

Niklas Kuusisto

Development of a Multi-Platform
Dictionary Application

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Bachelor’s Thesis

22 May 2019

 Abstract

Author
Title

Number of Pages
Date

Niklas Kuusisto
Development of a Multi-Platform Dictionary Application

38 pages
22 May 2019

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of Department
Pasi Kråknäs, Head of Training

The goal of this thesis was to develop a multi-platform dictionary application, which works
both on modern smartphones and web browsers. The application was developed for NRC
Group Finland, which is a company specialised in design, construction and maintenance of
railway infrastructure in Finland.

The translation application was developed using the Ionic framework and allows users to
translate railway-specific vocabulary from one language to another. The dictionary of the
application is saved in a SQL database, which is accessed using a RESTful API developed
with Pythons Flask framework. The vocabulary of the application can be updated with new
vocabulary, or existing vocabulary can be changed using a web-based management
interface, developed using the Angular framework.

The thesis presents the technologies used during the development of the application, such
as the Angular, Ionic and Flask frameworks. The thesis also explains the reason these
frameworks were used to develop the different parts of the application.

The result of the thesis was an application that succeeded in fulfilling most requirements.
However, due to time restraints the application could not be developed far enough to fulfill
all of them. Development of the application was continued after the completion of this thesis.

Keywords Ionic, Angular, Flask, I18n, ADAL JS

 Abstract

Tekijä
Otsikko

Sivumäärä
Aika

Niklas Kuusisto
Development of a Multi-Platform Dictionary Application

38 sivua
22.5.2019

Tutkinto Insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka (AMK)

Ammatillinen pääaine Ohjelmistotekniikka

Ohjaajat

Janne Salonen, Yliopettaja
Pasi Kråknäs, Koulutuspäällikkö

Opinnäytetyön tavoitteena oli kehittää monialustainen sanakirjasovellus, joka toimii
moderneissa älypuhelimissa, sekä verkkoselaimessa. Työn toimeksiantajana on NRC
Group Finland Oy, joka on infrahankkeiden suunnittelutoimisto, rakennusliike ja
kunnossapitoyritys.

Sanakirjasovellus kehitettiin käyttäen Ionic-kehityskehystä. Käännössovellus mahdollistaa
rautatiespesifisen sanaston kääntämisen kieleltä toiselle, esimerkiksi suomesta englanniksi.
Sanakirjasovelluksen sanasto on tallennettu SQL-relaatiotietokantaan, jota voidaan
hallinnoida Flask-kehityskehyksellä luodulla REST-rajapinnalla. Sanakirjasovelluksen
hallintaa varten luotiin Angular-kehityskehyksellä verkkopohjainen hallinnointisivu, jossa
sanakirjasovelluksen sanastoa voidaan täydentää, muuttaa tai poistaa sovelluksen
valmistumisen jälkeen.

Opinnäytetyödokumentti käy läpi opinnäytetyössä käytetyt sovelluskehitysteknologiat, kuten
Angular-, Ionic- ja Flask-kehityskehykset. Opinnäytetyödokumentissa selitetään myös, miksi
sovelluksen eri osa-alueissa päädyttiin käyttämään tiettyjä sovelluskehityskehyksiä.

Opinnäytetyön lopputuloksena syntyi sovellus, joka täytti suurelta osin sille annetut
vaatimukset. Ajanpuutteen vuoksi sovellusta ei voitu keittää niin pitkälle, että kaikki sille
annetut tavoitteet olisi saavutettu. Sovelluksen kehittämistä jatkettiin opinnäytetyön
valmistumisen jälkeen.

Avainsanat Ionic, Angular, Flask, I18n, ADAL JS

Contents

Glossary

1 Introduction 1

2 Background 1

2.1 Basis for the Application 1

2.2 Requirements 2

2.3 Technology 3

2.3.1 Angular 3

2.3.2 Cordova 5

2.3.3 Ionic Framework 6

2.3.4 Flask 7

2.3.5 MySQL 8

2.4 Theory 8

2.4.1 Model View Controller 8

2.4.2 Single Page Application 9

2.4.3 Hybrid Application Development 10

3 Design and Architecture 11

3.1 Application Architecture 11

3.2 Application design 12

3.3 Software stack 13

4 Application Development 14

4.1 Development environment 14

4.2 NRC Translator 16

4.2.1 Structure 16

4.2.2 Theming Ionic Components 17

4.2.3 Adding Internationalization 18

4.3 Management Interface 21

4.3.1 Creating an Angular Project 21

4.3.2 Structure 22

4.3.3 Setup and Angular Material 22

4.3.4 Angular Router 24

4.3.5 HTTP requests 25

4.3.6 Angular Material Table 25

4.3.7 Angular Material Dialog 28

4.3.8 Adding Authentication 29

4.4 Flask Back End 32

4.4.1 Blueprints and routes 32

4.4.2 Database and models 33

4.4.3 Authentication 34

5 Summary 34

References 36

Glossary

AJAX Asynchronous JavaScript and XML. Technique used to create

asynchronous web applications.

API Application Programming Interface.

CLI Command-line Interface. A means of interacting with a computer where the

user uses text commands to issue orders.

CORS Cross-Origin Resource Sharing.

CSS Cascading Style Sheets. Language for describing the presentation of a

document written in HTML.

CSV Comma-separated values. A filetype that uses a comma to separate

values.

DBMS Database management system. Software for maintaining, querying and

updating data and metadata in a database.

DI Dependency Injection. A technique whereby one object supplies the

dependencies of another object.

DOM Document Object Model. API that treats an HTML document as a tree

structure.

HTML Hypertext Markup Language. Markup language used for creating web

pages.

HTTP Hypertext Transfer Protocol.

JSON JavaScript Object Notation. Human-readable way to transmit JavaScript

objects.

ORM Object-relational mapping. The set of rules for mapping objects in a

programming language to records in a relational database, and vice versa.

OS Operating System. The low-level software that supports a computer's basic

functions, such as scheduling tasks and controlling peripherals.

REST Representational State Transfer.

SPA Single Page Application.

SQL Structured Query Language. A language designed for managing data held

in a relational database.

UI User Interface. A visual interface to allow a user to operate software to

produce a desired result.

URL Uniform Resource Locator.

1

1 Introduction

Every industry has industry-specific terminology and jargon, which is used in day to day

communication. These consist of words, phrases, and abbreviations, which are used to

describe industry tools, tasks, and standards and communicate more conveniently in

industry-specific subjects [1]. Vocabulary is usually learned over the years while working

in a specific industry from co-workers or during training. This means that new-comers

and people not familiar with the industry can have a hard time communicating about

industry topics without the knowledge of industry-specific vocabulary. Additionally, the

terminology is usually not the same between different languages, which means that

translating documents with industry-specific terminology in them can cause problems.

Different industries usually have dictionaries with industry-specific terminology listed in

them. However, these dictionaries typically do not include jargon in them and can

become outdated as industry standards develop.

The purpose of this thesis was to develop a mobile-friendly dictionary application, called

NRC Translator for NRC Group Finland, which would allow employees of the company

quickly find the meaning of railway-specific vocabulary and to translate terminology from

one language to another. The thesis will address the background, development, and

technologies used in the translation application.

2 Background

2.1 Basis for the Application

During the Metropolia University of Applied Sciences Innovation Project, a proof of

concept of the dictionary application was created. The purpose of this proof of concept

was to investigate the feasibility and general structure of the dictionary application. The

application developed during this thesis is built on the proof of concept.

The Ionic framework was used to develop the front end of the proof of concept

application. The proof of concept consisted of 3 views: Home, Item, and Settings. The

home view is the main view of the application and is responsible for language choices

2

and listing search results. In addition, users navigate to other views using the home view.

The item view contains the details of each translation, such as the original word in the

source language, the translation in the target language, a description, and an example,

if available. The settings view allows the user to download a local copy of the dictionary,

to enable an offline mode, and to limit the search results to 50 entities.

Image 1. Screenshots of the proof of concept Android application

As the proof of concept was built with the Ionic framework, the application allowed for an

Android application to be built on the same code base as the web application.

Screenshots of the user interface (UI) of the proof of concept application can be seen in

Image 1.

2.2 Requirements

This thesis aimed to develop an easy-to-use application that is usable on modern

smartphones. The UI of the application should be as simple as possible to use and be

available in both English and Finnish.

The dictionary of the application should be easy to maintain so that words and languages

can be added without additional development. To satisfy this requirement, a separate

3

administration tool needed to be developed, to manage the application once

development was completed. It should be possible to add, view, edit and delete words

and languages using the management interface. Additionally, the management interface

should accept the upload of new words via CSV files.

Another requirement of the application was to restrict access to the application. Only

employees of the company should be allowed access to the application. To achieve this

requirement, the identity of users would need to be verified before users are granted

access to the application. Access rights to the application would also need to be

removed from users who have left the company.

2.3 Technology

2.3.1 Angular

Angular is an open-source web application framework primarily developed by Google. It

was initially released in September of 2016 as Angular 2 but was renamed Angular due

to confusion among developers [2]. Angular is one of the most popular front-end

frameworks in 2019 and is mentioned in 59% of enterprise full-stack developer job

postings. However, recent data suggests that other front-end frameworks like React and

Vue are shrinking its market share due to their growing popularity [3]. This change in

Angular’s popularity is illustrated in Figure 1.

Figure 1. Interest over time in Angular, React and Vue in Google web searches 2014 – 2019 [4]

4

Angular is written in TypeScript, which is an open-source programming language

developed and maintained by Microsoft. Made public in October of 2012, it was designed

for the development of large-scale applications. Once compiled, Typescript compiles into

JavaScript and the language is a typed superset of JavaScript. TypeScript being a typed

subset of JavaScript means that programs written in JavaScript are automatically already

TypeScript programs. The advantages TypeScript has over JavaScript has been the

addition of a built-in module system, static type checking, classes, interfaces and

generics [5].

The basis of Angular applications are NgModules. Angular applications are defined by

a set of NgModules and have at least one NgModule as a root module, usually called

AppModule. The root module is responsible for bootstrapping the application,

meaning it loads the rest of the application. NgModules consolidate components,

directives, and pipes into distinct blocks of functionality, helping keep the project

structure lean and concise. In addition, NgModules are used to add services to the

application and are TypeScript classes marked with the @NgModule decorator [6]. An

example of an NgModule can be seen in Figure 2.

Figure 2. Code snippet of Angular CLI created root NgModule [7].

The UI of an Angular application is built by using Angular Components. These are

TypeScript classes with the @component decorator and control a patch of the screen

called a view. The actual appearance of the view is defined in the template and style

5

sheet of a component, while the view logic, such as data and event binding are defined

inside the component class. The template of a component is a form of HTML that is then

altered based on the logic and state of the application [8].

While an Angular Component’s role is to handle view-related functionality, angular

supports creating Service classes, to which certain tasks can be delegated, such as

fetching data from the backend, logging data and validating user input. This way

developers can keep view related tasks separate from data processing, and reuse

services in other components should the need arise. Defining a TypeScript class as a

Service happens with the use of the @Injectable decorator.

Dependency Injection or DI happens with the use of the @Injectable decorator. The

@Injectable decorator can be used to register the Service at a certain level, such as

root. Defining the Service as root level makes it available from everywhere in the

application. Services can also be provided at specific Modules or Components, by adding

the Service to the provider’s property in a Modules @NgModule decorator or a

Components @Component decorator [9]. An example of an Angular Service can be

seen in Figure 3.

Figure 3. Code snippet of an Angular Service [10].

2.3.2 Cordova

Apache Cordova is an open-source mobile development framework released in 2009.

Cordova allows the development of hybrid mobile applications with HTML, CSS, and

JavaScript. Cordova works by creating a Native WebView component that displays the

6

application’s HTML, CSS and JavaScript. This way a multiplatform application can be

developed with the same code base for each platform. Access to the device’s native

functions, such as the camera or storage, is done via Cordova Plugins, which are

translated to the device’s Native OS API calls [11]. A Diagram of the Architecture of a

Cordova application can be seen in Figure 4.

Figure 4. Diagram of the architecture of a Cordova Application [12]

2.3.3 Ionic Framework

Ionic Framework is an open source mobile UI toolkit for developing cross-platform

applications for iOS, Android, and the web. Ionic provides a library of UI components,

with which developers can build hybrid applications with HTML, CSS, and JavaScript.

Ionic components use Angular as their base and allow access to native features such as

the camera, the GPS, and storage via Cordova plugins. Ionic 4, which came out in

January of 2019, adds integration support for Vue and React as frontend frameworks.

Ionic Components are high-level building blocks that developers can use to create

mobile-friendly UI elements, such as cards, lists and tabs. Ionic Components usually

have HTML elements to define the position in the view and API methods to change the

properties of the element. Ionic Components have a prebaked style but can be easily

themed with the use of CSS properties. Additionally, Ionic components can change their

7

look and behavior based on what platform the application is running on (see Image 2)

[13].

Image 2. Illustration of iOS and Android platform styles differences, while using the same code
base in both platforms.

2.3.4 Flask

Flask is a web framework for the Python programming language. It was initially released

in 2010 as an April fool’s joke. It is designed to be a microframework, meaning that it

provides tools to create API routes without the need to import a large number of libraries

and dependencies to start development. While the core of the Flask framework lacks

features such as database abstraction and form validation, it supports the addition of

extensions that add additional functionalities. The result of this design principle is a

framework that only requires minimal setup to create a simple web application [14]. An

example of a simple Flask application can be seen in Listing 1.

from flask import Flask

app = Flask(__name__)

8

@app.route("/")

def hello():

 return "Hello World!"

if __name__ == "__main__":

 app.run()

Listing 1. Flask web application that prints “Hello World”

2.3.5 MySQL

MySQL is an open source relational database management system and is free to use

under the GNU General Public License. Developed by Oracle, it is currently the world’s

most used database [15,16]. Relational databases such as MySQL store similar data

into tables. Tables contain individual entries, that are called rows. Each row has fields,

which contain the data about the record, such as the ID and Name. Each individual row

must contain a unique identifier also called a primary key, which is used to identify each

individual record [17]. Fields can also contain a reference to the primary key of a row in

another table. These references are called foreign keys.

2.4 Theory

2.4.1 Model View Controller

The Model View Controller (MVC) pattern is an architectural pattern that aims to separate

the UI (View) from the underlying application logic (Controller) and application data

(Model). The advantage of using the MVC pattern is that software components that abide

by its standards are modular and more easily reusable [18]. Components that are

separate from each other are easier to replace or change, without the need to do

significant changes to the other components of the application. A diagram of the different

MCV components can be seen in Figure 5.

 The views of the application, which are the part that the user sees and interacts with,

should only contain logic for passing the users commands to the controller and updating

itself based on the data received from the controller, or based on the changes in the

model.

9

Controllers should be restricted to accepting input from either the view or the model,

converting it to commands readable by the rest of the application, and passing it on to

either the view or model. An example of this would be to accept new data from the view,

validating that the new data is correct and passing commands to the model to update

itself according to the received data.

The model of the application is responsible for the data. Such as the data’s structure,

making changes to it and how it is saved/retrieved. Depending on the implementation it

might also validate the instructions passed to it from the controller. The model of an

application might be the classes that define the different types of products of an online

shop and an SQL Database where data on the products is stored [19].

Figure 5. Diagram of interactions between the different MVC components and the user [20]

2.4.2 Single Page Application

Single Page Applications (SPA) are web applications that load in a single HTML page,

which is then updated according to the user’s actions with the use of AJAX calls.

Traditional web applications render a new web page every time a user sends a request

to the server. In single page applications, AJAX requests return data to the client, which

is then added to the client page using DOM manipulation (see Figure 6.).

10

Single page applications are more fluid and responsive as the browser does not need to

render an entirely new web page on each page reload. Single page applications also

separate view logic from the application logic making it easier to adhere to the MVC

pattern, gaining it the advantages that adhering to it brings [21].

The disadvantage of single page applications is that the loading of the initial application

takes longer due to the increased size of the web page. Single page applications are

more vulnerable to cross site scripting (XSS) attacks. The user’s browser must also

support the use of JavaScript for SPA’s to work, as JavaScript is used to edit the content

of the page [22].

Figure 6. Diagram comparing the lifecycle of a traditional web application to an SPA [21].

2.4.3 Hybrid Application Development

Hybrid applications are applications that are developed using with programming

languages, such as HTML, CSS, and JavaScript, but can be deployed to run on multiple

11

devices, such as Android, IOS and Windows Phone. This way an application can be

developed for various native devices with less development time and less development

expertise needed.

Hybrid development also has some disadvantages compared to developing strictly to a

specific platform. While a hybrid application can be developed for different platforms such

as Android and iOS with the same codebase, the user interface guidelines for different

platforms might be different. This means that an interface developed for a certain

platform such as Android cannot be directly ported to another platform such as iOS, due

to the platform specific guidelines. UI components that work on a certain platform might

also be unavailable or work differently on other platforms. Applications developed purely

with a single platform in mind also have better performance [23].

3 Design and Architecture

3.1 Application Architecture

The architecture of the translation application was designed to fulfill the requirements as

specified in chapter 2.2. The entire application consists of three distinct components: The

translation app, the management interface, and the back end. The function of each

component is described below. A diagram of the application architecture can be seen in

Figure 7.

The translation app is user-facing part of the application. Its purpose is to allow users to

search for translations for certain industry-specific words on their mobile devices and

desktop machines. This is done via the native Android application or the Web-based app.

The management interface’s purpose is to allow create, read, update and delete (CRUD)

operations on the dictionary of the application. Administrators of the application can use

this interface to view, add, edit and delete individual words and languages of the

application. This component was created, to keep the management of the dictionary

application separate from the translation app.

12

The back end of the application consists of a RESTful API and a SQL database. The

database contains the languages and each individual translation needed in the use of

the application. Access to the database happens through the API by using the provided

URI routes. Both the translation application and the management interface call the back

end using HTTP requests to read and write data to the database.

Figure 7. Diagram of the architecture of the application

3.2 Application design

As a proof of concept of the Android application was developed before the start of the

thesis, much of the initial UI design was done during the development of the proof of

concept. Further changes to the UI of the translation application were prototyped in a

new branch of the project’s git repository before they were shown to the project manager

for analysis and feedback.

Design into the management interface, such as changes to the UI and new features,

were also discussed on the weekly design meetings. During the design meetings,

suggestions about new application features, such as the ability to import new translations

13

via CSV were proposed. The project manager was informed if it was possible to

implement this feature, the approximate time it would take to implement it, and how the

users would access the feature in the application UI.

A considerable amount of time was put into designing the user authentication of the

application. During the design meetings, two different suggestions for solutions came up.

One was to handle authentication with an SSO solution, like Azure AD, which would also

be used in other applications of NRC Group Finland. Another suggestion was to create

user accounts into the database using the company email address as the username and

emailing a password to the email address to make sure that only company employees

have access to the application.

It was decided at the translation application would be available to use by everyone in the

company. However, access to management interface might only be available to certain

personnel in the company, such as the IT staff or management. To achieve this, it was

necessary to integrate the applications into the companies Azure Active Directory (Azure

AD) as this makes it simple to add/remove user access to the different enterprise

applications using the Azure AD portal.

Following the decision to choose Azure AD, time was put into getting familiar with the

Microsoft identity platform documentation. The implementation of the different

authentication protocols was tested by creating small Angular and flask projects to help

choose the correct protocol and authentication approach.

3.3 Software stack

Ionic was chosen as the framework for the translation application, as the requirements

specified that the application was to run on both web browsers and natively on Android

devices. This requirement limited the choice of framework to hybrid application

frameworks. The reason to use Ionic over other frameworks was influenced by its open

source license, the support to build the application into a website as well as a native

application, and the amount of documentation available online.

14

The choice of framework for the management application was more difficult to make, as

any front-end framework could potentially be suitable for the task. Ionic could have been

used to develop the application. This way, both front-facing applications could have been

developed with the same framework. However, as Ionic is meant primarily for

applications that work on mobile devices, its default UI components were not as suitable

for desktop environments as other frameworks. In the end Angular was chosen as the

framework. Ionic uses Angular as its base, so using Angular would keep the application

structure of both frameworks fairly similar to each other, while being more suitable for

designing desktop friendly UI.

The back end of the application was written in Python, using the Flask framework. As

the back end of the application is primarily only responsible for interacting with the

database, and the required computing is light, the primary criteria in choosing a language

and framework was easiness to set up an application as a developer. Another important

criterion was the support for ORM or Object Relational Mapping. The advantages Flask

had over other potential choices were, for example, its excellent third-party library

support (such as SQLAlchemy, for ORM), the ability to set up a simple web server in a

few minutes as described in listing 1, Python's popularity as a programming language,

and focus on readability.

4 Application Development

4.1 Development environment

The application was developed on the Windows operating system using Windows 10

and Microsoft’s Visual Studio Code was used to edit the source code of the application.

Visual Studio Code is an open source source-code editor developed by Microsoft and is

available for Windows, Linux, and macOS. It is not an IDE and differs from Microsoft’s

Visual Studio by not containing some IDE features, such as Integrated

compilers/interpreters and autocompletion [24]. It is, however, very lightweight and only

requires around 200 MB of hard drive space [25]. Additionally, there are a large number

of extensions available for Visual Studio Code, which allow users to add languages,

debuggers, and tools to support development workflow. During the last few years, Visual

15

Studio Code has become the most popular development environment used by

developers, according to the Stack Overflow 2019 Developers Survey [26].

Android Studio’s Android SDK was used to test the native Android application, by using

its built-in Android emulator. The application was also tested on the developers own

Honor 8 smartphone and a Samsung Galaxy A6 smartphone.

Version control was achieved by using git, and the remote was hosted on GitLab. Using

git allowed changes to the application to developed on feature branches, instead of

working directly on the master branch of the application. The advantage of this is that

the master branch only contains code that has been tested to work. Changes can also

be reverted easier, as merges can be reverted to a previous commit if problems arise

with a new feature.

16

4.2 NRC Translator

4.2.1 Structure

Image 3. Folder Structure of the translation application

The uncompiled source code of an Ionic project is located in the src folder. The structure

inside the /src folder is similar to a traditional Angular application with the most

important folders listed below.

• App: Contains the entry point and files to bootstrap the application.

• Assets: Contains all images, logos and the translation json data required for ngx-

translate.

• Models: Contains the Typescript data model used in the application.

• Pages: Contains the Angular components, templates and styles of individual

pages of the application.

17

• Theme: Contains the global Sass themes of the application.

4.2.2 Theming Ionic Components

Ionic components use CSS variables to define their default appearance. This means that

Ionic components such as <ion-toolbar> can only have some of its properties such

as background-color changed by overriding its global CSS variable either globally or

locally in the template’s styles sheet, or by adding a color property to the HTML element

of the Component.

Much of the appearance of the translation application had to be changed to fit the

aesthetics of other NRC Groups applications. Global colour variables were created in the

$colors map (see Listing 2.) located in src/theme/variables.css file which then

could be applied to any component of the application.

$colors: (

 primary: #488aff,

 secondary: #32db64,

 danger: #f53d3d,

 light: #f4f4f4,

 dark: #222,

 twitter: (

 base: #55acee,

 contrast: #ffffff

)

);

Listing 2. Example of Ionic a global colors map [27].

To apply a style to all Ionic components of an application, one must override the default

Sass Variable in the projects src/theme/variables.scss file. An example of this

can be seen in Listing 3 below.

$toolbar-background: color($colors, twitter, base);

Listing 3. CSS variable that defines the background color of all <ion-toolbar> components as
the twitter variable defined in the $colors map.

18

4.2.3 Adding Internationalization

The requirements specified that the UI of the translation application would need to be in

two different languages: Finnish and English. Users should be able to switch the

language displayed on the screen with the click of a button. Internationalization or i18n

can be added to Ionic projects with the ngx-translate library for Angular. This library

can easily be installed with the node package manager (npm). As it is recommended to

store translation strings in separate files, to limit the amount of hard-coded strings in an

application, ngx-translate needs a loader to load the translation files. There are

multiple available loaders to choose from, but the application developed during this thesis

used the http-loader, which uses HTTP calls to load the files. The CLI command

used to install ngx-translate and http-loader can be seen in Listing 4.

npm install @ngx-translate/core @ngx-translate/http-loader — save

Listing 4. Installing ngx-translate and http-loader using npm

The Installed libraries must be imported into the root module of an application, by

importing their modules into the root module file, usually named: app.module.ts and

adding the TranslateModule to the imports property of the NgModule. Importing the

TranslateModule requires a definition of which loader to use and what dependencies

the loader requires. For this an exported function must be created, to act as the factory,

which creates the loader initially. Creation of the TranslateHttpLoader requires a

reference to the HttpClient used by the loader and the prefix and suffix all translation

files use. An example of the import can be seen in Listing 5.

import { TranslateModule, TranslateLoader } from '@ngx-translate/core';

import { HttpClientModule, HttpClient } from '@angular/common/http';

import { TranslateHttpLoader } from '@ngx-translate/http-loader';

export function createTranslateLoader(http: HttpClient) {

 return new TranslateHttpLoader(http, './assets/i18n/', '.json');

}

@NgModule({

 declarations: [

 /* list of directives and pipes used in the application */

],

 imports: [

 /* Other imports of the application */

 TranslateModule.forRoot({

 loader: {

 provide: TranslateLoader,

 useFactory: (createTranslateLoader),

19

 deps: [HttpClient]

 }

 })

],

 providers: [],

 bootstrap: [AppComponent]

})

Listing 5. Example of code required to import ngx-translate and http-loader into the root module
of the application.

For ngx-translate to work in an application, one needs to create the translation files

in the folder defined in the TranslateHttpLoader prefix argument. In the case of the

example, files must be created in the src/assets/i18n folder. The files must also be

JSON files as defined in the suffix argument of TranslateHttpLoader. An example

of the structure of these files can be found in Listing 6. below.

{

"home":"Home",

"about": "About",

"contact": "Contact",

"welcome":"Welcome to This Application Example",

}

Listing 6. Example of the structure of a .json translation file used by ngx-translate.

To define what translation file ngx-translate will use, TranslationService

provides two different methods: setDefaultLang(lang: string), which defines

the language to use if a translation does not exist, or if none have been set, and

use(lang: string), which changes the TranslationService to use the language

provided in the method argument. The language string used in the argument must be

the same as the file name of the JSON translation file. An example of this definition can

be seen in the Listing 7.

translate.setDefaultLang('en');

Listing 7. Setting the TranslationService to use en.json as the default Language.

The Translation pipe can then be used to display the correct text in the components

HTML template (Listing 8).

<h2>{{"home" | translate }}</h2>

<p>

 {{ "about" | translate }}

20

</p>

<p>

 {{"welcome" | translate }}

</p>

Listing 8. Using the translate pipe to display text in HTML template pages

Alternatively, TranslationService also provides a get method to fetch a translation

programmatically in the TypeScript files of the application (Listing 9).

translateService.get('contact').subscribe(

 value => {

 // value is our translated string

 let contact = value;

 }

)

Listing 9. Using TranslationService to get a translation string

Image 4. Screenshots of the translation application once it had been rethemed and
internationalization had been added.

21

4.3 Management Interface

4.3.1 Creating an Angular Project

The easiest way to create an Angular project is to use the Angular CLI (Command line

interface), this can be downloaded using the npm, with the following terminal/console

command:

 npm install -g @angular/cli

after installing the CLI, creating an Angular project is simple. An Angular workspace

project, with a specified project name, and an Initial skeleton app can be created with

the command:

Ng new example-app

The command will also prompt the caller with features that can be included in the

application, such as Angular Routing and which stylesheet format to use. This will create

an Angular workspace in a folder named example-app in the current working directory.

The folder will include an initialized local git repo, a sample application inside the src

folder, an end-to-end text project in the e2e folder, and configuration files.

22

4.3.2 Structure

Image 5. Folder structure of the management interface

As Angular components are used in Ionic, the folder structure is similar to the translation

application. As with the Ionic project, the uncompiled source code is located in the src

folder inside the workspace of the application. The only major change in the structure of

the management interface is that removal of the env, providers and theme folders.

4.3.3 Setup and Angular Material

Development on the UI of the application started by generating a new project via the

Angular CLI, as per chapter 4.3.1. The Included example applications source code was

removed, and work was begun on the main navigation view.

The main navigation view’s template consists of the main header of the application, and

a sidebar to switch between the two different pages of the application. As the

management application is an SPA, the actual HTML page would not change, but the

page contains a router-outlet, the content of which would vary depending on the view

and URL. To speed up development a UI component library called Angular Material was

installed using npm.

23

npm install --save @angular/material @angular/cdk @angular/animations

For Angular Material components to render correctly in an application, one must import

the BrowserAnimationsModule to enable animations, or alternatively

NoopAnimationsModule to disable them. Additionally, installing an Angular Material

core theme is recommended as Angular Material components will not work without

installing a theme. Angular includes several prepackaged themes. A theme can be

included by entering the following line in styles.css to import it globally, or in a

component’s style sheet, to apply the styles to only that components template.

@import '@angular/material/prebuilt-themes/indigo-pink.css';

Pre-Built Angluar Material themes:

• deeppurple-amber.css

• indigo-pink.css

• pink-bluegrey.css

• purple-green.css

The Angular Material library provides responsive ready-made UI components that speed

up the development of user interfaces and can be styled to if an applications theme if

needed. Angular Material also allows developers to generate UI component blueprints,

using the schematics included in the angular-material package. A navigation component

can be generated with the following CLI command:

ng generate @angular/material:nav <component-name>

This command will generate a folder with the component name in src/app containing

a ready-made toolbar and sidenav components. This component can then be

rendered by calling its CSS selector in the template of an Angular component (see Listing

10).

<app-main-nav></app-main-nav>

Listing 10. Calling the CSS selector of the generated navigation component

24

4.3.4 Angular Router

To change the view of a page if a user clicks a link or when the correct URL is entered

in the address bar of the browser the Angular Router is used. The Angular Router is an

optional service that maps URL paths to different components. The user can then

navigate to these by following a link to the URL or typing the URL directly in the browsers

address bar. To use the router service in an application, it must be configured first by

defining the applications routes (see Listing 11). These consist of an array of routes that

are passed to the RouterModule.forRoot() method in the imports of an Angular

module. A route consists of a URL path and a component. The path is written relative to

the URL of the application and can include parameters in it, the value of which can be

retrieved in the component the route is mapped to. URL paths An URL path can also be

defined to redirect to another URL path.

const appRoutes: Routes = [

 { path: 'crisis-center', component: CrisisListComponent },

 { path: 'heroes', component: HeroListComponent },

 { path: '', redirectTo: '/heroes', pathMatch: 'full' },

 { path: '**', component: PageNotFoundComponent }

];

Listing 11. Example route definition [28].

The RouterOutlet directive is used to define where a component renders when routed

to. By placing the directive on the host components template the router will render

components as a sibling element to the RouterOutlet. To allow users to navigate to

the component without typing the routes URL in the address bar the RouterLink

directive is used (see Listing 12). Clicking on a RouterLink will change the URL of the

browser to the path assigned to the RouterLink directive [29].

<h1>Angular Router</h1>

<nav>

 Crisis Center

 Heroes

</nav>

<router-outlet></router-outlet>

Listing 12. Angular template containing the router-outlet and routerLink directives [30].

25

4.3.5 HTTP requests

In order to communicate with backend services, HTTP requests are required to fetch

data from the API. Angular provides a simplified HTTP API with the HttpClient

module, which uses the browsers XMLHttpRequest API to send HTTP requests. Like

other Angular components, this module must first be imported in the root NgModule of

the application and the component or service it is used in. Once imported, the

HttpClient provides multiple methods which can be called to create appropriate HTTP

requests, such as get, post, put and delete. Because receiving a reply to an HTTP

request is time-consuming, the methods return an Observable, which can be

subscribed to, making the methods asynchronous. An example of the method can be

seen in Listing 13.

this.http.get(url).subscribe(data => {

 console.log(data);

}, error => {

 Console.log(error);

});

Listing 13. Using Angular to send a get request and logging the result in the console of the
browser.

4.3.6 Angular Material Table

As the primary function of the management interface is to view and edit the data of the

translation application, it needs to display rows of data (See Image 6). Angular Material

provides a styled data-table, which can be easily be expanded upon as developers have

full control over the interaction patterns of the table. An Angular Material data table is

added to a template with the <table mat-table> component (see listing 14). To

define the data of the table, a dataSource input is provided by the data table

component, to which an array containing objects can be passed. The dataSource input

also accepts DataSource classes, such as MatTableDataSource, which provides a

way to encapsulate any sorting, filtering, pagination, and data retrieval logic of the

application.

<table mat-table [dataSource]=”myDataArray”>

 ...

</table>

26

Listing 14. A variable called myDataArray is passed as the dataSource to an Angular Material
data table

Each column in the data table needs to have a column definition. The column definition

defines the title of the header and the content of the cell. It is specified via a <ng-

container> with the matColumnDef directive, which is used to assign the column

definition a unique name. A columns title is defined via a <th> tag with a mat-header-

cell attribute and *matHeaderCellDef directive as its attributes, with the content

between that start and end tag defining the displayed cell header. A column’s content is

defined with a <td> tag that has a mat-cell attribute and *matCellDef input directive

as its attributes, with the content between the start and the end <td> tag containing the

displayed content. Additionally, the footer of a cell can be defined with the content

between a <td> tag with a mat-header-cell attribute and *matHeaderCellDef

directive. An example of a column definition can be seen in Listing 15.

 <ng-container matColumnDef="id">

 <th mat-header-cell *matHeaderCellDef> ID </th>

 <td mat-cell *matCellDef="let tableData"> {{tableData.id}} </td>

 </ng-container>

Listing 15. Example of a column definition

Once the columns of the table have defined, the data table the rows of the table need to

be defined. The header row is defined with a <tr> tag containing a mat-header-row

attribute and a *matHeaderRowDef directive. A <tr> tag also defines the template for

an individual row. However, this tag needs to contain a mat-row attribute and

*matRowDef directive as its attributes. The row definitions also dictate what columns

are shown on the table, this is done by defining a variable in the host component of the

table with an array containing the names of the columns to be rendered on the table (see

Listing 16). This array is passed to the header row definitions *matHeaderRowDef

directive and the row templates *matRowDef directive (See Listing 17).

columnsInTable = ['id', 'data'];

Listing 16. Array containing the names of columns to render in a data table

 <tr mat-header-row *matHeaderRowDef="columnsInTable"></tr>

 <tr mat-row *matRowDef="let row; columns: columnsInTable"></tr>

Listing 17. Example of row definitions

27

When listing large amounts of data on a table, adding pagination, sorting and filtering the

data table is suggested, as it makes it easier for a user to find data. As mentioned earlier

it is recommended to use MatTableDataSource for the data source of the table, as

using it as the data source will not require filtering, pagination and sorting logic to be set

up [30]. An example of a MatTableDataSource can be seen in Listing 18.

 myDataArray = new MatTableDataSource([

 { id: 1, data: 'row1 data'},

 { id: 2, data: 'row2 data'},

 { id: 3, data: 'row3 data'},

 { id: 4, data: 'row4 data'},

 { id: 5, data: 'row5 data'},

 { id: 6, data: 'row6 data'},

]);

Listing 18. Setting up the data source of a table as a MatTableDataSource with initial data

Image 6. Screenshot of the management interface. A <table mat-table> is used to list
translations fetched from the API.

28

4.3.7 Angular Material Dialog

Displaying all fields of an entry shown in the data table can be unfeasible, due to the lack

of available screen space, especially when using a mobile device, such as a mobile

phone. Viewing an individual entry and its fields is better suited to a popup modal that

can be dismissed easily (See Image 7). Angular Material contains a dialog service that

can be used to create a modal dialog, which includes this functionality. A dialog can be

created and rendered on the screen, by calling the open() method of MatDialog

service. The open() method requires a reference to a component, which will be

rendered as the content of the dialog, and MatDialogConfig object, which contains

the configuration for the dialog, such as the height, width and the data passed to the

dialog component. the method will also return an instance of MatDialogRef, which is

a handle of the opened dialog. It can be used to perform actions on the opened dialog,

such as updating its size and closing it. An example of a MatDialog definition can be

seen in Listing 19.

let dialogRef = dialog.open(DialogComponent, {

 height: '400px',

 width: '600px',

 data: {name: ’Niklas’, age: ’24’},

});

Listing 19. Creation of a dialog

Data passed to the dialog using the data option as seen in listing 19 can be accessed in

the dialog component with the MAT_DIALOG_DATA injection token. Data can also be

passed back from the dialog when injecting the MatDialogRef to the dialog component

and closing it in the component with the close() method. An example of a dialog

component can be seen in Listing 20.

import {Component, Inject} from '@angular/core';

import {MAT_DIALOG_DATA} from '@angular/material';

@Component({

 selector: 'your-dialog',

 template: 'passed in {{ data.name }}',

})

export class DialogComponent {

 constructor(@Inject(MAT_DIALOG_DATA) public data: any,

 public dialogRef: MatDialogRef<YourDialog>) { }

 closeDialog() {

 this.dialogRef.close('Pizza!');

29

 }

}

Listing 20. Dialog component that displays the name property of the data passed to it. The result
‘Pizza!’ is passed back from the dialog as the dialog is closed.

Image 7. Screenshot of a dialog used to edit the details of an individual translation entity.

4.3.8 Adding Authentication

During the design phase the decision was made to use Azure AD as the authorization

provider of the application. Azure AD has support for industry standard protocols, such

as OAuth 2.0, OpenId Connect and SAML 2.0[32]. The OAuth2 implicit grant flow was

used in the translation management interface, as this grant is the grant most suited for

SPA applications that consume API’s via JavaScript, such as the management interface

developed during this thesis [33]. A diagram of this flow can be seen in Figure 8.

30

Figure 8. Diagram of the authorization flow

The translation management application uses Active Directory Authentication Library for

JavaScript (ADAL JS) to secure the front end of the application. To be able to use ADAL

JS in an application a client must first be registered on the Azure portal with

oauth2AllowImplictFlow property set to true in the application manifest of the

registered application. ADAL JS has a wrapper library for Angular, which can be installed

via npm with the following code:

npm i microsoft-adal-angular6

ADAL needs to be configured in the import property of the root module of the application

by providing it the tenant id, the client id, cache location, redirect URI and possible API

endpoints (see Listing 21).

imports: [

 …

 MsAdalAngular6Module.forRoot({

 tenant: '[INSERT TENTANT ID HERE]',

 clientId: '[INSERT CLIENT ID HERE]',

 redirectUri: window.location.origin,

 endpoints: {

 "[INSERT ENDPOINT HERE]": "[INSER RESOURCE ID HERE]",

 },

 navigateToLoginRequestUrl: false,

 cacheLocation: 'localStorage',

 }),

 …

]

31

Listing 21. Example of configuring ADAL while importing the module

Router guards are used in securing the different routes of an Angular application, of

which the CanActivate interface handles who can navigate to a specific route. The

microsoft-adal-angular6 library already contains a service called

AuthenticationGuard, which checks whether a user is currently authenticated with

AAD to view a route secured with it. Securing routes with AuthenticationGuard is

simple, the service must be imported and added as a provider in the root module of the

application, after which route definitions can be updated with a canActivate guard

property, to secure them (See Listing 22).

const routes: Routes = [

 { path: '', component: AppComponent, pathMatch:'full',

 canActivate: [AuthenticationGuard]}

];

Listing 22. Angular route secured with the AuthenticationGuard route guard

As the API of the application must be secured from unauthorized access, all API calls

must include an id token. This token is received by ADAL on login and is renewed

automatically by ADAL when it expires. Authentication information is usually added as a

JSON Web Token as an Authorization header with the Bearer scheme. As of

Angular 4.3, Angular includes the HttpInterceptor interface, which can be used to

intercept and modify HTTP requests globally. A HttpInterceptor is used in the

management application to add an Authorization header to all HTTP requests that

are sent to the endpoints defined in the ADAL configuration. An example of the intercept

method can be seen in Listing 23.

intercept(req: HttpRequest<any>, next: HttpHandler) {

 // get api url from adal config

 const resource = this.adal.GetResourceForEndpoint(req.url);

 if (!resource || !this.adal.isAuthenticated) {

 return next.handle(req);

 }

 // merge the bearer token into the existing headers

 return this.adal.acquireToken(resource).pipe(

 mergeMap((token: string) => {

 const authorizedRequest = req.clone({

 headers: req.headers.set('Authorization', 'Bearer ' + token),

 });

 return next.handle(authorizedRequest);

32

 }));

}

Listing 23. Intercept method of a HttpInterceptor that adds the user’s id token to all http requests
if the requests URL matches an endpoint and a user is logged in.

4.4 Flask Back End

Flask can be installed inside an activated Python venv environment with the Python

package installer with the CLI command:

pip install Flask

4.4.1 Blueprints and routes

Once flask has been installed, a simple flask can be set up with the code snippet seen

in listing 1. Flask blueprints are used to create different application components.

Blueprints are a set of operations a flask application will execute when started. Flask

blueprints are used when developing flask applications that can grow large enough that

the code base needs to be divided into multiple modules. A blueprint can be created with

the following code:

bp = Blueprint('example_BP', __name__, url_prefix='/example')

This will create a blueprint named ‘example_BP’, with all routes in the view having an

URL prefix of /example. The blueprint can now be registered on the flask application

with the register_blueprint() method. This will create the routes defined in the

blueprint and register them on the application object.

As the translation application and management interface both are on different servers

than the API, CORS needs to be enabled on the API. Otherwise, the user’s browser

would not send HTTP requests to the API. CORS can be enabled via the Flask-cors

extension and with following code:

CORS(app, supports_credentials=True, resources={r"/*": {"origins": "*"}})

33

To create a route the route() decorator is used to bind a URL to a function. As HTTP

requests use different HTTP methods when accessing URLs, the route can also define

what HTTP methods have access to it. This is done with the methods argument of the

route() decorator. If the methods argument is not defined, only GET methods will be

allowed to call the function. The make_response() method is used to be able to send

a response code, such as 400 and 401 if a request fails or if the user is not authenticated.

To send JSON data as a response, the jsonify() method is used, which serializes a

Python object into a JSON string using the applications JSON encoder and turns it into

a response object. An example of a Flask route definition can be seen in Listing 24.

@bp.route('/test', methods=['GET'])

def test():

 return make_response(jsonify("message":"Here, have a cool message"),200)

Listing 24. Example of a simple route definition.

4.4.2 Database and models

To query a MySQL database with Python, one can use the MySQL Connector for Python

or use an ORM library. Using an ORM abstracts the writing of SQL queries into method

calls on the data model. This way, the code base becomes more flexible as the same

queries can be used on different types of databases. Excluding SQL from the application

logic also makes it more readable. SQLAlchemy was chosen as the ORM library in the

project of this thesis, as there is a flask extension available for it, which can be installed

with Python package installer. An example of SQLAlchemy initialization can be seen in

Listing 25.

from flask import Flask

from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)

uri = 'mysql://root:password@localhost/test_db'

app.config['SQLALCHEMY_DATABASE_URI'] = uri

db = SQLAlchemy(app)

class User(db.Model):

 id = db.Column(db.Integer, primary_key=True)

 username = db.Column(db.String(80), unique=True, nullable=False)

 email = db.Column(db.String(120), unique=True, nullable=False)

Listing 25. Example of a minimal Flask application with SQLAlchemy and a data model initialized.

34

Database models needed to be created for data that would be saved to the database.

Two models were created, a translation model and a dictionary language model.

An entity of the translation model is an individual word in a particular language, such as

in German or English. Each translation would have a field for the word, a usage note, an

example sentence and the language of the translation. Translations that mean the same

thing have the same word id. The translation entity also contains fields on its creation

date and the information on the user who created it.

Dictionary language is a model for each language of the application. This model was

added to allow the addition of languages without any the need to change application

logic, as the languages a user can choose in the translation application is a query of all

dictionary languages.

4.4.3 Authentication

All API routes of the application had to be secured from unauthorized access. To validate

that an HTTP request has access to a resource, it must include an id token in the

authorization header of the request. The id tokens signature is validated using the Azure

AD public key with Python’s pyJWT cryptography module. As fetching a new private key

on every request would add unnecessary delay to each request, the private key is saved

to a JSON file. Due to security purposes, Azure AD’s public key changes on a periodic

basis and can be rolled over immediately, if needed. Due to this, the authentication

method checks that the public key has not been updated every 24 hours and updates it,

if necessary. The issuer and audience fields of the id token are also checked that they

contain the domain and tenant ids. If an id token fails to validate, or a request does not

contain an id token in its header, a 401 unauthorized status is returned to the user.

5 Summary

The purpose of this thesis was to develop a mobile-friendly dictionary application, which

would allow users to translate railway-specific vocabulary from one language to another.

The Ionic framework was used to develop the translation application, as this way both a

web and a mobile version was able to be developed with HTML, CSS, and JavaScript.

35

A management interface was developed to manage the vocabulary and languages of

the application. Both the translation application and the management interface use an

API made with the Flask framework to view or make changes to the vocabulary. The

thesis has covered the background, technology, design, and development of the

application.

Developing the different application components was a gratifying experience, as I

learned much about developing multi-platform web applications and hybrid applications.

Learning about authentication was particularly gratifying, as that subject was entirely new

for me when I started development on this project.

The Management interface of the application succeeded in fulfilling the requirements put

upon it, as the management interface allowed the viewing, addition, editing, and deletion

of translations in the application. The access to the management interface was restricted

to authorized personnel, with the use of Azure Ad. The choice to use Angular as the

development framework for the management interface proved itself to be the correct

choice, as shifting from developing the translation application to developing the

management interface happened without any problems.

Development of the translation application did not finish entirely during the creation of

this thesis. Authorization was not successfully implemented on the translation interface

in time to add its development process to this thesis. Development on the authorization

continues after this thesis is completed. Excluding authorization, the application fulfills

the requirements of being simple to use and available both in Finnish and English.

The API of the application fulfills the requirements of the application as it provides all the

necessary API routes required to view and edit the data of the application. Development

on the API also continues after the writing of this thesis, as some changes must be made

to it to authenticate the HTTP request of the translation application. It was noticed during

the development of this application that it would have been easier to develop the API of

this application in a framework such as Node.js, instead of Python. This is because

working in a single programming langue (JavaScript) is easier than working with two

different ones (JavaScript and Python).

36

References

1 “Jargon – Definition and Examples of Jargon”. [Internet]. Literary Devices. 19
February 2014. [Cited 2019 April 3] Available from:
https://literarydevices.net/jargon/

2 “Branding Guidelines for Angular and AngularJS”. [Internet]. AngularJS Blog. 27
January 2017 [Cited 2019 April 4] Available from:
http://blog.angularjs.org/2017/01/branding-guidelines-for-angular-and.html

3 “Angular vs React Industry Trends: February 2019 Data Report” [Internet] Cloud
Academy. [Cited 2019 April 5] Available from:
https://cloudacademy.com/research/angular-vs-react-industry-trends-february-
2019-data-report/

4 Google Trends. [Internet] React, Vue, Angular [Cited 2019 April 7] Available from:
https://trends.google.com/trends/explore?cat=733&date=today%205-
y&q=React,Vue,Angular

5 “Microsoft TypeScript: the JavaScript we need, or a solution looking for a
problem?”. [Internet]. Ars Technica. 10 March 2012 [Cited 2019 April 4] Available
from: https://arstechnica.com/information-technology/2012/10/microsoft-
typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/

6 Architecture Overview. [Internet] Angular Docs. [Cited 2019 April 5] Available
from: https://angular.io/guide/architecture

7 Introduction to components. [Internet] Angular Docs. [Cited 2019 April 5]
Available from: https://angular.io/guide/architecture-components

8 Introduction to services and dependency injection. [Internet] Angular Docs. [Cited
2019 April 8] Available from: https://angular.io/guide/architecture-services

9 Angular. NgModules. [Internet] Angular Docs. [Cited 2019 April 8] Available from:
https://angular.io/guide/ngmodules

10 Angular Tutorial. Services [Internet] Angular Docs. [Cited 2019 April 8] Available
from: https://angular.io/tutorial/toh-pt4

11 Hazem Saleh. JavaScript Mobile Application Development. Packt Publishing.
2014. Chapter 1. An Introduction to Apache Cordova. Cordova architecture.

12 Cordova. Overview. [Internet] Angular Docs. [Cited 2019 April 9] Available from:
https://cordova.apache.org/docs/en/latest/guide/overview/index.html

https://literarydevices.net/jargon/
http://blog.angularjs.org/2017/01/branding-guidelines-for-angular-and.html
https://cloudacademy.com/research/angular-vs-react-industry-trends-february-2019-data-report/
https://cloudacademy.com/research/angular-vs-react-industry-trends-february-2019-data-report/
https://trends.google.com/trends/explore?cat=733&date=today%205-y&q=React,Vue,Angular
https://trends.google.com/trends/explore?cat=733&date=today%205-y&q=React,Vue,Angular
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://angular.io/guide/architecture
https://angular.io/guide/architecture-components
https://angular.io/guide/architecture-services
https://angular.io/guide/ngmodules
https://angular.io/tutorial/toh-pt4
https://cordova.apache.org/docs/en/latest/guide/overview/index.html

37

13 Ionic Introduction. [Internet] Ionic Docs. [Cited 2019 April 9] Available from:
https://ionicframework.com/docs/intro

14 Flask Foreward. [Internet] Flask Docs. [Cited 2019 April 9] Available from:
http://flask.pocoo.org/docs/1.0/foreword/

15 “2019 Database Trends – SQL vs. NoSQL, Top Databases, Single vs. Multiple
Database Use”. March 4, 2019. [Internet] ScaleGrid Blog. [Cited 2019 April 9]
Available from: https://scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-
databases-single-vs-multiple-database-use/

16 “Developer Survey Results 2018” [Internet] Stack Overflow. [Cited 2019 April 9]
Available from: https://insights.stackoverflow.com/survey/2018/#technology

17 Introduction to SQL [Internet] W3Schools.com [Cited 2019 April 9] Available from:
https://www.w3schools.com/sql/sql_intro.asp

18 Holmes, Simon. Getting MEAN With Mongo, Express, Angular, and Node.
Manning Publications. 2015. Chapter 3. Creating and setting up a MEAN project.
Modifying Express for MVC

19 ASP.NET MVC Overview [Internet] Microsoft ASP.NET MVC Docs [Cited 2019
April 30] Available from: https://docs.microsoft.com/en-us/previous-
versions/aspnet/dd381412(v=vs.108)

20 Model-view-controller. [Internet] Wikipedia [Cited May 4] Available from:
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#/me
dia/File:MVC-Process.svg

21 “ASP.NET - Single-Page Applications: Build Modern, Responsive Web Apps with
ASP.NET“ [Internet] MSDN Magazine Blog November 2013. [Cited 2019 April 30]
Available from: https://msdn.microsoft.com/en-us/magazine/dn463786.aspx

22 Single page application advantages and disadvantages. [Internet] Zymphonies
blog [Cited 2019 April 30] Available from:
https://www.zymphonies.com/blog/single-page-application-advantages-and-
disadvantages

23 Panhale, Mahesh. Beginning Hybrid Mobile Application Development. Apress
2016. Chapter 1. Introduction to Mobile Application Development Ecosystems.

24 “Why did we build Visual Studio Code?” [Internet] Visual Studio Code docs.
[Cited 2019 April 30] Available from:
https://code.visualstudio.com/docs/editor/whyvscode

https://ionicframework.com/docs/intro
http://flask.pocoo.org/docs/1.0/foreword/
https://scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-databases-single-vs-multiple-database-use/
https://scalegrid.io/blog/2019-database-trends-sql-vs-nosql-top-databases-single-vs-multiple-database-use/
https://insights.stackoverflow.com/survey/2018/#technology
https://www.w3schools.com/sql/sql_intro.asp
https://docs.microsoft.com/en-us/previous-versions/aspnet/dd381412(v=vs.108)
https://docs.microsoft.com/en-us/previous-versions/aspnet/dd381412(v=vs.108)
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#/media/File:MVC-Process.svg
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#/media/File:MVC-Process.svg
https://msdn.microsoft.com/en-us/magazine/dn463786.aspx
https://www.zymphonies.com/blog/single-page-application-advantages-and-disadvantages
https://www.zymphonies.com/blog/single-page-application-advantages-and-disadvantages
https://code.visualstudio.com/docs/editor/whyvscode

38

25 “Requirements for Visual Studio Code” [Internet] Visual Studio Code docs. [Cited
2019 April 24] Available from:
https://code.visualstudio.com/docs/supporting/requirements

26 “Developer Survey Results 2019” [Internet] Stack Overflow insights. [Cited 2019
April 24] Available from: https://insights.stackoverflow.com/survey/2019#overview

27 “Theming your Ionic App” [Internet] Ionic Docs [Cited 2019 April 24] Available
from: https://ionicframework.com/docs/v3/theming/theming-your-app/

28 Angular Tutorial. Routing. [Internet] Angular Docs [Cited 2019 May 2] Available
from: https://angular.io/tutorial/toh-pt5

29 Routing & Navigation [Internet] Angular Docs [Cited 2019 May 2] Available from:
https://angular.io/guide/router#routing--navigation

30 Router Links [Internet] Angular Docs [Cited 2019 May 2] Available from:
https://angular.io/guide/router#router-links

31 Getting Started [Internet] Angular Material Docs [Cited 2019 May 2] Available
from: https://material.angular.io/components/table/overview

32 “What is authentication?” [Internet] ADD docs [Cited 2019 May 5] Available from:
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-
scenarios

33 ”Understanding the OAuth2 implicit grant flow in Azure Active Directory (AD)”
[Internet] ADD docs [Cited 2019 May 05] Available from:
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-oauth2-
implicit-grant-flow

https://code.visualstudio.com/docs/supporting/requirements
https://insights.stackoverflow.com/survey/2019#overview
https://ionicframework.com/docs/v3/theming/theming-your-app/
https://angular.io/tutorial/toh-pt5
https://angular.io/guide/router#routing--navigation
https://angular.io/guide/router#router-links
https://material.angular.io/components/table/overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-scenarios
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-scenarios
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-oauth2-implicit-grant-flow
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-oauth2-implicit-grant-flow

