

Niko Hokkanen

Modularization of a monolithic software

application and analysis of effects for

development and testing

Helsinki Metropolia University of Applied Sciences

Bachelor’s Degree

Information Technology

Bachelor’s Thesis

2019

 Abstract

Author
Title

Number of Pages
Date

Niko Hokkanen
Modularization of a monolithic software application

59 pages + 12 appendices
28 August 2019

Degree Bachelor’s Degree

Degree Programme Information Technology

Specialisation option Software engineering

Instructors

Mikko Tylli, M.Sc., Lead software engineer
Janne Salonen, Head of ICT, Principal Lecturer

This Bachelor’s thesis is about the decomposition of a monolithic software system into mul-
tiple components for increases in application testability, readability and maintainability. The
business problem being the slow development speed caused by the monolithic software
architecture, where the code base resides within a single executable file.

The method for the modularization relied on the identification of the system’s components,
defining their dependency hierarchies and multiple refactorings based on the SOLID princi-
ples and dependency injection. For the analysis of modularization effects, multiple key per-
formance indicators were benchmarked and compared between the modularized and origi-
nal versions of the application.

The analysis of modularization effects revealed minor decrease in compilation times, huge
increase in testability due to the ability to run unit-tests specifically against the produced
modules and minor decrease in memory consumption.

With the produced, modularized version of the case-study application, the case company
has a proof-of-concept module on how the modularization of the application may be done.

Keywords OOP, SOLID, Application decomposition, Modularization,
Software architecture

 Abstract

Author
Title

Number of Pages
Date

Niko Hokkanen
Modularization of a monolithic software application

59 pages + 12 appendices
28 August 2019

Degree Bachelor’s Degree

Degree Programme Information Technology

Specialisation option Software engineering

Instructors

Mikko Tylli, M.Sc., Lead software engineer
Janne Salonen, Head of ICT, Principal Lecturer

Tämä insinöörityö käsittelee monoliittisen ohjelmistojärjestelmän jakamista komponenteiksi
sen testattavuuden, luettavuuden ja ylläpidettävyyden parantamiseksi. Liiketoimintaon-
gelma ollen monoliittinen ohjelmistoarkkitehtuuri, jossa koodi sijaitsee yhden suoritettavan
tiedoston alla.

Työtapa modularisaatiolle perustui järjestelmän komponenttien tunnistamiseen, niiden riip-
puvaisuushierarkioiden määrittämiseen ja useisiin refaktorointeihin SOLID periaatteisiin ja
riippuvaisuus-injektioon perustuen. Useita avain-suorituskyky indikaattoreita vertailtiin alku-
peräisen ja modularisoidun sovelluksen välillä modularisointityön analysointia varten.

Modularisointityön analyysi paljasti pientä käännösnopeuden nopeutumista, suurta paran-
nusta testattavuudessa, johtuen kyvystä testata yksikkötesteillä moduuleja monoliittisen oh-
jelmiston sijaan ja pientä muistin käytön vähenemistä.

Opinnäytetyön tuottamalla modularisoidulla versiolla ohjelmistosta, asiakasyrityksellä on
konseptintodistus siitä, miten modularisointi voitaisiin suorittaa ja miten se vaikuttaa testat-
tavuuteen ja kehitykseen.

Keywords OOP, SOLID, Application decomposition, Modularization,
Software architecture

Abstract

List of Abbreviations

1 Introduction 1

2 Methods and material 3

2.1 Meetings 4

2.1.1 Project kick-off 4

2.1.2 Modularization workshop with development team 5

2.2 Application decomposition procedure 6

2.2.1 Decomposition in detail 8

2.3 Outlining methods by which modularization results are analysed 10

2.3.1 KPI selection 10

2.4 Material 12

2.5 Software testing 14

3 Studies of modular system prerequisites 16

3.1 Software artefact dependencies 16

3.2 Defining module, modularity and modularization 18

3.3 Software architecture 19

3.4 Monolithic applications 20

3.4.1 Architectural patterns generally 20

3.4.2 Model-View-View model 21

3.5 Object-oriented programming 22

3.6 Creating loosely coupled code 23

3.6.1 Dependency injection 23

3.6.2 Principle of least knowledge 25

3.6.3 SOLID 26

3.7 TruckTool 28

3.8 Dependency mapping 30

3.8.1 Case study application’s software architecture 30

3.8.2 Detailed look into the data model 32

4 Results and analysis 37

4.1 Current state analysis 37

4.2 Application modularization 41

4.3 Analysis of modularization effects 46

4.3.1 Unit test running times 46

4.3.2 Compilation times 49

4.3.3 Application RAM-usage on run-time 51

4.3.4 Communication speed 54

5 Discussion and conclusions 57

5.1 Summary 57

5.2 Next steps 58

5.3 Objective vs. Results 58

5.4 Final Words 59

References

Appendices

Robot script Import CAN

Robot script Import TCP/IP

Robot script Import Serial

TCP/IP import times in the sequence of running. Original version.

TCP/IP import times in the sequence of running. Modularized version.

Serial import times. Original version

Serial import times. Modularized version

CAN import times. Original version

CAN import times. Modularized version

Robot script for TCP/IP batch import

Robot script for CAN batch import

Robot script for Serial batch import

List of Abbreviations

CAN Controller Area Network

CI Continuous Integration

CSA Current State Analysis

DIP Dependency Inversion Principle

DLL Dynamically Linked Library

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IP Internet Protocol

ISP Interface Segregation Principle

KPI Key Performance Indicator

LoD Law of Demeter

LSP Liskov’s Substitution Principle

MVC Model View Controller

MVVM Model-View-View model

OCP Open/Closed Principle

OOP Object Oriented Programming

RAM Random Access Memory

SoC Separation of Concerns

SOLID SRP – OCP – LSP – ISP - DIP

SRP Single Responsibility Principle

TCP Transmission Control Protocol

TT TruckTool

UML Unified Modelling Language

1

1 Introduction

Modularity of system's components is an important feature in software design. It allows

for their reuse and reconfiguration separately from the system and makes it easier for

developers to understand the system and how it functions. It facilitates reuse of the good

components within an application and allows for redesign and replacement of inadequate

ones. It enables clear separation of concerns and establishes set dependency hierar-

chies.

Despite the benefits of modularity, applications with monolithic software architecture are

common in the field. Their user interface, data manipulation and data access functional-

ities lie within the same code base, advocating an interconnected and interdependent

system composition. For these kind of systems, clear design documentation is of utmost

importance to avoid design drift and architectural erosion. These are forces that prey on

monolithic solutions, as developers work with these easily corruptible systems.

Although decomposition of a monolithic system into micro services has been the topic of

much research in the past few years, the decomposition into modules on the same plat-

form has received less attention. Yet, micro services architecture is not applicable to

every software application, namely to the ones where an internet connection cannot be

a requirement imposed on the user. Additionally, the decomposition of a system into the

central, integral parts is not something the micro service-related research touches upon,

but rather advocates service-specific decomposition. These services are what the main

components of the application enable, not what they are in entirety.

The objective of the thesis is to gather information on how to decompose a monolithic

software application into modules and to apply the information for the procurement of

one module from the case study application’s solution. Additionally, the effects of the

decomposition in terms of code maintainability, readability and testability are to be de-

termined. To these ends, the thesis explores concepts and techniques that aid in the

production of largely self-contained components out of an industry level software appli-

cation with multiple years of development under its belt. The research question is: “How

should a monolithic application’s code base be decomposed into shared libraries to im-

prove its testability, readability and maintainability?”

2

The case-study application for which modularization techniques are applied to is de-

signed for the modification and visualization of various operational parameters of lift-

trucks. The software is developed by Rocla Oy to which this thesis carried out for. The

application is a sizable software project, consisting of over 100 thousand lines of code

and has been developed utilizing mostly .NET Framework and C# programming lan-

guage. The application is one monolithic solution, meaning, that it is composed of one

single unit of executable code.

The thesis outline is the following: firstly to go over the methods by which both the mod-

ularization and the analysis of its effects is done. Then give background information re-

lating to the terminology of the thesis, Client Company and the decomposable software

application. Afterward go over some principles related to refactoring and Object-oriented

programming (OOP), which are applied during the modularization work. The results sec-

tion will give an overview of the current implementation of the system, the performed

modularization work and benchmarked key performance indicator (KPI) results and their

analysis. Finally, the conclusions section will examine the work done and its ramifications

for the software development of the case company.

3

2 Methods and material

This section will detail the methods by which the objectives of the thesis are to be ac-

complished.

Information gathering will follow material discussed in development team meetings and

interviews. Source material is chosen based on them and based on the material in them.

Chosen material to follow in the following sections.

Modularization will target code base section as instructed by the software project man-

agement. Functionality specific to application’s communication with lift-trucks is given as

an assignment for the modularization. To achieve this, an examination of the applica-

tion’s architecture is performed. As there is only few documents pertaining to the archi-

tecture of the application and them being rather outdated, some architectural recovery is

done as well. Therein the documentation of the application is done with unified modelling

language (UML).

The decoupling of software artefacts is done case-by-case bases. Objective therein is to

sever inappropriate dependencies, so that the software component honors the intended

dependency hierarchy. This hierarchy is recovered through the utilization of UML dia-

grams, meetings with the development team and analysis of the application’s code base.

Modularization results analysis is performed by comparisons between the modularized

application and the original. KPI are build- and unit test running speeds, code complexity

and more.

This thesis targets .NET C# language-programmed application and as such the termi-

nology used reflects concepts defined within it.

4

2.1 Meetings

For data gathering and informing the development team of the thesis work’s progress,

several meetings were arranged during the thesis work. These are referenced in the data

gathering table. The most notable meetings are the project kick-off, development team

group-interview for current state analysis, workshop for the implications revealed by the

current state analysis (CSA) and final interview for the feedback on the work.

2.1.1 Project kick-off

Project kick-off meeting was held with the lead developer, project manager and the thesis

worker. Names, titles and dates available from data gathering table. The goal of the

meeting was to define the objective of the work, reasons for its necessity and details

about its implementation.

Within the meeting the objective of the project was defined: to compile information

regarding modularization in general, procure a singular module from the applica-

tions code base and analyse results in terms of at least maintainability and testa-

bility.

Unit tests were also specified to form modules based on the module they were to test.

Whereas before in the applications architecture they, like all other components, resided

within the one monolithic application with mostly undefined architectural borders. Now

for every module that was modularized, a module of the associated unit tests was to be

created as well.

The necessity of the work was specified to be an increased maintainability, testability

and speed of the application’s development. This was to result from clearer architec-

ture brought forth by the new modules. Testability would increase due to having well

defined, self-contained modules.

5

2.1.2 Modularization workshop with development team

A workshop concerning the modularization project was held with part of the case-study

application’s development team. The objective of the meeting was to spread awareness

of the work, to gain insight into the existing software architecture of the application as

well as to formulate a high-level understanding of the procedure for modularization.

As a result of the meeting, an initial, high-level procedure for the modularization was

agreed upon. Thesis work was also specified to include a CSA, wherein a reasonably

comprehensive examination into current state of the application architecture was to be

conducted. The content of the modularization proof of concept (POC) module was spec-

ified encompass all the functionality relating to application’s communication functionality

with the lift-trucks.

This meeting detailed the focus of the work to be the physical separation of all function-

ality relating to the application’s communication with the lift-truck into its own assembly.

To this new assembly would the main project then form a project reference, enabling it

to utilize the module but from which a reference back would be impossible due to a for-

mation of circular dependency. This forces the module to be independent of the business

logic of the application, which increases testability of the application due to faster unit

test running times.

As the communication functionalities namespace was presumed to be quite entangled

with circular dependencies, a helper library was designated to be used as well. To this

library could some dependencies be moved into if breaking them should introduce a re-

factoring work thought too demanding or if the dependency would actually be a valid one.

 A method for the modularization was specified to be created during this work, so that it

might later be used for further modularization, if deemed necessary. Additionally, an

analysis towards what kind of modules should the case study application be further sep-

arated into could be conducted as well.

Testability of the application during all the stages of the thesis work was emphasised.

Functioning set of unit-tests is often pressed to be the foundation for solid refactoring

work [4] and so this was set as a requirement for the work over all.

6

2.2 Application decomposition procedure

A high-level procedure for modularization was formulated during the workshop meeting

conducted with the development team. This procedure was further developed during the

project and is detailed within this section.

1. Identify the system components by inspecting system documentation, depend-

ency mappings and the code base.

2. Produce component dependency mappings utilizing Visual Studio 2019 Enter-

prise edition.

3. Identify intended dependency hierarchy between the components. Use system

documentation and the development team.

4. Pick the software artefact to be moved to the new assembly.

5. Break its dependencies to the components it should not be dependent on.

6. Move the dependencies it should have to another library.

7. Move the artefact to the Truck communication functionality assembly.

8. Test the changes.

Steps 4 to 8 form an iterative process which loops until the decomposable component is

moved into its own project in entirety. See figure 1.

7

Figure 1. Modularization procedure. Notation: informal

8

2.2.1 Decomposition in detail

The process starts with the identification of system’s components. This is to be done by

examining the UML diagrams of the application, by meeting with the application’s devel-

opers and by code base examinations.

Component dependency mapping is done by abstracting relevant information out of code

maps produced with Visual Studio 2019 Enterprise Edition.

These let a developer see of which other classes and interfaces a software artefact, a

namespace or an assembly is dependent on without direct examination of the code base

although this method is to be used as well. The product of this step is a set of class and

package diagrams of UML notation, which help understand the current implementation

of the system concerning dependencies.

The process continues with the identification of component dependency hierarchy. De-

velopers and UML diagrams are once more utilized for this step. Obviously code base

examinations might not give accurate information, as the system implementation might

differ from its design.

This is an important step, as the decomposition relies on the knowledge of whether an

artefact’s dependency is appropriate or not. Inappropriate dependency is a one that a

component should not have. The product of this step is an UML package diagram, which

defines dependency hierarchy of the system’s components.

Step 4 begins the iterative process of moving the software artefacts from the main solu-

tion into the new library. It begins with the selection of the class or an interface to be

moved. This should be started from the easiest artefacts – those that have the least

dependencies, as they themselves will be ones that are depended on. Thus moving them

first will clear the way in a sense for moving the rest of the artefacts. These first software

entities are often enumerators, data structures and interfaces, which usually have less

dependencies than concrete classes.

Once the artefact to be moved is selected, its inappropriate dependencies should be

refactored out. These might be easy or hard, depending on the level of architectural

degeneration and quality of system’s design.

9

After inappropriate dependencies of a software artefact are refactored out, its appropri-

ate dependencies should be evaluated in terms of whether they, left in-place, introduce

circular dependencies. If no, one can move onto next step and if yes, those dependen-

cies should either be refactored out or they should be moved onto an assembly of their

own.

After dependencies have been taken care of for the software artefact, it can be moved

onto its new assembly. This should be an easy step, however, one should take care to

update the project and namespace references based on the changes made.

Testing of the changes is the final step of the iterative process. Therein changes are

validated by testing methods defined in chapter 2.5: “Software testing”.

10

2.3 Outlining methods by which modularization results are analysed

To determine the results of the modularization, an analysis of its effects is to be con-

ducted. This section details which KPIs are to be examined and how they will be bench-

marked between the modularized version of the application and the original.

The decomposition of the application into shared libraries will be conducted on its own

feature version control branch. Once the decomposition is completed, its product shall

be compared with the original version to determine any effects, positive or negative, to

the testability, compilation times and resource usage of the application. Additionally, sur-

plus notes of effects outside the indicators are to be documented and examined also.

These are more involved with theoretical benefits and negative effects of the modulari-

zation work, which cannot within the thesis work’s scope be benchmarked. They are

educated guesses based on the research material and modularization product.

2.3.1 KPI selection

The KPIs were chosen based on the meetings with the case-study application’s devel-

opment team on feedback regarding the supposed areas of performance malleability due

to the modularization. Two areas of importance were identified: application development

and application usage.

 Unit test running times

Development is greatly affected by unit-test running times. They are used when

coding to test the changes and they are ran at application deployment automati-

cally. Unit test running times is therefore chosen as a KPI for the analysis.

 Compilation times

Compilation of the application is done to test the changes made. Like with the

unit tests, it also affects development during the making of the changes to the

code base and at the deployment of the application. Compilation times are there-

fore used as a KPI for the analysis.

 RAM usage

Benchmarking the random access memory (RAM) usage and communication

speeds are determinants of changes caused by the modularization work to the

end-users. They’re an indication of the effects caused by splitting the code base

11

into multiple dynamically linked libraries (DLL)s and are as such important factors

to take into account. The memory usage benchmarking can also reveal any

memory leaks introduced by the refactorings associated with the modularization

work.

 Communication speed

Memory usage is recorded with the performance analyser of Visual Studio. The

actions executed during that benchmarking were automated with Robot Frame-

work. Three versions of the executable actions were configured to test three dif-

ferent communication formats the case-study application supports. The used ro-

bot scripts as appendices 1-3.

Robot Framework is a platform independent UI-automating toolset for acceptance test

development [23]. Extendable by test libraries written in Python, it should serve well in

automating the UI actions performed during performance benchmarking.

As a summary, the KPIs that are to be benchmarked in this work are the following:

1. Unit test running time

2. Compilation time

3. Application’s RAM - usage on run-time

4. Communication speed

12

2.4 Material

This section details the most relevant source material regarding the thesis work. It is

chosen based on the meetings and informal talks with the development team. The con-

cepts of “dependency”, “module”, “software component modularity”, “monolithic structure

vs n-tiered one” guided the material search process so, that the following books and

resources were chosen.

Although no material concerning modularization specifically was identified, vast amount

of material concerning software architecture was available. For software architecture ref-

erences, “Software architecture in practice” [3] was chosen.

Based on the code analysis and design documentation, it was noted that the case appli-

cation was designed with “Model-View-View model” (MVVM) architecture pattern. Mate-

rial regarding to it was sought out specifically but only little was found. However, the

creator of the pattern, John Gossman, lays out its main principles in relation to the more

common pattern “Model-View-Controller” (MVC) in his introduction to the MVVM [12].

This information is to be used for determining how the components of the case study

application should relate to each other.

Modularization as a concept is essentially about changing the already existing code so,

that its behaviour does not change, to isolate well-defined modules. This definition makes

it a code refactoring task whose objective it is to produce modules out of the solution.

Therefore material regarding refactoring was sought. To this end, “Refactoring: Improv-

ing the design of existing code” [1] was chosen as one of the guides for the thesis work.

In the effort of finding ways to control the dependencies a module might have, the fol-

lowing tools for producing loosely coupled code were identified: SOLID principles and

dependency injection (DI). Following books were chosen as a resource concerning these

ideas: “Agile principles, patterns and practices in C#” [4] (SOLID) and ”Dependency in-

jection in .NET” [5] (dependency injection).

In addition to the material concerning class level refactorings like SOLID and Depend-

ency injection, material at the component level was sought out as well. Namely to inform

the modularization work regarding how the components should related to each other.

For this purpose, Robert C. Martin’s “Clean architecture: a craftsman’s guide to software

13

architecture” [8] was identified to touch upon the subject in the form of component prin-

ciples.

14

2.5 Software testing

The case study application development follows some CI [10] methodologies involving a

self-testing, commit-following, automated application build-event. Additionally, pull re-

quests are used for code reviews which the code changes have to pass before being

merged into the development branch of the version control. 1 to several team members

take part in these reviews for improved code quality.

As constantly testable solution was specified as a requirement and it being an important

part of any refactoring work [1, p.3], these already established CI methodologies were

utilized. This meant, that for every pull request, a code review was done and automated

build and the project’s unit tests were ran for build validation. See figure 2 for technical

implementation of CI.

Figure 2. Technical implementation of CI [11]

Although not part of the build validation, the project had an encompassing library of au-

tomated regression tests. These could be used to test the changes at system level,

whereby the test automation script runs a set of user interface (UI) actions consisting to

a specific application’s use case.

15

Manual testing is to be done as well. For these, a virtual truck configuration and several

lift-truck simulation boards are utilized. These act as stand-ins for the actual lift-trucks,

to which access is limited. There are two different kinds of virtual truck configurations.

One for the serial and the other for controller area network (CAN) open vehicles. Both

are implemented by software only. The testing boards on the other hand simulate the

trucks with hardware. They are configurations of the vehicle’s controllers wired together

to simulate the vehicles for testing purposes.

16

3 Studies of modular system prerequisites

This section details research pertaining to the methods outlined in the previous chapter.

In this section the background relating to the research space, case-company, the appli-

cation to be decomposed and .NET framework is given. The research starts with the

definitions of key terminology relating to the modularization work, goes on to introduce

the case-study application before moving on to software architecture and one of its pat-

terns of relevance concerning the application. Additionally, multiple OOP-related design

principles are examined in relation to producing modular components.

3.1 Software artefact dependencies

As the concept of software dependency is of such integral relevance to the modulariza-

tion work described and investigated by this thesis, the term is briefly explained in this

section and discussed in relation to the concepts of coupling and cohesion.

Coupling is defined as: “a measure of the interdependence among modules in a com-

puter program” [24, 2-3]. The definition explains coupling to be synonymous with the

level of dependency a module has to the surrounding system. When a module has low

coupling, it is self-sufficient and has a high cohesion. This often indicates a good sepa-

ration of concerns (SoC) and that the module’s functions and methods work cohesively

together to fulfil the one responsibility designed for it.

[19, p.64] Defines loose coupling as one of the desirable design characteristics. It also

defines it to occur between two software entities, which are connected solely by inter-

faces. As discussed earlier, interface usage hides the details concerning how classes

execute their procedures. This in contrast to tight coupling, where interfaces are not

used, and the interoperating modules are aware of the implementation details of the

other.

While having dependencies and coupling is by no means inherently good or bad, they

have a significant effect on the realised software architecture and testability of the appli-

cation, especially when considering more sizable projects: unit testing is hard to do

17

properly, when the testable unit depends on five other units. Reuse of application com-

ponents is difficult as well, when the component is wired to the rest of the application.

See table 1 for more benefits gained from loose coupling.

Table 1. Benefits of loose coupling. [5]

Benefit Description When is it valuable?

Late binding

Services can be swapped with
other services.

Valuable in standard software,

but perhaps less so in enterprise

applications where the runtime

environment tends to be well-de-

fined

Extensibility Code can be extended and re-

used in ways not explicitly

planned for.

Always valuable

Parallel development Code can be developed in paral-

lel.

Valuable in large, complex appli-

cations; not so much in small,

simple applications

Maintainability Classes with clearly defined re-

sponsibilities are easier to main-

tain.

Always valuable

Testability Classes can be unit tested. Only valuable if you unit test

(which you really, really should)

18

3.2 Defining module, modularity and modularization

The term “module” in this thesis refers to a project of an application, which by way of

compilation produces either an exe or DLL. These modules are then used by the busi-

ness logic to extend the functionality of the application by some very specific way. The

modules are decoupled from the main application so, that module has no dependencies

towards the main application but the main application may depend on the modules. This

ground-rule alone will dictate a certain structure to the high-level composition of the sys-

tem: the main application will act as the controller for calling the functionalities of the

modules and will have references to them based on the need for their services. The

modules’ functionalities are not dependent on the logic within the main application.

The communication between the module and the main application happens through well-

defined interfaces. The modules may be exchanged behind the interfaces without break-

ing the application. Consequently, the modules should be usable by any other module

through the interfaces they offer.

Modularity is the attribute which indicates the degree of interdependence of a component

or a module from the surrounding system. For the purposes of this thesis, component

with high level of modularity is called a module. Given the definition for coupling in the

previous section, a module has a low coupling to the surrounding system.

The act of modularization or decomposition is defined as: “a large software is divided

into a number of smaller named components having well-defined interfaces that describe

component interactions. Usually the goal is to place different functionalities and respon-

sibilities in different components” [24, 2-3]. This describes the objective of the thesis work

quite well. The components being projects which produce a .NET DLL.

The term “modularization” within this thesis could also be described as “code restructur-

ing” or “software retrofitting”. It is the act of increasing the modularity of the system com-

ponents by refactoring into them looser coupling.

19

3.3 Software architecture

Understanding the system components and their relationships is of critical importance

when analysing a system. For this purpose one should be acquainted with the notion of

software architecture.

[3, p.2] defines the term “software architecture” in the following way: “The software ar-

chitecture of a program or computing system is the structure or structures of the system,

which comprise software elements, the externally visible properties of those elements,

and the relationships among them”.

The definition determines, that computer applications are systems comprised of software

elements and that architecture is the definition of those elements and their relationships.

[9, p.156] defines three purposes for architecture:

1. It serves as a means of education. For the new members of the development

team it can help understand the structure of the system, their part in its develop-

ment and what the system does.

2. It serves as a communication vehicle for project stakeholders.

3. It serves as the basis for system analysis. As it is the ultimate abstraction of the

system, it can help in the analysis of whether the code base reflects the design.

Software architecture of an application often takes a form of a pattern or patterns. The

most common ones seem to be the “layered pattern”, “micro services pattern” and MVC.

[6, p.1] They offer a framework, by which to organize the application’s code base. This

has multiple positive effects: the components relate to each other in a known way and

the design is easier to communicate, when it can be talked about with a well-defined

pattern.

20

3.4 Monolithic applications

Monolithic system architecture is defined to consist of a “single application layer that

supports the user interface, the business rules, and manipulation of the data all in one”

[7]. The Microsoft document goes on to specify, that should the application consist of

multiple assemblies like DLL’s, it should still be counted as a monolith. Therefore, even

though the assemblies would not share a common application solution (group of projects)

but would still come together at run-time on a single hardware, the software system

would still be a monolithic one.

As a monolithic system is built for one platform to host, display and control, the control

between the all the components happen with function calls. They are fast but facilitate

also interdependent systems: passing complicated dependencies within them is easy.

This in contrast to web applications for example, where the services are called via Hyper

Text Transfer Protocol (HTTP).

Without a forced SoC, monolithic systems tend to evolve into big balls of mud: a compo-

sition of interdependent components, where a change in one alters or often breaks an-

other [13]. This degeneration of the code base is often hastened by a lack of design

documentation in the lines of component dependency hierarchy.

3.4.1 Architectural patterns generally

Though monolithic, an application is free to follow multitudes of architectural patterns. In

essence, they are core ideas of solutions to general problems one has when designing

a system. As the systems have various demands like performance, testability, platform

independence, the design solutions have to accommodate them – patterns address dif-

ferent compositions of these factors.

Architectural patterns offer a common framework for organizing the code base and its

components so, that the developers may have get a good idea of the application’s mode

of operations by only knowing the pattern.

21

3.4.2 Model-View-View model

As noted in the section “Case-study application’s software architecture”, the case-study

application is designed with MVVM architecture pattern. This section details its most

prominent features and strengths.

MVVM is a variation of a more traditional MVC pattern. It is designed to separate the

logic and the UI from each other. This enables a more graphically oriented designer to

work on the view instead of a requirement for a developer, which might not be that con-

cerned of the visual side of the application. It also increases testability of the traditionally

more hard to test UI logic by decoupling it from the UI controls. [14]

The pattern defines three entities the application should consist of:

1. Model

2. View

3. View model

The model is as defined by the MVC pattern: the business logic and data model of the

different entities of the software application. It is completely UI independent [12].

View consists of the style, layout and content of what the user sees on the screen.

View model is an abstraction of model to be used by the view to display model details.

The three components of the MVVM pattern form a dependency hierarchy: View should

know about its view model and the view model should know about the model. Model

however should not know about the other two and the view model should not depend on

any specific view that utilize it. See figure 3.

Figure 3. Model/View/View Model interaction diagram [15]. Notation: informal

22

3.5 Object-oriented programming

As the case study application is mostly written in C#; an object oriented programming

language, this section delves into that concept. This information is applied for the refac-

torings reported in the analysis and results section.

OOP is often said to rely on 3 pillars: inheritance, polymorphism and encapsulation. [25]

Understanding them is a requirement for any meaningful analysis of an application writ-

ten in C# and as such they are discussed within this section.

Inheritance is about creating hierarchies of classes. Meaning, that a class can inherit

properties and methods of its base class. When this happens, the child class forms an

“is a” relationship to its base class. Multiple different classes can inherit the mentioned

base class while implementing its functionalities in differing ways. [17, p.4] That brings

us to polymorphism.

Polymorphism is about having a datatype which can behave differently depending on

how it is implemented. A developer can have a wide variety of different data types but

as long as they share the same base class – when they inherit it – they can all be treated

as that base class. This means that they can share a list of the base class data type and

the list can then be iterated over. Calling a method declared in the base class can then

result to different behaviour depending on how it is defined in the derived classes.

Another way to produce polymorphic behaviour is by utilization of interception: object

behaviour can be altered at run-time with various DI containers by intercepting method

calls and altering them based on the data within. Unlike the polymorphic behaviour

achieved by inheritance and encapsulation alone, this method alters behaviour of even

objects of the same data type.

Encapsulation is a technique concerning implementation detail hiding by way of access

restriction utilization. C# and Java, among others, let developers do this explicitly via the

usage of private and public keywords on function-level. Encapsulation can be used on

higher levels as well: interface usage in C# hides the actual implementation behind them,

allowing for looser coupling between software artefacts. Their utilization can be used to

hide the implementation details of a whole component. [17, p.4]

Interface in C# is a common language library (CLR) reference type, which lists method

signatures. This list is a contract, which obligates the interface implementing classes to

23

implement every method, property, event and indexer declared within the interface. The

instances of classes which implement the interface can be passed to a client code as

the interface datatype. Thusly the client receives only the method signatures but the im-

plementation details are hidden from it. [26] This means, that the client is no longer de-

pendent on the implementation.

3.6 Creating loosely coupled code

This section examines various sets of tools and principles for producing loosely coupled

and modular components: DI, Law of Demeter and SOLID principles. Techniques such

as these have to be employed to produce general use libraries, such as ones to be cre-

ated as a result of this thesis work.

Though not strict rules to live by, they offer a set of guidelines which help apply encap-

sulation, inheritance and polymorphism and help understand different concepts relating

to object-oriented design. Additionally, they are designed to help with producing modular

code and are, therefore, important for the thesis work.

3.6.1 Dependency injection

As DI is a concept about which one can write whole books about, this section will just

define the concept broadly and examines how it could be used by the modularization

work of the thesis.

The definition given by Mark Seeman in his “Dependency Injection in .NET” for the con-

cept is the following: “Dependency injection is a set of software design principles and

patterns that enable us to develop loosely coupled code” [5, p.4]. Daniel Baharestani

defines it in the following terms in his: “Mastering Ninject for Dependency Injection”: “De-

pendency injection is one of the techniques in software engineering which improves the

maintainability of a software application by managing the dependent components” [20,

p.35].

24

From the definitions one can gather that it’s about making the code more maintainable

by limiting strong coupling between objects. How could its principles be applied in prac-

tice to achieve this?

DI specifies 3 elements of responsibility: object composition, lifetime management and

interception [5, p.7]. These, it states, should be handled by objects dedicated for them

specifically. This to uphold the SRP.

Object composition as defined by DI is about composing objects for client-specifically.

This is an act that enables separation of concerns between the calling code and the

object parameters given to the server. Normally they would be composed by the caller

and even though they might be given to the server in the form of an interface, the asso-

ciated dependencies are with the client. DI proposes a class for the composition specif-

ically – a composer.

At its simplest, DI can be done by just passing the responsibility for the object composi-

tion higher in the call stack.

Object lifetime handling is closely associated with the object composition. As an object

gives away the control over the composition of the object, it also gives away the control

over its lifetime. This is due to .NET’s garbage collection, which is invoked when an ob-

ject loses all references. This reference is ultimately to the one entity that instantiated

the object and a responsibility for the DI composer.

Interception in DI refers to the act of intercepting consumer calls before they reach the

called service. An application of Decorator pattern, it enables the modification of object

behaviour at run-time for polymorphic behaviour

25

3.6.2 Principle of least knowledge

Often summarized to: “Talk only to your immediate friends” [19, p.134] [20], the principle

states that objects should only ever interact with other objects closest to them. Also

known as the “Law of Demeter” (LOD), it discourages wiring into the objects knowledge

of the internal structure of the system. This is often violated by creating chains of object

calls to the style of:

Controller.Sensors.TemperatureSensor.GetTemperature();

In the example, the calling object has inbuilt knowledge (a dependency) of this chain to

get the temperature reading from a class called “TemperatureSensor”. It knows it can be

reached through “Controller” properties’ “Sensor” property. If the dependency chain

would be broken, the calling class would break as well.

The violation of the principle damage the testability of the calling class, as a failure in

unit-tests no longer indicates a problem with the class directly, but may be an indicative

of otherwise broken artefact along the dependency chains it utilizes.

Now, assuming that the temperature would be a desirable property for the calling class

to be aware of, the application of LOD would make the call something in the lines of:

Controller.GetTemperature();

The actual refactoring associated with the change could be something as simple as the

creation of a method for the Controller to return the Temperature. The main point being,

that even if an object could use chained calls, they should not to.

As a brief summary: principle of least knowledge advocates for keeping dependencies

to a minimum and supports the creation of loose coupling between the components of

the system.

26

3.6.3 SOLID

SOLID is an acronym of principles which aim to make code more extendable, maintain-

able and flexible. This section will investigate the principles, so that they might further in

the thesis be used as part of the analysis when discussing ways for increasing the mod-

ularity of a software application.

Single responsibility principle (SRP)

“A class should have only one reason to change” [18, p.15]

A principle advocating for single responsibility per class. A formation of the old adage of

splitting a problem into small parts, while making sure no two separate problems are

tackled by a same class. The opposite of following this principle would be a god class

implementation, which has numerous responsibilities and does everything.

Open/Closed principle (OCP)

“Software entities (classes, modules, functions, etc.) should be open for extension but

closed for modification”

This principle states simply, that once a software artefact is created and its methods and

properties are used across the system, the modification of that behaviour forces the up-

dating of the users as well. Therefore, modification of the depended, existing behaviour

should be prevented. Instead, software entity behaviour should be extended with new

methods and/or properties. [18, p.15]

Liskov’s substitution principle (LSP)

“Subtypes must be substitutable for their base types.”

This principle advocates for the correct use of inheritance. The obvious case of breaking

the principle is when a subtype leaves an inherited method empty for its unsuitableness

to the subtype (also sometimes referred to as “refused bequest” code smell) [18, p.15].

Interface segregation principle (ISP)

“Clients should not be forced to depend on methods they do not use.”

This principle advocates interface creation client specifically. [18, p.16]

Massive interfaces often force unnecessary dependencies to clients, advocating interde-

pendent systems and less cohesive implementations. [19, p.133]

Admittedly, the creation of multiple interfaces introduce complexity to the system, and

care should be shown that the SRP for the existing classes is not violated.

27

Dependency inversion principle (DIP)

“High level modules should not depend on low level modules; both should depend on

abstractions. Abstractions should not depend on details. Details should depend upon

abstractions.” [19, p.131]

The word “abstraction” used in the quote refers to interfaces and abstract classes while

the word “details” to the concrete classes and implementers and inheritors of the ab-

stractions.

This principle advocates the use of abstractions instead of concrete classes for loose

coupling between software entities. It leans on OOP concepts of polymorphism and en-

capsulation to provide clients an abstraction of the server, which enables polymorphic

behaviour from the point-of-view of the clients. In other words: usage of interfaces and

abstract classes enable a collection of objects to exhibit differing behaviour of each other.

Also depends upon DI in sense that for a class to use an abstraction, it needs to be given

for it. Should the class (a client) instantiate an object (a server) itself, all the dependen-

cies of that object transfer to the class as well.

28

3.7 TruckTool

Case study application for this thesis work is a software application called TruckTool

(TT). It is a software application created for the maintenance operations and error diag-

noses of lift-trucks. It is used to visualize their various active events, sensor values and

operational parameter values and names.

The application is developed by Rocla Oy and is localized to 8 different languages. It

supports multiple different brands of 5 distinct types of lift-trucks with numerous models

under them. The types of the trucks are automated guided vehicles (AGV’s), pallet

trucks, reach trucks, internal combustion trucks and electric-counter balance trucks.

TT’s main features include the following: wizards for calibration and parameter setting,

maintenance check lists, visualizing operational parameter values and enabling their al-

teration, visualising signal values and enabling their recording, exporting a pre-set pa-

rameter configurations, importing the parameter configurations from the truck to save a

snapshot of the vehicles operational state and more. See figure 4 for the truck model

view of the application.

Figure 4. TruckTool model view.

The application’s code base is around 130 000 lines of code according to SonarCube

statistics. It’s been developed for ten years and is used by the service personnel in Fin-

land and abroad for daily maintenance operations of the vehicles.

29

It is a desktop application, connected to the lift-trucks with a cable or a wireless local

area network (WLAN). It is capable of utilizing a serial port for communication or a CAN

open implementations of CAN protocol. For the AGV’s, a specific transmission control

protocol / internet protocol (TCP/IP) interface is used for communications.

As the application is a commercial product, the most comprehensive and detailed UML

diagrams are omitted from this paper. This will direct the thesis to concern itself more

with general nature of the application’s software architecture and very specific cases of

architecture pattern and principle application (see section 3.5: “mapping the application”

and 4.1: “Current state analysis”).

30

3.8 Dependency mapping

Refactoring work necessitates understanding of the part of the code to be altered. For

this reason, and for the sake of the CSA, an overview of the current state of the applica-

tion architecture is within this section detailed.

Visual Studio 2019’s Enterprise edition was used to produce code maps relating to the

software architecture of TT. These maps offered a way to visualise different aspects of

the application without going through all the code manually. This was important, as there

was very little documentation regarding TT’s software architecture and also for the sheer

size of the application.

Here the attempt is to not include the whole application architecture, but merely the parts

relevant to the component relocation outside the monolithic solution as its own assembly.

Additionally, the section will contain mostly observations of general nature based on the

notes made during the work. This in order to limit the amount of redactions for the public

version of this paper.

3.8.1 Case study application’s software architecture

This section will list the important parts of TT’s software architecture as described by its

design documentation. Many of the UML diagrams are quite old, and the current imple-

mentation conflicts with it by some measure. It is, however, important to understand the

intention behind the original design to understand the current implementation.

The application is designed with 5 main components:

1. TruckToolController

2. UI

3. ProductCategoryDataModel

4. TruckDataModel

5. TruckCommunication

“TruckToolController” is designed to be responsible of the lifetime of other system com-

ponents as indicated by the UML-defined “composition” lines with filled diamonds. This

dictates as well, that the controller is high within the component dependency hierarchy.

Components are otherwise defined to have general dependencies to 1 or 2 other com-

ponents. “TruckDataModel” being generally dependent on both the “UI” and the

“TruckCommunication” components. See figure 5 for a component diagram of the setup.

31

Figure 5. TT’s components as described in the original design documentation. Notation:

UML component diagram

The application seems to be designed with the MVVM architecture pattern. See figure 6.

More on the pattern in the section: “Model-View-View Model”.

Figure 6. MVVM architecture of TruckTool. Notation: UML component diagram

32

3.8.2 Detailed look into the data model

As described by the earlier section and diagram 5, many components lack in-depth def-

inition of the dependency hierarchy or are left intentionally general. This section aims to

map out the relevant dependencies concerning “TruckCommunication” and “Truck-

DataModel” components, to get a scope of the decomposition work to be done. Notes

made within this section is further referred to from the “Current state analysis” section.

3.8.2.1 Truck Communication functions

True to its name, the “TruckCommunication” namespace envelops the functionality re-

quired for the application’s communication with the various trucks the application sup-

ports. This section lists its crucial components, how they interoperate and their substan-

tial dependencies.

The namespace consists of 132 files, out of which 130 are ones containing different

software artefacts. It is split into several namespaces according to the communication

format and generality. The communication formats are separated based on the require-

ments imposed by the type of connection used. There are 3 of these formats: TCP/IP,

serial, and CAN. General functionality includes connection state management, IP ad-

dress setters, truck auto detecting and truck communication, which utilizes the commu-

nication format-specific functionalities to do its bidding.

“TruckCommunicator” is an entry point to the communications with the vehicles. It is the

first object created by the application controller for that purpose and to it is given as a

parameter “ITruck”, a “TruckDataModel” component’s interface to “Truck” object. Based

on the data of the “Truck” object, the communicator creates channel communicators, to

which all the vehicles’ operational parameter information are given through “Truck-

DataModel” interface “IDataObject”. The communicator is responsible for the life-cycle

of these channel communicators and of their functionalities’ invocation and halting.

Channel communicators are implemented for each of the connection formats individually

and differ in notable ways. They share some common features however, namely the

“Connect” method, which in all implementations in one way or another attach the “ICom-

municables” to their handlers and “Disconnect” method for detaching them.

33

The communicable handlers are another set of “TruckCommunication” component’s

classes and meant for storing the pending write and read operations. They are stored

as, and manipulated through the “ICommunicable” interface.

“TruckConnectionStateMachine” is used by the application controller to determine the

state of the connection between the truck and itself. The connection is checked through

the utilization of “ITruck” interface’s “truck type” and “Status” enumerators and by sub-

scribing to its “PropertyChanged” event, which it inherits from the .NET’s in-built “INoti-

fyPropertyChanged” interface.

IPAddressSetter sets the network adapter’s IP when connecting to a lift-truck utilizing

TCP/IP interface, ergo when Ethernet cable is used. It does this utilizing the application

defined dependency container, which is quite comprehensive package of various appli-

cation components. It is used only for enqueueing a pop up message for the application

controller’s dialog service relating to a failure of IP setting.

3.8.2.2 Application data model

 A namespace for the general data structures concerning the application and central ab-

stractions like the truck, its controllers and parameters are defined within the data model.

It includes very little business logic and is designed to be used by the majority of the

application’s other components. If objects can be defined as “data with behaviour”, the

data model, in general, houses objects with relatively little of the latter.

Concerning the most relevant data types the data model specifies in relation to the mod-

ularization work: the truck abstraction and its controllers and especially parameters stand

out. The whole of communication functionalities is almost completely built around few of

the types within the parameter inheritance hierarchy.

The truck portion of the model derives from a data object container interface, which is a

“read only” collection of data type “DataObject”. This is inherited by the interface “IU-

ITruck”, which is an abstraction of truck. It adds more of read only collections in the form

of interfaces of truck controllers and data objects. Additionally it holds a collection of the

wizards that are supported for the specific truck model. The “IUITruck” has multiple de-

pendencies of “TruckToolController”, “UI” and “wizards” namespaces. The UI truck is

further inherited by an “ITruck” data type, which is an interface that adds methods for

34

setting the user level for the trucks accessibility, for setting the trucks UI mode, and for

getting the Device data types of the truck. See the visualisation of the hierarchy in figure

7.

Figure 7. The inheritance hierarchy of “Truck” datatype. Produced with Visual Studio

2019 Enterprise Edition. Notation: informal

35

The base data type of what constitutes the truck’s controller is an “IDevice” interface. It

does inherit an IEquatable of “Device” however, which instils the implementers to imple-

ment “equals” method for “Device” comparisons. Makes also the interface dependent on

its own implementation (more on this in CSA section). The IDevice interface declares a

get method for the controller specific wizards like the flashing and controller change wiz-

ards. It declares also a get method for the controllers’ data objects, firmware file info list,

error history, status and its parent “Truck” data type. The “IDevice” is implemented by

“Device” class, which is the data type used to describe the controller of the truck in the

data model of TruckTool. See the visualisation of the hierarchy in figure 8.

Figure 8. Device inheritance hierarchy. Produced with Visual Studio 2019 Enterprise Edi-

tion. Notation: informal

36

Operational parameter of the truck’s controllers are described at their base level by the

data type “IRegisterable”, which declares just the get methods for the object’s identifier

and a list of communication formats. The latter declares channel’s ID and settings. The

“IRegisterable” is inherited by “ICommunicable” which declares a hefty amount of func-

tionality for the subsequent implementers and inheritors. It’s most notable contributions

are the declaration of get and set methods for the parent controller in the form of “IDe-

vice”, parameter’s raw value and polling priority. It is further inherited by “IDataObject”

interface, which details methods for getting and setting the range of allowed values, im-

age sources and paths, visibility and accessibility settings. This IDataObject is inherited

by an abstract class “DataObject”, of which the multiple different specialisations are de-

rived. See figure 9 for the relevant portion of the inheritance hierarchy of the datatype.

Figure 9. Inheritance hierarchy of “DataObject”. Notation: UML class diagram.

37

4 Results and analysis

4.1 Current state analysis

This section details notes, findings and conclusions of the current state of the TT’s mon-

olithic architecture. It is based on the held meetings with the development team and the

conducted survey of the application’s code base (see section 3.8: dependency mapping).

This section should not be taken as an assessment of the overall design of the system,

but rather as a focused overlook on the composition of the system in relation to the de-

composition of the vehicle communication functionalities assigned as one of the thesis

work’s objectives.

For the modularization work, defining the dependency hierarchy of the components is

essential. Artefacts inside two namespaces within a single project may depend on each

other but the same cannot hold true, when those namespaces reside within two separate

projects. As described before, this would make the projects cyclically dependent on each

other, thus nullifying whatever benefits they would bring to the table in terms of modular-

ity.

TT is designed to utilize MVVM architecture pattern. See figure 6. Acknowledging this is

important, as the system composition and component hierarchy should then adhere to it

to some level at least. Another defining factor to take into the account as well is the

application controller, which seems not to follow the pattern but seems to stand outside

of it to control the setup of the system, view to be shown and access the file structure.

To do this, it has references to each of the MVVM’s components. Due to the inclusion of

the controller, the application could be said to implement a “MVVMC”: “Model-View-View

model-Controller”. Although the acronym seems to not be mentioned anywhere, figure 5

indicates this to be the case, as the three components of MVVM are designated by ag-

gregation to exist due to the controller.

TT’s main project is divided under 6 main namespaces. They are the following:

“TruckCommunication”, “TruckToolController”, “TruckDataModel”, “ProductCategoryDa-

taModel”, “UI” and “Wizards”. These, with the exception of wizards, are illustrated in the

component diagram in figure: 151. The diagram leaves all dependency-definitions ge-

neric, except for the ones with TruckToolController. For example, TruckDataModel and

TruckCommunication are defined to have a generic dependency, although, according to

38

the meetings with the development team, the communication functionality should depend

on the model and not the other way around. These are important definitions when one

does modularization work such as the one in this thesis, as enforced dependency hier-

archy by way of shared libraries should not form cyclical dependencies. They are im-

portant for the developers as well, as they guide the development so that the systems

components remain modular and not interdependent.

Interdependency between the system’s components makes running unit tests a slow

process, as the majority of the time sinks into the compilation of the one massive inter-

dependent system. Unit test execution times of over 5 minutes were clocked during the

work, where approximately 2 minutes went into running the tests and the rest into the

compilation process.

Communication functions are tightly coupled to the application’s data model through the

abstractions related to the truck, its controllers and parameters. In fact, the whole com-

munications namespace relies on the data model’s truck entity, which is given as a pa-

rameter to the main communicator. This is problematic from the viewpoint of modulari-

zation, as the truck entities’ dependencies sprawl to the rest of the application and ulti-

mately to the UI level. However, a generic dependency between the data model and the

UI is defined within the figure 5 and so this concern of tight coupling should not be con-

sidered a fault in the implementation but rather a design related specification issue.

Communication functions are also somewhat coupled to the application’s controller

namespace, although not as much as to the data model. The controller namespace,

however, is specified by the figure 6 to have dependency over the whole application.

This, unlike the dependencies towards the data model, present refactoring work, as com-

munication functionalities should not depend on the controller’s namespace and control-

ler’s functionalities are not to be decomposed into their own library within the scope of

the thesis work.

Most of these dependencies come in the form of “Translation” namespace invocations.

The often-most occurrence seems to be for giving the translated message for communi-

cation result to the view models in charge of the current process within the application.

These are problematic, however, as fetching them requires file structure access given

by the controller.

Additionally, communication functionalities namespace includes an IP address setter,

which accesses the application controller to request modification of the used internet

39

adapter’s IP address when connecting the computer to an AGV. This presents a chal-

lenge in a same manner as the translations, since the application controller namespace

is used to access the file structure for application configuration settings.

The interfaces used to access “Truck” functionality derive from a list of parameter ab-

straction which has numerous UI, and application controller related dependencies (more

on this in “Dependency mapping”). This means, that every functionality using the Truck

interfaces is coupled to those namespaces.

Communication functionalities use the truck abstraction for the communications, but due

to its inheritance hierarchy, it is coupled to the UI elements of the application. Communi-

cations are this way coupled to the UI components of the application.

Truck data model depends on the “wizards” namespace through at least the “IDevice-

Wizard” interface. These present a problem to the modularization, as the namespace

includes wizard-specific view models to which data model should not depend on.

There are some instances, where an interface depends on its own implementer. Alt-

hough not strictly forbidden, any class that uses the interface becomes dependent also

on the referenced implementation and its dependencies. This also couples the interface

and its implementation to each other which means, that the system is that much less

modular. Instances of this are the following: “IDevice” inheriting an IEquatable of “De-

vice”. “IDeviceStatus” having as a property one of its implementor’s inner class instance,

“IZapiFlashVersion1Settings” defines an enumerator property, which is defined inside its

implementer. “IMNSerialFlashData” depends on its own implementer’s inner class

“MNSerialFlashBlock”.

TT’s main application targets .NET Framework version 4.5.2. This makes it incompatible

with .NET Standard 2.0, which is targeted by some projects instructed to be used for the

modularization. To utilize the .Net Standard 2.0, the projects have to be updated at least

.NET Framework version 4.6.1 [21].

40

As a summarization of the CSA:

- The application is designed with MVVM architecture pattern with an application

controller to instantiate the other components.

- The communications component is very dependent on the data model of the ap-

plication which reflects the original design. It is very hard to separate the two.

- The data model of the application has dependencies towards the UI component

through the “truck” datatype directly and indirectly by its dependency of “wizards”

component.

- The communications component is dependent on some of the application con-

troller's functions but refactoring these out should pose no major challenges.

41

4.2 Application modularization

This section details how the decomposition work was done given the findings of the CSA.

The decomposition method (see section 2.2) outlined dependency hierarchy definition

as a requirement for the work, as it was needed for determining whether dependencies

should be decoupled or just moved to a separate project. The component diagram in

figure 10 was produced to depict this hierarchy.

Figure 10. Mapping of the system component dependency hierarchy. Notation: informal

The dependency hierarchy diagram of figure 10 could be used to verify, which depend-

encies of the implemented system were valid. Valid dependencies could either be refac-

tored out or moved to their own separate project. Although the creation of new modules

outside the communication functionalities one was not a requirement, it was deemed

necessary for limiting the work to reasonable limits. Therefore, as depicted by the dia-

gram, “TruckDataModel” and “Common” namespaces were in parts moved to separate

projects, of which DLL’s are compiled.

42

Conversely, any dependencies that the truck communication functionalities had towards

application controller or the UI had to be refactored out, as they were dependencies that

should not exist.

“TruckDataModelLite” and “Common” projects were created to target .NET Standard 2.0

framework. As .NET Framework 4.5 does not support the utilization of the framework

version, the main application had to be updated. Although v.4.6.1 would have sufficed,

.NET Framework 4.7.2 was chosen. This has introduced no major issues at the writing

of this thesis, but the “Parse” method calls of the .NET class “Double” had to be updated

to include culture specification involving decimal separator.

As mentioned in the CSA, the namespace “TruckCommunication”, which was to be re-

factored out of the monolithic solution was tightly coupled to the “DataModel”

namespace. That namespace itself is intricately coupled to the rest of the application so

to just make it onto an assembly of its own as it existed was not a sufficient resolution to

the problem. What was done essentially was that two other modules or shared libraries

to support the new TruckCommunication module had to be created as well: “Truck-

DataModelLite” and “Common”. Both existed within the monolithic solution already and

were in limited capacity relocated outside of it to these pre-existing projects. See figure

11.

43

Figure 11. Application projects after the modularization. The three packages below the

main project “TruckTool” were created as a result of the modularization work. Notation:

UML package diagram.

From the viewpoint of the modularization work, the data model interfaces used within the

vehicle communications component were too extensive. Especially the truck and data

types representing its controllers and parameters tied it to the code base quite intricately.

To remedy this, the ISP was applied to produce interfaces more suited for the compo-

nent. Specifically, the data types of the controllers and the truck demanded a new version

for the communications module. To this end, “ICommunicableDevice” and “ICommuni-

cableTruck” interfaces were created to be implemented by the pre-existing “Device” and

“Truck” classes respectively. They had only the barebones-dependencies needed by the

communication functionalities.

The data type for parameter had a communications-intended version already: the “ICom-

municable”, but minor alteration had to be performed to limit its coupling to the data

model. Namely, the new interfaces had to be declared and implemented as properties

for the ICommunicable in the place of the old ones. The old “Device” property of the

“ICommunicable” was a dependency which could not be injected into the TruckCommu-

nication component, and was pushed down to the “IDataObject” level. In its place, a

“CommunicableDevice” property was placed. It was then implemented by the “DataOb-

ject” to return the old “Device” instance but downcast as the new “CommunicableDevice”.

This is an example of OCP: the DataObject behaviour was not changed but extended to

give out its parent Device as a datatype client specifically. More generally related to

44

OOP: it serves as an example of inheritance, as the property given out is downcast to a

more general datatype and as an example of encapsulation by giving out an interface.

Both are concepts by which loose coupling is produced. See diagram 12 for the old in-

heritance hierarchies and 13 for the new.

Figure 12. Old inheritance hierarchy of the data model classes “Truck” and “Device”.

Notation: UML class diagram

Figure 13. New inheritance hierarchy of the data model classes “Truck” and “Device”.

Notation: UML class diagram

45

Truck communications namespace had multiple instances of Translations namespace

functionality invocations. As discussed in the CSA, that namespace is part of the appli-

cation controller, and should not be used by the “model” part of the application’s code

base. Those were refactored out by moving the concerning texts to be translated else-

where. Some were moved to the application controller, others to subwizard view models

and a single instance of translation was removed as obsolete. The view model would

seem to be the correct place to perform the translation, as it should generally hold the

presentation logic for the views in MVVM pattern. In practice the translations were moved

by returning the translation ID from the original place and utilizing it then in view model

or application controller.

As a summarization of the modularization work:

- The contents of the “TruckCommunication” namespace were decomposed out of

the monolithic project to its own in its entirety with the exception of two classes,

which were specified to belong under another namespace.

- “TruckCommunication” had been designed and implemented to depend upon the

data model of the application. The relevant portion of data model was relocated

into another project to accommodate this, as the communication component

could not depend on the main project wherein the data model was situated.

- The refactoring done to enable only partial relocation of the data model included

the creation of communications specific interfaces for some of the used classes.

- To remove dependencies the communications component had on the filesystem

of the application, the UI translations were refactored to be handled in the view

models and the application controller.

- Communications related unit tests were moved into a project of their own.

46

4.3 Analysis of modularization effects

This section will examine the effects of the decomposition work done within the thesis.

Specifically relating to the modularization of the vehicle communications functionalities

into their own project. Here the focus will be on the KPIs introduced in the methods sec-

tion:

1. Unit test running time

2. Compilation time

3. Application RAM-usage on run-time

4. Communication speed

The benchmarking results and analysis to follow in the order of the list above.

As a summarization of the differences of the modularized and the original application:

- Original runs on one monolithic project which includes the user interface, the

business rules, and manipulation of the data all in one. The modularized version

has split the whole communications section into its own project.

- The original is using .NET Framework 4.5 whereas the Modularized .NET Frame-

work 4.7.2.

4.3.1 Unit test running times

Of the case-study application’s unit test suite, approximately one fourth targeted the com-

munication functionalities. They were moved on to a project of their own with the project

references to only the ones created during the modularization work. These were the pro-

ject which now encompassed the vehicle communications functions, a project with part

of the data model and a project with some helper classes. Like stated in the CSA, the

unit tests took a considerable time to even start being executed due to the large, mono-

lithic solution that had to be compiled beforehand. As a result of the modularization work,

however, the communication functionalities have been separated from the monolithic

solution, and is now considerably lighter to compile.

47

Setup for benchmarking the unit test running times:

- For both the original and the modularized version, the run unit tests are the same

and pass.

- 5 unit test runs for each version are recorded.

- Modularized version’s previously assembled DLL’s are cleaned between the test

runs to make the compilation equal to the original.

- MSBuild’s parallel builds configuration is set to 4.

Table 2 includes the unit test running times for the original and the modularized version

of the application. The recorded times include unit test running times specifically and with

the associated build procedure, where the tests library and the associated projects are

compiled.

Table 2, row 2 shows a 3 second (2%) increase in unit-test runtime: 2:23.12 - 02:26.45.

This could indicate minor decrease in computational efficiency associated with the in-

creased overhead of DLL usage.

Row 3 confirms a small increase in communications specific unit-test runtime of ~1 sec-

ond.

Table 2, row 3 shows a 23 second (6.5%) decrease in unit-test runtime with the associ-

ated build: 06:18.56 - 05:54.97. This was most likely due to the utilization of the MSbuild’s

parallel project building. As a sizable portion of the application’s code was decomposed

into its own project, the method could now be utilized for it for minor decreases in com-

pilation time.

Table 2, row 5 shows a 226 second (72%) decrease in communications specific unit-test

runtime with the associated build. This was an expected benefit of the modularization

due to the division of the main application into smaller, more accurately targetable units.

Overall, table 2 demonstrates a clear improvement between the times of unit test execu-

tion for communications component, while the execution of all tests showed minor in-

creases in total time. Decrease in test-associated build time was a surprise, which was

due to the opened possibility of building more projects in parallel.

48

Table 2. Unit test running times.

 Original

TruckTool

Original

Mean time

Modularized

TruckTool

Modularized

Mean time

All unit tests 02:32.19

02:19.60

02:14,79

02:25,89

02:23,17

02:23.12 02:30.76

02:33,35

02:28,57

02:34,50

02:20,83

02:26.45

All unit tests +

build

06:25.41

06:35.95

05:56.70

06:15.59

06:19.11

06:18.56 05:59.60

06:09.03

05:58.52

05:48.61

05:39.10

05:54.97

Communica-

tion related

unit tests

01:23.08

01:20,42

01:22,16

01:25,53

01:21,19

01:22.62 01:19.91

01:19,57

01:23,11

01:26,14

01:27,18

01:23.32

Communica-

tion related

unit tests +

build

05:12.36

05:09.25

05:10.52

05:15.17

05:26.70

05:14.80 01:27.07

01:26.74

01:26.25

01:30.02

01:30.61

01:28.13

49

4.3.2 Compilation times

Application compilation is part of the CI-pipeline and as such an important factor to con-

sider when assessing deployment time. As a complete rebuild is done for every deploy-

ment of a new version, it is done for this benchmarking as well.

This section lists the compilation times of the modularized and the original version of TT.

Benchmarking setup:

- Clean applied to each project associated with the deployment of the application.

- Microsoft’s Log Viewer was used for logging the builds and MSbuild build--ma-

chine for the building.

- 10 timings for each version

- Entries are the reported values of the build machine

Looking at the data of table 3, one can observe slight variation of the data samples be-

tween entries. For the original, the fastest compilation executed in 181908 and slowest

in 209207 – a difference of ~13%. For the modularized version, the variation can be

observed to inhabit approximately the same range: 190649 – 219842.

An increase of 4.3% in compilation time can be calculated from the mean times. This

was a surprise, as the compilation times together with the unit tests produced results to

the contrary – therein the compilation times had decreased on average due to parallel

project building. However, the compilation process was slightly different, as there the

used test adapter decided the projects that were built. Since the build process was

logged with “MSBuild structured log viewer”, the processes could be analysed to see the

cause for this.

50

Table 3. Rebuild times. Units in milliseconds.

 Original Truck-

Tool

Mean Origi-

nal time

Modularized

TruckTool

Mean Modu-

larized time

Compilation

times

219207

185303

181908

193545

195285

193724

199906

196125

193785

189408

193820 190649

205275

219824

196557

191280

195861

205117

205347

208277

203276

202148

Upon investigating the build logs, it was noted that the build did not utilize parallel project

building – the factor deemed to have caused the decrease of compilation time for the

unit-test associated builds. This was due to builds being ran from the MSBuild Structured

Log Viewer, which had disabled the feature on default. The compilation times were then

benchmarked again to verify.

Benchmarking setup:

- Microsoft’s Log Viewer was used for logging the builds and MSbuild build--ma-

chine for the building.

- Build optimization configured for 4 processors.

- 10 timings for each version.

- Entries are the reported values of the build machine

Table 4 shows the rebuild times with the parallel project building. Here one can observe

considerable reduction from the mean values reported in table 3 for both the original and

modularized version: 193820 – 177914 ms (8.2%) and 202148 - 177765 (13.1%) re-

spectfully. Parallel project building can be said to have a significant effect on the compi-

lation times for both, although for the modularized version the effect is greater. So much

so in fact, that it on average has a 2.1 seconds (1.1%) faster compilation time compared

to the original version of the application.

51

Table 4. Rebuild times with build optimization. Units in milliseconds

 Original Truck-

Tool

Mean Original

time

Modularized

TruckTool

Mean Modular-

ized time

Compilation

times

178302

177014

176764

178241

178850

176928

173425

185477

178753

175382

1779136

174513

184279

172062

174109

179985

175822

173951

174720

174459

173660

175756

4.3.3 Application RAM-usage on run-time

For benchmarking the memory usage, a pre-set sequence of actions were devised to

invoke the use cases of the application. For automating the actions, Robot Framework

was utilized.

The use-case to be acted out was chosen to be the importation of vehicle’s parameter

values.

Benchmarking setup:

- 40 runs for each.

- No disconnect of the application from the testing board is done between the im-

ports.

- Computer reboot was issued before each run of the set

- One lift-truck model for each of three communication formats is chosen.

In the two runs displayed by the figures 13 and 14, both versions seem to allocate the

same amount of memory. Very minor yet steady increase of memory allocation can be

observed in both. Approximately 20MBs of memory is allocated during the 40 imports.

52

Figure 14. Memory usage of the application during the importing of the parameter values

with the original version and with CAN communication format.

Figure 15. Memory usage of the application during the importing of the parameter values

with the modularized version and with CAN communication format.

When importing the parameters with TCP/IP, a substantial and steady increase in the

memory allocation for both versions seems to occur during the script run-time of 45

minutes. An increase of 400MB to 1GB in allocated memory can be observed with the

over-all memory usage being similar between the versions. As the issue affects both

versions, the cause for the seemingly unintentional memory allocation is left un-investi-

gated for the thesis.

Figure 16. Memory usage of the application during the importing of the parameter values

with the original version and TCP/IP communication format.

Figure 17. Memory usage of the application during the importing of the parameter values

with the modularized version TCP/IP communication format.

53

Import runs utilizing serial communication format are displayed in the figures 17 and 18,

the original version would seem to use less memory on average but more at its maxi-

mum. Like with the CAN import run, a minor but steady memory allocation can be ob-

served for both. An average of 20MB is allocated during the 30 minutes of import taking.

Figure 18. Memory usage of the application during the importing of the parameter values

with original version of the application and serial communication format.

Figure 19. Memory usage of the application during the importing of the parameter values

with the modularized version of the application and serial communication format..

Overall, the modularization work seems to have caused less increase in memory usage

than anticipated and in one case even lessened it. Since the modularization work up-

dated the application’s .NET Framework to version 4.7.2, the improvements to the gar-

bage collection [22] may be the source of the more efficient memory management. How-

ever, this is left to be investigated outside the thesis work.

Summarizing the benchmarking results for the memory usage:

- No signs of unintended memory allocation caused by the modularization work

could be found.

- Original and the modularized version seem to allocate the same amount of

memory.

- A possible bug concerning memory allocation when using TCP/IP communication

format may be present for the modularized and the original versions of the appli-

cation.

54

4.3.4 Communication speed

As the modularization work separated the code into multiple dynamic libraries and since

their usage entails some overhead, it is probable that some changes to the communica-

tion speeds with the vehicles occurred. This section compares changes to the speeds of

communications by listing benchmarked times of taking an import of the parameter val-

ues of the lift-truck with the application.

Setup for the benchmarking:

- One lift-truck model for each communication format is chosen.

- Lift-truck testing boards are used.

- The timing was automated so, that it starts at the method call of the import func-

tionality and stops when the call has run its course.

- Import time reports are to be automatically produced by an embedded script in

the application code.

- The import is run for 40 times consequently without disconnecting the application

and the testing board in between.

- Robot script is used for automating the UI actions. See appendices 10 - 12.

- Units are shown in milliseconds.

See appendices 4 – 9 for the results of the import time benchmarking.

The average import times displayed in table 5 show very minor increases (1%) in com-

munication speeds on average. Minor decreases can be observed for serial and CAN

communication formats and minor increase (3.5%) for TCP/IP.

Table 5. Average of the benchmarked import times. Units in milliseconds.

 Original TruckTool Modularized TruckTool

Import - CAN 139457,5165 140082,0514

Import – Serial 18506,7 18684,4

Import - TCP/IP 5254,363 5058,465

Figure 20 depicts a general tendency of the import time increasing for both application

versions when importing parameters with TCP/IP communication format. Both versions

55

start at approximately 2.5 seconds and keep increasing to over 6 seconds. As the in-

crease affects both of the versions, its cause is left to be investigated outside this thesis.

Figure 20. Graph of import times with TCP/IP communication format. Red line indicates

the original version and blue the modularized one. Vertical axis indicates time of import

and horizontal the number of import.

Figure 21 depicts the import times with serial communication format. Both application

versions maintain a steady import time of approximately 18 seconds.

Figure 21. Graph of import times with serial communication format. Red line indicates

the original version and blue the modularized one. Vertical axis indicates time of import

and horizontal the number of import.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

TCP/IP

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Serial

56

The import with CAN communication format takes longest of the three. No increase of

import time can be observed from the sample size. See figure 22 for graph of import

times taken.

Figure 22. Graph of import times with CAN communication format utilization. Blue line

indicates the original version and red the modularized one. Vertical axis indicates time

of import and horizontal the number of import.

120000

125000

130000

135000

140000

145000

150000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

CAN

57

5 Discussion and conclusions

5.1 Summary

The objective of the thesis was to research how a monolithic software application could

be decomposed into multiple libraries. POC module was to be procured using this re-

search and then analyse how its use would affect the testability, maintainability and read-

ability of the application.

The key part of the work was to produce the procedure for the modularization. It was

developed with the development team of the case study-application and included steps

concerning UML diagram examinations, design definitions, refactoring and testing. Re-

search was conducted to understand how the application should be structured and re-

factored. For the composition of the system, the architectural patterns that its develop-

ment followed were examined and discussed. The refactoring work was conducted to-

gether with the development team and by the utilization of OOP-related principles like

SOLID and DI.

The project work identified and updated design definitions of the system as it relates to

the component dependency hierarchies. The proceeding modularization of the system

followed these definitions to decompose a shared library project from the monolithic so-

lution. Analysis of the modularization’s effects showed major improvements in the testa-

bility of the application through the capability of running unit-tests against the decom-

posed project in isolation from the rest of the system. Build optimization could be further

taken advantage of to build the new communication component in parallel to the main

application resulting into moderate decrease in overall compilation times. Additionally,

minor decreases in memory usage were observed. However these were most likely due

to improvements relating to .NET Framework update.

The key findings of the work were the realisation of the level of inter-dependency of the

case-study system’s components and the absolute importance of encapsulation by in-

terface utilization when creating modular systems.

It was generally noted during code analysis, that DIP and “code to an interface” principles

were widely used in the case-study application’s code base. LOD violations could not be

58

identified either. However, many interfaces in very central position of application’s func-

tionality were quite extensive and used extensively. Examples of these are the Truck,

Controller and Parameter types, to which ISP could be applied.

5.2 Next steps

With the modularized version of TruckTool, analysis of its effects and this paper, the

software management at Rocla may assess whether the work produced the modularized

version of the application that was hoped for, and whether the original goals were met.

If so, the feature version branch where the modularization work was conducted may be

used in the development. If not, then the work has at least shed light into the composition

of the software system and to the level of its components’ inter-dependencies, which is

critical information for the future work in regards to making the system more maintainable

and testable, while more features are added.

5.3 Objective vs. Results

This section examines the level by which the set objectives met the results of the work.

The introduction laid out the objectives as the:

1. “gathering of information for the decomposition of the system into loosely coupled

modules”

2. “procure a POC module out of the application’s code base”

3. “analyse the effects of modularization”

For the information gathering, multiple different OOP and OOD-related principles were

examined. SOLID, LoD and dependency injection were identified as principles which

help in creation of loosely coupled code. These were examined and applied during the

work. The concepts of cohesion and coupling were also touched upon, which aid in the

identification of components and their dependency hierarchies – crucial information re-

garding decomposition of a system. Additionally, procedure for the modularization was

formulated together with the development team.

As to the POC module: one was created with the employment of the information gathered

and together with the development team. It may be used in separation of the parent

59

application, something that cannot be said for the original version’s communications

component. Notable specific use case for this being the capability to test it independently.

Analysis of the modularizations effects were conducted based on development team

feedback on the interesting KPI’s to evaluate.

Overall, the objectives can be said to have been met.

5.4 Final Words

Retrofitting structure into a monolithic software application can be very challenging.

While this paper mainly examined principles for building modularity into individual soft-

ware artefacts, less attention was shown towards the methods by which to define the

components of an interconnected code base. This lack of attention was made possible

by the cohesiveness of the contents of the namespace containing the communication

functionalities, which were to be decomposed as their own assembly – it enabled the

selection of software artefacts to be done mainly based on the namespace. However,

should the work continue, much more of an analysis would have to be conducted to

understand how the application should be divided into different components.

Utilization of projects within an application solution seems to be a viable way to force a

certain architectural design. This has clear advantages on multiple fronts: faster system

understanding, increased testability and component reusability, build optimization, com-

ponent specific framework configurations, easier responsibility delegation across teams

and more. The methods and principles examined within this paper enable these benefits,

which are crucial for creating sustainable, long living software projects.

References

1. Beck, Kent; Roberts, Don; Brant John; Opdyke, William; Fowler, Martin. “Refac-

toring: Improving the design of existing code”. 1999. Addison-Wesley Profes-

sional

2. Löwy, Juval. “Programming .NET components” 2005. Sebastopol CA O’Reilly.

ISBN: 0-596-10207-0

3. Bass, Len; Clements, Paul; Kazman, Rick. “Software architecture in practice”.

2005. Boston, MA: Addison Wesley

4. Martin, Robert. “Agile Software Development: Principles, Patterns, and Prac-

tices”. Pearson Higher Education. International edition. 2013

5. Seemann, Mark. “Dependency Injection in .NET”. 2012. Manning publications

Co. ISBN: 978-1-9351-8250-4

6. Richards, Mark. “Software Architecture Patterns”; 2015. O’Reilly Media, Inc.

7. docs.Microsoft. “Three-tier Application model” [Internet] available from:

https://docs.microsoft.com/en-us/previous-versions/office/developer/server-

technologies/aa480455(v=msdn.10). accessed 22.7.2019

8. Martin, Robert. “Clean Architecture: A craftsman’s guide to software structure and

design”. 2017. Prentice Hall

9. Plakosh, Daniel; Seacord, Robert C; Grace A. Lewis. “Modernizing legacy sys-

tems: software technologies, engineering processes, and business practices”.

Addison-Wesley Professional. 2003

10. Fowler, Martin. “Continuous Integration” [internet]; available from:

https://www.martinfowler.com/articles/continuousIntegration.html. Accessed

26.7.2019

11. PepGoTesting. “Continuous integration” [internet]. available from:

http://www.pepgotesting.com/continuous-integration/. Accessed 26.7.2019

12. Gossmann, John, “Introduction to Model/View/Viewmodel pattern for building

WPF apps” [internet], available from: https://blogs.msdn.microsoft.com/john-

gossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-

wpf-apps/. Accessed 28.7.2019

13. Foote, Brian; Yoder, Joseph. “Big ball of mud”. [Internet] 1999. Department of

Computer Science University of Illinois. Available from: http://www.lapu-

tan.org/mud/. Accessed 4.7.2019

https://docs.microsoft.com/en-us/previous-versions/office/developer/server-technologies/aa480455(v=msdn.10)
https://docs.microsoft.com/en-us/previous-versions/office/developer/server-technologies/aa480455(v=msdn.10)
https://www.martinfowler.com/articles/continuousIntegration.html
http://www.pepgotesting.com/continuous-integration/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
http://www.laputan.org/mud/
http://www.laputan.org/mud/

14. docs.Microsoft. “The MVVM pattern” [Internet] available from: https://docs.mi-

crosoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10). ac-

cessed 30.7.2019

15. documentation.devexpress; “MVVM-Framework” [Internet] available from:

https://documentation.devexpress.com/WPF/15112/MVVM-Framework. ac-

cessed 30.7.2019

16. docs.Microsoft. “C# 6.0 draft specification” [Internet] available from:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-

specification/introduction; accessed 1.8.2019

17. Clark, Dan. “Beginning C# Object-Oriented Programming - Second Edition”-

Springer science + Business media. 2013; ISBN 978-1-4302-4936-8

18. Joshi, Bipin. “Beginning SOLID principles and design patterns for ASP.NET de-

velopers”. Springer science + Business media. ISBN 978-1-4842-1848-8

19. Dooley, John. “Software Development and Professional Practice”. Appress.

Berkeley, CA. 2011. ISBN 978-1-4302-3802-7

20. Lieberherr, Karl. “Law of Demeter: Principle of Least Knowledge” [Internet].

Available from: http://www.ccs.neu.edu/home/lieber/LoD.html

21. docs.Microsoft. “net-standard” [Internet] available from: https://docs.mi-

crosoft.com/en-us/dotnet/standard/net-standard. accessed 20.8.2019

22. docs.Microsoft. “what’s new in net framework 4.7.1”. [Internet] available from:

https://docs.microsoft.com/en-us/dotnet/framework/whats-new/#whats-new-in-

net-framework-471. accessed 20.8.2019

23. Robot Framework, “RobotFramework”. [Internet] available from: https://robot-

framework.org. accessed 24.8.2019

24. International organization for standardization; International electrotechnical

commission. ISO/IEC TR 19759:2015 – “Software engineering – guide to the

software engineering body of work (SWEBOK)” [Internet]. 2015. accessed

24.8.2019. Available from: https://standards.iso.org/ittf/PubliclyAvailableStand-

ards/c067604_ISO_IEC_TR_19759_2015.zip

25. docs.Microsoft. “Inheritance”. [Internet] available from: https://docs.mi-

crosoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inher-

itance. accessed 24.8.2019

26. docs.Microsoft. “Interfaces”. [Internet] available from: https://docs.mi-

crosoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index. accessed

24.8.2019

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://documentation.devexpress.com/WPF/15112/MVVM-Framework
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/introduction
http://www.ccs.neu.edu/home/lieber/LoD.html
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/framework/whats-new/#whats-new-in-net-framework-471
https://docs.microsoft.com/en-us/dotnet/framework/whats-new/#whats-new-in-net-framework-471
https://robotframework.org/
https://robotframework.org/
https://standards.iso.org/ittf/PubliclyAvailableStandards/c067604_ISO_IEC_TR_19759_2015.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c067604_ISO_IEC_TR_19759_2015.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c067604_ISO_IEC_TR_19759_2015.zip
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/interfaces/index

Appendix 1

1 (1)

Robot script Import CAN

Import From CAN

 [Tags] ImportCAN

 Take Control Of Running Application

 Use Search Function ${CAN}

 Sleep 2s

 Click Element automation_id=${CAN_button}

 Sleep 3s

 Click Element automation_id=${connec-

tion_switch_button}

 Sleep 2s

 Input Testing Serial Numbers ${testing_serial_number}

${testing_mast_serial_number}

 Sleep 1s

 Click Element automation_id=ConfirmYesButton

 Sleep 1s

 Click Element automation_id=SettingsTabButton

 Sleep 2s

 Click App Element NoButton

 Click Element automation_id=ImportFromTruck-

Button

 Sleep 1s

 Click Element By Title Browse... TextBlock

 Sleep 3s

 Click Element By Title File name: Edit

 enter text element identified by title File name: test Edit

 Click Element By Title Save Button

 Click App Element automation_id=ContinueWizardBut-

ton

 Wait Element automation_id=FinishWizardButton

status=ready timeout=180

 Click App Element FinishWizardButton

 Sleep 1s

 Click Element automation_id=${connec-

tion_switch_button}

Appendix 2

1 (1)

Robot script Import TCP/IP

Import From TCP/IP

 [Tags] ImportTCP

 Take Control Of Running Application

 Use Search Function ${rocla_agv}

 Sleep 2s

 Click Element automation_id=TruckImage_agv

 Sleep 3s

 Click Element automation_id=${connection_switch_button}

 Sleep 2s

 Input Testing Serial Numbers ${testing_serial_number

 Sleep 1s

 Click Element automation_id=SettingsTabButton

 Sleep 2s

 Click App Element NoButton

 Click Element automation_id=ImportFromTruckButton

 Sleep 1s

 Click Element By Title Browse... TextBlock

 Sleep 3s

 Click Element By Title OK Button

 Click App Element automation_id=ContinueWizardButton

 Wait Element automation_id=FinishWizardButton status=ready

timeout=180

 Click App Element FinishWizardButton

 Sleep 1s

 Click Element automation_id=${connection_switch_button}

Appendix 3

1 (1)

Robot script Import Serial

Import From Serial

 [Tags] ImportSerial

 Take Control Of Running Application

 Use Search Function ${serial}

 Sleep 2s

 Click Element automation_id=${serial_truck_im-

age}

 Sleep 3s

 Click Element automation_id=${connec-

tion_switch_button}

 Sleep 2s

 Input Testing Serial Numbers ${testing_serial_number

 Sleep 1s

 Click Element automation_id=SettingsTabButton

 Sleep 2s

 Click App Element NoButton

 Click Element automation_id=ImportFromTruck-

Button

 Sleep 1s

 Click Element By Title Browse... TextBlock

 Sleep 3s

 Click Element By Title File name: Edit

 enter text element identified by title File name: test Edit

 Click Element By Title Save Button

 Click App Element automation_id=ContinueWizardBut-

ton

 Wait Element automation_id=FinishWizardButton

status=ready timeout=180

 Click App Element FinishWizardButton

 Sleep 1s

 Click Element automation_id=${connec-

tion_switch_button}

Appendix 4

1 (3)

TCP/IP import times in the sequence of running. Original version.

Units in milliseconds

2750.4983

3155.1385

2674.0605

3353.613

3029.778

3567.5684

3733.9408

3627.8166

4018.1598

3596.362

4039.8005

4609.4825

3848.4753

3949.4737

4885.4334

4827.6702

4134.0343

5082.1531

4888.8479

5556.789

4704.2608

5490.6135

4838.8423

6232.6905

6249.0354

6593.6638

6417.9456

6509.5018

5633.1518

5842.7071

5654.7237

5852.7585

Appendix 4

2 (3)

5817.2242

5974.2614

5955.4406

6916.9947

6702.931

6368.9763

6885.5918

6407.2025

7019.4429

6833.1978

7176.7109

7228.2465

6082.1045

6038.063

5788.032

6486.8976

6746.0749

7033.0431

7476.6199

8013.0518

7853.3017

8042.8973

8156.6354

7961.7856

8639.7524

8881.503

8348.8621

7416.4756

7839.7454

7407.5422

7929.3552

7269.0216

9077.8723

9946.0304

10086.0574

Appendix 4

3 (3)

10046.1119

10415.4896

7470.7043

9066.2509

10681.3176

11209.788

10872.5551

11917.1085

10631.235

8562.5121

10912.5594

11454.6149

9645.6051

11583.0427

9984.0085

11771.1454

10558.4597

12985.0333

11738.0328

13725.5633

12217.5701

11222.7461

11147.9324

13083.6954

12066.3205

11309.4282

11715.4886

14363.9449

13975.8242

12307.6366

11741.6234

Appendix 5

1 (1)

TCP/IP import times in the sequence of running. Modularized version.

Units in milliseconds

2750.4983

3155.1385

2674.0605

3353.613

3029.778

3567.5684

3733.9408

3627.8166

4018.1598

3596.362

4039.8005

4609.4825

3848.4753

3949.4737

4885.4334

4827.6702

4134.0343

5082.1531

4888.8479

5556.789

4704.2608

5490.6135

4838.8423

6232.6905

6249.0354

6593.6638

6417.9456

6509.5018

5633.1518

5842.7071

5654.7237

Appendix 5

2 (3)

5852.7585

5817.2242

5974.2614

5955.4406

6916.9947

6702.931

6368.9763

6885.5918

6407.2025

7019.4429

6833.1978

7176.7109

7228.2465

6082.1045

6038.063

5788.032

6486.8976

6746.0749

7033.0431

7476.6199

8013.0518

7853.3017

8042.8973

8156.6354

7961.7856

8639.7524

8881.503

8348.8621

7416.4756

7839.7454

7407.5422

7929.3552

7269.0216

9077.8723

9946.0304

Appendix 5

3 (3)

10086.0574

10046.1119

10415.4896

7470.7043

9066.2509

10681.3176

11209.788

10872.5551

11917.1085

10631.235

8562.5121

10912.5594

11454.6149

9645.6051

11583.0427

9984.0085

11771.1454

10558.4597

12985.0333

11738.0328

13725.5633

12217.5701

11222.7461

11147.9324

13083.6954

12066.3205

11309.4282

11715.4886

14363.9449

13975.8242

12307.6366

Appendix 6

1 (2)

Serial import times. Original version

Units in milliseconds

18561.5178

18316.9156

17801.9005

18830.0984

18209.0385

18143.3467

17984.0298

18402.993

18321.2722

18079.0526

18294.2417

18123.0697

18287.9607

18907.6944

18520.7402

18500.3012

18354.1733

18486.4604

18343.1583

18288.9527

18548.6726

17973.0477

18668.5119

20391.6715

20828.3996

19841.9971

18680.2154

18003.892

18295.0307

18275.8792

18619.4725

18362.5085

Appendix 6

2 (2)

18677.4564

18180.4155

18145.9209

18542.5054

18448.2265

18326.6102

18113.5666

18546.275

18547.8904

Appendix 7

1 (2)

Serial import times. Modularized version

Units in milliseconds

18535.688

18183.2182

18437.9587

18403.4041

19546.3039

18036.2892

18820.3135

18621.376

18471.396

18422.4753

18541.9255

17961.9543

18507.4491

18305.2236

17904.8369

18424.212

18140.2529

18700.7227

18375.0348

18477.6608

18425.4552

18314.5595

18762.3729

18358.7558

18252.182

18323.9215

18553.2616

18256.0607

18949.4144

18265.0241

20271.9118

21787.9167

Appendix 7

2 (2)

21462.8846

18525.2838

18309.794

18748.3417

18852.3291

18425.8759

18893.4285

18524.9923

18978.3763

Appendix 8

1 (2)

CAN import times. Original version.

Units in milliseconds

142090.5302

146257.0524

136548.3339

144084.9363

130824.6104

138843.9024

131141.4004

137650.4589

141423.3574

135276.9256

138581.2599

135643.312

138465.3641

146848.4372

134616.1628

143369.1988

141272.0542

145459.9365

131154.577

144685.7008

142883.9805

141524.1574

138543.5699

138822.4814

145249.2146

131297.5809

147007.6332

143776.6802

143296.2262

131017.6442

138555.2449

143116.4283

Appendix 8

2 (2)

131500.4227

140628.5102

142846.3762

139623.6589

143447.4749

138701.4262

140719.6722

131560.7606

Appendix 9

1 (2)

CAN import times. Modularized version.

Units in milliseconds

139223.7362

131198.0094

145293.0058

142664.8525

133290.3545

145259.8018

141222.2227

144385.5081

136052.5153

142947.5743

140868.5413

145438.8772

143457.2104

142322.0881

131163.3493

134490.8521

137488.6876

144562.5995

139124.4519

143768.3556

146485.7432

132421.5272

137580.175

144372.4354

139148.0698

146102.5003

145568.895

138757.6444

136313.7785

135930.6956

142754.5729

142127.4915

Appendix 9

2 (2)

138779.1844

136618.3503

143630.3809

137664.335

130879.0063

133986.4377

144277.5425

145721.4962

Appendix 10

1 (1)

Robot script for TCP/IP batch import

Import 40 Times TCP/IP

 [Documentation] Imports currently selected AGV truck's parameters 40

times. Starting position is expected to be the settings view

 [Tags] 40ImportsCPI2

 :FOR ${INDEX} IN RANGE 1 40

 \ Take Control Of Running Application

 \ Click Element automation_id=Import-

FromTruckButton

 \ Sleep 1s

 \ Click Element By Title Browse... TextBlock

 \ Sleep 3s

 \ Click Element By Title OK Button

 \ Click App Element automation_id=Continue-

WizardButton

 \ Wait Element automation_id=FinishWiz-

ardButton status=ready timeout=180

 \ Click App Element FinishWizardButton

 \ Sleep 1s

Appendix 11

1 (1)

Robot script CAN batch import

Import 40 Times CAN

 [Documentation] Imports currently selected CAN or Serial truck's pa-

rameters 40 times. Starting position is expected to be the settings view

 [Tags] 40Imports

 :FOR ${INDEX} IN RANGE 1 40

 \ ${index_str} Convert To String ${INDEX}

 \ Take Control Of Running Application

 \ Click Element automation_id=Import-

FromTruckButton

 \ Sleep 1s

 \ Click Element By Title Browse... TextBlock

 \ Sleep 3s

 \ Click Element By Title File name: Edit

 \ enter text element identified by title File name: ${index_str}

Edit

 \ Click Element By Title Save Button

 \ Click App Element automation_id=ContinueWiz-

ardButton

 \ Wait Element automation_id=FinishWiz-

ardButton status=ready timeout=360

 \ Click App Element FinishWizardButton

 \ Sleep 1s

Appendix 12

1 (1)

Robot script Serial batch import

Import 40 Times Serial

 [Documentation] Imports currently selected Serial truck's parameters

40 times. Starting position is expected to be the settings view

 [Tags] 40ImportsSerial

 :FOR ${INDEX} IN RANGE 1 40

 \ ${index_str} Convert To String ${INDEX}

 \ Take Control Of Running Application

 \ Click Element automation_id=Import-

FromTruckButton

 \ Sleep 1s

 \ Click Element By Title Browse... TextBlock

 \ Sleep 3s

 \ Click Element By Title File name: Edit

 \ enter text element identified by title File name: ${index_str}

Edit

 \ Click Element By Title Save Button

 \ Click App Element automation_id=ContinueWiz-

ardButton

 \ Sleep 1s

 \ Wait Element automation_id=ContinueWiz-

ardButton status=ready timeout=360

 \ Click App Element automation_id=ContinueWiz-

ardButton

 \ Click App Element FinishWizardButton

 \ Sleep 1s

