

Lukas Dagne

Flutter for cross-platform
App and SDK development

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

01 May 2019

Author
Title

Number of Pages
Date

Lukas Dagne
Flutter for cross-platform App and SDK development

28 pages
10 May 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Jarkko Vuori, Principal Lecturer

Mobile application and SDK development involves informed decision making to select the
most efficient and fitting toolkit for a project. This thesis aims to determine how Flutter UI
toolkit compares to native and other cross-platform options. It investigates the framework’s
internals as well as its overall architecture to identify its strengths and weaknesses as a
competitive cross-platform option.

In contrast to most cross-platform solutions that build on top of native UI frameworks, Flutter
provides its own UI components along with innovative rendering mechanism. As a result,
the framework poses a strong competition towards native development regardless of its
cross-platform aspect.

Based on research and conducted experiments, the author concludes that Flutter is the
perfect choice for cross-platform mobile application and SDK development. Its superior fast
development cycle, smart techniques of accessing platform services and the resulting
smooth user experience makes it stand out.

Some of its weaknesses such as strict and inflexible project structure are outweighed by the
overall systematically layered design of the framework and its openness for external
contributions. Flutter is at its early stage. Therefore, the above arguments only get stronger
as the framework grows.

Keywords App, SDK, Mobile, Flutter, UI toolkit, iOS, Android

Contents

List of Abbreviations

1 Introduction 1

2 Available solutions 2

2.1 Native development 2

2.2 Cross-platform 2

2.2.1 Browser-based solutions 3

2.2.2 Bridging, React Native solution 4

2.3 Advantages of cross-platform solutions 6

2.4 Limitations of cross-platform solutions 6

3 Flutter 7

3.1 Dart 9

3.2 UI Framework 12

3.2.1 Themes 12

3.2.2 Widgets 12

3.2.3 Rendering 14

3.2.4 Dart:ui 15

3.3 Engine 16

3.4 Embedder 16

3.5 Platform Channels 17

4 SDK development 21

5 Building SDKs using Flutter 22

5.1 Flutter project structure 23

5.2 Git submodule 25

5.3 Flutter Attach 26

6 Conclusion 27

References 28

List of Abbreviations

IBM International Business Machines. Information technology corporation.

iOS iPhone Operating System. iPhone and iPad operating system.

UI User Interface. Set of visual elements displayed on screen which user can

interact with.

IDE Integrated Development Environment. A software suite that contains

necessary development tools.

API Application Program Interface. Method of communication between

independent applications or software components.

HTML Hypertext Markup Language. Protocol or set of rules for transferring variety

of files across the world wide web.

CSS Cascading Style Sheets. Description of how HTTP elements are displayed.

DOM Document Object Model. Definition of the logical structure of documents.

fps Frame Per Second. Frequency at which consecutive frames appear on

screen.

I/O Input Output. General term for what a system accepts and produces.

AOT Ahead-of-Time. Pre-compilation of source code to machine code prior to

execution.

JIT Just-in-time. Compilation of source code just before execution.

VM Virtual Machine. A software that’s made to provide all functionalities of a

physical computer or another software.

XML Extensible Markup Language. A self-descriptive language used to transfer

and store data.

JSX JavaScript XML. A preprocessor step that adds XML syntax to JavaScript.

GPU Graphics Processing Unit. A computing unit used to render contents visible

on screens.

GUI Graphical User Interface. A form of user interface using graphical objects.

NDK Native Development Kit. Toolset that lets developers implement using

native code.

GPS Global Positioning System. Satellite based navigation system.

1

1 Introduction

Smartphone applications offer great value for users, developers and businesses.

The early smartphones such as Simon, IBM’s (International Business Machines)

first smartphone introduced in the early 1990s, came with built-in applications (1).

The introduction of App Store, a common place to publish iOS (iPhone Operating

System) applications, in 2008 was a great news for many developers (2). Google

followed this noble idea by creating Android Market later incorporated in Google

Play opening doors to developers and businesses to reach smartphone users with

relative ease (3).

Mobile platforms, in addition to exclusive application stores, offer development

environment, tools and software components that are tied to each platform.

Developers and businesses are required to produce mobile applications tailored for

each platform in order to maximize their audience. Cross-platform development

solutions aim to facilitate production of mobile applications for multiple platforms

from a single codebase. These solutions face different challenges as the

underlying platforms significantly differ in features, design and implementations.

Android and iOS, as the biggest mobile platforms, has been the main targets for

cross-platform solutions. Therefore, the term cross-platform is used to imply

solutions that support the two platforms.

Google introduced Flutter as a portable UI (User Interface) toolkit designed to

assist cross-platform application development (4). By providing its own set of

interface components, rendering mechanism and fast development cycle, the

framework aims to compete with native and cross-platform solutions.

This thesis studies the functionalities of the common cross-platform solutions and

Flutter; the framework’s internals and overall architecture. In the process, it

compares approaches to technical challenges between Flutter, other cross-

platform solutions and native application development. In addition, the thesis

explores Flutter’s usability for SDK (Software Development Kit) development, its

portability to existing iOS and Android projects and the techniques that are

currently available to achieve flexible use of the framework.

2

2 Available solutions

2.1 Native development

Android supports Java and Kotlin programming languages with its own interface

elements and layout techniques along with several IDEs (Integrated Development

Environment) for app development. iOS on the other hand requires apps to be written

using Objective C and/or Swift programming languages using interface elements and

layout techniques provided by Apple inside the Xcode IDE.

The platforms expose exclusive high-level APIs (Application Program Interface) that are

used to implement user interface, I/O (Input output) operations and other features. The

result is a tailored look and feel of applications on each platform that most users has

become accustomed to.

2.2 Cross-platform

The main appeal to cross-platform solutions over native development is minimizing

development team size, time and resources. The other key reason is what motivates

developers and businesses to make these applications in the first place; it is an extension

to their existing websites. Most companies and startups extend their product or service

to mobile applications due to increasing traffic they receive from mobile platforms on their

websites. One example is the company Airbnb (8).

Cross-platform solutions are usually preferred by web developers as most of these

solutions employ web technologies on mobile platforms. Single codebase, hence single

development team for applications that run on multiple platforms, is one of the most

common pitches for cross-platform solutions.

Due to the far-reaching differences between platforms such as iOS and Android, and the

speed at which these platforms grow and evolve, creating cross-platform solution without

compromises is challenging and maybe impossible. From varying programming

3

languages to rendering techniques, there is plenty to unify in order to achieve a cross-

platform application that does not become counterproductive in the long run.

2.2.1 Browser-based solutions

Application development platforms such as Ionic and PhoneGap are utilized to create

cross-platform Web Apps for any mobile platform with a browser. These applications are

built using web technologies such as HTML (Hypertext Markup Language), CSS

(Cascading Style Sheets) and JavaScript running on a WebView of the platform. The

result can be summarized as a modified, app-like, websites that open on mobile

browsers.

Most browser-based solutions have fast deployment cycle. For example, Ionic has a

live deploy feature that allows developers directly send HTML, CSS and JavaScript

updates for bugfixes and missing features without going through App Store (6). In

addition, the familiar web-like project structure is convenient to web developers (see

Figure 1).

Figure 1. Project structure of Ionic application

4

2.2.2 Bridging, React Native solution

Facebook’s React Native achieves common development environment with a bridging

mechanism to produce native components for each platform. Unlike browser-based

solutions, this approach creates a layer above the native APIs, hence allowing

development of platform independent software.

React Native applications are built using JavaScript. Underneath the JavaScript layer lie

a bridge followed by native part of the framework. Native side of React Native framework

contains a RootView and a bridge-interface (written in Objective C for iOS and Java for

Android). The RootView will be a container for all user interface objects in the app. The

bridge-interface serves as an intermediator between the native side of the framework

and the bridge which is written in C and C++.

The heart of React Native, the bridge, forms a bidirectional asynchronous communication

channel between native components inside native frameworks and the JavaScript layer.

This means, when creating an instance of a built-in React Native component (e.g. Text

component), the bridge is responsible for creating the platform specific interface object

(e.g. a subclass of UIView for iOS) with identical/close layout and styling information as

set on the React Native component. User interactions are received in the native

components and propagated to the JavaScript layer via the bridge.

Some interface objects are unique to a platform. For example, UIAlertController which is

used to present actionable and non-actionable popup interface in iOS does not have an

exactly matching counterpart in Android. Android’s famous Toast interface object does

not exist in iOS at all. React Native solves this problem by providing native specific

components that developers can use targeting the particular platform.

Differences are not limited to interface objects. Developers often find themselves in need

of writing platform specific code or importing platform specific libraries which need to be

exposed to the JavaScript layer. React Native offers programming language

annotation/tag, @ReactMetod, in Android and RTC_EXPORT_MODULE and

RTC_EXPORT_METHOD macros in iOS to assist exposing platform specific source

code. An Objective C class is required to conform to the RTCBridgeModule protocol in

5

order to expose its APIs to the JavaScript layer. Listing 2 shows an example of this

custom bridging in iOS. (7)

// CalendarManager.h
#import <React/RCTBridgeModule.h>

@interface CalendarManager : NSObject <RCTBridgeModule>
@end

// CalendarManager.m
#import "CalendarManager.h"

@implementation CalendarManager

// To export the module, CalendarManager

RCT_EXPORT_MODULE();

// Or, to export with different name, e.g. AwesomeCalendarManager

RCT_EXPORT_MODULE(AwesomeCalendarManager);

// To expose methods from the module, e.g. addEvent in CalendarManager

RCT_EXPORT_METHOD(addEvent:(NSString *)name

 location:(NSString *)location) {

 RCTLogInfo(@"Creating event %@ at %@", name, location);
}

@end

Listing 2. Exporting native module and methods to the JavaScript layer (7).

Accessing the above Objective C module from the JavaScript layer via the bridge is

shown in Listing 3.

6

import {NativeModules} from 'react-native';
var CalendarManager = NativeModules.CalendarManager;
CalendarManager.addEvent('Event', 'Location');

Listing 3. Accessing native modules from a JavaScript file (7).

2.3 Advantages of cross-platform solutions

Both browser-based solutions and React-Native’s bridging solution allow developers to

share a single codebase for multiple mobile platforms. In addition, web developers are

able to use their experience in web technologies to develop mobile applications.

Some cross-platform solutions do not need to pass App Store or Google Play approval

in order to deploy HTML, CSS and JavaScript bugfixes and updates.

2.4 Limitations of cross-platform solutions

Different cross-platform solutions have different limitations tied to their approach in

unifying variances of mobile platforms. Browser-based solutions often fail to achieve the

look and feel of native applications due to the wide difference between web interface

components and what is offered natively on mobile platforms.

React Native’s bridge solution on the contrary does not suffer from that, at least not to

the same degree as its underlying interface is made of native components.

However, the approach requires React Native developers to adopt to the frequent

evolution of native components on each platform. Therefore, some React Native projects

are found to have more unshared platform specific implementations in the long run as

pointed out by the Airbnb development team (8). In those cases, the result is a

counterproductive project that is more difficult to maintain as the source code is consisted

of lesser shared code in JavaScript and more growing exclusive native implementations

in Objective C (or Swift) and Java (or Kotlin) for iOS and Android platforms respectively.

7

Performance on complex animations and fast scrolls is another limitation for some cross-

platform solutions. React Native is not necessarily criticized for luck of performance in

practice due to the lightning fast hardware most applications run on these days. Its

asynchronous implementation that dedicates the main thread for user interface

processes helps produce smooth user experience. React Native applications can

achieve indistinguishable user interface by reducing communication via the bridge.

React Native comes with built-in virtual DOM (Document Object Model), light weight

JavaScript objects that represent UI. A smart diff algorithm is used to reconcile this

representation with the latest actual render. After obtaining the list number of steps

needed to achieve the new UI compared to latest drawing, React Native applies only the

necessary modifications. This fastens the rendering process hence improving UI and

user interactions. (9)

However, in theory, initializing the framework’s infrastructure during startup, bridging

between native and JavaScript layer when drawing interface objects and handling user

interactions via the bridge at runtime create inevitable overhead. It is safe to say

therefore, it’s not unusual to see React Native apps that struggle to maintain the 60 fps

(frame per second) standard. The framework’s authors have documented a long list of

optimizations developers need to be aware of in order to minimize some common

performance hits (10).

3 Flutter

Google defines Flutter as a portable UI toolkit for building beautiful natively compiled

applications for mobile, web and desktop from a single codebase (11). Tim Sneath, Group

product manager in Google, similarly defines it as “A powerful general-purpose open UI

toolkit” (12). The built-in support currently is for iOS and Android mobile platforms (see

Figure 2).

8

Figure 2. Flutter application structure

Flutter approaches cross-platform application development in the most radical fashion.

It provides its own set of interface objects, rendering, and an engine that implements

flutter’s animation, graphics, file and network I/O among the many other core libraries

(13).

A flutter project is written in Dart programming language and AOT (Ahead-of-time)

compiled to the native platform architecture, hence achieving uncompromised speed.

At the top level, flutter provides widgets that are composed of many widgets to make the

most common interface objects that we’re used to on iOS and Android platforms.

Because flutter follows an open and layered architecture, developers can make their own

widgets compositing other widgets at any level of the layered architecture. In fact, that is

how the Flutter team made the existing high-level widgets and there is no barrier from

the framework for developers to do the same. This customization flexibility is unmatched

by UI toolkits from either iOS or Android with hierarchical implementations and limited

access levels. (14)

A short summary of how Flutter compares to browser-based solutions and React Native

can be as follows:

• Browser-based solutions use WebView of the platform to render HTML and CSS

• React Native uses native components of the platform via its bridge

• Flutter renders its own user interface on its own canvas and sends it to its own

engine that runs on the platform (see Figure 3).

9

Figure 3. Flutter’s system overview

These layers including the Foundation layer in Dart UI framework also called dart:ui are

discussed in the later sections.

3.1 Dart

To quote Edsger Wybe Dijkstra, “The tools we use have a profound and devious

influence on our thinking habits, and therefore on our thinking abilities” (15). The Flutter

team did not take choosing a programing language for the framework lightly. According

to Eric Seidel (lead of the Flutter team in Google), JavaScript was the first choice and

dozens of other programming languages were considered before the team settled on

Dart, a programming language initially designed for web development (12). Sample source

code written in Dart is shown in Listing 4.

10

The main evaluation criteria when choosing a programming language for the framework

were the author’s, developers’ and end user’s needs (12).

Flutter has a hot reload feature that allows developers to see changes on simulators and

emulators without re-running the application. This is a result of Dart VM (Virtual Machine)

and its different operation modes for debug and release builds.

Dart VM in debug mode is capable of operating in JIT (Just-in-time) compilation mode

dynamically loading and compiling Dart source code to facilitate hot reload, debugging

and other features to enhance fast development cycle. (16)

In release mode, Dart VM serves as a runtime library instead of a virtual machine in the

traditional sense. The Dart source code is AOT (Ahead of Time) compiled and the Dart

VM, as runtime, is used to execute precompiled machine code with fast garbage

collection, dynamic method lookup and more runtime supports. (16)

Some of the critical strengths of Dart are:

• It is type-safe hence preventing disastrous developer mistakes

• Supports AOT and JIT compilation therefore perfect for hot-reload feature

• Its faster than JavaScript

Dart is not the only language that fulfills these requirements. The Flutter team was able

to work closely with the Dart team in Google which made the language a convenient

choice. (12)

Dart has allowed creating interface objects dynamically in code rather than relying on a

rigid markup system. As a result, building custom interfaces is relatively easier in Flutter.

Dart’s ability to allocate objects and perform garbage collection without locks plays a big

role in achieving 60 fps even for complex animations.

11

A simple example of creating an app that displays fixed set of words in a list view is

shown below (see Listing 4). The user interface is created in code as Dart does not

depend on XML (Extensible Markup Language) or JSX (JavaScript XML).

import 'package:flutter/material.dart';

void main() => runApp(App());

class App extends StatelessWidget {
 static const titleText = "Word List";

 @override
 Widget build(BuildContext context) {
 Widget body = Center(child: WordsListWidget());
 Widget homeWidget = Scaffold(
 body: body, backgroundColor: Colors.white
);
 ThemeData theme = ThemeData(primaryColor: Colors.deepPurple);
 return MaterialApp(
 title: titleText, theme: theme, home: homeWidget
);
 }

}

// A List widget for fixed set of `words`
class WordsListWidget extends StatelessWidget {
 final List<String> words = new List<String>
 .generate(10, (i) => "Word $i");

 @override
 Widget build(BuildContext context) => _makeListView(context);

 // Makes fixed list view populated with `words`
 Widget _makeListView(BuildContext context) {
 Iterable<ListTile> tiles = words.map(
 (String pair) => new ListTile(title: Text(pair)));
 List<Widget> rows = ListTile
 .divideTiles(context: context, tiles: tiles).toList();
 return new ListView(children: rows);
 }

}

Listing 4. Dart source code of an app that displays words in a list view

12

3.2 UI Framework

The top-most layer of Flutter is its Dart UI framework. This layer contains themes (which

are widgets), widgets, rendering and the last layer called dart:ui that handles

communication down to the flutter engine as shown in Figure 4. The bottom layer, dart:ui,

serves as a foundation for the rendering and Widgets library (see Figure 3) and is

explored in more detail later.

Figure 4. The Dart UI framework layers

3.2.1 Themes

The framework comes with already made Cupertino (for iOS) and Material (for android)

packages. These packages contain interface elements, colors and gesture behaviors

specific to the theme or the platform since these themes are designed to resemble iOS

and Android platforms. Therefore, in concept, one can implement dynamic setting to

switch between Android and iOS themes on a Flutter app regardless of the actual

platform the application is running on. (17, 18)

3.2.2 Widgets

Widgets are the key and the only interface components of this framework. The concept

of widget is not common to either Android or iOS developers. The term packs much more

13

implications than the widgets recognized e.g. in Android. The Flutter’s documentation

defines it as “the way you declare and construct UI” (17).

They are immutable description of every aspect of what is ultimately drawn on the canvas

including its appearance, content and position. Take the following simple example flutter

app that renders a title at the top (navigation title in iOS or the app bar title in Android)

and a button at the center of the screen in Listing 5.

import 'package:flutter/material.dart';

void main() => runApp(App());

class App extends StatelessWidget {

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text("Sample App"),
),
 body: Center(
 child: MaterialButton(
 onPressed: () {},
 child: Text('Hello'),
 padding: EdgeInsets.only(left: 10.0, right: 10.0),
),
),
);
 }

}

Listing 5. Sample flutter app

The App itself is a subclass of Widget with build method the framework calls to determine

how the widget and its child widgets should be drawn. Another widget is Scaffold which

is an abstraction of the general material design screen with top bar, body and other parts

(19). There is also the Center widget which is used to define its child widget’s position. In

contrary to the most common approach where position is a property of the interface

object (View in Android and UIView in iOS), position in flutter is a Widget that defines its

child’s position, reportedly making rendering position updates much faster (12).

14

Under the hood, tree of widgets is generated and used to draw what should appear on

the screen. In contrast to Android’s View and iOS’s UIView which are mutable and

rendered on screen, Flutter’s widgets are very light objects that compose to form other

widgets and a widget tree.

3.2.3 Rendering

In Flutter’s pipeline lies a fast rendering layer handling layout, paint and composite (see

Figure 5). By avoiding complex layout that requires sophisticated calculations in favor of

much deeper widget trees and relatively modest algorithms, Flutter’s rendering proves

that simple is fast and flexible. It uses very simple box constraint model in comparison to

the typical sophisticated models used in other systems. For example, UIKit (of iOS) uses

linear constraint model with a general-purpose constraint solver. (20)

Figure 5. Flutter pipeline

Modern GPUs (Graphics Programming Unit) are great at compositing. Flutter takes

advantage of this by applying structural repainting using compositing. It invalidates

15

subtrees when repaint is necessary as opposed to the traditional method of tracking

rectangles that are invalid and in need of repainting. (21)

The design principle of flutter’s rendering can be summarized as follows:

• One-pass, linear-time layout and painting

• Simple box constraints, expressive layout

• Structural repainting using compositing

3.2.4 Dart:ui

This layer of the UI framework lies between Flutter’s rendering and the C/C++ engine. It

contains classes such as Canvas, Paint and TextBox. It lays the foundation for building

interface objects. Apps and UI libraries can be made at this layer. In fact, that is what the

Flutter team did to support the framework on the web (see Figure 6).

Most apps targeting either iOS or Android platforms build on top of the higher-level UI

framework layer. App developers will not need to interact with this low-level

implementation directly.

16

Figure 6. Flutter architecture on mobile and web platforms

3.3 Engine

The engine, placed beneath the Dart UI framework, is a portable runtime that hosts flutter

applications. It contains Dart runtime, Skia (an open source 2D graphics library written

in C++), file and network I/O, accessibility support and other core libraries. (22)

This thin layer written in C and C++ is compiled with LLVM on iOS and Android’s NDK

(Native Development Kit). The Dart UI framework and application source code are

compiled to ARM libraries in both platforms and are delegated to process event loop,

rendering and other tasks. This game-like engine implementation yields fluid user

experience regardless of the platform. (14)

Flutter’s engine is window toolkit agnostic; its API (written in C) does not contain platform

specific dependencies and can be found on GitHub (23). Having an engine that has no

dependency on the underlying platform allows creation of custom embedders for

platforms that are not supported out of the box. There are open source libraries that take

advantage of this to provide Windows, macOS and Linux support for the Flutter

framework (24).

3.4 Embedder

Mediating between the engine and the underlying platform is the Embedder (see Figure

7). This layer contains shells (iOS Shell and Android Shell) that host the Dart VM.

Fundamentally the embedder is an implementation of the open source Flutter API (22). It

is responsible for running the Dart VM where precompiled application code executes. It

exposes the native API for services and features that are required by the framework.

Higher-level layers of the Flutter framework; the Dart UI library and the engine are

platform independent because all crucial interactions with native APIs, such as access

to canvas, take place at this layer.

17

Figure 7. The embedder, engine and Dart UI framework of Flutter (25).

3.5 Platform Channels

One of the key challenges cross-platform solutions face is allowing application code to

directly communicate with native APIs. In addition to drawing on screen and processing

user interactions, applications sometimes need to reach for native APIs be it to access

sensors, camera, GPS (Global Positioning System) etc., or to handle deep links,

notifications, app lifecycle and many more.

A naive solution would be wrapping all anticipated interactions with native APIs inside a

cross-platform development framework. However, this would require continuous

maintenance due to the rapid evolution of native APIs. Furthermore, applications would

be forced to contain unused wrappers increasing application size.

Flutter solves the problem by providing platform channels for direct communications with

native APIs (see Figure 8).

18

Figure 8. Flutter platform channels (26).

Flutter’s interface is hosted inside the platform’s standard component. In case of iOS, a

UIViewController instance, flutterViewController, is added to the window at launch.

Executing native code before or after presenting Flutter’s interface is trivial. The platform

specific projects (e.g. .xcodeproj file in iOS) are available inside Flutter’s project structure

and can be opened using the associated IDE (Integrated Development Environment).

19

Platform specific tasks that do not need a Dart API can be implemented natively in the

platform project with no difference to strictly native projects. On the other hand, in cases

where a common Dart API is necessary to native APIs, Flutter channels can be used in

conceptually similar manner as React Native’s bridge.

Flutter channels are used to access platform specific code inside the Flutter framework.

Developers are responsible to selectively expose the native APIs they need in two steps.

• Define the Dart API that sends message to the platform implemented in

services.dart package

• Expose the native API using Flutter’s FlutterMethodChannel implemented

natively on each platform

This prevents Flutter from containing unnecessary, unused or even outdated wrappers.

A simple example of creating asynchronous getter for device battery level is shown in

Listing 6. Native implementations are required via the platform channel.

// The Dart API

import 'dart:async';
import 'package:flutter/services.dart';

Future<void> _getBatteryLevel() async {
 String batteryLevel;

 try {
 final int result = await platform
 .invokeMethod('getBatteryLevel');
 batteryLevel = 'Battery level at $result % .';
 } on PlatformException catch (e) {
 batteryLevel = "Unavailable: '${e.message}'.";
 }

}

Listing 6. Asynchronous getter that accesses native API (26).

20

The following code shows Swift implementation that exposes device battery level to a

Dart API using FlutterMethodChannel (see Listing 7).

// Dart API native implementation for iOS (Swift)

@UIApplicationMain

@objc class AppDelegate: FlutterAppDelegate {

 override func application(

 _ application: UIApplication,

 didFinishLaunchingWithOptions

 launchOptions: [UIApplicationLaunchOptionsKey: Any]?)

 -> Bool {

 let controller : FlutterViewController =

 window?.rootViewController as! FlutterViewController

 let batteryChannel = FlutterMethodChannel(

 name: "samples.flutter.io/battery",

 binaryMessenger: controller)

 batteryChannel.setMethodCallHandler { [weak self]

 (call: FlutterMethodCall, result: FlutterResult) in

 guard call.method == "getBatteryLevel" else {

 result(FlutterMethodNotImplemented)

 return

 }

 self?.receiveBatteryLevel(result: result)

 }

 GeneratedPluginRegistrant.register(with: self)

21

 return super.application(

 application,

 didFinishLaunchingWithOptions: launchOptions)

 }

 private func receiveBatteryLevel(result: FlutterResult) {

 let device = UIDevice.current

 device.isBatteryMonitoringEnabled = true

 if device.batteryState == .unknown {

 result(FlutterError(code: "UNAVAILABLE",

 message: "unavailable",

 details: nil))

 } else {

 result(Int(device.batteryLevel * 100))

 }

 }

}

Listing 7. Exposing iOS native API to Dart framework via platform channel (26).

This approach has more advantages. It allows separating platform specific code from

application code therefore encouraging developers to create Dart APIs backed by

Kotlin/Java and Swift/Objective C implementations that can be shared across

applications as plugins. It is a good idea to look for existing plugins before implementing

one and sharing these plugins with other developers.

4 SDK development

The acronym, SDK, for most mobile application developers is tied to the Android SDK

and the iOS SDK that are used to make applications on the platforms.

22

As the unabbreviated name embraces, SDK is set of software components packed

together to aid developers in using a certain system or service. The Firebase SDK for

example helps developers easily access services provided by Firebase such as

authentication and remote database (27). A company called Stripe has mobile SDKs for

different platforms offering set of UI components and tools to help developers integrate

Apple pay and credit card payment systems with relative ease (28). There are many

examples of such services that offer SDKs for the end user; app developers.

Unlike application development, SDK development requires designing and implementing

software components that can be integrated in many apps regardless of applications

project structure and other domain specific assumptions.

React Native understandably requires developers to integrate such SDKs for each

platform separately. Afterall, it is native under the hood and there is no dissimilarity as

opposed to doing the same on native projects.

Platform SDKs that provide UI components among other tools are less straightforward

to integrate with Flutter applications. SDK authors can increase the popularity of their

product by implementing separate dedicated SDKs for Flutter. From the perspective of

SDK authors, Flutter is another platform and they need an additional implementation of

their SDKs for developers. For SDKs that require native APIs, providers may find it easy

to incorporate Dart API along with the native implementations as templates or integration

instruction.

5 Building SDKs using Flutter

As the number of Flutter applications on production grow, SDK providers will need to

consider supporting these applications in the most optimized and efficient manner. The

Flutter team and community on the other hand can support the effort by providing

templates and command line tools that can be used to easily create SDKs for Flutter

applications.

23

5.1 Flutter project structure

Flutter has a strict project structure. The command flutter create generates a starter

project with small sample code. The latest versions of IDEs such as Android Studio,

IntelliJ and Visual Studio Code have Flutter plug-ins that need to be installed for Flutter

app development. These IDEs with Flutter plug-ins provide GUI (Graphical User

Interface) to create a starter project (see Figure 9).

Figure 9. Flutter project generated in Android Studio

Flutter projects generated using these quick tools come with a heavily opinionated

project structure that makes Flutter the center of the application (29). This structure is

integral to properly execute application code hence making attempts to modify and

customize the project structure is rather unpleasant.

This sturdy structure, in addition to luck of convenience for SDK authors, makes

integrating Flutter to existing iOS and Android applications a less straightforward task.

Inside flutter applications are folders named `ios ` and `android` containing each

platform’s runner project (see Figure 10). As a simple example of lucking structure

flexibility, attempting to rename the iOS generated project from its default name

24

`Runner.xcodeproj` to something more custom such as `MyApp.xcodeproj` is nearly

impossible (30).

Figure 10. Xcode project generated by flutter create command

A conventional method of adopting new technologies is integrating and testing with

existing solutions until benefits of complete replacement is proven. This also gives

developers the necessary time to familiarize themselves with the ins and outs of the

technology.

There has been recent effort to simplify integration of Flutter framework to existing

Android and iOS projects (29). This currently in progress effort could allow developers to

easily implement their new features in Flutter while gradually migrating their existing

native applications.

25

5.2 Git submodule

Git submodule is a convenient tool to assist integration of Flutter framework to existing

iOS and Android applications.

It is one of the easiest techniques to manage local dependencies. It has a simple

command, git submodule add, to add repositories as dependency. The command, git

submodule update -- init -- recursive, updates existing submodules to latest commits and

initializes missing submodules.

Flutter applications in addition to the framework contain iOS and Android source code

and other generated files. Git submodules can be used to separate these into three

repositories adding the iOS and Android repositories as submodules of the Flutter

repository.

Flutter project structure makes the following assumptions:

• The application folder names for iOS and Android projects are ̀ ios` and ̀ android`

respectively

• The main android module is named `app` and the iOS runner project is named

`Runner.xcodeproj`

It’s necessary to rename existing projects appropriately to match these assumptions.

Due to the immaturity of the current version of Flutter, other different project specific build

settings that should be modified for a successful integration will very likely break in

upcoming Flutter releases.

Once embedding Flutter in an existing project, displaying the first Flutter interface is the

next step. In Android projects, Flutter requires the Application class to extend

FlutterApplication and in iOS projects, AppDelegate to conform to the protocol

FlutterAppDelegate.

26

Interface objects, FlutterActivity in Android and FlutterViewController in iOS can then

be displayed on screen using startActivity and present APIs in Android and iOS

respectively. Listing 1 demonstrates the steps for an Android project. (22)

// Create a Flutter activity
class MyFlutterActivity : FlutterActivity() {
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 GeneratedPluginRegistrant.registerWith(this)
 }
}

<!—Register the activity-->
<activity
android:name=".MyFlutterActivity"
android:launchMode="singleTop"
android:configChanges="orientation|keyboardHidden|keyboard|screenSize|locale|layoutDirect
ion|fontScale"
android:hardwareAccelerated="true"
android:windowSoftInputMode="adjustResize">
<meta-data
 android:name="io.flutter.app.android.SplashScreenUntilFirstFrame"
 android:value="true" />
</activity>

// Finally display the activity
startActivity(Intent(this, MyFlutterActivity::class.java))

Listing 1. Displaying Flutter interface on Android application

5.3 Flutter Attach

Flutter Attach is an open source project currently working on simplifying the integration

of Flutter to existing iOS, Android and Xamarin projects (31). The project aims to simplify

attaching existing projects as modules of Flutter template project.

This method strongly relies on the existing iOS and Android project’s structure. The first

version for example is designed to comply with an iOS project structure generated in

Xcode 10.0. Therefore, developers and maintainers need to actively keep up with project

structure modifications that come from IDE updates.

27

6 Conclusion

The goal of this thesis is to offer a comprehensive overview of Flutter UI toolkit and

explore the framework’s potential for cross-platform SDK and application development.

The thesis concludes that Flutter is a strong choice for application development and this

argument only gets stronger as its internal technologies mature. Its use for SDK

development is less mature and using it with existing iOS and Android projects is not

straightforward due to its rigid project structure at the time of writing. However, the Flutter

team and the open source community are working to remove this obstacle and SDK

authors and application developers can follow and contribute to the progress.

As a cross-platform solution, Flutter’s approach to achieving single codebase for multiple

platforms is successful without most of the compromises its competitors including React

Native suffer from.

In fact, the revolutionary technologies of Flutter’s internals and the fast development

cycle it introduces makes it a competitive choice over native development regardless of

its cross-platform aspect. Its unique rendering techniques and layered architecture

makes it an easy choice for innovative interface and animation implementations. The

choice of avoiding inheritance in favor of composition at every layer of the framework

opens an unpredictable exciting use cases of its components.

There is no doubt that Flutter is exciting for developers and a great choice for businesses.

The author of this thesis has learned more about Flutter, React Native and other cross-

platform solutions during this research and a number of helpful experimental projects

were made with plans to use and contribute to the framework in the future.

28

References

1. Simon

URL: https://www.microsoft.com/buxtoncollection/detail.aspx?id=40

Accessed 28 March 2019

2. The App Store turns 10

URL: https://www.apple.com/newsroom/2018/07/app-store-turns-10

Accessed 28 March 2019

3. Introducing Google Play: All your entertainment, anywhere you go

URL: https://googleblog.blogspot.com/2012/03/introducing-google-play-all-

your.html

Accessed 28 March 2019

4. Flutter

URL: https://flutter.dev

Accessed 28 March 2019

5. Why Airbnb is moving off of React Native

URL: https://softwareengineeringdaily.com/2018/09/24/show-summary-

react-native-at-airbnb/ Accessed 1 May 2019

6. Deploy

URL: https://ionicframework.com/docs/appflow/deploy/intro

Accessed 15 May 2019

7. Native Modules

URL: https://facebook.github.io/react-native/docs/native-modules-ios

Accessed 25 April 2019

8. React Native at Airbnb

URL: https://medium.com/airbnb-engineering/react-native-at-airbnb-

f95aa460be1c Accessed 25 April 2019

https://www.microsoft.com/buxtoncollection/detail.aspx?id=40
https://www.apple.com/newsroom/2018/07/app-store-turns-10
https://googleblog.blogspot.com/2012/03/introducing-google-play-all-your.html
https://googleblog.blogspot.com/2012/03/introducing-google-play-all-your.html
https://flutter.dev/
https://softwareengineeringdaily.com/2018/09/24/show-summary-react-native-at-airbnb/
https://softwareengineeringdaily.com/2018/09/24/show-summary-react-native-at-airbnb/
https://ionicframework.com/docs/appflow/deploy/intro
https://facebook.github.io/react-native/docs/native-modules-ios
https://medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c
https://medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c

29

9. React’s diff algorithm

URL: https://calendar.perfplanet.com/2013/diff/

Accessed 25 April 2019

10. Performance

URL: https://facebook.github.io/react-native/docs/performance

Accessed 25 April

11. Flutter

URL: https://flutter.dev

Accessed 20 May 2019

12. “Flutter: How we’re building a UI framework for tomorrow in Google” by Eric

Seidel (Lead of Flutter team at Google)

URL: https://www.youtube.com/watch?v=VUiVkDpikDI

Accessed 16 April 2019

13. The Engine Architecture

URL: https://github.com/flutter/flutter/wiki/The-Engine-architecture

Accessed 20 April 2019

14. FAQ

URL: https://flutter.dev/docs/resources/faq

Accessed 20 April 2019

15. Edsger W. Dijkstra (2012). “Selected Writings on Computing: A personal

Perspective”, p.129, Springer Science & Business Media

https://calendar.perfplanet.com/2013/diff/
https://facebook.github.io/react-native/docs/performance
https://flutter.dev/
https://www.youtube.com/watch?v=VUiVkDpikDI
https://github.com/flutter/flutter/wiki/The-Engine-architecture
https://flutter.dev/docs/resources/faq

30

16. Introduction to Dart VM

URL: https://mrale.ph/dartvm/

Accessed 16 April 2019

17. Flutter for Android developers

URL: https://flutter.dev/docs/get-started/flutter-for/android-devs

Accessed 20 April 2019

18. Flutter for iOS developers

URL: https://flutter.dev/docs/get-started/flutter-for/ios-devs

Accessed 20 April 2019

19. Scaffold class

URL: https://api.flutter.dev/flutter/material/Scaffold-class.html

Accessed 12 April 2019

20. Rendering in Flutter

URL: https://flutter.dev/docs/resources/rendering

Accessed 12 April 2019

21. Flutter Rendering Pipeline (GoogleTechTalks)

URL: https://www.youtube.com/watch?v=UUfXWzp0-DU

Accessed 12 April 2019

22. Flutter Engine

URL: https://github.com/flutter/engine#architecture-diagram

Accessed 16 April 2019

https://mrale.ph/dartvm/
https://flutter.dev/docs/get-started/flutter-for/android-devs
https://flutter.dev/docs/get-started/flutter-for/ios-devs
https://api.flutter.dev/flutter/material/Scaffold-class.html
https://flutter.dev/docs/resources/rendering
https://www.youtube.com/watch?v=UUfXWzp0-DU
https://github.com/flutter/engine#architecture-diagram

31

23. Engine

URL:

https://github.com/flutter/engine/blob/080fbcb1759e5916f0d6cdcdfd945c05

3320e6b3/shell/platform/embedder/embedder.h

Accessed 16 April 2019

24. Desktop Embedding for Flutter

URL: https://github.com/google/flutter-desktop-embedding

Accessed 17 April 2019

25. How Flutter Works

URL: https://buildflutter.com/how-flutter-works/

Accessed 17 April 2019

26. Writing custom platform-specific code

URL: https://flutter.dev/docs/development/platform-integration/platform-

channels

Accessed 17 April 2019

27. Firebase SDK

URL: https://opensource.google.com/projects/firebase-sdk

Accessed 20 April 2019

28. iOS Integration

URL: https://stripe.com/docs/mobile/ios

Accessed 20 April 2019

29. Integrating Flutter into an Existing App – Part One: Flutter with Submodule

URL: https://medium.com/@tpolansk/integrating-flutter-into-an-existing-

app-part-one-flutter-with-submodules-9b633ff3cf10

Accessed 2 March 2019

https://github.com/flutter/engine/blob/080fbcb1759e5916f0d6cdcdfd945c053320e6b3/shell/platform/embedder/embedder.h
https://github.com/flutter/engine/blob/080fbcb1759e5916f0d6cdcdfd945c053320e6b3/shell/platform/embedder/embedder.h
https://github.com/google/flutter-desktop-embedding
https://flutter.dev/docs/development/platform-integration/platform-channels
https://flutter.dev/docs/development/platform-integration/platform-channels
https://opensource.google.com/projects/firebase-sdk
https://stripe.com/docs/mobile/ios
https://medium.com/@tpolansk/integrating-flutter-into-an-existing-app-part-one-flutter-with-submodules-9b633ff3cf10
https://medium.com/@tpolansk/integrating-flutter-into-an-existing-app-part-one-flutter-with-submodules-9b633ff3cf10

32

30. Would like to be able to change ios/Runner.xcodeproj to

ios/MyName.xcodeproj #9767

URL: https://github.com/flutter/flutter/issues/9767

Accessed 12 April 2019

31. Add Flutter to existing apps

URL: https://github.com/flutter/flutter/wiki/Add-Flutter-to-existing-apps

Accessed 15 May 2019

https://github.com/flutter/flutter/issues/9767
https://github.com/flutter/flutter/wiki/Add-Flutter-to-existing-apps

	1 Introduction
	2 Available solutions
	2.1 Native development
	2.2 Cross-platform
	2.2.1 Browser-based solutions
	2.2.2 Bridging, React Native solution

	2.3 Advantages of cross-platform solutions
	2.4 Limitations of cross-platform solutions

	3 Flutter
	3.1 Dart
	3.2 UI Framework
	3.2.1 Themes
	3.2.2 Widgets
	3.2.3 Rendering
	3.2.4 Dart:ui

	3.3 Engine
	3.4 Embedder
	3.5 Platform Channels

	4 SDK development
	5 Building SDKs using Flutter
	5.1 Flutter project structure
	5.2 Git submodule
	5.3 Flutter Attach

	6 Conclusion
	References

