

Tung Duc Vo

Application of protocol-oriented pro-
gramming in iOS development

Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communications Technology

Thesis

6 April 2019

Author(s)

Title

Tung Duc Vo

Application of protocol-oriented programming in iOS develop-

ment

Number of Pages

Date

38 pages

6 April 2019

Degree Bachelor of Engineering

Degree Programme Information and Communications Technology

Specialisation option Mobile Software Development

Instructor(s) Peter Hjort, Senior Lecturer

There has always been a demand for better approach to build scalable and extensible soft-

ware for tech companies and communities. For Cocoa developers, architectural design pat-

tern is one of the most popular topics in tech blogs, talks and events. Since the introduction

of Swift and protocol-oriented programming paradigm, Cocoa developers have another op-

tion to build better software.

This study aims to clarify the concepts of protocol-oriented programming and its advantages

over its counterpart, object-oriented programming, for building software using Swift lan-

guage. Moreover, this study also presents different techniques and practices for improving

the scalability and maintainability of the software. The thesis also introduces how to use

Model-View-View Model architectural design pattern as a replacement of the traditional

Model-View-Controller.

The project used to demonstrate the mentioned techniques is written in Swift and developed

for iOS devices. Created solely for the purpose of this thesis, the application is not published

in Apple App Store. However, the project is open-source and can be found in Github.

Overall, the main purpose of the thesis is to recommend a collection of techniques, together

with protocol-oriented design that can be used to create better software.

Keywords POP, unit testing, ios, mobile development, MVVM, Swift

Contents

1 Introduction 1

2 Theoretical Background 2

2.1 Object-oriented programming 2
2.1.1 Class 2
2.1.2 Reference type and value types 3
2.1.3 Objective-C vs Swift 4
2.1.4 Object-oriented programming features 5

2.2 Protocol-oriented programming 7
2.2.1 Object-oriented design problems 8
2.2.2 Solution with protocol-oriented programming 12
2.2.3 Features of protocols 12
2.2.4 Generics 15
2.2.5 Design patterns 16
2.2.6 Unit testing 18

3 Practical implementation 19

3.1 Application 19
3.2 Approach 19
3.3 Technologies 20
3.4 Application architecture 20

3.4.1 Model-View-View Model 21
3.4.2 RxSwift 22

3.5 Project structure 23
3.5.1 Models 23
3.5.2 View models 26
3.5.3 ViewControllers 29

4 Results 34

5 Discussion 34

5.1 Study outcome 34
5.2 Limitations 35
5.3 MVVM vs MVC 36

6 Conclusion 36

References 38

Abbreviations

MVC Model-View-Controller

MVP Model-View-Presenter

MVVM Model-View-View Model

VIPER View-Interactor-Presenter-Entity-Router

POP Protocol-oriented programming

OOP Object-oriented programming

TDD Test-driven development

WWDC Apple Worldwide Developers Conference

Rx Reactive Extensions

Glossary

iOS An operating system used for Apple mobile devices (iPhones and iPads).

Cocoa Apple's native object-oriented application programming interface.

Github A web-based hosting service for version control using Git.

OSX An operating system used for mobile devices manufactured by Apple Inc.

Separation of concern A design principle for separating a computer program into
 distinct sections, and each section addresses a separate concern.

Unit testing A level of software testing where individual units/ components
of a software are tested

1

1 Introduction

Technology has been evolving so fast in the last decades that it is not easy to keep up

with it. The way we communicate, the way we learn, the way we entertain, and many

of our daily routines have been affected by tech products. As a result, the demand for

building more scalable and extensible software for tech products has been growing

among companies and tech communities. Similarly, for Cocoa programmers, different

approaches for building better iOS or OSX applications have been a never-ending dis-

cussion in programming websites, tech blogs, etc. Therefore, apart from traditional

Model-View-Controller (MVC), many new architectural design patterns have been in-

troduced to Cocoa programmers’ community. Some of them can be listed such as

Model-View-View Model (MVVM) and View-Presenter-Interactor-Router-Entity (VI-

PER) [1].

However, only until the introduction of Swift programming language, new programming

paradigm is available for Cocoa programmers. Swift programming language was intro-

duced by Apple in 2014, and a year later they announced Swift 2 and that Swift is the

first protocol-oriented programming (POP) language ever created [2].

Since then, Apple have been promoting POP as the new way of programming and

writing applications when working with Swift. For Cocoa software development using

Swift language, POP is a better option in terms of performance, readability, testability

and scalability. This study aims to demonstrate how POP is applied to develop iOS

application with better performance and software design.

Besides POP, this study also introduces MVVM architectural design pattern. For iOS

and OSX development, MVC is the most well-known architectural design pattern

among developers as it is frequently recommended and promoted by Apple [3]. This

pattern, however, has several disadvantages as the software scales. One of the main

drawbacks of MVC is separation of concerns as view controllers often have too many

responsibilities. MVVM, however, by introducing extra components, distributes part of

the responsibilities among them. The key component, View Model, as its name sug-

gests, is a presentation model of the View. View model encapsulates the representa-

tional data creation complexity within itself, then notify the View update via data bind-

ing, thus reduces responsibilities from the View controller.

2

2 Theoretical Background

2.1 Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm and its practices can

help to create large software with reusable and scalable components [4]. OOP is one of

the most essential steps for most software developers in the past decades or more. As

its name suggested, the main principle behind OOP is to create software based on ob-

jects. Objects are instances of class and in an OOP program, objects are designed in-

teract with each other.

Nowadays, many of the most commonly used programming languages such as Java,

C++, C#, Python, PHP, JavaScript, Objective-C, Swift support OOP [5].

2.1.1 Class

Class is the fundamental component of OOP. It is a blueprint of creating objects,

providing member data and member methods [6]. An object is a specific instance cre-

ated from a particular class.

3

Figure 1. Example of Student class

As shown in Figure 1, class Student has six member variables and two member

methods.

	

2.1.2 Reference type and value types

In Swift and most OOP languages, data types can be divided into two categories: refer-

ence type and value type. There are many differences between the two types, but the

primary difference is how their instances are passed [4].

4

2.1.2.1 Reference types

Reference type contains pointer to memory address where the actual data is held. In-

stances of reference types share a single copy of data [7]. Passing an instance of a ref-

erence type is passing a reference of the original instance. As the result, both refer-

ences point to the same instance; therefore, updating any instace data reflects the

changes in the others. Swift reference types include class, functions and closures.

2.1.2.2 Value types

An instance of a value type holds its own data in a separate memory location [7]. When

an instance of value type is passed, it is actually passing a copy of its own data. There-

fore, updating an instance does not reflect the changes to any others. There are many

kinds of value types in Swift such as struct, enum, tuples and other primitive types (Int,

Double, Array, Dictionary, etc.) [8].

2.1.3 Objective-C vs Swift

Swift language was introduced by Apple in 2014. Since then, Swift has been slowly tak-

ing over Objective-C as the preferred programming language for Cocoa development.

This modern language is considered easier to read and learn than its counterpart, and

also requires less code which in turn improves the development process and allows de-

velopers more to be productive [9].	

	
Swift has been built as a protocol-oriented and object-oriented language. For that rea-

son, there are several differences in the primitive data types between Objective-C and

Swift which are essential for the development between the two languages. Primitive

data types such as integer, double, float, bool are value types in both languages. Other

built-in types such as string, array, dictionary, while being reference types in Objective-

C, are implemented as struct in Swift and are value types [8]. The following tables

show the similarities and differences between the two languages in terms of data types.	

	

Data Objective-C Swift

5

Integer Value type Value type

Double Value type Value type

String Reference type Value type

Array Reference type Value type

Enum Value type Value type

Dictionary Reference type Value type

Set Value type Value type

Struct Value type Value type

Tuple Not available Value type

Closure/block Reference type Reference type

Function Reference type Reference type

Class Reference type Reference type

Table 1. Data type comparision between Swift and Objective-C

2.1.4 Object-oriented programming features

The concept of OOP associates with class and its features. The most essential fea-

tures of this programming paradigm include [10]:	
• Encapsulation

• Inheritance

• Abstraction

• Polymorphism

2.1.4.1 Encapsulation

6

Data encapsulation is a fundamental feature of class. The purpose is to prevent direct

access to the object’s states and data. Instead, class provides certain methods for the

outsiders to communicate with, update or modify the data within the object [11]. In

Swift, private or fileprivate can be used to keep its states private within a code scope

or a file, and internal can be used to avoid access from different module. On the other

hand, public and open are used to give global access to properties and methods.	

	

Figure 2. Example of encapsulation	

	
In figure, the outside world cannot modify Car objects’ mileage directly since mileage is

defined as a private property. Instead, methods travel(distance:) and current-
Mileage() are provided to update and get current mileage.

2.1.4.2 Inheritance

Inheritance is the process by a class derive properties and characteristics of another

class. The concept of inheritance improves the reusability and extensibility of class, by

allowing additional functionalities to be added to an existing class. A class which is in-

herited from is called a super class or base class and the other is called a subclass. In-

heritance allows classes to be created and built upon existing classes [12].

	

7

Figure 3. Example of class inheritance	

	

In Figure 3, Student subclasses Person and inherits all of its parent’s properties and ini-

tializer. 	

2.1.4.3 Abstraction

The key concept of abstraction is handling complexity of objects by hiding its unneces-

sary details [13]. In software development, program can grow large and objects can

have enormous number of recursive states and data. In addition to that, objects com-

municate with other objects which makes maintaining and changing the program even

more challenging. Abstraction is the process of hiding irrelevant characteristics of the

object in order to reduce the complexity and increase the proficiency.	

	
This approach hides all the internal implementation details and only reveal the opera-

tion relevant for the other objects. Swift offers abstraction with protocols. Protocols will

be discussed in more detail in later parts of this study.	

	

2.2 Protocol-oriented programming

The concept of using protocol and value-oriented programming with Swift was intro-

duced in Apple’s Worldwide Developer Conference 2015. As Apple stated in the event,

8

Swift is the first POP language ever. It has many built-in features that most program-

ming languages do not in order to make protocol-oriented possible. As its name sug-

gests, protocol is the fundamental component in this programming paradigm. It is, how-

ever, much more than just beginning the design thinking with protocols rather than a

class. Apple also stated that it is preferable to use value types over reference types

where appropriate [14].

2.2.1 Object-oriented design problems

Object-oriented design and its feature are vastly adopted by many modern program-

ming languages such as Python, Ruby, Scala, Java, etc. Objective-C, the only official

language used in Cocoa development before Swift introduction, is also an OOP lan-

guage. That said, object-oriented design has been the most popular programming par-

adigm to Cocoa developers. There are, however, several drawbacks in the design

which increases the complexity and vulnerability of the software. The three most well-

known ones, as discussed at Apple Worldwide Developers Conference (WWDC) 2015,

are [14]:	
• Implicit sharing of mutable state

• Business-depended inheritance

• Loss of type relationship

2.2.1.1 Implicit sharing of mutable state

Since instances of reference types share a single copy of data, sharing is implicit. Up-

dating a single instance reflects the changes in all other shared instances, and this

could lead to undesirable outcomes in cases where the update is expected to take

place on one single instance. Consequently, in OOP, defensive copying is brought into

use. Defensive copying is a technique used to avoid unwanted effects caused by modi-

fications of shared objects [15]. In this process, a new object is created, and its data is

identical to the original object’s. However, this approach, when overused, slows down

the software because of object creation and memory pressure. In computing science,

creating an object takes place on Heap memory instead of Stack memory. Heap is

used for dynamic memory allocation and Stack for static memory allocation. The Stack

is a "LIFO" (last in, first out) data structure which is managed and optimized by the

CPU efficiently [16]. For that reason, creating and accessing stack variables are fast.	

9

	

On the other hand, because Heap is used for dynamic memory allocation, heap ele-

ments can be accessed at any random time. This increase the complexity to manage

which part of Heap memory are allocated or freed at a given time.	
	

In a multi-threaded situation, a new Stack is created for every individual thread, but all

threads share the same Heap. Stack is thread specific and Heap is application specific.

Reference instances can be accessed different threads, and if not handled properly

can lead to unexpected situations such as deadlocks and race conditions. Thus, multi-

threading techniques such as locks, mutexes, synchronizations are used to avoid en-

sure the correctness of the program. In consequence, it increases the overall complex-

ity of the software.	

2.2.1.2 Business-depended inheritance

As mentioned above, inheritance, the fundamental feature of OOP, is a mechanism of

basing a class upon another super class. In Swift as well as Objective-C, it only allows

single inheritance, meaning that any class cannot inherit from more than one super

class [17]. Single inheritance introduces several challenges in object-oriented design. 	

	
First of all, class inheritance is intrusive. Base class is required to be well-chosen and

defined before implementing the derived class, and thus makes it more difficult to up-

date base class in the future. Updating base class while maintaining the correctness of

the program is challenging.	

	
Secondly, the derived class has to accept all the properties and functionalities from its

base class even if they are not necessary. This also leads to initialization burden as de-

rived class has to instantiate all the required properties from base class.	

	
Moreover, derived class has to guarantee that it does not break the invariants. Derived

classes have the possibility to override their base class’s implementation. This enables

the extensibility but also exposes to the risk that the original logic is altered incorrectly

and leads to software bug. Thus, programmers have to write implementation of derived

class with caution and in accordance with base class requirements.

10

2.2.1.3 Lost type relationships

In Swift, Class is not an optimal option where type relationship matters. Superclass

does not know the exact type when it is sub-classed. In addition, in Class, methods re-

quire implementation. Thus, methods that return value and require final implementation

from subclass is forced to have default implementation. In addition, Class cannot ex-

press crucial type relationship between the type of self and the type of other. Using

Class removes important type relationship because of lack of abstraction.

	

Figure 4. Example of Shape implementation using class.

11

Figure 5. Example of Shape implementation using protocol and struct

Figure 4 and Figure 5 show two different approaches of implementing Shape. The first

approach which uses class and class inherent shows several flaws in the design. First

of all, the base class Shape has to provide default error implementation in order to im-

plicitly enforce sub classes to provide actual implementation. Sub-classing Shape with-

out overriding the two methods will crash the software. Secondly, in class Rectangle,

the overridden method isEqual(to:) accepts any sub types of Shape, which should

not be the case. This is a sign of lost type relationship.

The second approach, as seen in Figure 5, uses protocol and struct to solve the problem.

Firstly, protocol does not provide any implementation of the method and protocol forces

any type conforming it to do the job. Secondly, by using Self in the method declaration,

it enforces the parameter type to be the same as the one calling the method. Thus, it

gives a stronger type relationship and the intention of the code. Last but not least, using

value semantics for Rectangle is more appropriate in this case as different rectangles,

even not sharing same memory address, should be treated identically when they share

the same width and height.

12

2.2.2 Solution with protocol-oriented programming

Thanks to Swift’s characteristics, the problems discussed in section 2.2.1 are minimal-

ized with protocol-oriented design.

2.2.2.1 Protocols

A protocol is a set of requirements for methods, properties, initializers that represent a

specific task or functionality. Any type that conforms the protocol is forced to provide an

actual implementation of those requirements [18]. The conforming type can be either a

class, struct or enumeration.	

The basic concept of protocol is similar to interface in Java but in Swift, protocol has

additional features that enable Swift to be a POP language. Due to the usage of proto-

col and value types, limitations from OOP and classes are handled effectively. The

benefits of protocol include [18]:	
• Support both value types and reference types

• Support static and dynamic type relationship

• Support retroactive modeling

• Not impose instance data on models

• Not impose initialization on models

• Make clear what to implement and reduce ambiguity

2.2.3 Features of protocols

Basic feature of protocol is specifying a set of requirements such as properties, in-

stance or static methods and initializers. In Swift, protocols are much more than that. It

has many additional features which make protocols much more powerful. The most sig-

nificant ones are protocol extension, protocol inheritance and protocol composition.

2.2.3.1 Protocol extension

13

Protocol extension can be used to provide default implementation of methods or com-

puted properties to all or multiple conforming types [18]. The main benefit is that behav-

ior is applied on the protocol instead of having to provide implementation in each indi-

vidual type conformance.		

	

Figure 6. Example of protocol extension.

From Figure 4, protocol extension is used to provide implementation of method tog-
gleState() to protocol AudioPlayer. Therefore, any types conforming Audio-
Player automatically share default implementation of toggleState().

2.2.3.2 Protocol inheritance

The concept of protocol inheritance is similar to class inheritance. A protocol can inherit

one or more protocols and can add additional requirements on top of the requirements

it inherits [18]. However, unlike class inheritance in which a class can only inherit one

base class, a protocol can inherit multiple protocols at the same time. That enables

type to break down into smaller components, and thus improves code reusability. The

syntax of protocol inheritance is similar to class inheritance’s:	

	

14

Figure 7. Example of protocol inheritance

From Figure 7, AdminPermission inherits from ReadPermission and WritePer-
mission, making any type conforming AdminPermission needs to provide imple-

mentation for all three methods readFile(from url: URL, completion: ((Data) -> Void)?),

writeFile(data: Data?, to url: URL, completion: ((Data) ->
Void)?) and

15

.	

2.2.3.3 Protocol composition

Protocol composition is the process of combining one or more protocols to form a new

set of requirements for a type without defining any new protocol [18]. Protocol composi-

tion can be used to solve limitation with class inheritance. As mentioned earlier, Swift

only supports single inheritance, thus adopting traits from two distinct classes is prob-

lematic. In this case, composing the traits and making it a brand-new type is better

approach. For example, it would be impossible to reuse class House and Car to create

CamperVan. However, CamperVan can be built by combining HousingTrait and

VehicleTrait.

Figure 8. Example of protocol composition.

As illustrated in the figure, variable scanner has type as protocol composition from

CustomerCardScanner and CreditCardScanner. Protocol composition is speci-

fied by separating multiple protocols with ampersands (&). Besides its list of protocols,

one class type can also be added to the composition, which in turn specifies the re-

quired base class.

2.2.4 Generics

Generic programming is the way of writing flexible and reusable code that can work

with multiple types. Numerous related or unrelated types can share common generic

code, that helps to avoid duplications and express the functionalities in a clear, ab-

stracted manner [19].	

Generics is a powerful feature of Swift as it enables much of the Swift standard library

to be built upon it. For example, in Swift, Array and Dictionary both share generic col-

lections’ behaviors. Therefore, as for Array, it can hold a collection of integers, strings

16

or any other types. In this case, generics is used to create generic types. Similarly, it

can also be used to write generic functions which can work with multiple types and

treat them identically.	

There are multiple ways to achieve generics in Swift, including [19]:	

• Generic functions

• Generic types

• Associated types in protocol

• Generics where clauses

2.2.5 Design patterns

In software engineering, a design pattern a reusable solution to a problem encountered

when it comes to software design [20]. Design pattern offers a general approach to solve

a specific set of similar problems. Programmers can adopt different design patterns as

best practices in order to solve software or system design problems.

In short, design patterns can be used anywhere in software to obtain an optimal solu-

tion to complex software problems. Design patterns are not specifically designed for

POP paradigm. There are, however, some design patterns that can significantly benefit

a protocol-oriented software. This study will introduce the most commonly used and

beneficial ones such as composite, delegation and dependency injection.	

2.2.5.1 Composite design pattern

Composite pattern is a design pattern in which a collection of objects is handled the

same way as any single object of the collection. In composite design pattern, related

objects are composed together into a tree structure that represents part-whole hierar-

chies.	Composite design pattern is used when the difference between compositions of

objects and individual objects should be neglected [20]. 	

2.2.5.2 Delegation design pattern

17

Delegation is a communication design pattern in which one object order another object

to react to a certain event or act on behalf of it. In this design pattern, the delegating

object often has the reference of the delegate object and sends a message to it at ap-

propriate time[21]. The message contains a specific information and requires the dele-

gate object to handle. Or the delegating object may ask for more information within the

current context so that it can continue executing the program. The main benefit of dele-

gation is that it enables a chain of responsibilities in a central context to be distributed

among separated entities. 	

Delegation is one of the most used design patterns in Cocoa frameworks. It can be

seen anywhere from common classes in UIKit framework such as UITableView,

UICollectionView, UITextField, UINavigationController to classes in

other frameworks like NSFetchedhResultsController, NSURLSession, etc. Typi-

cally, delegating object only keeps a week reference to the delegate object to avoid re-

tain cycle.	

Frequently, when working with delegation design pattern, protocols are used to define

the set of required methods to delegate objects. The following figure is an example of

how delegation is adapted in UITableView from UIKit framework:	

Figure 9. Example of delegation design pattern	

	

2.2.5.3 Dependency injection design pattern

18

The core idea of dependency injection is to have one object provides dependency to

another object. The dependent object uses the supplied dependency as a service and

the service is made as part of the object’s state [22]. The passing of the dependency to

the dependent object is called an injection. The essential requirement of this technique

is to pass the service rather than allowing the client to create its own dependency.	
	

There are many different approaches to introduce a dependency to a client. The three

most common methods are setter-, interface- and constructor-based injection. The

main difference between setter and constructor injection is when the dependency is

passed can be used. On the other hand, interface injection gives the dependency a

chance to manipulate the injection. In this method, a dependency provides its own

method implementation to introduce itself to a client [23].	

1. constructor injection: an initializer is used to inject the dependency.	

2. setter injection: a setter method is used to inject the dependency.	

3. interface injection: an injector method provided by the dependency is used to intro-

duce the dependency to a client. The client is required to expose a setter method that

receives the service.

Dependency injection is one of the most common method used in protocol-oriented de-

sign. The dependency is commonly defined as a protocol, meaning that its concrete

type is dynamic and completely dependent on the injector. Applying this approach, re-

placing a dependency with a new object happens only at the injector’s implementation,

and thus prevents modification at the client. In addition, another benefit of dependency

injection using protocol is that it facilitates the unit-testing of client’s functionalities as

test dependencies can be used instead of production ones.

2.2.6 Unit testing

Unit testing is programming practice that separates the source code into small modular

software unit and writes tests to those individual code unit. The main purpose of unit

testing is to guarantee that a code unit functions correctly with different set of associ-

19

ated control data, usage procedures, and operating procedures [24].	Unit testing is tra-

ditionally a motivator for programmers to create testable, maintainable and decoupled

code bodies. 	

	
As mentioned earlier, protocol-oriented design is an approach to avoid tightly coupled

objects in software development and facilitate unit testing process. This can be ob-

tained by defining the service or dependency type by adding abstraction layer instead

of using a concrete type. The dependency injected to the client will then be the actual

production-implemented object. Otherwise, mocked or faked objects are used in unit

testing environment. The technique of decoupling the relationship between client and

the dependency makes it easier to test each individual unit since they no longer de-

pend on one another.	

3 Practical implementation

3.1 Application

The application is created for the purpose of helping students to know which courses

they need to take in order to be ready for certain kind of jobs. Each job has a minimum

requirement of different skill sets and each course in school will provide students with

specific skill sets. Courses also have pre-requirements, meaning that students are re-

quired to complete a specific set of courses or have specific skills in order to be eligible

to enroll to. After finishing a course, student will gain a specific number of skills. Based

on their current skills and the skills that their dream job requires; the application will cal-

culate and provide them with different sets of minimum number of courses they need to

complete.	
	

3.2 Approach

The whole development process is divided into six different phases:	
• Requirements

• Graphic design

• Software design

20

• Software development

• Testing

• Release

	
The development process follows Test-driven development (TDD) approach. TDD is a

software development practice that promotes writing code only to pass certain tests

[26]. First, programmer starts by writing test designed for a specific function, then

writes bare minimum of code to fulfill the test. The new code will be then refactored un-

til it meets a certain standard. In TDD, programmer always writes tests before the ac-

tual code. There are many advantages of using TDD approach for the software devel-

opment. Not only it guarantees the correctness of the software, but it also helps pro-

grammers to think how the program should work and write minimal and optimal code.

Writing test before actual implementation identifies the problem quickly and reduces

the time spent on rework or on debugger in the future. A 2005 study found that pro-

grammers who apply TDD in their development process prove to write more tests, and

writing more tests enhances their productivity [27]. 	
	

When the program gets larger, maintaining the code base gets more difficult. With

large amount of unit tests, it will help to spot where the problem is and how it affects

the system quicker. 	
	

3.3 Technologies

The project is written completely in Swift 4.2 using XCode 10.1 as the Integrated Devel-

opment Environment (IDE). 	
I use Core Data, the Cocoa-native persistence framework, to save user information and

other related information on disk.	
	

3.4 Application architecture

In the application, I use Model-View-View Model (MVVM) as the architectural design

pattern. This design pattern was invented my Microsoft architects to remove data

states from user interfaces. MVVM is designed to separate the concerns between the

user interface logic and the business logic.	

21

	

MVVM uses a technique called data binding which is used to create a communication

between the view and view model. After the binding is correctly set up, when change is

made to the data, it will reflect in the view automatically and correspondingly. For data

binding, I am using RxSwift which is an open source library hosted in Github.

	

Figure 10. Interaction between components in MVVM.	

	

3.4.1 Model-View-View Model

Model-View-View Model is an architectural design pattern. In this design pattern,

Model, View and View model are the three main components. Each component has

separate responsibilities and concerns related to how software is built.	
	

The main difference between MVC and MVVM is that in MVVM, an extra component,

view model, is introduced and how data is populated to views. View model is an object

specifically designed for the view. It has properties that represent different states of the

view and methods that implement the logic behind the view. The view model of MVVM
is the middle layer between the View and the Model, meaning that its responsibility is to

transform data objects from the model into other data objects which are then handed

over the View to present. Thus, View model handles most business logic, from han-

dling Model-related data to View’s display logic.

Moreover, the other difference is that view controller is also considered as a view com-

ponent in MVVM. View controller no longer owns model but instead asks view model

22

for the data needed to update its view. For that reason, many of its responsibilities are

shifted to the view model, thus helps to avoid massive view controller problem when

dealing with MVC.

3.4.2 RxSwift

RxSwift is the official Reactive Programming library written in Swift for iOS. It has many

of its counterpart written in other languages as well, e.g. RxJava, RxJS, Rx.NET,

RxClosure, etc. There are different versions of Reactive Extensions (Rx) in different

languages but the main concept stays the same.

	

3.4.2.1 Concept

Rx enables easy composition of asynchronous operations and event or data streams.	
	

It combines observer pattern and iterator pattern to allow data to be handled through

data sequences. It also offers a wide range of operators which can be applied to each

sequence or multiple sequences. and adds operators that allow you to compose se-

quences together declaratively while abstracting away concerns about things like low-

level threading, synchronization, thread-safety, concurrent data structures, and non-

blocking I/O [24].

	

3.4.2.2 Observables

The core of Rx is observables. Observable represents a stream of data or asynchro-

nous events which can be used to notify other objects of the changes of certain data

source or event [24]. Observable is a wrapper of different observer techniques in Co-

coa platform such as notifications, delegations, callbacks, etc. Without observables,

handling data flow and data consistency in different places can be challenging since

programmers have to integrate multiple chained callbacks or global notifications. It

thereby reduces the readability and testability of the code and makes the software

more prone to bugs.	
	

23

3.5 Project structure

3.5.1 Models

There are four essential data models in the application project, which are Profile,

Course, Skill, Job. Core Data is used to store all of these data information. The follow-

ing figure shows how I design the models and the relationship between them. 	
	

Figure 11. Relationship between models	

	

In order to assist the work with Core Data when creating, retrieving, updating and delet-

ing data of any model types, having a specific service for that is necessary. With POP,

here I started with a protocol named CoreDataStack and added all required function-

alities and properties that it must have.	
	

24

Figure 12. XML of DataStack.

	

Figure 13. CoreDataStack protocol.	

	

The use of generic types in the methods are important since it is not necessary to cast

the type of the returning values. Thus, it improves the effectiveness of all

CoreDataStack types.	
	

25

By taking advantages of another powerful feature of protocol, protocol extension, I cre-

ated a default implementation for CoreDataStack since there must not be any differ-

ences between different concrete types conforming it.	
	

Figure 14. Default implementations of CoreDataStack protocol	

	

Having the protocol ready is only the first step, I need to create a specific type which

conforms the protocol and implements all the actual implementations. Thus, I created

DataStack which is the only responsible class when working with Core Data. Even

though there is only one type that conforms CoreDataStack in the whole project, it is

beneficial to use the protocol type instead of tightly coupled DataStack type. The ben-

efit is to enhance the testability and scalability. First of all, testability is improved when

CoreDataStack is used as a service in a different class or type. In order to guarantee

that all the functionalities and implementations of that Class is working properly, having

the service as an instance of DataStack is not an optimal solution as it creates, de-

letes and modifies data directly from the database. Moreover, it does not provide with

the flexibility to test all different real-life scenarios. The solution for that is having the

service as a mock object from a type that conforms protocol CoreDataStack. The

26

mock class is also required to have to the required implementations, but I can do any-

thing to make testing all different scenarios easier. Secondly, scalability or flexibility is

acquired in case where actual implementations are updated in the future. In these

cases, replacing the service with a proper type is all that requires. It is not necessary to

update the functionalities of other parts of the software. In addition, since all the tests

are independent from the actual implementation, everything continues to work without

any modification. The following figure shows the actual implementation of DataStack.	
	

Figure 15. Implementation of DataStack.	

	

3.5.2 View models

In the ideal MVVM world, every view and view controller should have one and only one

view model. The application has five main screens (view controller) and four other

views that require its own view model. Therefore, there are total nine different view

models in the project. 	
	

27

Following the same approach, I created a equivalent protocol for every view model.

Let’s first take a look at protocol ProfileViewModelType:	
	

Figure 16. XML of ProfileViewModel	

	

	
	

	

28

Figure 17. Implementation of ProfileViewModel

In Figure 17, I make class ProfileViewModel conform protocol ProfileView-
ModelType. As mention earlier in this study, creating an abstraction layer of Pro-
fileViewModelType is to hide irrelevant characteristics of the model object and only

expose what is necessary to communicate with the other components in the software.

All the complexity and detail are hidden inside ProfileViewModel. Furthermore, ab-

straction makes it easier for unit-testing and replacing one component of the software

with completely different component. I already mentioned it in previous section and con-

tinue with more detail in section 3.5.3.

29

Figure 18. Tests for ProfileViewModel

 	

3.5.3 ViewControllers

View controllers play an important role in all iOS applications. In MVVM architectural

pattern, view controller acts similarly as a view with the main responsibilities are popu-

lating data to UI elements and driving user interaction to the view model via com-

30

mands. With the use of coordinators, view controllers even no longer manage the appli-

cation flow. Since the responsibilities are compact and straightforward, thereby makes

it easier to unit test the view controller. 	
	

As I mentioned above, ProfileViewModelType protocol has everything that can be

used to bind to a ProfileViewController and commands that can be given from

user interaction. basicProfileInfo and completedCourses represent all the data

for the view controller. Those two properties are themselves view model and view

model collection which provide data to the subviews living inside ProfileViewCon-
troller. In this case, ProfileViewModelType is the parent of its child view mod-

els. On the other hand, I use selectCourseDetail and openCourseDetail as the

command and output. ProfileViewController use the two properties in order to

perform task when user selects a course, selectCourseDetail for firing the action

and openCourseDetail for performing it. The following figure shows the actual im-

plementation of ProfileViewModel.	
	

31

Figure 19. Implementation of ProfileViewController.

Now ProfileViewModel can be used in ProfileViewController just like in Fig-

ure 19. Method setupBindings() does the proper data and action bindings between

the view controller and its view model.	
	

ProfileViewController has an abstraction layer for its own viewModel property

and this is the up side of protocol-oriented approach. It creates a loose coupling be-

tween ProfileViewController and its viewModel dependency. Testing the func-

tionalities of ProfileViewController and how it works with its own viewModel

property can be carried out without having the actual implementation of Pro-
fileViewModel. Creating a mocked, stubbed or faked instance is frequently the opti-

mal solution in unit testing environment. 	
	

32

Figure 20. ProfileViewModel implementation for testing

Two differences between ProfileViewModelStub and ProfileViewModel are

basicProfileInfo and completeCourses properties. While basicProfileInfo

is another mocked instance, completeCourses behaves differently than its counter-

part. In ProfileViewModel, completeCourses emits new value into the stream

every time student adds or remove a course from its profile. On the other hand, the

only way for completeCourses in ProfileViewModelStub to emit new value is to

manually call method updateCompleteCourses(_: [CourseCollectionView-
CellViewModelType]). By doing this, different test scenarios can be produced with-

out having to update student information from the database. This approach facilitates

and enhances the flexibility of unit-testing process.	
	

After having the stub class and defining all the test cases for the ProfileViewCon-
troller class, writing tests is straightforward and simple.

	

33

	

Figure 21. Tests for ProfileViewController.	

34

	

As shown in Figure 21, I used stubbed and faked objects to test the functionality of Pro-
fileViewController. This technique makes sure that the behavior of the system

under test is independent from the real-world implementation of its dependencies, mak-

ing it easier to test and still guaranteeing that the program works as expected. Moreover,

for more complex test cases, a more versatile mock, stub or fake can recreate different

test cases easily and efficiently.

4 Results

As a esult of this study, an app called DreamJob was created. DreamJob is only a demo

application and it is not available for download from any sources. The main functionality

of the application is that it helps students to plan their study based on their career inter-

ests.

When a client, most often a student, opens the application for the first time, the applica-

tion requires them to input their information. After that, they will be brought to the main

views which show a list of predefined available courses and jobs. Students can add

courses that they already completed to their profile. In addition to that, student can select

the job that they are interested in. Based on their completed courses and interested job,

the application does a searching algorithm to show them all the options for study path

that they must take to get all skills required by the job.

The application is finished with the code base which is open for extension. Currently, the

application does not support courses and jobs to be fetched remotely. That feature, how-

ever, could be added with ease without much modifications but additions.

5 Discussion

5.1 Study outcome

From functionality wise, the application is not ready to release to App Store as it is not

meant to be. However, it could be extended for more production features thanks to its

current design. The project which follows POP paradigm possesses some major differ-

ences from most of current Cocoa projects. With POP, it improves the testability and

35

extensibility of the project by decoupling its components. Each component of the soft-

ware can be replaced by another one with ease, either between testing and production

environments or between different configurations.

In addition, the project is also following MVVM architectural design pattern instead of

traditional MVC. This adds an additional layer to different levels of components in the

software but creates a better separation of concerns. Thus, the software has view model

objects which takes away many of the view controllers’ responsibilities. Another tool,

used in combination with MVVM, is RxSwift which makes handling data-binding between

view models and views, asynchronous processes easily and productively. MVVM and

RxSwift are a great combination; nevertheless, there is no silver bullet when it comes to

application architecture. Since MVVM shifts many responsibilities toward the view mod-

els; with more complex view or view controller, view model can become massive and not

reusable at some point. Moreover, not all Cocoa programmers are familiar with MVVM

and Reactive Extensions. Especially with Rx, it is a difficult concept, thus getting new

team members onboard takes longer and more effort.

Finally, the project was written following TDD approach which means the code is written

to pass certain test cases. This habit of writing code ensures that the program functions

as expected. It also adds a protection layer to the code written so that any modification

in the future will not break the current behavior of the application. TDD is even more

beneficial when multiple programmers are working on the same project and updates can

happen at any given time.

5.2 Limitations

As mentioned in the study, POP is not only about using protocols, but about using value

types over reference types also. However, the project does not show the application of

POP at full potential. Due to the nature of RxSwift and Core Data, most part of the pro-

gram was implemented with class instead of structure. RxSwift’s observables and Core

Data’s objects are both reference types. Instances that mostly work with observables or

Core Data objects are defined as reference types are as value type has little to no ad-

vantages to their counterpart. When making value types containing multiple other refer-

ence types, we still have to deal with problems when it comes to using objects such as

thread-safety, race conditions, implicit sharing, etc. This is why I implemented types that

are made up by reference types as reference type.

36

In addition, the usage of RxSwift, a third-party library, makes the project strongly de-

pendent on RxSwift’s APIs and code syntaxes for asynchronous processes and data

binding. Replacing the current implementation from RxSwift with a different mechanism

takes an enormous amount of work. Moreover, the concept of Reactive Extensions is

unfamiliar to a majority of Cocoa programmers. Therefore, projects using RxSwift result

in a steep learning curve to new comers. The big difference in coding paradigm makes

it more challenging to program, test and debug the software.

5.3 MVVM vs MVC

I already mentioned the advantages that MVVM has over MVC. The additional compo-

nent, view model, in the architectural design pattern separates many of responsibilities

from view controllers which programmers often find problematic when working it MVC.

View models also improves the readability of the code as it is the object that is specifically

designed for the view and works directly with the models.

Secondly, another additional component, coordinator, takes away the navigation respon-

sibility from view controllers. Coordinators are using the navigation concept, thus have

the responsibility to control the flow of the application and navigate between different

screens. With coordinators, view controllers take this responsibility, thus it makes them

less reusable and testable.

6 Conclusion

In the programming community, scientists and programmers have never stopped invent-

ing and creating new methods to make better software. For Cocoa programmers specif-

ically, many different architectural design patterns have been introduced during the last

decades. Some of them can be listed such as MVC, MVVM, Model-View-Presenter

(MVP), VIPER [1]. And, until WWDC 15 with the introduction of POP, Cocoa program-

mers have had a brand-new additional approach to develop software.

POP is programming paradigm to create reusable and testable software components.

Owning various powerful features such as protocol extension, protocol inheritance, as-

sociated types, constraints, generics, etc., Swift itself and Swift protocols open up many

different programming techniques. Moreover, POP also encourages the usage of value

37

types over reference types. Value types, while being optimized by Swift compiler, pro-

duces higher performance than their counterpart in many parts of the software and elim-

inates many drawbacks that OOP and classes bring up such as implicit sharing, race

conditions, lost type relationship, thread safety, etc. Value types are passed by value, so

updating a value type does not reflect the change somewhere else. Thus, it is safer when

handling different states than it is with objects.

In addition, using protocol as abstraction removes tight coupling between different com-

ponents; thus, makes it easier to test and maintain the code base. By defining the de-

pendencies in the form of protocol, we can easily reuse objects in different situations

even though they might require differently. For example, mocked implementation of pro-

tocol can be used to facilitate unit testing process. However, applying POP is not only

for better code quality but also for building better software and improving software per-

formance.

In conclusion, POP and MVVM are just different tools for building software. They are not

bulletproof to be used anywhere in the development process. In fact, they should be

used when it is more beneficial and applicable. Swift is also an OOP language and many

of Cocoa frameworks are built upon classes and inheritance. Therefore, object-oriented

design still plays an important role in Cocoa project. Using OOP, or POP, or both where

appropriate will improve much of code reusability and quality. Similarly, in cases where

observables and data bindings are not applied, MVC might come as a better option than

MVVM.

	

38

References

1 iOS architecture patterns: A guide for developers. Available from: https://thinkmo-

biles.com/blog/ios-architecture-patterns/ [cited April 13, 2019]

2 Apple. Swift Has Reached 1.0. Available from: https://developer.ap-

ple.com/swift/blog/?id=14 [cited April 6, 2019]

3 Model-View-Controller. Available from: https://developer.apple.com/library/ar-

chive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html [cited

April 22, 2019]

4 Kindler, E.; Krivy, I. (2011). "Object-Oriented Simulation of systems with sophisti-

cated control". International Journal of General Systems: 313–343.

5 What Is Object-Oriented Programming & Why Is It Important?. Available from:

https://www.upwork.com/hiring/development/object-oriented-programming/ [cited

April 22, 2019]

6 Gamma; Helm; Johnson; Vlissides (1995). Design Patterns: Elements of Reusa-

ble Object-Oriented Software. (Bruce 2002, 2.1 Objects, classes, and object

types).

7 Value types and reference types. Available from: https://docs.microsoft.com/en-

us/dotnet/visual-basic/programming-guide/language-features/data-types/value-

types-and-reference-types [cited April 6, 2019]

8 Value and reference types. Available from: https://developer.ap-

ple.com/swift/blog/?id=10 [cited April 6, 2019].

9 Swift vs. Objective-C: A Look at iOS Programming Language. Available from:

https://www.upwork.com/hiring/mobile/swift-vs-objective-c-a-look-at-ios-program-

ming-languages/ [cited April 22, 2019]

10 Features of Object-Oriented Programming (OOP). Available from: http://studytip-

sandtricks.blogspot.com/2012/04/features-of-object-oriented-program-

ming.html?m=1 [cited April 6, 2019].

39

11 Rogers, Wm. Paul (18 May 2001). "Encapsulation is not information hiding". Ja-

vaWorld.

12 Johnson, Ralph (August 26, 1991). "Designing Reusable Classes" (PDF).

www.cse.msu.edu.

13 OOP Concept for Beginners: What is Abstraction? Available from:

https://stackify.com/oop-concept-abstraction/ [cited April 13, 2019].

14 Protocol-Oriented Programming in Swift. Available from: https://developer.ap-

ple.com/videos/play/wwdc2015/408/ [cited April 13, 2019].

15 What is defensive copying? Available from: http://www.javacreed.com/what-is-de-

fensive-copying/ [cited April 14, 2019].

16 Differences between Stack and Heap. Available from: http://net-infor-

mations.com/faq/net/stack-heap.htm [cited April 13, 2019].

17 Inheritance. Available from: https://docs.swift.org/swift-book/LanguageGuide/In-

heritance.html [cited April 22, 2019]

18 Protocols. Available from: https://docs.swift.org/swift-book/LanguageGuide/Proto-

cols.html [cited April 13, 2019]

19 Generics. Available from: https://docs.swift.org/swift-book/LanguageGuide/Ge-

nerics.html [cited April 13, 2019]

20 Gamma, Erich; Richard Helm; Ralph Johnson; John M. Vlissides (1995). Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. p.

395.

21 Delegation. Available from: https://developer.apple.com/library/archive/documen-

tation/General/Conceptual/DevPedia-CocoaCore/Delegation.html [cited April 13,

2019]

22 Dependency Injection Demystified. Available from: https://www.jamess-

hore.com/Blog/Dependency-Injection-Demystified.html [cited April 13, 2019]

40

23 Inversion of Control Containers and the Dependency Injection pattern. Available

from: https://www.martinfowler.com/articles/injection.html#FormsOfDependen-

cyInjection [cited April 13, 2019]

24 Automated Defect Prevention: Best Practices in Software Management. Available

from: https://www.wiley.com/en-us/Automated+Defect+Preven-

tion%3A+Best+Practices+in+Software+Management-p-9780470042120 [cited

April 13, 2019]

25 ReactiveX. Available from: http://reactivex.io/intro.html [cited April 13, 2019]

26 On the Effectiveness of Test-first Approach to Programming. Available from:

https://nrc-publications.canada.ca/nparc/eng/view/object/?id=0420df64-f474-

4072-8df6-c7b87c0de643 [cited April 13, 2019]

27 On the Effectiveness of Test-first Approach to Programming. Available from:

https://nrc-publications.canada.ca/nparc/eng/view/object/?id=0420df64-f474-

4072-8df6-c7b87c0de643 [cited April 13, 2019]

