

Erkki Parkkulainen

Real-time Physics Simulation

Metropolia University of Applied Sciences

Bachelor of Engineering

Information technology

Bachelor’s Thesis

14 November 2019

 Abstract

Author
Title

Number of Pages
Date

Erkki Parkkulainen

28 pages
14 November 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of School

The purpose of the study was the implementation of a 3D physics engine that is usable in
real-time graphics applications such as games and other simulations where approximation
of physics is adequate. Along with the actual physics engine an OpenGl based graphics
toolkit was developed for testing purposes and visualization of the physics engine and for
creating a demonstration application.

The thesis covers the fundamentals of physics simulation, integration of physics, collision
detection and collision handling, as well as the abstraction of these concepts into a library
that can be used in a separate application. The tools and practices used in the development
of the graphics toolkit and the physics engine are also covered.

As a result of the study both the minimal graphics toolkit and the physic engine were created,
and the project can be considered a success.

Keywords Physics simulation, OpenGL, 3D

 Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Erkki Parkkulainen

28 pages
14.11.2019

Tutkinto Insinööri (AMK)

Koulutusohjelma Tietotekniikka

Suuntautumisvaihtoehto Ohjelmistotuotanto

Ohjaaja

Janne Salonen, Tutkintovastaava

Työn tarkoitus on toteuttaa 3D-fysiikkamoottori, jota voi käyttää reaaliaikaisissa grafiikka-
sovelluksissa kuten peleissä ja muissa simulaatioissa, joissa riittää approksimaatio fy-
siikasta. Fysiikkamoottorin lisäksi kehitetään OpenGL-pohjainen grafiikkakirjasto fysiikka-
moottorin testausta ja visualisointia varten.

Työ kattaa fysiikkasimulaation perusteet, integroinnin, törmäysten havaitsemisen ja niiden
käsittelyn. Nämä toteutetaan kirjastoiksi, joita voidaan käyttää muista sovelluksista. Lisäksi
työ myös käsittelee työn tekemiseen käytetyt työkalut.

Työn tuloksena tuotettiin minimaalinen grafiikkakirjasto ja fysiikkamoottori, kuten oli suunni-
teltu.

Keywords Fysiikka-simulaatio, OpenGL, 3D

Contents

1 Introduction 1

2 Physics Simulation 2

2.1 Simulating Forces 2

2.2 Collision Detection 5

2.3 Resolving Collisions 7

3 Physics Engine Specification 9

3.1 Rendering Framework 10

3.2 Physics Engine Features 10

3.3 Rigid Bodies 10

3.4 Collisions 10

4 Physics Engine Implementation 11

4.1 Project Management 11

4.1.1 Version Control 11

4.1.2 Build System 11

4.1.3 Project Structure 12

4.2 Rendering 12

4.3 Physics 14

4.3.1 Rigid Bodies 14

4.3.2 Collisions 16

5 Results 21

6 Conclusions 25

References 27

1

1 Introduction

In 3D applications and 2D games it is often very easy to create interesting interactions,

mechanics and realism just by adding a physics simulation. Even if the physics simula-

tion is not strictly required it may provide a sense of realism and immersion. Games can

be taken as an as an example, as games have developed from having no physics sim-

ulation to implementing a specific phenomenon on a case-by-case basis as required by

game mechanics. The next step is to simulate physics effects that are not actually

needed for the mechanics but are implemented only to achieve realism. This is analo-

gous to the development of 3D rendering to achieve different mechanics and now to also

approach photorealism. [1, p. 647]

This thesis focuses on real-time simulation and rendering of physics that is mostly useful

for games and game like applications. Specifically, the purpose is to create a physics

engine that can be used to create believable rigid body physics that can be used for

several different types of simulations. The simplest ways to add a physics simulation to

an application would be to use an existing physics engine or separately implement only

the necessary functionality. The existing physics engines are of extremely high quality

and full featured. The purpose of creating a new engine is to have the simplicity from the

smaller feature set and still be extensible and general enough to be used in varied sce-

narios and to learn about the underlying concepts. [2] [3] [4]

These days many of the high-quality engines are open source and freely available with-

out any license fees. One of the most common ones is PhysX, which is currently owned

by Nvidia and was made open source in December 2018. However, for console platforms

it is still proprietary, and some license costs may apply. PhysX is also the physics engine

that is used both in Unity and Unreal game engines which are both hugely popular. One

example of still a fully proprietary physics engine is Havok which was previously owned

by Intel and used to be affordable and completely free for small scale games. After being

purchased by Microsoft Havok SDK is at the time of writing no longer freely available but

can probably be acquired by contacting their sales and negotiating a price. One addi-

2

tional example of a very high-quality open source 3D physics engine of the same seg-

ment is Bullet which has been open source since the beginning. For 2D physics, one

example is Box2D which is also open source and is popular for indie development due

to its simplicity of use. There are also dozens of other general-purpose and more spe-

cialized (ex, car physics, molecular physics, etc.) open source and commercial physics

engines but for the most cases the ones mentioned above are more than good enough.

[3] [2] [4] [5]

2 Physics Simulation

This chapter covers the basic components required for the real-time simulation of a phys-

ics engine.

2.1 Simulating Forces

At the core of the physics simulation is the component called integrator. When simulating

physics, ultimately what the application needs from the physics engine is to know the

position of the object being simulated after applying any forces. Applying forces to an

object creates acceleration based on the properties of the object. The integrator receives

the acceleration and calculates the integral which gives the velocity, which can be inte-

grated again to figure out the change in position. For the purposes of a physics engine

the integration of acceleration to velocity and velocity to position are the only ones re-

quired, so in the context of real-time physics simulation integration is synonymous to

updating velocity and position. Angular velocity and orientation are updated with the

same integration methods as the linear forces. [6, p. 43]

The integrator function is used to iterate through all the objects in the simulation and to

update the current state based on the elapsed time. The application usually decides how

often this is done but usual methods are to use a fixed time step for the simulation or to

update the simulation once per frame. Semi-fixed strategies can also be used. For ex-

ample, the simulation could be updated once per frame but there could also be a maxi-

mum time step in case there is an occasional slow frame that could make the simulation

quirky. There are several integration methods commonly used and one common feature

3

with these is that they approach the correct solution with the decrease of time step. This

means that for realistic simulation the fixed time step is usually preferred because if the

integrator is executed once per frame it is possible that the simulation becomes very

inaccurate if the frame takes too long. This also means that there needs to be a balance

between accuracy of simulation and performance, since if the time step is set to a too

small a value then the simulation can no longer be run in real-time. [7]

Some common families of integration methods are Euler, Verlet and Runge-Kutta, other

methods exist and there are also many different variations. The reason why multiple

different integrators are needed is that no method is perfect for all cases and all have

their strengths and drawbacks. The different characteristics of the different integration

methods are performance, stability and accuracy. In addition, different integrator variants

might have different stability characteristics based on the simulation type. One integrator

might perform better with orbital motions and another might be more stable when han-

dling constraints like stiff springs. One example of an integrator would be the RK4 which

is a fourth order Runge-Kutta method that performs the evaluation four times as com-

pared to Euler which is a first order method. This basically means that RK4 will be roughly

four times slower than Euler, but it also converges faster giving more accurate and stable

results compared even when running the Euler methods with smaller time-step gaining

back some time that is lost from the more complex calculations. The Verlet integration

method is a second order method and provides better stability than Euler and is only

slightly slower. [8] [9] [10]

The choice of the integration method depends on the application needs. The Euler

method is the fastest of the ones discussed here, but also the most inaccurate and un-

stable, RK4 is the most accurate but slowest and Verlet would offer balance between

the two. For games the accuracy of Euler would usually be enough, unless there are

some specific cases like stiff springs or constraints. RK4 should probably be reserved

for special cases where the added precision is required for the simulation, but it would

be difficult to argue against Verlet. One added consideration is that the accuracy and

stability also depend on the type of simulation, for example Euler would be more stable

with constant velocities. Formula 1 describes one variant of the Euler method. [6, pp.

417-418] [10] [11]

4

𝑣𝑛+1 = 𝑣𝑛 + 𝑎𝑛∆𝑡 (1)

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛+1∆𝑡

v is the velocity

a is the acceleration

x is the position

∆t is the timestep.

Formula 1. Euler-Cromer integration method

Formula 1 describes the Euler-Cromer integration method, also called the semi-implicit

Euler-method and it is a modification to the base Euler-method. First, the velocity is ap-

proximated, and then the same method is used to approximate the position based on

the approximated velocity. In the base Euler-method the original velocity would instead

be used in in the position update too, but this would produce more unstable results since

the second order term is not used. The reason for this is that applying the second order

term
1

2
𝑎𝑛∆𝑡

2 in the position update would most often not make a significant difference in

high frame rate applications since the time step is very small and would only make the

calculations more intensive. The semi-implicit Euler-method is more stable than the base

Euler, but it is still a first order method. If the application has large enough acceleration

values to make the second order term significant or if just higher accuracy is necessary,

then using the second order version of the Euler integration instead can be beneficial.

The version of Euler with the second order term included is also called modified Euler

method or the midpoint method. An example of a different approach is given in Formula

2. [6, pp. 417-418] [12]

𝑥𝑛+1 = 2𝑥𝑛 − 𝑥𝑛−1 + 𝑎𝑛∆𝑡
2 (2)

a is the acceleration

x is the position

∆t is the timestep.

Formula 2. Verlet integration method.

Formula 2 describes the Verlet integration method which unlike the Euler integration

does not store the velocity-state at all and instead uses the previous position in the for-

mula to account for it. For a single-body simulation Verlet will yield similar accuracy as

5

the Euler but it will preserve energies more accurately when dealing with constraints.

Accuracy of the position for this method is third order but it does not account for the

velocity. The velocity can be calculated simply by using the positions, but the accuracy

will be of the first order and since it is a derived property, it cannot be modified externally.

Formula 3 depicts a more useful variant of the Verlet method. [13]

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛∆𝑡 +
1

2
𝑎𝑛∆𝑡

2 (3)

𝑣𝑛+1 = 𝑣𝑛 +
𝑎𝑛+𝑎𝑛+1

2
∆𝑡

v is the velocity

a is the acceleration

x is the position

∆t is the timestep.

Formula 3. Velocity verlet integration method.

Formula 3 shows a variant of Verlet integration called velocity Verlet. Velocity Verlet is

for the present purposes a more convenient version of the Verlet integration since it

explicitly includes the velocity which can be very useful for example when resolving col-

lisions. In contrast to the base Verlet method the velocity Verlet is second order for both

the position and the velocity. [13]

2.2 Collision Detection

With the integrator function realistic movement can be simulated but if the interaction

between different objects is required then this is not enough. For this effect, collision

detection is required. Collision detection is the process of figuring out whether objects

are in contact and generating the contact information for the contact points. This is a very

broad subject and only the basics are covered here.

If only primitive shapes are used, then performing the intersect tests is reasonably sim-

ple. Testing whether two spheres are penetrating is trivial, but more complex shapes

become more computationally heavy. For more complex shapes two common generic

algorithms are the separating axis theorem (SAT) and Gilbert-Johnson-Keerthi (GJK).

The SAT algorithm works by creating a projection of the shapes for an axis and checking

if the projections overlap, if they do not, the shapes are not intersecting. The test can

6

then be repeated for all relevant axes based on the edges and faces of the two shapes.

If any of these tests fail, then the objects are not in contact. In general, the SAT should

perform well for 2D shapes and for primitive 3D shapes but the number of axes that

needs to be tested grows quadratically with the complexity of the shape. GJK would

generally be more efficient for 3D environments, but unlike SAT which would already

provide the data for the contact information the GJK only finds out if the objects are in

contact and their positions. This means that for physics simulation it usually needs to be

supplemented with some other method to generate the full contact information that is

needed. One example is Expanding Polytope Algorithm (EPA), which relies on the same

principles as the GJK. [6, p. 319] [14, p. 399] [15] [16] [17]

One thing that both the GJK and SAT methods have in common is that they require the

shapes being tested to be convex and additionally for SAT the shapes need to be poly-

hedrons. For a shape to be convex a line between any two arbitrary points inside the

shape must be contained within the shape. For a concave shape a line between these

points might intersect the borders of the shape. This means that if collision between

concave shapes is necessary some extra work or a more complex algorithm is required.

Instead of using a more complex collision algorithm, it is more common to either create

convex hull for the concave shape or use decomposition. Convex hull means that a new

minimal convex shape is generated that contains the concave sacrificing the inward folds

in the shape, which might be acceptable depending on the object and the use case.

Another method is to use decomposition and split the model to smaller parts where each

of these are convex. This can be done beforehand when creating the collision mesh or

it can be done programmatically, but for performance it would be best if the collision

meshes are concave to begin with. [18] [14, p. 500]

Since the collision detection is a very heavy operation, it is usually unfeasible to test all

the objects in the scene for collisions. To solve this problem the collision detection can

be split to broad-phase and narrow-phase. The point of broad-phase is to make a rough

estimation of which objects might be in contact and generate smaller sets that can be

then used in the narrow-phase to find the actual contacts. One way to achieve this would

be to construct a bounding volume hierarchy (BVH) where a tree structure of bounding

volumes is constructed, where the bounding volumes contain objects that are near each

other. The hierarchy is implemented as a tree that can contain several levels of bounding

7

volumes and can be traversed with collision detection being performed on the bounding

volumes on each level until there is a set of objects left that are likely to have collisions.

This set can then be passed to the narrow phase to perform the full collision detection.

Alternative strategy would be spatial partitioning. In spatial partitioning the space would

be split into regions. Then objects within each region can be checked for collisions and

if an object intersects a boundary of regions it is possible it might collide also with objects

from the adjacent region. [6, p. 255] [14, p. 235] [14, p. 285] [19] [20]

2.3 Resolving Collisions

The collision subsystem produces a list of all collisions. Each collision data structure

contains the information for the contact point, contact normal and the penetration depth.

This information is then passed to the collision resolver along with the rigid bodies. The

rigid bodies contain the data from the physics simulation including velocities, positions,

orientation and other properties which can be used along with the contact information to

figure out what should be the result of the collision.

When two objects collide in real world what happens is that these objects will compress

and deform. How much they deform depends on the material and the compression is

often imperceptible and it is this type of object that does not visibly deform that is repre-

sented by the rigid body physics. After the deformation depending on the material there

is a force for the object to return to its original shape. This defines how much bounce the

object will have. In the physics engine this property can be represented with the coeffi-

cient of restitution which is the ratio of the velocity after the contact and the initial velocity

and will provide the change in velocity from the contact. [6, p. 115] [21]

Due to the time step not being infinitely small the collisions often result in interpenetration

of the objects. This does not happen in real life and these issues must first be resolved.

To resolve these, one strategy would be to move both objects along the contact normal.

The mass of the colliding objects also must be considered when resolving the collision.

If there was a collision between a feather and a bowling ball it would hardly make sense

if both were moved by the same amount nor would it appear natural. Intuitively it would

be more natural to mostly move the feather and even if the bowling ball was affected it

8

should be by a very minute amount. This can also be seen in Formula 4 for resolving

linear interpenetration.

∆𝑥𝑎 =
𝑚𝑏

𝑚𝑎+𝑚𝑏
∗ 𝑝𝑛 (4)

∆𝑥𝑎 is the position change of first object.

𝑚𝑎 is the mass of the first object.

𝑚𝑎 is the mass of the second object.

p is the penetration depth.

n is contact normal.

Formula 4. Updating position by mass ratio.

As can be seen in Formula 4, the positions of the objects are updated based on the

inverse proportion of their masses. This will have the effect that if the objects have equal

mass, they will be moved by the same amount and in the case that the collision is be-

tween an object with tiny mass and object the result will appear more intuitive. [6, p. 124]

When resolving collisions, the velocity can be updated directly, and there is no time step

provided. The collision resolution can however directly resolve the collisions as velocity

changes by using concept of impulse forces. Impulse is a force that can be applied im-

mediately. Below some descriptions of impulse and its relation to force (Formula 5).

𝑖 = 𝑓𝑡 (5)

𝑓 = 𝑚𝑎

𝑖 = 𝑚𝑎𝑡

𝑎𝑡 = ∆𝑣

𝑖 = 𝑚∆𝑣

i is the impulse.

f is the force.

m is the mass.

a is the acceleration.

∆𝑣 is the velocity change

Formula 5. Definition of impulse.

In Formula 5 if in the first equation for impulse the force is expanded as 𝑚𝑎, the 𝑎𝑡 can

then be replaced with the delta velocity. Based on this information the collision resolving

can work with impulses, first the impulse is generated on contact which can then be

9

directly resolved as the velocity change based on mass of the object. Below the formula

for generating the impulse (Formula 6). [22]

𝑖 =
𝑣𝑑

𝑣𝑖
 (6)

i is the impulse.

𝑣𝑑 is the desired velocity change.

𝑣𝑖 is the velocity change per unit impulse.

Formula 6. Calculating impulse.

Formula 6 is for generating the impulse based on the information that is provided by the

collision detection step. The desired velocity change can be computed based on the

coefficient of restitution and the contact velocity. The velocity change per unit impulse

can be computed from the contact position, contact normal and mass of the object. The

formulas above however only consider the linear component of the collision resolution.

To realistically resolve the collisions the inertia, rotation and angular velocities would

also have to be considered. They work on similar principles as the linear components

featured here, but accounting for them makes things more complicated since they need

to be represented with vectors in three-dimensional space. In order to keep the explana-

tions simpler, the angular components have been omitted from this introduction to the

subject. One example of the events seen when accounting for the angular components

would be that if a pen is dropped in a tilted position so that one side of it hits the ground

first, what happens is that only the contact position bounces but the center mass of the

pen will still keep falling downwards. Without accounting for the angular components, the

pen would bounce upwards without a change in its orientation.

3 Physics Engine Specification

This chapter covers the different subsections of the implementation of the physics engine

and what was implemented.

10

3.1 Rendering Framework

The minimal rendering framework provides an abstraction of OpenGL and implements

an object-class that represents objects inside the world. This class encapsulates both

the rendering functions and functions for updating the physics state. On the high-level

the main loop calls the update function on a fixed time step for each object and then

similarly calls the render-function to display the current state of objects in the world.

3.2 Physics Engine Features

The physics engine implements support for rigid body physics. Only fundamental fea-

tures of rigid body physics are not implemented. Other types of simulations such as soft

body physics and fluid physics are out of the scope of the implementation. In addition,

some simpler features such as constraints are left out for now.

3.3 Rigid Bodies

The rigid body represents the current state of a single object in the world and the objects

properties that relate to the physics simulation. It also implements the high-level func-

tionality for updating the state based on current forces and functions for adding new

forces.

3.4 Collisions

Collision detection is left out of the scope of the implementation and instead external

library is used, since implementing full featured collision detection would be too large of

a task. Implementing a simple collision detection that only supports primitive shapes

would still be doable but would increase the scope of the project and would not be as

flexible as the separate library.

The physics engine does, however, implement the collision resolver that goes through

the collisions detected by external library and implements the algorithm that applies the

11

velocity and position changes caused by the collisions. The abstraction for collisions is

implemented and constructed based on the information provided by the external library

and implements the functions for calculating the position and velocity changes based on

the collisions.

4 Physics Engine Implementation

For the implementation C++-language was used due to its popularity in high performance

applications.

4.1 Project Management

This subsection covers the tools and practices used to manage the project development.

4.1.1 Version Control

Version control is a very important aspect of managing software development. It is es-

pecially important in large projects where different revisions written by multiple people

need to be managed and will facilitate separate development efforts, allow rolling back

to earlier revisions when necessary and make it easier to handle conflicts between dif-

ferent changesets. It is also extremely helpful even in projects managed by only one

person. For this project Git was used as it is currently effectively the de facto standard

that many companies are using or are migrating to. There are also several reputable free

cloud services for hosting the git-repositories, like GitHub, Gitlab and Bitbucket. [23] [24]

[25] [26]

4.1.2 Build System

The project build was managed with CMake which is the current de facto build system

for C++ projects. Some traditional build systems such as Autotools and MSBuild are still

widely used, but most new and actively maintained projects are moving to CMake. Other

promising build systems which offer clearer syntax and some improved features are also

12

emerging, for example Meson which some notable open-source projects have already

adopted, but they have yet to supersede CMake as the de facto build system. [27] [28]

4.1.3 Project Structure

There are some guidelines for project structure, but there is no single standard used and

the split is largely matter of taste and is guided by type of the project and tools used. For

this project the following split was used:

• “cmake”, for build-system modules and scripts.

• “examples”, for test applications and examples.

• “src”, for source code.

• “include”, for headers of the public api.

Mixing the source and header files is also common with the advantage that it makes it

easier to switch between the header and implementation. However, most code editors

these days are able to swap between them even if they are stored in different directories.

The benefit of having the headers in separate folder is cleaner separation of the public

and private application programming interface and simpler packaging since the include

directory can be copied as is. If the project would consist of several sub-libraries and

executables different project structure would be required and there would be several

reasonable ways of splitting the project, but for a single library project the simple split

featured above is sufficient. [29]

4.2 Rendering

For visualization and testing of the physics engine a minimal framework is written from

scratch along with a simple scene viewer that was used as test application for integration

of the physics engine. OpenGL was used for the rendering and Epoxy-library will be used

for OpenGL function pointer management. GLFW-framework was used for window man-

agement and input handling. GLM math library was used for the matrix calculations

needed for the scene viewer implementation. Assimp-library was used for loading 3D

mesh data. [30] [31] [32]

13

To ease the use of OpenGL some abstractions were created that wrap the raw OpenGL

usage. Texture-class for binding image data for drawing, shader-class for wrapping

shader-programs and mesh-class for representing object shapes. On top of these, some

high-level abstractions were implemented. The high-level abstractions that were added

are material-class for representing properties of the object surface such as texture and

diffuse that are passed to the shader-program, model-class for combining mesh-data to

a material and object-class for composing different components e.g. the 3D graphics

models and physics engine rigid bodies. In addition, the resource manager class was

implemented for loading image data, 3D mesh data and shader programs. Camera-class

was also implemented for managing the view of the scene. Listing 1 contains a minimal

example of the top-level of the scene viewer application.

while (true)

{

 current = std::chrono::steady_clock::now();

 accumulator += std::chrono::duration_cast<Microseconds>

 (current - previous);

 previous = current;

 while (accumulator >= dt)

 {

 update(dt)

 accumulator -= dt;

 }

 render()

}

Listing 1. The main loop.

In Listing 1 there is an example of the main loop with physics simulation. An alternative

would be to directly use the measured frame time, but that can result in the simulation

being affected by the stability of the rendering performance and performance of the hard-

ware being used. In the implementation described here the constant dt can be a constant

defined based on the application needs and the physics simulation will always be up-

dated by this constant time step. Using too small a time step here might cause the phys-

ics calculations to dominate the running time and will lower the frame rate, too large a

time step on the other hand might make the simulation unstable. A rough example of a

proper time step for the type of applications this project is aimed at would be in the range

of 10-30 milliseconds. Listing 2 depicts setting up the scene using the developed

graphics toolkit.

14

ResourceManager resourceManager;

Camera camera(glm::vec3(0.0f, 3.0f, 7.0f), glm::vec3(0.0f, 1.0f, 0.0f),

 glm::vec3(0.0f, 0.0f, -1.0f));

glm::mat4 view = camera.getViewMatrix();

glm::mat4 projection = glm::perspective(45.0f, (float)screenWidth /

 (float)screenHeight, 0.1f, 100.0f);

Shader* shader = resourceManager.loadShader("minimal.vert", "minimal.frag");

shader->bind();

shader->setUniform("projection", 1, projection);

shader->setUniform("view", 1, view);

Model* model = resourceManager.loadModel("cube.obj", shader);

RigidObject obj("cube");

obj.addModel(model));

Listing 2. Setting up a scene.

As shown in Listing 2, first, the resource manager instance is constructed which is re-

sponsible of both implementing code for loading resources and managing the lifetime of

them. Then the camera object is created which takes as parameters the position of the

camera in 3D space, the up vector and the direction the camera is looking at. The pro-

jection matrix is also calculated and after the shader has been loaded using the resource

manager both the view matrix and projection are set as uniform variables to the shader.

The model loading takes as parameters the path to the model file and the shader which

is needed because the model loading also constructs the materials based on the model

file and the shader program is required for constructing the materials. Finally, everything

is pulled together by constructing the rigid object which is the physics enabled base ob-

ject type in the scene viewer demonstration application.

4.3 Physics

For the vector, the matrix and quaternion calculations GLM math library was used. For

collision detection the FCL library was used. [33] [34]

4.3.1 Rigid Bodies

Rigidbody class is the main implementation for representing objects in the rigid body

physics simulation. It contains the state representation of the object e.g. position, velocity

15

and acceleration. The most important function it implements is the integrate function

which calculates the new acceleration and angular acceleration based on the accumu-

lated forces and properties of the object such as mass and inertia. Then according to the

new acceleration, the new velocity, position and orientation of the object is integrated.

The class also implements functions for applying forces. There are separate functions

for adding linear force which can be used for constant forces like gravity and for adding

a force at a point which will also add angular torque in addition to the linear force based

on the contact position. Damping is also added to decay the forces to roughly approxi-

mate things like air resistance. Listing 3 demonstrates the core functionality of this class.

void Rigidbody::integrate(float duration)

{

 previousAcceleration = acceleration;

 previousAcceleration += inverseMass * forceAccum;

 glm::vec3 angularAcceleration = torqueAccum * inverseWorldInertiaTensor;

 velocity += duration * previousAcceleration;

 rotation += duration * angularAcceleration;

 velocity *= std::pow(linearDamping, duration);

 rotation *= std::pow(angularDamping, duration);

 position += duration * velocity;

 glm::quat q(0.0f, rotation.x, rotation.y, rotation.z);

 orientation += q * orientation * duration * 0.5f;

 orientation = glm::normalize(orientation);

 transform = glm::mat4_cast(orientation);

 glm::mat4 translation = glm::translate(glm::mat4(), position);

 transform = translation * transform;

 glm::mat3 rotation = glm::mat3(transform);

 inverseWorldInertiaTensor =

 rotation * inverseInertiaTensor * glm::transpose(rotation);

 forceAccum = glm::vec3(0.0f);

 torqueAccum = glm::vec3(0.0f);

}

Listing 3. Implementation of semi implicit Euler integration.

Listing 3 provides the implementation of the integrate method. First, the accumulated

forces and torque are converted to linear and angular acceleration based on properties

of the object. Then the angular and linear velocities are updated based on the length of

the time step provided as the argument to method. A similar step is repeated by using

16

newly approximated velocity to calculate the new position and orientation of the object.

Both steps increase in accuracy as the value of the time step is reduced, and with too

large of a time step the simulation will become increasingly inaccurate. In between the

linear and angular velocities are also decayed by the damping factors. At the end the

accumulated forces are cleared since they have already been accounted for. Aside from

the integrate-method, most of the rigid body implementation is quite simple. It mostly

consists of just setter and getter methods for the different properties of the rigid body.

Below in Listing 4 there is an example of one useful method in the rigid body class be-

sides the integrate method.

void Rigidbody::addForceAtPoint(const glm::vec3& force,

 const glm::vec3& point)

{

 glm::vec3 pt = point;

 pt -= position;

 forceAccum += force;

 torqueAccum += glm::cross(pt, force);

}

Listing 4. Adding force with angular component.

Listing 4 introduces a helper method that in addition to the force, also takes the point

where the force is applied from. With this information the torque-can be calculated. One

example for a use-case for this method would be hitting a billiard ball on the side which

introduces a spin to the ball in addition to the linear forces.

4.3.2 Collisions

The collision implementation consists of two separate classes; a collision for represent-

ing separate collisions and a collision resolver that implements higher level algorithm for

resolving all collisions.

Starting from top down the collision resolver has a couple of parameters such as maxi-

mum iterations and epsilon. The algorithm loops through all collisions passed to it and

call the collision-class to adjust the positions and velocities. This is done iteratively, first

adjusting positions to fix interpenetration between the collision objects starting with the

collision with the worst penetration. This is repeated until the maximum iteration count is

reached or the highest penetration is smaller than the epsilon value. Afterwards similar

17

process is repeated for velocity changes starting with the collisions that will result in

largest velocity change first. The importance of the iterative process is that if one inter-

penetration issue is fixed, it might cause the interpenetration at other collision points to

get worse. The reason for resolving the high magnitude collisions first is because those

are the most likely collision to affect the other collision points.

By far the most complex part of the physics engine implementation covered here is the

math for handling the position and velocity change of the objects. The reason this is

complicated is that not only is there a need to figure out the change in velocity, the inertia

and torque must also be considered. For example, if a rotating object is dropped to the

ground it will bounce in a different manner than a non-rotating object. Related to this,

objects with different inertia will also behave differently on contact. Friction of the contact

surface will also affect the result. To perform the position change, first the inertia of both

bodies is calculated and then based on the inertia the linear and angular change neces-

sary to resolve the penetration in a manner that appears natural is performed. For veloc-

ity change an impulse is generated that represents the velocity change due to rotation

and linear motion. When generating the impulse, the friction must also be accounted for

since it might change the direction of the impulse. The impulse is then applied as velocity

and torque to the object. Listing 5 below has an example of calculating the impulse.

glm::vec3 Collision::calculateFrictionlessImpulse(

 const std::array<glm::mat3, 2>& inverseInertiaTensors)

{

 float deltaVelocity = 0.0f;

 for (size_t i = 0; i < bodies.size(); ++i)

 {

 if (bodies[i])

 {

 glm::vec3 deltaVelocityWorld =

 glm::cross(relativeContactPosition[i], contactNormal);

 deltaVelocityWorld =

 inverseInertiaTensors[i] * deltaVelocityWorld;

 deltaVelocityWorld =

 glm::cross(deltaVelocityWorld,

 relativeContactPosition[i]);

 deltaVelocity += glm::dot(deltaVelocityWorld, contactNormal);

 deltaVelocity += bodies[i]->getInverseMass();

 }

 }

 return glm::vec3(desiredDeltaVelocity / deltaVelocity, 0, 0);

}

18

Listing 5. Calculating impulse without friction.

In Listing 5 the code first calculates the delta velocity which is the velocity change per

unit of impulse. In the calculations, both the mass and inertia of the objects are taken

into account. The desired delta velocity has been calculated beforehand using the coef-

ficient of restitution. The resulting impulse is a vector, but here only one element of it has

a value. The reason is that the impulse calculated in this example is frictionless and if

instead friction was taken into account the resulting impulse could be in a different direc-

tion. Below in Listing 6 an example of applying the impulse.

void Collision::applyVelocityChange(glm::vec3 velocity[2],

 glm::vec3 rotation[2])

{

 std::array<glm::mat3, 2> inverseInertiaTensors;

 inverseInertiaTensors[0] = bodies[0]->getInverseWorldInertiaTensor();

 if (bodies[1])

 {

 inverseInertiaTensors[1] =

 bodies[1]->getInverseWorldInertiaTensor();

 }

 glm::vec3 impulseContact;

 impulseContact = calculateFrictionlessImpulse(inverseInertiaTensors);

 glm::vec3 impulse = contactToWorld * impulseContact;

 std::array<glm::vec3, 2> impulseTorques;

 impulseTorques[0] = glm::cross(relativeContactPosition[0], impulse);

 impulseTorques[1] = glm::cross(impulse, relativeContactPosition[1]);

 for (size_t i = 0; i < bodies.size(); ++i)

 {

 if (bodies[i])

 {

 float sign = i ? -1.0f : 1.0f;

 rotation[i] = inverseInertiaTensors[i] * impulseTorques[i];

 velocity[i] = glm::vec3(0.0f);

 velocity[i] += sign * impulse * bodies[i]->getInverseMass();

 bodies[i]->addVelocity(velocity[i]);

 bodies[i]->addRotation(rotation[i]);

 }

 }

}

Listing 6. Applying of velocity change.

In Listing 6 the impulse generated in Listing 4 is converted to world space. Then, based

on the impulse, the torques are calculated which based on the inertia of the objects add

angular velocity. Linear velocity is a little simpler and can be calculated directly with the

19

mass. One tricky detail in this implementation is that the change of velocities is propa-

gated back to the caller through the parameters of the method. This is done because

after changing the velocities all the collision points on the affected rigid bodies must be

updated to account for the changes made. Listing 7 shows the update to the collisions.

primary->applyVelocityChange(velocityChange, rotationChange);

for (auto&& secondary : collisions)

{

 auto&& primaryBodies = primary->bodies;

 auto&& secondaryBodies = secondary->bodies;

 for (size_t primaryIndex = 0;

 primaryIndex < primaryBodies.size();

 ++primaryIndex)

 {

 for (size_t secondaryIndex = 0;

 secondaryIndex < secondaryBodies.size();

 ++secondaryIndex)

 {

 auto&& primaryBody = primaryBodies[primaryIndex];

 auto&& secondaryBody = secondaryBodies[secondaryIndex];

 if (primaryBody == secondaryBody)

 {

 glm::vec3 deltaVel =

 velocityChange[secondaryIndex] +

 glm::cross(

 rotationChange[secondaryIndex],

 secondary->relativeContactPosition[

 primaryIndex]);

 secondary->contactVelocity +=

 (glm::transpose(secondary->contactToWorld) *

 deltaVel) * (primaryIndex ? -1.0f : 1.0f);

 secondary->calculateDesiredDeltaVelocity(duration);

 }

 }

 }

}

Listing 7. Applying velocity change to collision and updating the collisions.

In Listing 7 there is the call to the function from Listing 5 and the updating of the collisions.

Primary here refers to the collision currently being resolved and after updating the veloc-

ity for it the all the current collisions are looped through as the secondary. Next, if any of

the bodies in the secondary match the one in primary it means the collision that was just

resolved will affect the collision found by the comparison. To fix this, the contact velocity

from the collision object is adjusted to match the current state and the internals are up-

dated. The selection of the primary collision is done by the following code (Listing 8):

20

Collision* primary = *std::max_element(collisions.begin(), collisions.end(),

 [](Collision* first, Collision* second) -> bool {

 return first->desiredDeltaVelocity < second->desiredDeltaVelocity;

 });

if (primary->desiredDeltaVelocity < m_velocityEpsilon)

{

 return true;

}

Listing 8. Selection of which collision to resolve.

In Listing 8 the element with the highest desired delta velocity is selected and then if the

value is lower than the epsilon, the function will return true to signal the collision resolving

that there is no longer need to continue resolving collisions since all the collisions have

been resolved to satisfactory degree. Finally, below in Listing 9 there is the top-level

algorithm of the collision resolving.

if (!collisions.empty())

{

 for (auto&& collision : collisions)

 {

 collision->calculateInternals(duration);

 }

 for (int i = 0; i < m_positionIterations; ++i)

 {

 if (adjustPositions(collisions))

 {

 break;

 }

 }

 for (int i = 0; i < m_velocityIterations; ++i)

 {

 if (adjustVelocities(collisions, duration))

 {

 break;

 }

 }

}

Listing 9. Collision resolving algorithm.

The algorithm in Listing 9 first calculates the internal values derived from the contact

information needed when calculating the actions that have to be taken to resolve the

collisions. Then the positions are iterated until either the maximum iteration limit is

reached, or the adjustPositions function returns true to signal that the worst penetration

depth is below the epsilon value. The same is repeated for the velocity. The iteration

count is needed since if all the collisions were resolved completely, the runtime could

21

end up being very large and as long as the worst collisions have been resolved the result

should be acceptable. However, if the iteration count is too small some weird effects e.g.

objects slowly falling through the floor might occur. The listings above covered only the

velocity update in-depth but the position update works in the same manner, only the

math inside the functions is different.

5 Results

The physics engine and the minimal rendering framework were successfully imple-

mented within the planned scope. Except for collision detection, the core math and algo-

rithms were implemented. The current implementation would be perfectly usable with

some limitations but could still be improved in many ways.

One issue is that the application programming interface is not yet refined, some infor-

mation that is needed by the implementation is currently passed in the user-side API, but

by some design changes these could be hidden in the implementation making the use

of the engine easier. Additionally, some helper classes to manage to world state could

be added for easier integration of the engine to projects. Currently these are handled in

the scene viewer implementation, but they should be generalized and moved to the phys-

ics engine. Additionally, the implementation of the collision resolving is not very refined.

Another area of improvement would be stability. The current implementation has some

inherent problems that need some additional considerations to mitigate. For example, in

cases where there is continuous contact between multiple objects at the same time since

the collisions are resolved one by one and this can result in some surprising effects if

the resolution of one collision affects other collisions. The stability issues could however

be worked on case-by-case manner if they become issues when using the engine for

some specific application.

One more area of improvement would be performance. If the engine would be used in

truly large-scale project, the current implementation would be naive. However, at the

current state the performance should already be sufficient for any small scale and demo-

projects that the engine would feasible be used for. Some ways to improve performance

22

would be to improve the locality of data, so that it can be more efficiently cached and to

add vectorization to perform several calculations simultaneously. This would however

make the implementation unnecessarily complex and remove the advantage of simplicity

and ease of modification, and in this case, it would be better to just use some existing

solution. Figures 1, 2, 3 and 4 demonstrate the results of the project.

Figure 1. Initial state.

In the beginning of the scene depicted in Figure 1, two blocks are placed in the air and

some initial forces and torque are applied to make the results more interesting. Figure 2

shows the continuation of the simulation based on this initial setup.

23

Figure 2. First block bouncing of ground while the second block is colliding with it.

Under the constant gravity, the blocks depicted in Figure 1 fall until they make contact

with the ground as shown in Figure 2. Shortly after the first block makes contact with the

ground it also makes contact with the second block. The result of the collision resolution

is shown in Figure 3.

24

Figure 3. The two blocks bouncing away from each other after the collision.

Figure 3 shows the blocks bouncing away from each other after the collision shown in

Figure 2. After the collision in Figure 2 the first block to hit the ground bounces back

towards the ground after being hit by the second block. The second block bounces di-

rectly away after this collision as does the first block after coming into contact with the

ground plane again. Figure 4 shows the end result of these collisions.

25

Figure 4. The two blocks colliding with the ground again.

Figure 4 shows both of the blocks coming into contact with the ground again after the

bounce shown in Figure 3. After this, both blocks settle on the ground plane.

6 Conclusions

While the developed engine pales in comparison to the existing solutions, the primary

goals of the project were still achieved. Some compromises were made at the end of the

project and it was not completely, “productized”, since the main purpose was already

achieved. The experience of implementing the math and algorithms from scratch offered

deep insight into usage and potential issues of physics simulations. Additionally, some

intuitive knowledge and better appreciation on how to integrate any of the existing solu-

tions to a project were gained. Also based on this project it would be possible to imple-

ment a custom-built physics engine for specific game or demo projects.

26

One related but largely unexplored area in context of this project is the collision detection.

For future continuation of the project in the spirit of learning it would be an interesting

task to also implement the collision detection algorithms from scratch. Moreover, the

other methods and algorithms for resolving collisions could be investigated in more detail

to develop more in depth understanding of collision resolution. Aside from the currently

implemented algorithm no other algorithms were studied, which left the in-depth under-

standing of the algorithm lacking.

27

References

[1] J. Gregory, Game Engine Architecture, 2nd ed., CRC Press, 2013.

[2] [Online]. Available: https://www.havok.com/. [Accessed 11 3 2017].

[3] [Online]. Available: http://bulletphysics.org. [Accessed 11 3 2017].

[4] [Online]. Available: http://www.geforce.com/hardware/technology/physx.

[Accessed 11 3 2017].

[5] "Box2D," [Online]. Available: https://box2d.org/. [Accessed 2 11 2019].

[6] I. Millington, Game physics engine development, 2nd ed., CRC Press, 2010.

[7] G. Fiedler. [Online]. Available: http://gafferongames.com/game-physics/fix-your-

timestep/. [Accessed 19 3 2017].

[8] J. Kåhrström. [Online]. Available:

http://kahrstrom.com/gamephysics/2011/08/03/euler-vs-verlet/. [Accessed 19 3

2017].

[9] G. Fiedler. [Online]. Available: http://gafferongames.com/game-

physics/integration-basics/. [Accessed 19 3 2017].

[10] [Online]. Available: http://wiki.vdrift.net/index.php?title=Numerical_Integration.

[Accessed 19 3 2017].

[11] F. Boesch. [Online]. Available: http://codeflow.org/entries/2010/aug/28/integration-

by-example-euler-vs-verlet-vs-runge-kutta/. [Accessed 19 3 2017].

[12] "Semi-implicit Euler method," [Online]. Available:

https://en.wikipedia.org/wiki/Semi-implicit_Euler_method. [Accessed 6 11 2019].

[13] "Verlet integration," [Online]. Available:

https://en.wikipedia.org/wiki/Verlet_integration. [Accessed 7 11 2019].

[14] C. Ericson, Real-time collision detection, CRC Press, 2005.

[15] 2010. [Online]. Available: http://www.dyn4j.org/2010/01/sat/. [Accessed 1 4 2017].

[16] 2010. [Online]. Available: http://www.dyn4j.org/2010/04/gjk-gilbert-johnson-

keerthi/. [Accessed 1 4 2017].

[17] 2010. [Online]. Available: http://www.dyn4j.org/2010/05/epa-expanding-polytope-

algorithm/. [Accessed 2 4 2017].

28

[18] [Online]. Available: http://www.rustycode.com/tutorials/convex.html. [Accessed 1 4

2017].

[19] [Online]. Available: https://www.scratchapixel.com/lessons/advanced-

rendering/introduction-acceleration-structure. [Accessed 2 4 2017].

[20] A. Petersen, 2012. [Online]. Available: http://buildnewgames.com/broad-phase-

collision-detection/. [Accessed 2 4 2017].

[21] "Coefficient of restitution," [Online]. Available:

https://en.wikipedia.org/wiki/Coefficient_of_restitution. [Accessed 14 11 2019].

[22] "Impulse of Force," [Online]. Available: http://hyperphysics.phy-

astr.gsu.edu/hbase/impulse.html. [Accessed 14 11 2019].

[23] "Git," [Online]. Available: https://git-scm.com/. [Accessed 2 11 2019].

[24] "GitHub," [Online]. Available: https://github.com/. [Accessed 2 11 2019].

[25] "GitLab," [Online]. Available: https://about.gitlab.com. [Accessed 11 2 2019].

[26] "Bitbucket," [Online]. Available: https://bitbucket.org. [Accessed 2 11 2019].

[27] "CMake," [Online]. Available: https://cmake.org/. [Accessed 2 11 2019].

[28] "Comparing Meson with other build systems," [Online]. Available:

https://mesonbuild.com/Comparisons.html. [Accessed 14 11 2019].

[29] "How to structure your project," [Online]. Available: https://cliutils.gitlab.io/modern-

cmake/chapters/basics/structure.html. [Accessed 14 11 2019].

[30] "Epoxy," [Online]. Available: https://github.com/anholt/libepoxy. [Accessed 11 2

2019].

[31] "GLFW," [Online]. Available: https://www.glfw.org/. [Accessed 11 2 2019].

[32] "Assimp," [Online]. Available: http://www.assimp.org/. [Accessed 11 2 2019].

[33] "GLM," [Online]. Available: https://glm.g-truc.net. [Accessed 2 11 2019].

[34] "FCL," [Online]. Available: http://gamma.cs.unc.edu/FCL. [Accessed 2 11 2019].

