.

The second component is a component for the filter, which includes one or more input

fields and a search button. The third component is the table component. It contains a

data table, showing the date from the Salesforce database. Each row in the table is the

fourth component. It is a child component for the table component. The reason, why the

table was separated into two different components, is because it makes the code cleaner

and easier to read. For the custom component, it was more straightforward to customize

and reuse the component later on. Each row has different functionality depending on

what kind of attribute developer is passing from the parent component, and in this case,

it is the table component.

3.1 Building Aura Component

Starting from the beginning, Salesforce already has its own rules for naming the Light-

ning components. When a component is created, the name must begin with a letter; it

cannot contain anything else except alphanumeric and underscore characters; the name

cannot be duplicated [3]. Other than these rules, every customer’s org (Organization)

can have their own rules or best practices for naming the Lightning components. Figure

8 shows how the naming works for the table Lightning components.

Figure 8. How to name the components.

11

All the related components start with ‘Th’, it is a short version from the ‘Thesis’ word. This

will help developers to recognize that all components start with Th are related to the

same application. It might not be so useful when one has only one or two applications in

the org, but when developers are working for a bigger org with tens of different applica-

tions and components, this will help a lot in finding the correct components.

Each component contains three main files inside of the Aura Component bundle. The file

ends with .cmp is the Component markup. Most of HTML tags can be used in the markup,

such as <div> or <p>. In the bundle, it has two JavaScript files, JavaScript Controller

and helper. Both JavaScript files might look the same, but they have different meanings

and play different roles in the component. The Controller works only for the component

markup inside of the component bundle, but the Helper can be shared across everything.

It will allow developers to reuse the method in the Helper to avoid unnecessary dupli-

cated codes to keep logic clean and more understandable. Everything starts from the

main Component, which has been most often called Parent Component, as Code exam-

ple 2 shows.//Component Markup

<aura:component description="Th_MainCmp"

 implements="force:appHostable,flexipage:available-

ForAllPageTypes "

 controller="Th_cmpController"

 access="global">

 <aura:attribute name="listOfContact" type="List" />

 <aura:handler name="ComponentEvent" event="c:Th_componentEvent" ac-

tion="{!c.handleComponentEvent}"/>

 <aura:handler name="init" value="{!this}" action="{!c.doInit}"/>

 <div class="slds">

 <c:Th_filterCmp />

 <c:Th_tableCmp contactList="{!v.listOfContact}"/>

 </div>

</aura:component>

Code example 2, The main Lightning Component Markup.

If the application contains a lot of functionality or pages, it is always better to separate

them into different child components. In Code example 2, the Main component contains

two child components, one is for the filter and the other one is for the data table. Code

example 3 shows the JavaScript controller and helper class for the main component.

// Component JavaScript Controller

12

({

 doInit : function (component, event, helper) {

 helper.getData(component, event ,helper);

 },

 handleComponentEvent : function (component, event, helper) {

 var filteredList = event.getParam("filteredList");

 component.set('v.listOfContact', filteredList);

 }

})

//Component Helper

({

 getData : function (component ,event, helper) {

 var action = component.get("c.initData");

 action.setCallback(this, function (response) {

 var state = response.getState();

 console.log('State: ', state);

 if(state === "SUCCESS"){

 var responseCtrl = response.getReturnValue();

 console.log('Contact List data: '. responseCtrl);

 component.set("v.listOfContact", responseCtrl.contactList);

 }

 });

 $A.enqueueAction(action);

 }

})

Code example 3. The main Lightning component JavaScript Controller and Helper.

When a user opens the application from the Org. The Init handler will automatically be

fired and then the application will be initialized, to get all the data needed from the server-

side. The handler is handled by a client-side JavaScript controller as Code example 3

shows.

From the server-side Apex controller, a connection to the Salesforce Database is built,

for example, DML calls. There are some rules to communicate with Lightning Aura Com-

ponent. As Code example 4 shows, the structure of the Apex controller is close to Java

as mentioned in the previous chapter.

public with sharing class Th_cmpController {

 @AuraEnabled public Contact[] filteredList;

 @AuraEnabled public Contact[] contactList;

 @AuraEnabled public Boolean isError = false;

 @AuraEnabled public Boolean isAlert = false;

 @AuraEnabled public String message = '';

 @AuraEnabled

13

 public static Th_cmpController initData (){

 Th_cmpController ctrl = new Th_cmpController();

 try{

 ctrl.contactList = [SELECT Id, Name, Email, Birthdate, AccountId,

Account.Name FROM Contact];

 System.debug('search: ' + ctrl.contactList);

 }catch(Exception e){

 handleExceptions(true, e, ctrl);

 }

 return ctrl;

 }

}

Code example 4. Apex controller for the Table App.

In Code example 4, there is a lot of @AuraEnabled mark before the variable or method.

Before methods mean these methods can be called from the JavaScript Controller. Be-

fore variables mean these variables can be returned to the JavaScript Controller.

 Salesforce Lightning Event

How the components communicate with each other? The communications are handled

by events. Salesforce provides two types of events: Component event and Application

event. Salesforce recommends using the Component events before considering using

the Application events. The communication is simpler and easy to handle using the Com-

ponent events [4].

In the example shown in Figure 8, the Th_componentEvent.evt file handles the commu-

nication between components in the application. In Code example 5, the Component

Event is simple.

<aura:event type="COMPONENT" description="Th_componentEvent">

 <aura:attribute type="List" name="filteredList" />

</aura:event>

Code Example 5. The Component Event.

The event contains only one line of code. It is an attribute that will store the value that

the child component has fired from the JavaScript Controller or helper. It is important that

the attribute has the correct type. In this case, the event will store the list of contact after

14

the user used the filter. From the FilterCmp component JavaScript Controller, the event

will be fired as above Code example 6 shows

//Child component Markup

<aura:registerEvent name="ComponentEvent" type="c:Th_componentEvent"/>

//Child component

fireEvent : function (component ,event, newList) {

 var eventCmp = component.getEvent('ComponentEvent');

 console.log('fire...', newList);

 eventCmp.setParams({"filteredList" : newList});

 eventCmp.fire();

}

Code Example 6. How to fire the Component Event.

. First, it will get the event by using the name value, which is registered in the component

Markup. The next step is to set up the parameters for the event. The last step will be

when the cmpEvent.fire() is executed. That means the event is fired.

A handler is needed in the parent component to handle the attribute that is coming from

the event. In the parent component markup, <aura:handler/> defines which event the

component is handling and what kind of action will be used to handle the event from the

JavaScript Controller side. It must be the same-named events and use the same event

class with the child component [5]. Code examples 2 and 3 show how the parent com-

ponent handles the event in the application.

The value or attribute can be passed only from a child component to a parent component

by using Component events [4]. The Lightning events are an imponent part of the Light-

ning framework and the relationship between components is not always so simple. That

is why the Application events are needed. Firing an Application event is similar to the

Component event, but all components that have a handler with the same event class are

notified. Figure 9 shows the basic architecture for both event types.

15

Figure 9. Lightning Event architecture [7].

As mentioned before, the best practice would consider always using a component event

before thinking about the application event. However, if facing a blocking use case or a

complex architecture, an application event might be a better way to handle the events

[7].

 Lightning Aura Components Testing and Result

Testing the Lightning Aura Components is always a little challenging. Salesforce does

not provide any official tool or best practices the developers could follow and do the unit

tests for the Lightning Aura Component. Usually, how the components are tested is so

that the developers can run the component or application in the Organization and see if

it is working as expected. Figure 10 shows how the application is tested from UI.

Figure 10. Testing the Contact Table App from UI.

16

First, some value is put in the filter field and then it is seen if the table shows what is

expected. The user has put ’Rose’ as the searching value for the name. In the table, it

only shows the contact that has ’Rose’ in Contact Name. So, the Contact table applica-

tion is working as expected.

Testing the Apex logic is somehow more important for Salesforce then testing the com-

ponent itself. Every time when trying to deploy Apex classes from sandbox to another,

all the Apex class unit test coverage needs to be over 75%. Otherwise, the deployment

will fail. In Code Example 7, the unit test is made for the Apex class.

@IsTest

private class Th_cmpControllerTest {

 @IsTest

 static void initDataTest() {

 Contact[] contacts = [SELECT Id, Name, Email, Birthdate, AccountId,

Account.Name FROM Contact];

 Test.startTest();

 Th_cmpController ctrl = Th_cmpController.initData();

 Test.stopTest();

 System.assertEquals(contacts.size(), ctrl.contactList.size());

 }

}

Code Example 7. Apex Unit test class.

@IsTest defines that the class contains a unit test class and that the method is a unit

test method. The test will pass if the Apex method is called in the test method and does

not return any errors, but that is not enough for the best practice. A good test should

always compare the returning value with the expected value that has set up before the

test. In this case, the unit test is checking if both list sizes are the same. Figure 11 shows

the final results of the application.

Figure 11. Table App UI.

17

No critical difficulties or problems were met during building the application. Everything

that has been designed in the beginning was able to finalize as showing in Figure 11.

The application was able to include most of the basic stuff about Lightning Aura Compo-

nents. In the next session, a similar application needs to be done using the Lightning

Web Component.

3.2 Building Lightning Web Component

For building the Lightning Web component, it was decided to use the Visual Studio Code

instead of Intellij as the development tool. The reason for this is that the Visual Studio

Code has a good extension called Lightning Web Components which provides code-

editing features for the Lightning Web Components.

In the Lightning Web Component, the design model is like the Lightning Aura Compo-

nent. The application has the main component which contains several child components.

The naming for the Web Component is a little different compared to Aura Component

and has more rules for the naming, for example, files names must begin with a lowercase

letter and only with alphanumeric or underscore characters [8]. Figure 12 shows, what

Lightning Web Component bundle contains.

Figure 12. Lightning web components file and naming.

18

A Lightning Web Component must contain three different files: an HTML file, a JavaScript

file, and a Component Configuration file. HTML provides the UI for the component. Ja-

vaScript defines the core logic and handling events. The configuration file defines the

metadata values for the component, for example, the design configuration for the Light-

ning App Builder [9]. A CSS file can be also included in the component bundle, but it is

optional. Code Example 8 shows an example of how the configuration could look like.

<?xml version="1.0" encoding="UTF-8"?>

<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">

 <apiVersion>47.0</apiVersion>

 <isExposed>true</isExposed>

 <targets>

 <target>lightning__AppPage</target>

 <target>lightning__RecordPage</target>

 <target>lightning__HomePage</target>

 </targets>

</LightningComponentBundle>

Code example 8. The main component configuration file.

In this case, the configuration file defines where the application can be shown.

As mentioned before, the structure is more or less the same as in the Aura component.

Everything starts from the Main component which has two different child components.

The only difference is, the whole table is in the same component instead of separating

them into two different components. The reason for that is covered in the following parts.

Code example 9 shows that the Main Component contains two child components, and

everything is wrapped in the HTML template tag.

<template>

 <div>

 <lightning-card title="Contact Table" icon-name="action:new_contact">

 <c-filter-component onfilterthelist={handleTheList}></c-filter-component>

 <c-table-component contactlist={contactList} filtered ={filtered}></c-ta-

ble-component>

 </lightning-card>

 </div>

</template>

Code example 9. The Main Web component HTML file.

The first one is for the filter and the second one is for the table. The way of containing

the child component is pretty much the same as in the Aura component, with <c-child-

component></c-childcomponent>html tag instead of <c:childcomponent>. Depending on

19

the need, different attributes can be passed inside of the tag to the child component. In

this case, the contact list is passing from the parent component to the child component.

The template looks very similar to Aura templates. The biggest change would be that no

need to declare variables in the template. Instead, everything will be declared in the

JavaScript file. This change reduces a huge amount of line for the HTML file.

All the business logic is defined in the JavaScript files. Compare to Aura Components,

Lightning Web Components use common JavaScript ECMAScript 8 methods and syn-

tax. Code example 10 shows an example of how JavaScript file can be built in the Light-

ning Web Components.

import { LightningElement, wire, track } from 'lwc';

import { getListUi } from 'lightning/uiListApi';

import CONTACT_OBJECT from '@salesforce/schema/Contact';

import getContact from '@salesforce/apex/lwcTableCtrl.getContact';

export default class th_MainWebCmp extends LightningElement {

 @track contactList;

 @track searchValue;

 @track filtered = false;

 @wire (getContact, { searchName: '$searchValue'})

 filterContacts ({error, data}){

 if(data){

 /* eslint-disable no-console*/

 console.log('Filtered List: ' + JSON.stringify(data));

 this.contactList = data.filteredList;

 this.filtered = true;

 }else if(error){

 this.error = error;

 this.filteredList = undefined;

 }

 }

 @wire(getListUi, { objectApiName: CONTACT_OBJECT, listViewApiName: 'AllCon-

tacts'})

 wiredContactList({

 error, data

 }){

 if(data){

 this.contactList = data.records.records;

 /* eslint-disable no-console*/

 console.log('Contact list: ' + JSON.stringify(this.contactList));

 }else if(error){

 //Handle the error

 this.error = error;

 }

 }

 handleTheList(event){

 //get the value from the event

 this.searchValue = event.detail;

20

 /* eslint-disable no-console*/

 console.log('Parent Search Value:' + this.searchValue);

 }

}

Code example 10. The Main Component JavaScript file.

The JavaScript file must include the export statement which defines a class extends the

LightningElement class which is imported from the built-in module for Lightning Web

Components. In the code example 10, the import statement indicated the JavaScript

uses the LightningElement, track and wire functionality from the ‘lwc’ module.

Decorators such as track and wire are used in JavaScript to extend the behavior of a

class, property or method [11]. Most commonly used Lightning Web Component deco-

rators are:

• @api

The api decorator defines property as public reactive. It means the property can

be used in the template or other components. For example, when trying to pass

a value from a parent component to a child component, in the child component,

the property needs to mark with the api decorator.

• @track

The track decorator is private reactive. It is marked for internal monitoring. Every

time when marked property’s value has changed, it will force a component to

rerender. It is very useful especially when a user interacts with the component.

In the code example 10, the searchvalue is marked with track decorator which

means every time when the value has changed, the getContact method will be

rerendered again to get correct data from Salesforce database.

• @wire

The wire decorator simplifies getting and binding data from a Salesforce organi-

zation. In the code example 10, the getContact method is called with only one

21

line of code. Lightning Web Components also provide some wire adapter for mak-

ing development easier and let’s delve into the adapter in the next part.

A new feature of Lightning Web Component is prebuilt adapters to fetch data from the

database without creating an Apex controller. In code example 10, getListUi is one of the

adapters that can be used in the JavaScript controller to get the records and metadata

from a list view. First, one passes the object API name, and that is going to be the contact

object in this case. The second parameter is the list view API name. The wire adapter is

currently in beta [12]. So the feature still has a lot of limitations for getting the data. For

example, the adapter will not accept any conditions as a parameter. Of course, a new

list view can be created, but it will not be the best practice from a development perspec-

tive for a real business case. That is also the reason, the Apex class is built to gather the

contacts after the filtering. After the data is returned from the database, it will pass to the

child table component as Code example 11 shows below.

<template>

 <table class="slds-table slds-table_cell-buffer slds-table_bordered">

 <thead>

 <tr class="slds-line-height_reset">

 <th class="" scope="col">

 <div class="slds-truncate" title="Name">Contact Name</div>

 </th>

 <th class="" scope="col">

 <div class="slds-truncate" title="Account Name">Ac-

count Name</div>

 </th>

 <th class="" scope="col">

 <div class="slds-truncate" title="Email">Email</div>

 </th>

 <th class="" scope="col">

 <div class="slds-truncate" title="Phone">Phone</div>

 </th>

 </tr>

 </thead>

 <tbody>

 <template for:each={contactlist} for:item="con">

 <template if:false={filtered}>

 <tr class="slds-hint-parent" key={con.fields.Id}>

 <td data-label="Name">{con.fields.Name.value}</td>

 <td data-label="Account Name">{con.fields.Account.dis-

playValue}</td>

 <td data-label="Email"> {con.fields.Phone.value}</td>

 <td data-label="Phone"> {con.fields.Email.value}</td>

 </tr>

 </template>

 <template if:true={filtered}>

 <tr class="slds-hint-parent" key={con.Id}>

 <td data-label="Name">{con.Name}</td>

 <td data-label="Account Name">{con.Account.Name}</td>

 <td data-label="Email"> {con.Phone}</td>

22

 <td data-label="Phone"> {con.Email}</td>

 </tr>

 </template>

 </template>

 </tbody>

 </table>

</template>

Code example 11. Child table component HTML file.

Lightning Web Component has HTML template directives which used to handle by HTML

Aura tags in Lightning Aura Component. The basic behaviors are the same. The HTML

template for:each directive iterates through the Array that the child component gets from

the parent component and displays the fields in the table. In Code example 11, there are

two different <tr> tags inside of for:each directive to show the fields. The reason for it is

because the returned lists are different from the Apex controller or directly using the wire

adapter, as Figure 13 shows.

Figure 13. Returned JSON list from the adapter(left) and Apex controller(right).

23

From an adapter, all the fields are wrapped in a fields property that has a name. To get

the actual value, HTML needs to call <fields.field_name.value>. From the Apex control-

ler, simply just call the field name from the list.

A JavaScript file is simple in the child table component. Code example 12 shows how

everything can be handled only with a few lines of code.

import { LightningElement, track, api } from 'lwc';

export default class tableComponent extends LightningElement {

 @api contactlist;

 @api filtered;

}

Code example 12. Child table component JavaScript file.

As mentioned before, the api decorator defines the property value as public reactive. It

is not enough just passing the value from the parent component to the child using the

HTML file. What if the child component needs to fire a value back to the parent compo-

nent? Lightning Web component also provides an event that allows doing that. Let us

dive into the Lightning Web Component Event in the next section.

 Lightning Web Component Event

Lightning Web component dispatches standard DOM events. It is also possible to imple-

ment custom events. Custom events are used to communicate up from a child compo-

nent to a parent component. The events are built on DOM events. Salesforce recom-

mends using the CustomEvent interface instead of the Event interface for a more con-

sistent experience across browsers [13].

Different from the Aura component, there is no need for creating a Lightning Event file to

handle the event between two-component. Everything can be handled in the HTML and

JavaScript file. Use the CustomEvent() constructor to create an event and dis-

patchEvent() method to fire an event, as Code example 14 shows.

export default class filterComponent extends LightningElement {

 @track searchValue = '';

 @track filteredList;

 @track error;

24

 changeHandler(event) {

 const searchKey = event.target.value;

 // eslint-disable-next-line @lwc/lwc/no-async-operation

 if(searchKey.length > 2 || searchKey.length === 0){

 this.searchValue = searchKey;

 /* eslint-disable no-console*/

 console.log('Search value: ' + this.searchValue);

 //Create the Custom Event

 const fireTheValue = new CustomEvent('filterthelist', {de-

tail: this.searchValue});

 //dispatch the Event

 this.dispatchEvent(fireTheValue);

 }

 }

}

Code example 14. Filter component JavaScript file where an event is created.

A required parameter is needed when creating a custom event, which is the event type.

The event type can be named with any string, but need to conform with the DOM event

standard, with no uppercase letters, spaces, and use underscores to separate words.

The second parameter is the data that passes in the event. In this case, the searched

value from the input is passed to the parent component.

The Lightning Web Component Event can be handled in two ways: expressively from

the component’s HTML template, or adding the handler programmatically using a Ja-

vaScript API [13]. In this case, it is handled in the HTML template. In the HTML template,

the child component needs to use an HTML attribute with syntax onEventtype. In Code

example 9, the filter child component has a onfilterthelist attribute. In the JavaScript

class, the handleTheEvent method will be executed when the event is fired as Code

example 10 shows.

 Lightning Web Component Testing and Result

Lightning Web Components provide the capability to do the unit tests. This is a huge

improvement for the Lightning Components because the code should always be tested

as well as possible. Jest is the testing framework for JavaScript and it also provides

features for testing the Lightning Web Components.

25

Every test added to the project represents a subfolder for the Lightning Web Component.

In Figure 14, the unit test is in the __tests__ folder under the main component bundle.

Figure 14. Unit test class located in the __test__ subfolder under the component.

Under the test folder, there is another subfolder which is a data folder. The folder con-

tains the JSON file which is a mockup data for the unit tests as Code example 15 shows.

The JSON can be custom, but it might get some errors during the testing. The Salesforce

recommended to take a snapshot of the data by accessing the UI API. In this case, a

snapshot was taken from the console log and formatted into the JSON as Figure 13

shows.

import { createElement } from 'lwc';

import { registerLdsTestWireAdapter } from '@salesforce/sfdx-lwc-jest';

import Main from 'c/th_MainWebCmp';

import { getListUi } from 'lightning/uiListApi';

// import data from the mockup Json file

const mockGetListUIData = require('./data/getListUi.json');

const getListUiWireAdapter = registerLdsTestWireAdapter(getListUi);

describe('c-th_MainWebCmp @wire demonstration test', ()=> {

 while(document.body.firstChild){

 document.body.removeChild(document.body.firstChild);

 }

 it('render the th_MainWebCmp with mock up data', ()=>{

 const element = createElement('c-th_MainWebCmp',{is: Main});

 document.body.appendChild(element);

 getListUiWireAdapter.emit(mockGetListUIData);

 return Promise.resolve().then(() => {

 });

 });

});

Code example 15. How the unit test class looks like for the Lightning Web Components.

26

In Code example 15, all the basic setups are done for the unit testing. The mock data

should be imported before the test and controlled using the registerLdsTestWireA-

dapter() method, the test wire adapter under the test. This is how the mock data passed

into the tests.The adapter should be always reset by calling removechild method before

each test. So, the next test will not be affected by previous tests [15].

Even though Lightning Web Components provide a unit test functionality using the Jest

testing tool, testing in the UI is also important. The Lightning Web Components applica-

tion looks a bit different compared to the Aura components as Figure 15 shows.

Figure 15. Testing the filter functionality from the App.

When compared with the application built using the Lightning Aura Components shown

in Figure 10, the application looks slightly different and the filter also works differently,

even the result after the filtering is the same. In this application, there is no search button.

How the filter works, is whenever the search value length is over three, the search

method will be fired, and the contacts list will be returned from the Apex class. The rea-

son for removing the button will be explained in the next chapter.

3.3 Results

Both components were built successfully. The differences and features are introduced

inthe previous chapters. The whole application was built within 230 lines of code using

Lightning Aura Components and 165 lines of code using Lightning Web Components

without including the test classes. The size of the application has reduced significantly

mostly because of the Lightning Web Components adopter and decorators. Even the

27

Lightning Web Components decorator that is used in the application is still the beta ver-

sion but the functionality is very powerful for getting the data without writing an Apex

class.

The Aura components model is more mature after all the years of development. Even

the model contains a lot of custom functionality, but it still covered mostly what is needed

during the development. It can be noticed while building the application because the

development went smoothly without any critical issues.

The same does not happen for the Lightning Web Component. During the development,

there were a lot of issues that came up on the way. The biggest issue faced was the

styling for the components, as mentioned in the earlier sections about putting the whole

table in the same component and removing the button from the user interface. That is all

because of the problem with the CSS styling and the reason for the problems is the

shadow DOM. Shadow DOM is the internal document object model (DOM) [14]. It is a

web standard feature that will be automatically created for the Lightning Web Compo-

nents. After the implementation, it brings a lot of limitations to the CSS, for example, only

affecting the top-level of prebuilt Lightning components like Lightning buttons which is

totally different from Aura components, which the styling also can affect to the internal

components.

The way of building the application using both models in this study can also be developed

in many different ways. Especially, the Lightning Web Components is still a new pro-

gramming model and new features are coming out in every release. The best practice

for the new programming model is changing all the time during every release.

4 Conclusions

Overall the project has achieved what was planned in the beginning. The aim of the

project was to investigate the usability of the Lightning Web Components during the de-

velopment, pointing out the good and bad points of the new model.

28

From a technical point of view, the Lightning Web Component model is still too immature

so that even some component catching problems were faced during the development.

Besides, Salesforce provides good documentation about the model to make it easier for

developers to get hands-on it but because of the limitations and bugs, sometimes it would

be better still going with the old programming model.

In Fluido Oy, the main developments are still done with the Lightning Aura Components.

Many of the developers did not even consider using the new programming model. From

a business point of view, it will take too much time to learn how to build applications with

the new model. Especially, if the developer is already highly skilled with the Lightning

Aura Components. Even after the learning, the developer never knows what kind of is-

sues will be faced during the development and the practical documentations are still so

limited from the internet that sometimes it is hard to find a solution to the problem.

For the conclusion, considering all the powerful features and functionalities that the

model has brought with it, Lightning Web Components are the future of Salesforce de-

velopment, but it will take some time before it becomes as mature as Aura components

currently are.

29

References

1 Learning Salesforce Coding with example [online]. <http://sfdcinpractice.com/in-
dex.php/2017/02/22/2-2-explanation-lightning-component-works/> Accessed Oc-
tober 2019.

2 Understand the Salesforce Archtecture [online]. <https://trail-
head.salesforce.com/en/content/learn/modules/starting_force_com/starting_un-
derstanding_arch> Accessed October 2019.

3 Lightning Aura Components Developer Guide:Component Names [online].
<https://developer.salesforce.com/docs/atlas.enus.lightning.meta/lightning/com-
ponents_names.htm> Accessed November 2019.

4 Salesforce Lightning Events [online]. <https://www.mstsolutions.com/tech-
nical/salesforce-lightning-events/> Accessed November 2019.

5 Understanding Lightning Components events naming and parameters[online]. <
https://medium.com/@amster/understanding-lightning-components-events-nam-
ing-and-parameters-297db051af79> Accessed November 2019.

6 Application Events[online]. < https://developer.salesforce.com/docs/atlas.en-
us.lightning.meta/lightning/events_application.htm> Accessed November 2019.

7 Lightning Inter-Component Communication Patterns[online]. < https://devel-
oper.salesforce.com/blogs/developer-relations/2017/04/lightning-inter-compo-
nent-communication-patterns.html> Accessed November 2019.

8 Lightning Web Components Reference[online]. < https://lwc.dev/guide/reference>
Accessed November 2019.

9 Introducing Lighning Web Components, Developer Guide[online]. <https://devel-
oper.salesforce.com/docs/component-library/documentation/lwc> Accessed No-
vember 2019.

10 Connect to Salesforce with Server-Side Controllers[online]. < https://trail-
head.salesforce.com/en/content/learn/modules/lex_dev_lc_ba-
sics/lex_dev_lc_basics_server> Accessed November 2019.

11 Create Lightning Web Components[online]. < https://trail-
head.salesforce.com/content/learn/modules/lightning-web-components-ba-
sics/create-lightning-web-components> Accessed November 2019.

12 LWC – getListUi Beta. <https://wipdeveloper.com/lwc-getlistui-beta/ > Accessed
November 2019.

13 Lightning Web Component Events[online]. < https://lwc.dev/guide/events> Ac-
cessed November 2019.

14 Shadow DOM [online]. < https://developer.salesforce.com/docs/component-li-
brary/documentation/lwc/lwc.create_dom> Accessed November 2019

http://sfdcinpractice.com/index.php/2017/02/22/2-2-explanation-lightning-component-works/
http://sfdcinpractice.com/index.php/2017/02/22/2-2-explanation-lightning-component-works/
http://sfdcinpractice.com/index.php/2017/02/22/2-2-explanation-lightning-component-works/
http://sfdcinpractice.com/index.php/2017/02/22/2-2-explanation-lightning-component-works/
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://trailhead.salesforce.com/en/content/learn/modules/starting_force_com/starting_understanding_arch
https://developer.salesforce.com/docs/atlas.enus.lightning.meta/lightning/components_names.htm
https://developer.salesforce.com/docs/atlas.enus.lightning.meta/lightning/components_names.htm
https://developer.salesforce.com/docs/atlas.enus.lightning.meta/lightning/components_names.htm
https://developer.salesforce.com/docs/atlas.enus.lightning.meta/lightning/components_names.htm
https://www.mstsolutions.com/technical/salesforce-lightning-events/
https://www.mstsolutions.com/technical/salesforce-lightning-events/
https://www.mstsolutions.com/technical/salesforce-lightning-events/
https://www.mstsolutions.com/technical/salesforce-lightning-events/
https://medium.com/@amster/understanding-lightning-components-events-naming-and-parameters-297db051af79
https://medium.com/@amster/understanding-lightning-components-events-naming-and-parameters-297db051af79
https://medium.com/@amster/understanding-lightning-components-events-naming-and-parameters-297db051af79
https://medium.com/@amster/understanding-lightning-components-events-naming-and-parameters-297db051af79
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/events_application.htm
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/events_application.htm
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-inter-component-communication-patterns.html
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-inter-component-communication-patterns.html
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-inter-component-communication-patterns.html
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-inter-component-communication-patterns.html
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-inter-component-communication-patterns.html
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-inter-component-communication-patterns.html
https://lwc.dev/guide/reference
https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/lwc
https://developer.salesforce.com/docs/component-library/documentation/lwc
https://trailhead.salesforce.com/en/content/learn/modules/lex_dev_lc_basics/lex_dev_lc_basics_server
https://trailhead.salesforce.com/en/content/learn/modules/lex_dev_lc_basics/lex_dev_lc_basics_server
https://trailhead.salesforce.com/en/content/learn/modules/lex_dev_lc_basics/lex_dev_lc_basics_server
https://trailhead.salesforce.com/en/content/learn/modules/lex_dev_lc_basics/lex_dev_lc_basics_server
https://trailhead.salesforce.com/en/content/learn/modules/lex_dev_lc_basics/lex_dev_lc_basics_server
https://trailhead.salesforce.com/en/content/learn/modules/lex_dev_lc_basics/lex_dev_lc_basics_server
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/create-lightning-web-components
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/create-lightning-web-components
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/create-lightning-web-components
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/create-lightning-web-components
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/create-lightning-web-components
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/create-lightning-web-components
https://wipdeveloper.com/lwc-getlistui-beta/
https://lwc.dev/guide/events
https://lwc.dev/guide/events
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.create_dom
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.create_dom
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.create_dom
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.create_dom
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.create_dom
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.create_dom

30

15 Write Jest Tests for Lightning Web Components [online]. <https://devel-
oper.salesforce.com/docs/component-library/documentation/lwc/lwc.unit_test-
ing_using_jest_create_tests> Accessed November 2019.

https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.unit_testing_using_jest_create_tests
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.unit_testing_using_jest_create_tests
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.unit_testing_using_jest_create_tests
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.unit_testing_using_jest_create_tests
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.unit_testing_using_jest_create_tests
https://developer.salesforce.com/docs/component-library/documentation/lwc/lwc.unit_testing_using_jest_create_tests

