
Aleksandr Evseev

ANDROID APPLICATION DEVELOPMENT

Case: Studia – The diary application

Thesis

CENTRIA UNIVERSITY OF APPLIED SCIENCES

Information Technology

February 2019

ABSTRACT

Centria University

of Applied Sciences

Date

February 2019

Author

Aleksandr Evseev

Degree programme

Information Technology

Name of thesis

ANDROID APPLICATION DEVELOPMENT. Studia, The diary application

Instructor

Dr Grzegorz Szewczyk

Pages

37

Supervisor

Dr Grzegorz Szewczyk

The world of technologies is developing drastically, making improvements in many spheres of our life.

Health care, education, production, construction, and many other industries emerge with engineering

science in order to achieve greater, more accurate results. Computational power is increasing daily;

people no longer require personal computers to carry out everyday tasks as the same performance is

now possible with smartphones and other mobile gadgets. Considerable improvements in data storage

are also visible as all the information is now available online in so-called clouds. Developments in

network transmissions and embedded systems result in greater concern on mobile technologies.

One of the ways to interact with these complex computational networks are smartphones and other

devices. They are running specially designed Operating Systems made to be able to execute mobile

applications, which are designed and realized by programmers throughout the several stages the overall

process consists of.

This thesis is dedicated to this application development process. Even though, software designing be-

came simpler in many ways as there are many innovations brought to the field including better devel-

opment environments, numerous open source libraries and frameworks available online and overall

improvements in sphere of knowledge, software engineering is still a precise and complex process

which requires many preparations. Throughout this work, a procedure of creating an application for

an android platform will be shown.

Key words

Android, Application Design, Architecture Components, Mobile Technologies, Software Engineering

ABBREVIATIONS

DAO Database Access Object

DB Database

LLC Limited Liability Company

SDK Software Development Kit

UI User Interface

CONTENTS

1 INTRODUCTION .. 1

2 APPLICATION IDEA ... 3

3 MARKET RESEARCH .. 4

4 APPLICATION DESIGN ... 6

4.1 Requirements .. 6
4.1.1 Functional Requirements .. 6
4.1.2 Non-Functional Requirements .. 7

4.2 Use Cases ... 7
4.2.1 Use Cases Diagram ... 7
4.2.2 Use Cases Descriptions .. 8
4.2.3 Class selection process ... 12

4.3 Class Diagram... 15
4.4 Database .. 19

4.4.1 Database Schema .. 20
4.4.2 Database Queries .. 20

4.5 User Interface Design ... 23

5 TECHNOLOGIES USED ... 28

6 Application Development .. 31

6.1 Tools .. 31
6.2 Architectural Design Solutions ... 31

7 SOFTWARE TESTING .. 33
7.1 Test Results ... 33

7.2 Release notes ... 35

8 FURTHER DEVELOPEMENT ... 36

REFERENCES .. 37

GRAPHS

GRAPH 1. Use cases diagram .. 8

GRAPH 2. Architecture diagram .. 14

GRAPH 3. Class diagram ... 15

GRAPH 4. Database schema .. 20

GRAPH 5. Application state machine diagram .. 23

GRAPH 6. Entities state machine diagram ... 24

GRAPH 7. Create / Modify Entity state machine diagram ... 24

GRAPH 8. Class diagram-Singleton database access class .. 32

FIGURES

FIGURE 1. Activity diagram on query composition .. 22

FIGURE 2. Mock-up entity screen ... 25

FIGURE 3. Mock-up category screen ... 26

FIGURE 4. Mock-up entities categorized ... 27

FIGURE 5. Architecture components ... 29

TABLES

TABLE 1. Lexical analysis of requirements ... 13

TABLE 2. SQL query descriptions ... 21

TABLE 3. Test results .. 33

1

1 INTRODUCTION

Today the mobile application market is available for anyone who has the desire to publish their prod-

ucts. After a certain validation procedure the software can be released to public. The vendor leaves the

marketing to the company provider including product description, advertisement, response to customer

feedback and pricing policy. Product popularity and ratings heavily depend on users who are down-

loading and using it, as they can leave a review of the application. Eventually, the software will be of-

fered to other customers depending on the product’s number of downloads and ratings. It is a very im-

portant task to continue support and development of the application throughout its appearance on the

market by improving it, adding new features and responding to customer’s wishes.

In this work, a project is designed for the Android platform and aimed to be released on the Play Store

which belongs to Google LLC and therefore the analysis of the target group and further explanations are

correlated. The application development itself is quite intricated, it requires many stages which mostly

are summarized as a requirements collection, designing, prototyping, realization and testing. There are

numerous approaches designed to structure it, mostly by revising the flow, order or repetitiveness of

those general actions. The two solutions that are most commonly in use are Waterfall and Agile meth-

odologies.

The Waterfall model requires from the customer a full impact and a complete agreement on the prod-

uct at the very beginning of development as, further on, any extra requirements or modifications might

have fatal results on the whole project (Lotz 2018).

The Agile method allows customers to participate in product creation throughout the development. Ac-

cording to this model, features are sorted by priorities and, as new requirements arrive, they are given a

priority and designed accordingly. This solution allows for new features to be considered throughout

the time of development but doesn’t ensure that they will be successfully embedded (Lotz 2018).

This thesis project was designed with accordance to the Waterfall model’s approach, however an An-

droid environment is made to be modular and with proper programming techniques, parts of the pro-

ject could be made reusable therefore allowing further modifications or additions to be implemented.

Following the aforementioned approach requires numerous preparations and design techniques to be

2

carried out before actual development is started and the further chapters of this thesis guide through

them.

3

2 APPLICATION IDEA

The Android application that is described and designed in this work is, in general, a diary / note taking

solution. It is made for people with hobbies or other activities to keep track of their progress and previous

work.

An entry created by the user would have a title, content and could be supported with media such as

pictures. Nevertheless, the main idea would be a categorical division. In order to create any entry a user

would first have to select the category it is related to as, later on, all further operations and statistics

would be mostly based on this categorical separation.

For example, considering a category called “Programming”, after the user makes several entries into this

category about some work that was done or the description of some project that was created, he would

be able to observe statistics stating different information such as the last date an entry was made, the

number of entries overall, and others. But if desired, the user can conduct a search, a sorting or look into

previously made entries.

The application is therefore summed up into two main definitions:

1. A diary tool that allows the input, organization and tracking of what work was done before.

2. A solution to receive different statistics as a motivational purpose.

4

3 MARKET RESEARCH

Before the application development and prototyping, a research was carried out to determine whether

there are similar solutions available for the user and if this thesis’ application has a potential to find its

customer base. This chapter brings a comparison with the products available on the market. The “Google

Play Store” from Google LLC is a software selling platform that was taken for the analysis. Search

requests were made with the following keywords: “Journal” and “Diary”. Similar features were marked

with a tick sign in the row “Common features” in each table below.

Application Name Diary Book – Journal With Lock, Photos, Themes

Company Name Lucidify Labs

 Synchronization Calendar support Passcode protection Statistics report

Common features √

Comment Provides wide range of UI customization including different color pallet, sev-

eral fonts. Supports rich text input, including possibility to style text input and

upload media.

Application Name Journal it! – Bullet Journal, Diary, Habit Tracker

Company Name de-studio

 Synchronization Calendar support Passcode protection Statistics report

Common features √ √

Comment Supports to-do lists, personal mood tracker, comments and includes widgets.

The solution has wide range of features and is suitable for many needs.

Application Name Daybook – Diary, Journal, Note

Company Name Bighead Techies

 Synchronization Calendar support Passcode protection Statistics report

Common features √ √ √

Comment Stands out with a simple, user-friendly interface. Main functionality is built

around date organization. Includes a special feature to dictate note into text.

5

Application Name Diaro – Diary, Journal, Notes, Mood Tracker

Company Name Pixel Crater Ltd

 Synchronization Calendar support Passcode protection Statistics report

Common features √ √ √

Comment Highlights a possibility to attach unlimited number of photos. Features search-

ing capability and location based attachments.

Application Name My Dark Diary

Company Name Zheko

 Synchronization Calendar support Passcode protection Statistics report

Common features √

Comment Simple, modern, minimalistic interface. Possibility to backup and restore data.

Support for tags, checklists. Company accents on being trusted by 1 million

people. Application stands out in its simplicity as of orientation to perform one

task well.

Application Name Daylio – Diary, Journal, Mood Tracker

Company Name Daylio

 Synchronization Calendar support Passcode protection Statistics report

Common features √ √ √ √

Comment Application offers user a possibility to analyse emotional behaviour according

to daily inputs with person’s current mood and factors that could affect it, like

activities that were done today or location where they happened. Another pow-

erful feature of the application is a possibility to review statistics with many

custom diagrams.

Each company that was selected for the research is summarized and presented in form of a table and

can be found above. The information that each table represents concludes whether application contains

a common functionality and if it stands out from the rest in certain way. As it can be observed most

products are either designed for everyday usage or specialized on different themes and therefore an

idea of creating a journaling, note taking application with statistical feedback came to life.

6

4 APPLICATION DESIGN

The following chapter includes all the design techniques used to plan and develop the project. The ac-

tual process is made accordingly; every procedure considers the results of the preceding one. The blue-

print of the application, as a final product, would allow to proceed to the actual development.

4.1 Requirements

A requirements collection is the starting point in any software designing process. They are collected

and translated from the customer’s view on the project. As is the case for the Waterfall method that

was mentioned in chapter one, a complete list of requirements is settled and confirmed only at the be-

ginning of the development.

4.1.1 Functional Requirements

In order for the user to carry out a certain task that the application was designed for, a set of functions

that is required to be implemented in the product is settled and agreed among the developer team and

stakeholders. Mainly functional requirements outline actions of the system that are carried out under

certain conditions (Altexsoft 2018).

FR001 Application shall contain entities that are sorted under categories.

FR002 Application shall be able to perform different searching and sorting operations on Entities.

FR003 Application shall be able to provide different statistics on usage.

FR004 Entities might include optional media such as pictures.

FR005 Entities can be marked as Special to highlight them.

FR006 Application initially should include category "General" that cannot be deleted.

7

4.1.2 Non-Functional Requirements

Non-functional requirements define limitations of the system and patterns of its behaviour. Usually

specifications are divided into categories such as usability, security, reliability, performance, availabil-

ity and scalability (Altexsoft 2018).

NFR001 By default entities should be sorted by date of creation.

NFR002 Sorting can be done by date, priority, date of modification.

NFR003 Searching can be run on entity's name, content, tag or date of creation.

NFR004 Statistics should include such data as frequency of input of records, the last day a record

was entered, amount of days records was taken in a row without a break, number of rec-

ords taken, all according to the categories where they belong.

4.2 Use Cases

Use cases define relationships between a system and actors that interact with it. Actors are the parts of

the system responsible for triggering certain tasks as, for example, a user or a database. The relation

between the system and the actors result in goals or functions that are to be implemented in the system.

By translation of the use cases diagram the developer can form a correlated class diagram which would

allow to procced to the actual application development. The translation is applied using the “Class se-

lection process” where main classes needed for engineering are highlighted. (Sommerville 2016).

4.2.1 Use Cases Diagram

The diagram is created to resolve the main functionality of the application. It includes actors, use cases

and displays relation between them (GRAPH 1).

8

GRAPH 1. Use cases diagram

4.2.2 Use Cases Descriptions

Each use case is summarized in form of a table and can be found below, it contains the information

about different characteristics of the use case such as actors that activate the use case, a description that

contains a short explanation, a trigger that activates the use case, a normal flow and alternative flow,

exceptions that might happen and a short algorithm of actions that is carried out afterwards and other

parameters. Use cases are numbered and brought for further analyses in following chapter.

9

Use Case ID: 001

Use Case Name: Create Category

Actors: User

Description: User creates new category.

Trigger:

Pre-conditions

Normal Flow: User is provided with a form to input new category’s characteristics: a name and

a colour. Application processes it to create new category. [Exception: Input Is

Invalid], [Exception: Duplicated Entry]

Alternative Flow:

Exceptions: Input Is Invalid: Category’s characteristics are invalid: User is notified and

asked to input characteristics again.

Duplicated Entry: Category with the same characteristics already exists: User

is notified and asked to input characteristics again.

Post-Conditions: Category is valid and created.

Includes

Frequency of Use:

Special Require-

ments:

Assumptions:

Notes and Issues:

Use Case ID: 002

Use Case Name: Create Entity

Actors: User

Description: User creates new entity.

Trigger:

Pre-conditions

Normal Flow: User is provided with an interface to create a new entity with two mandatory

fields required: title and content. By inputting the required fields and possibly

supplying it with a photo, a tag or a mark “special” user creates new Entity. It is

also possible to select a category from a list. [Exception: Input Is Invalid]

Alternative Flow: User does not select category and an entity is assigned by application to cate-

gory “General”.

10

Use Case ID: 002

Use Case Name: Create Entity

Exceptions: Input is Invalid: Entity characteristics are invalid: User is notified and asked

to input characteristics again.

Post-Conditions: Entity is valid and added to the related category list.

Includes

Frequency of Use:

Special Require-

ments:

Assumptions:

Notes and Issues:

Use Case ID: 003

Use Case Name: View Entity

Actors: User

Description: User selects an entity from the provided list to view or modify its content. A

view includes different controllers to operate on entity’s content as for exam-

ple image viewer or content text box.

Trigger:

Pre-conditions

Normal Flow: Application provides an adaptive view displaying entities content.

Alternative Flow:

Exceptions:

Post-Conditions:

Includes

Frequency of Use:

Special Require-

ments:

Assumptions:

Notes and Issues:

11

Use Case ID: 004

Use Case Name: Sort Entities

Actors: User

Description: User performs sorting on the list of entities.

Trigger:

Pre-conditions

Normal Flow: User selects sorting options to be applied on the list of entities from the options

menu of the application. Application returns a sorted list of items.

Alternative Flow:

Exceptions:

Post-Conditions: List is sorted and can be worked with.

Includes

Frequency of Use:

Special Require-

ments:

Assumptions:

Notes and Issues:

Use Case ID: 005

Use Case Name: Search Entities

Actors: User

Description: User performs searching on the list of entities.

Trigger:

Pre-conditions

Normal Flow: User provides searching options to be applied on the list of entities by input-

ting a keyword or a tag that an entry might include. Application returns list of

entities corresponding to search requests.

Alternative Flow: No results regarding user search options are found and user is notified.

Exceptions:

Post-Conditions: List of entities corresponding to search options is provided and can be worked

with.

Includes

Frequency of Use:

12

Use Case ID: 006

Use Case Name: View Statistics

Actors: User

Description: Application provides statistics on different aspects of system usage (Defined in

Non-Functional Requirements).

Trigger:

Pre-conditions

Normal Flow: User is provided with statistics calculated based on previous input to the appli-

cation. Statistics are presented in different visual forms as statements, graphs

and other.

Alternative Flow:

Exceptions:

Post-Conditions:

Includes

Frequency of Use:

Special Require-

ments:

Assumptions:

Notes and Issues:

4.2.3 Class selection process

Class diagrams required to be implemented in application can partly be derived from the lexical anal-

yses of the description of each use case from the previous chapter. The methods apply by highlighting

the main parts of the sentence where nouns represent candidate classes and verbs suggest the way clas-

ses relate to each other or define the functionality they have.

13

TABLE 1. Lexical analysis of requirements

Use case number Use case name Use case description

001 Create Category User creates new category with a provided form to

input new category’s characteristics: a name and a

colour. Application processes it to create new cate-

gory.

002 Create Entity User is provided with an interface to create a new

entity with two mandatory fields required: title and

content. By inputting required fields, and possibly

supplying it with a photo, a tag or a mark “special”

user creates new Entity. It is also possible to select a

category, otherwise it is put into category “General”.

003 View Entity User selects an entity from the provided list to view

or modify its content. A view includes different con-

trollers to operate on entity’s content as for example

image viewer or content text box.

004 Sort Entities User performs sorting on the list of entities by se-

lecting different options from the provided menu.

005 Search Entities User performs searching on the list of entities by in-

putting a keyword or a tag that an entry might in-

clude.

006 View Statistics Application provides statistics on different aspects of

system usage as number of entities, last day of entry

and other (Defined in Non-Functional Require-

ments).

The following nouns were selected through the analyses of table 1: category, entity, photo, tag, mark

special, sorting, searching, statistics. The selected items might be applied as application’s classes,

functions or attributes.

14

According to the results of the analysis the two general classes would be category and entity: entity as

main entry data type and category which encloses those entries. The statistics class would process user

data and provide different analysis results. Searching and sorting would be realized as internal opera-

tions and would belong to the Main Activity class. Main application architecture is summarized and

displayed in graph 2.

GRAPH 2. Architecture diagram

The application would consist of two activities. First, the Main Activity includes two fragments, one to

display a list of entities and provide a control on searching, sorting and another one to display a list of

categories. Both fragments feature adding and modifying of entries which in Entities Fragments is re-

alized with another activity and in Category Fragments with an Alert Dialog. Second, the Work Activ-

ity to view and modify Entity class objects. An activity includes text inputs for title, content, tags and

actions to add photo or put a mark “Special“.

Additionally, the whole application would be driven by a Room database explained in chapter five

which would require a single class for itself and a DAO class for each table in the database. Moreover,

each separate Android Activity View would require a View Model and a Repository to maintain a

clean architecture.

The Room database does not allow operations on the UI thread therefore each database operation

should be executed asynchronously. This requirement is achieved in different ways, several methods

have a LiveData as a return type so therefore no additional functionality needs to be added and other

functions are executed in the accordingly designed class that extends AsyncTask and performs opera-

tions in the background.

15

4.3 Class Diagram

Below a complete diagram of classes used in the application can be observed (GRAPH 3). Class diagram describes a static presentation of the product which is later processed into the source code of the application. Later in

this chapter each class is separately brought for parsing into attributes, operations and short description.

GRAPH 3. Class diagram

16

Entitiy class is a main entry, it encloses

user input details as title, content, image,

tags, special mark and category that is

belongs to. Additionally, it automati-

cally records date of creation and modi-

fication.

Category class groups all entries into

categories, it includes user defined name

and color.

Statistics class contains statistics on cer-

tain category object.

EntityDao interface is a Database Ac-

cess Object defined to manipulate on

Entity table in database. It performs dif-

ferent operations on DB to insert, up-

date, delete, retrieve, sort or search.

CategoryDao interface is a Database Ac-

cess Object defined to manipulate on

Category table in database. It performs

different operations on DB to insert, up-

date, delete or retrieve.

DateTypeConverter class performs con-

version from Date type to Long type as

date is stored in format Long in database

and used in format Date in the applica-

tion.

17

MainRoomDatabase class is a singleton

class that provides access to the data-

base. It also includes two interface get-

ters to DAO objects.

MainRepository class performs all re-

quired operations on data retrieved from

the database or requests database to per-

form certain operations. All operations

on DB are carried out asynchronously to

prevent loading of the main thread.

MainViewModel class links provided

data from the Repository to the corre-

sponding UI elements requesting it.

There are no complex operations on data

carried out in this class.

MainActivity class is the main applica-

tion class, it contains two fragments and

handles switching between them. It also

carries the main load of user interfacing

with the application.

MainEntities class represents a fragment

that displays a list of entities and all

changes applied to it as searching, sort-

ing and selection.

18

MainRecyclerViewAdapterEntities class

represents an Adapter class for Recycler

View in MainEntities class. It embeds

functionality for multiple selection and

manipulates two different View Holders

for object models with and without sup-

plementary image.

CallBack interface allows an Adapter to

callback class MainEntities to perform

operation on selected Entities.

EntityVH class represents a custom

View Holder for Entity object that in-

cludes image.

EntityDscVH class represents a custom

View Holder for Entity object that does

not include image.

MainCategories class represents a frag-

ment that displays a list of categories

and provides a possibility to delete or

modify it. It also provides a functional-

ity to sort list of entities from MainEnti-

ties by the category they belong to.

MainRecyclerViewAdapterCategories

class represents an Adapter class for Re-

cycler View in MainCategories class.

CallBack interface allows an Adapter to

callback class MainCategories to per-

form operation on selected Category.

19

CategoryVH class represents a custom

View Holder for Category.

WorkEntityActivity class displays and

provides a possibility to modify single

Entity. It includes functionality to

choose and select a category, to create

tags, to take a photo or to mark Entity as

Special.

WorkEntityRepository class performs

all required operations on data retrieved

from the database or requests database

to perform certain operations. All opera-

tions on DB are carried out asynchro-

nously.

This class links provided data from the

Repository to the corresponding UI ele-

ments requesting it. There are no com-

plex operations on data carried out in

this class.

4.4 Database

Studia, an application designed and developed in this work, is driven with an SQLite database, that is

controlled by the Room Persistence Library which is designed to simplify the DB operations and pro-

vide more accurate interaction. All the data that is retrieved, processed and put back into the database

require properly defined SQL Queries. Below you can find a DB schema and a list of SQL commands

used in the project.

20

4.4.1 Database Schema

GRAPH 4. Database schema

The database consists of two tables containing categories and entities (GRAPH 4). Both tables have

Primary keys functioning as entry identification: “categoryId” and “entityId” respectively. They are

unique, meaning that all entries in the table have different IDs and are set to autoincrement by the data-

base itself. The “categoryId” field in the entity_table uniquely identifies a “categoryId” in the cate-

gory_table, where one category can have zero to many entities.

4.4.2 Database Queries

Room Persistency Library provides ‘@’ Java Annotations to perform simple operations on insert, de-

lete and update. Other operations were executed with custom SQL requests listed below.

21

TABLE 2. SQL query descriptions

Query Description

SELECT * FROM entity_table Provides all entities from the enitity_table table

SELECT * FROM entity_table
ORDER BY entityDateCreated

Provides all entities sorted by the time of crea-

tion.

SELECT * FROM entity_table
ORDER BY entityDateCreated

Provides all entities sorted by the time of crea-

tion.

SELECT * FROM entity_table
ORDER BY entityDateModified DESC

Provides all entities sorted by the last time they

were modified.

SELECT * FROM entity_table
WHERE
entityContent LIKE :pattern
OR
entityTitle LIKE :pattern

Searches for results where pattern matches a ti-

tle or a content of entity.

SELECT * FROM entity_table
WHERE entityType = 1

Provides all entities that include image

SELECT * FROM entity_table
WHERE entitySpecial = 1

Provides all entities that are marked special

SELECT * FROM entity
WHERE entityTags LIKE :tag

Provides all entities that include specific tags in

tags string

SELECT * FROM entity
WHERE
entityTags LIKE :tag[0]
AND entityTags LIKE :tag[1]

Provides all entities that include multiple tags

provided

Simple Query operations presented in the table 2 are recorded in the application and executed when

needed. For more complex operations on database Query command is assembled at the run time by

following the next algorithm displayed in figure 1.

22

FIGURE 1. Activity diagram on query composition.

All commands regarding searching and sorting are processed first, SQL query is appended with every

required parameter and finished with an either selected ordering types. The only operation to highlight

is a search on tags as user can define how many tags to be searched on as needed therefore operation

increase in length by appending every tag search to operation with an ‘AND’ conjunction.

Consider an example where the user requests search by pattern, includes two tags, sort for entities

marked special which have images and all of it sorted by last date of modification. The Final SQL re-

quest is presented below (SOURCE CODE 1).

SOURCE CODE 1. The SQL clause created according to the described above algorithm.

SELECT * FROM entity_table
WHERE (entityTitle LIKE ‘%random% OR entityContent LIKE ‘%random%’)
 AND (entityTags LKE ‘%tag1%’ AND entityTags LIKE ‘%tag2%’)
 AND entityType = 1
 AND entitySpecial = 1
ORDER BY entityDateModified DESC

23

4.5 User Interface Design

The user interface was designed to be responsive, minimalistic and most importantly efficient in use.

State machine diagrams were applied to determine a number of screens required to carry out the main

functionality and relationship between the elements presented in them. Main views have to be adaptive

to provide flexibility and exclude misuse of the application which is also taken into account and pre-

sented below. Accompanied by the UI mock-ups the picture of the User Interface is formed and can be

considered for the further development. (Material Design Foundation 2019)

GRAPH 5. Application state machine diagram

As can be observed on the graph 5 presented above, a single activity presented as “AddModifyNe-

wEntity” is used in two occasions whether a new entity is created or an existing one if modified or dis-

played. Switching between two main activities “EntitiesList” and “CategoryList” is accomplished with

a corresponding button or an item selection from the category list in which scenario “EntitiesList” is

reused to display a related sorting.

24

GRAPH 6. Entities state machine diagram

As can be observed in graph 6, MainEntities activity initially displays a list of items sorted by date of

creation. When searching or sorting operation is applied the list is updated to display results. After an

operation is performed the list can be worked with or returned to initial condition.

GRAPH 7. Create / Modify Entity state machine diagram

25

Graph 7 represents the activity to create or modify entities display the current information of an entity

if it was selected, otherwise it provides empty fields to create one. It returns a new or an updated entity

if information was provided otherwise the action is discarded.

With accordance to the main system dynamics acquired from the uses cases diagram, a state machine

diagrams were created for each screen, required to accouple application which is sketched below in

figures 2, 3 and 4 in form of a mock-ups. It was designed with a special application “Sketch” that is

specialized on vector graphics editing.

FIGURE 2. Mock-up entity screen

26

FIGURE 3. Mock-up category screen

27

FIGURE 4. Mock-up entities view / editing

28

5 TECHNOLOGIES USED

Android as an Operating System has gone a long way. Google is frequently releasing updates trying to

improve the system for a better experience to the end users. Nevertheless, development tools are also

being upgraded; newer technologies are provided annually to improve, modernize and ease the process

of Software Engineering (Haase 2019).

Flutter, a tool that has recently received a considerable update is a cross-platform development technol-

ogy that allows production for such platforms as Android and iOS and promised support for desktop

operating systems in the future. This framework states to be fast in development time while allowing the

creation of expressive and flexible user interfaces keeping performance at native application speed. It is

mentioned to be the principal technology of Google’s future operating system Fuschia. Flutter is also

beneficial for developers in many ways as it is open-sourced, development tools are cross-platform, and

the prefabricated widgets feature Google’s Material Design and Apple’s Cupertino for rapid application

prototyping (Flutter 2019).

Material Design is a set of ready-made themes and guides on proper application user interface designing.

Each theme presents a complete asset of patterns made in one stylistic manner including fonts, colors,

shapes and specific UI elements as bars, buttons and others. The official documentation provides tutori-

als on proper design techniques for better user impact and more efficient use of application (Mew 2015).

Architecture Components are the most recently introduced development libraries aimed to propagate a

proper application design. It introduces lifecycle-aware components; as said on the official website this

framework would help a developer to manipulate on application components and their lifecycles which

would prevent memory leaks, UI freezes and would overall resolve complications on configuration

changes. The main case of its concern is interaction between application’s User Interface and Data Pro-

cessing layers (Android Architecture Components 2019).

If the functionality of these two aforementioned layers is combined in a non-properly designed solution,

it could result in many issues such as freezing UI, application slowdowns, crashes and others. The solu-

tion designed to resolve this problem is represented in a proper separation of functionality and can be

observed in the figure 5 below.

29

FIGURE 5. Architecture components

Repositories are responsible for data manipulations such as storing, receiving, sending and processing

functions. They can manage different sources as the application can operate with local storage or a re-

mote server.

ViewModels are designed as a bridge that bonds User Interface and Data Management. It is an explicitly

designed class that receives and stores data from data drivers. In the program, it is linked through a

special command to the activity and whenever one survives configuration change, all the data that it

presents is retrieved from the ViewModel. It is also possible to link a single ViewModel to numerous

activities or fragments in order to provide a communication bridge taking the place of more structurally

complex mechanisms as interfaces and callbacks (Fujiwara 2017).

LiveData is a special data holder class that allows linkage between UI elements and a data. Each time

the data that the holder is related to changes, a notification is sent to all the linked observers. The holder

is aware of the life cycle of the linked UI elements and can therefore adapt. If a UI element is destroyed,

LiveData would still continue sending updated information to the element so when it is recreated it will

receive the most recent update. This allows flawless changes in application to take place without a con-

cern of data loss or crashes (Android Developers Documentation 2019).

30

Room Persistency is a library for database manipulation based on SQLite, it includes several helpful

features such as applying SQL commands to the database schema at a compile which allows to fix all

the issues without facing them at a runtime. Moreover, all the operations are executed asynchronously

which allows for the main thread to run independently and not crash application in case of issues related

to accessing the database or the execution on the UI thread. It is designed to be operated in a simplified

way by embedding the database scheme construction into class definitions for further operations on DB

with class defined functions, making this approach more straight forward in an object-based sense. Ad-

ditionally, this technology also makes it simpler to provide support for ViewModels and LiveData tech-

nologies as it can notify the holder if the data inside the database has changed (Android Developers

Documentation 2019).

31

6 Application Development

This chapter covers explanations on different aspects of development strategies and describes certain

complications faced during engineering process. Moreover, a brief listing of the applications and

frameworks that were used in the application is provided.

6.1 Tools

The project was built with an Android Studio version 3.2.2, an official integrated development envi-

ronment, designed by Google and JetBrains, for the purpose of building solutions for Android operat-

ing system. The solution features backwards compatibility allowing to run on devices with minimum

SDK version of 21. The dependencies included are Room Persistency Library version 2.0.0-beta01,

Lifecycle components version 2.0.0-beta01, Material Design version 1.0.0-beta01 and AppCompat Li-

brary version 1.0.0-beta01. All aforementioned tools are related to the AndroidX Extension library.

6.2 Architectural Design Solutions

Architecture components were used as a main solution for data manipulations in the application. All

the operations on database were designed to run asynchronously, so that when User Interface requests

data to display, UI thread would not have to wait for operations to be performed and would rather then

be notified when data is available to display it. This allows for User Interface and data manipulations

to work in parallel which not only results in better performance, but also provides the user with a better

experience due to lack of UI freezes.

Main Room database class is designed as a singleton to ensure that only one connection to the active

database is established at a time (GRAPH 8). The class contains a single instance of the itself and

when a function to get database is executed it checks whether the connection is established and other-

wise creates one.

32

GRAPH 8. Class diagram – Singleton database access class

The main recycler view which displays the user list of entered Entities is configured with two separate

view holders that differ between each other in one single detail, that one provides a storage for image.

When an entity is processed it is validated whether it contains an image and therefore assigned with a

proper View Holder. That solution decreases the amount of memory used during the runtime of the ap-

plication, as image holders are resource-heavy UI elements.

The main application activity contains two fragments, at each point only one fragment is displayed. On

the start of the application two fragments are initiated and until further configuration changes, both are

kept in the memory of the device. This allows for faster UI interaction comparing to the solution with

multiple activities.

An approach featuring interface callbacks was used in both Recycler View Adapters to request frag-

ments, applying them, for further actions on data provided. In case of Entities the RV adapter provides

a possibility to select multiple entities and provides a list of them to the fragment. Categories RV

callback returns a single selected category entry.

Operations on searching and sorting were categorized by the simplicity factor. If an operation would

require only a single parameter searching or sorting then a specially designed Query would be exe-

cuted. If an operation would require both searching and sorting by multiple parameters then a Query

would be created and carried out on the runtime of the application. The explained operations could be

managed internally by modification of Adapter classes but this approach would require a greater

amount of application rework if additional changes would be required to be applied in the future.

Images were stored in the internal memory of the application to provide the user with a possibility to

access them with other applications on the device for any sharing, viewing and other purposes. Con-

cerning the case of application uninstallation, all the data would remain on the device.

33

7 SOFTWARE TESTING

In order to ensure proper application behaviour, functionality and integrity, it is run thorough certain

tests. The results of the tests are evaluated by overall successfulness of execution and by accordance to

the expected output. Experiments can be carried out on the normal flow of the application or can be

forced to stress out the limitations of the solution. For the later product development and upgrade spe-

cific test are usually performed on every feature that is integrated (LaTonya 2015).

7.1 Test Results

Test results are presented below in table 3, each case contains a name and states if the execution was

carried out according to the expected scenario. If the test progressed with some malfunctions or incon-

sistency a remark would be left at column “Comment”.

TABLE 3. Test results

Action Expected Behaviour Test Result Comment

Creation of Category Category is created, added

to the database and dis-

played.

Successful

Creation of Entity Entity is created, added to

the database and displayed.

Successful

Creation of Entity

with Image

Entity is created, if image

is included, it is added to

device storage and dis-

played. A proper adapter

View Holder and card lay-

out is displayed.

Successful

34

Action Expected Behaviour Test Result Comment

Statistics on catego-

ries

Statistic on every category,

including number of enti-

ties, last day of Modifica-

tion.

Successful

Searching by keyword Entities are searched for

matching keyword in ei-

ther Title or Content of

Entity.

Successful

Sorting by Date of

modification

Entities are sorted by latest

modified first.

Successful

Sorting by Date of

creation

Entities are sorted by date

of creation, latest first.

Successful

Sorting by Entities

that include Image

Only Entities containing

images are displayed.

Successful

Sorting by type Spe-

cial

Only Entities of type spe-

cial are displayed.

Successful

Sorting by category Only Entities that belong

to selected category are

displayed.

Successful

Creation of 50 entities

with Images

All entities are created and

displayed to user.

Successful Application does not include

image processing and optimi-

zation therefore all correlated

operations on entities with im-

ages have a delay of approxi-

mately one second inde-

pendently on number of Enti-

ties with images after count of

20 and more of a kind.

35

7.2 Release notes

Studia provides a simple and elegant solution for note keeping. The user can perform any operations

on searching and sorting or simply review previously input entities. Flexible statistics will provide a

current status on development in any category of choice. No issues or complications were found to be

noticed in the current version of the product.

36

8 FURTHER DEVELOPEMENT

Several features are considered for development or improvement in later versions of the application.

Statistics shall be developed to be able to construct and display graphs to present a more vivid analysis

on application usage. A better image processing algorithm should be designed to optimize the response

time of the application. It should be possible for a user to include more than one image to Entity and

therefore a better interface solution, as an image viewer that provides a scrolling behaviour if multiple

images are included, should be implemented.

37

REFERENCES

Android Architecture Components. Android Developers Documentation. 2019. Available:

https://developer.android.com/topic/libraries/architecture. Accessed: 20 March 2019.

Flutter Introduction. Flutter. 2019. Available: https://flutter.dev/. Accessed: 01 June 2019.

Fujiwara, L. 2017. View Models: A Simple Example. Available: https://medium.com/androiddevelop-

ers/viewmodels-a-simple-example-ed5ac416317e. Accessed: 23 May 2019.

Functional and Nonfunctional Requirements: Specification and Types. Altexsoft. 2018. Available:

https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-

and-types/. Accessed: 31 May 2019.

Haase, C. 2019. Google I/O 2019: Empowering developers to build the best experiences on Android +

Play. Available: https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-de-

velopers-to-build-experiences-on-Android-Play.html. Accessed: 31 May 2019.

LaTonya, P. 2015. The Four Levels of Software Testing. Available: https://www.seguetech.com/the-

four-levels-of-software-testing/ Accessed: 19 May 2019.

LiveData Overview. Android Developers Documentation. 2019. Available: https://developer.an-

droid.com/topic/libraries/architecture/livedata. Accessed: 23 May 2019.

Lotz, M. 2018. Waterfall vs. Agile: Which is the Right Development Methodology for Your Project?.

Available: https://www.seguetech.com/waterfall-vs-agile-methodology/ Accessed: 20 March 2019.

Material Design Foundation. Material Design adaptive system of guidelines. 2019. Avaliable:

https://material.io/design/foundation-overview. Accessed: 23 May 2019.

Mew, K. 2015. Learning Material Design: master Material Design and create beautiful, animated inter-

faces for mobile and web applications. Birmingham: Packt Publishing.

Room Persistency Library. Android Developers Documentation. 2019. Available: https://developer.an-

droid.com/topic/libraries/architecture/room.html. Accessed: 23 May 2019.

Sommerville, I. 2016. Software engineering. Harlow Singapore: Pearson.

https://developer.android.com/topic/libraries/architecture
https://flutter.dev/
https://medium.com/androiddevelopers/viewmodels-a-simple-example-ed5ac416317e
https://medium.com/androiddevelopers/viewmodels-a-simple-example-ed5ac416317e
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://www.seguetech.com/the-four-levels-of-software-testing/
https://www.seguetech.com/the-four-levels-of-software-testing/
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://www.seguetech.com/waterfall-vs-agile-methodology/
https://developer.android.com/topic/libraries/architecture/room.html
https://developer.android.com/topic/libraries/architecture/room.html

