
Förnamn Efternamn

Learning Best Practices from Web Applications
to Avoid Similar Security Vulnerabilities in
Decentralized Applications

Mahmoud Aboualy

Bachelors Thesis

Information Technology

2019

DEGREE THESIS
Arcada

Degree Programme: Information Technology

Identification number: 20495
Author:
Title: Learning best practices from web applications to avoid sim-

ilar security vulnerabilities in decentralized applications
Supervisor (Arcada): M.Sc. Magnus Westerlund

Commissioned by:

Abstract:

Our sensitive information is disseminated across a large number of websites throughout the
internet. Most business organizations and associations that individuals deal with have ac-
curate and effective security programs to safeguard our confidential information, but this
does not prevent cybercriminals from having a try to snatch our data. Vulnerabilities in
traditional web-applications are often regarded as one of the reasons that allows cybercrim-
inals to hack into systems and purloin thousands of people's personal information. Despite
the proven benefits of using web applications, it is imperative to consider using more se-
cured technologies, associated with Blockchain, and more specifically to switch to decen-
tralized applications. Decentralized Application or DApp for short is an application with
source code that anyone can examine, amend, and enhance and connects independently on
a decentralized public Blockchain. DApp is stored in a distributed file system, such as IPFS,
but transactions among peers are verified through the smart contracts that run on top of the
blockchain. This thesis provides a review of common security vulnerabilities in web appli-
cations and a comparison how decentralized applications deal with the same vulnerabilities.
This provides an insight into how applications may be created in the future.
Keywords: HTML, CSS, JavaScript, React.js, web3.js, MetaMask,

Truffle-framework, IPFS, Ganache, Ethereum, Smart con-
tracts (Solidity)

Number of pages: 46
Language: English
Date of acceptance:

Table	of	Contents	

1 INTRODUCTION ... 6

1.1 FRONT-END DEVELOPMENT WITH JS .. 6
1.2 BLOCKCHAIN ... 7
1.3 THE ETHEREUM BLOCKCHAIN ... 8
1.4 DISTRIBUTED LEDGER TECHNOLOGY (DLT) .. 9
1.5 RESEARCH AIM .. 9
1.6 RESEARCH PROBLEMS AND QUESTIONS ... 10

2 LITERATURE REVIEW ON CENTRALIZED & DECENTRAL-IZED APPLICATION 10

2.1 THE CORE COMPONENTS OF WEB APPS AND DAPPS AND THE INTERACTION BETWEEN THEM. 10
2.2 WEB APPLICATION ... 15

2.2.1 Web server: .. 15
2.2.2 Database .. 16
2.2.3 Client-side JavaScript framework ... 17

2.3 DECENTRALIZED APPLICATION (DAPP) ... 18
2.3.1 Client-side React ... 19
2.3.2 IPFS ... 20
2.3.3 Smart contract ... 20
2.3.4 Web3.js .. 21
2.3.5 Ganache ... 21
2.3.6 Metamask-extension ... 23
2.3.7 Truffle framework .. 24

2.4 APPLICATIONS AND SECURITY ... 24
2.4.1 Cross Site Scripting ... 25
2.4.2 SQL Injection .. 27
2.4.3 Insufficient auditing in database .. 28

2.5 MITIGATING SECURITY VULNERABILITIES ... 29
2.5.1 React: ... 29
2.5.2 The security issues that are tackled with Blockchain technology 30

3 DAPP IMPLEMENTATION ... 31

3.1 WEB3.JS .. 31
3.2 TRUFFLE .. 32
3.3 GANACHE ... 32
3.4 SMART CONTRACT: .. 33

4 RESULT .. 34

5 DISCUSSION .. 37

5.1 THE MAIN COMPONENTS OF CENTRALIZED & DECENTRALIZED APPLICATIONS. ... 37
5.2 THE MAIN DIFFERENCE BETWEEN THE SERVER-SIDE IN TRADITIONAL WEB APPLICATIONS AND ITS COUNTERPART

IN DECENTRALIZED APPLICATIONS. ... 38
5.3 THE WAY THE CLIENT-SIDE INTERACT WITH THE SERVER IN BOTH THE TRADITIONAL WEB APPLICATION AND THE

DECENTRALIZED APPLICATION CASES AND THE MOST COMMON TECHNIQUES USED TO ACHIEVE THE INTERACTION. 38
5.4 THE THREE MOST COMMON SECURITY VULNERABILITIES IN WEB APPLICATIONS AND THE WAY THEY ARE HANDLED

IN DECENTRALIZED APPLICATIONS .. 39
5.4.1 ReactJS ... 39
5.4.2 Blockchain .. 39

6 CONCLUSION ... 40

REFERENCES ... 40

Figures
Figure 1 IPFS DApp (friendlyuser.github) ... 19

Figure 2 A screenshot of my Ganache GUI ... 22

Figure 3 Screenshots of Metamask for Chrome ... 24

Figure 4 A screenshot of my DApp (client-side-ReactJs) .. 31

Tables

Table 1 A comparison between the client-side in both web apps and DApps 11

Table 2 Examples of databases that can be used in Web application and DApps 12

Table 3 A comparison between the interaction between the client-side and the server-side

in both Web apps and DApps ... 13

Table 4 A comparison between the server-side in both Web apps and DApps 14

Table 5 Analysis of XSS attacks in native JavaScript and ReactJS 34

Table 6 Analysis of security vulnerabilities in both traditional databases and Blockchain

 .. 36

6

1 INTRODUCTION

Over the past few years, there have been influential and noteworthy technological ad-

vancements, which in turn have had either direct or indirect impacts on our daily lives.

Blockchain technology is one of those technologies that managed to draw attention to its

essentiality and novelty by many non-professionals, specialists, and experts in various

fields such as IT, business, etc. Since the emergence of some rather controversial crypto-

currencies such as Ethereum Litecoin, Bitcoin, etc., there has been much talk about the

technology underlying those cryptocurrencies and especially Bitcoin.

Bitcoin is defined as the first decentralized digital currency, p2p payment network with-

out a central point of control. Bitcoin is considered as an example of a decentralized plat-

form, and thus, the term decentralized platform has started to acquire widespread common

usage. Bitcoin has blazed a trail for developing a new kind of application software pro-

gram that can make use of its exceptional and new-fangled technology, namely, block-

chain, the core component of Bitcoin.

This chapter begins with a brief history of JavaScript, Blockchain, Ethereum Blockchain,

and distributed ledger technology, followed by the research aim, and after that comes the

research problems and questions.

1.1 Front-end development with JS

In May 1995, within a few days of hard work, Brendan Eich, an American technologist

and the co-founder of both Mozilla and Firefox, created JavaScript, while working at a

company called Netscape Communications Corporation.

The newly created language was initially named Mocha, and in September 1995 it was

decided to replace the naming with “LiveScript”, but then again, with JavaScript within

the same month of September, as they aimed to piggyback on the great success and fame

of Java programming language

 In 1996, a number of script technologies such as JScript and VBScript were published

by Microsoft and later in the same year, JavaScript was sent to ECMA to get an official

7

standard for it. The ECMA international trademarks the ECMA script to indicate to the

standard for the language.

Scripting language such as Jscript, JavaScript, ActionScript and VBScript are an imple-

mentation of those standards in one way or another. However, JavaScript has stayed the

renowned implementation of ECMAScript specification.

ECMAScript 1 showed up in 1997, while not very far away from that data, the second

version of ECMAScript came out, followed by ECMAScript3 in 1999 (Leprohon, M.A.,

2017), whilst there was never ECMAScript 4, the fifth version of ECMAScript was in-

troduced in 2009 and ES6 was eventually released in 2015. (Materzok, M., 2016)

1.2 Blockchain

Blockchain, the technology probably to have the uttermost influence on the next few dec-

ades on all types of businesses in lots of different areas has arrived.

Although, it is claimed that blockchain was contrived in 2008 by an anonymous person

(or even a group of them) under the pseudonym “Satoshi Nakamoto” (Lemieux, P.,

2013.), the actual history of Blackchin technology dates back to the 1990s.

 In 1991, two physicists, namely Stuart Haber and W. Scott Stornetta worked together on

a feasible solution for time-stamping digital document (Haber, S.A. et el., 1992), in order

to avoid them getting manipulated or backdated. They proposed a system that makes use

of “a cryptographically secured chain of blocks” (Wikipedia, 2019) to maintain the time

stamped documents.

Merkle trees were integrated into the design shortly after the start of the project for the

purpose of enhancing its efficiency by letting many documents to be combined into a

block. However, the idea did not get adopted and the technology was disregard in 2004.

In 2004 a developer called Hal Finney invented RPOW scheme (stands for Reusable

Proof-of-Work) (Karlstrøm, H., 2014) that significantly inspired Bitcoin. PROW system

helped soundly in preventing double spending problem by maintaining the possession of

tokens registered on a reliable network that is designed to make users across the world

able to verify its veracity and probity in real time.

8

In November 2008, Satoshi Nakamoto published the bitcoin whitepaper on the internet

representing Bitcoin for the first time as a Peer-to-Peer Electronic Cash System (Chuen,

D.L.K. ed., 2015)

1.3 The Ethereum blockchain

Ethereum was originally innovated by a Canadian programmer called Vitalik Buteri who

is very fond of the decentralization concept in principle. While him being a part of the

Bitcoin community, he suggested what is so-called the” white paper” (Buterin, V., 2017)

which was essentially a kind of virtual machine taped on as an inordinately protocol on

top of prime coin. The main idea behind the white paper was to add a scripting program-

ming language to blockchain in order to give individuals a much easier time building

things such as Namecoin, etc, but after failing to come an agreement, he recommended

evolving a new platform that allows the use of a scripting.

For the first time, between the 22nd of July and the 2nd of September in 2014, Ethereum

foundation conducted an online crowdsale for selling Ether at a proximately price of

$0.31 per token. The main idea behind the conducted crowdsale was to provide financial

support for the further development of Ethereum platform.

Ethereum is a public, distributed, blockchain-based decentralized platform designed to

allow applications to run precisely as intended (with no chance for centralized control,

TPI (Third-party interference) or swindle).

One of the greatest strengths of Ethereum platform, is that the decentralized association

and the escrow agreement are not required to make account of what type of account every

party to the contract is. (Buterin, V., 2014)

The Ethereum platform incudes a plentiful number of advantages, for instance, it enables

its users to generate their own virtual cryptocurrencies according to their needs or wishes,

provides its users with the ability to plan any kind of independent contracts that have no

more need for middleman or supervisor, etc.

9

1.4 Distributed ledger technology (DLT)

Distributed ledger technology (DLT) is an old concept that has been for a while and dates

back at least 30 years. Distributed ledger technology is termed a consensus of shared,

proliferated and synchronized digitized information distributed all over the world. Dis-

tributed ledger technology clarifies the various implementations followed with a view to

achieving consensus in distributed ledgers while achieving consensus mainly falls into

two main categories based on the parties involved in the consensus process. (Westerlund,

M. and Kratzke, N., 2018)

There are mainly three generations of Distributed ledger technology, each of which has

important strengths and weaknesses. The first generation is effectively connected with

Bitcoin blockchain that provided the ability to safely maintain transactions in an immu-

table ledger and proof-of-work also known as consensus mechanism. Proof-of-work is a

protocol, or a system followed to validate transactions, deter attacks on the chains, add a

new block to the chain and agree on the state of the network. In the second generation,

Ethereum Virtual Machine (EVM) which is considered to be a runtime(sandboxed) envi-

ronment for smart contracts based on Ethereum network, was introduced. Ethereum Vir-

tual Machine allows running applications that are locked off from the outside world.

The third generation testifies to the shift from consensus based on Proof of Work (PoW)

to one based on Proof of Stake (PoS). Proof of Stake is described as one of the most

frequently used algorithms for achieving consensus in blockchain sharing the same pur-

pose with proof of work algorithm and differentiating from proof of work in the way it is

achieving that purpose. (Westerlund, M. and Kratzke, N., 2018)

1.5 Research aim

The main purpose of this thesis is to provide an understanding of common security vul-

nerabilities in Web applications, by reviewing literature and comparing how Web apps

and DApps deal with the same vulnerabilities. This provides an insight into how applica-

tions may be created in the future. This will be achieved by:

• Building a decentralized application using React.js, web3.js MetaMask, Solidity

Truffle framework and Ganache.

10

• Analyzing the basic components of both centralized and decentralized applica-

tions.

• Criticizing the literature concerning the most common security vulnerabilities in

Web applications.

• Identifying the potential solutions introduced by decentralized applications to the

most common security vulnerabilities in traditional Web application.

1.6 Research problems and questions

The essential questions that the search will aim to answer, are:

• What are the main components of centralized & decentralized applications?

• How does the server-side in traditional Web applications differ from its counter-

part in decentralized applications?

• How does the client-side interact with the server in both the traditional Web ap-

plication and the decentralized application cases and what are the common tech-

niques used for achieving that interaction?

• What are the three most common security vulnerabilities in Web applications and

how they are handled in in decentralized applications?

2 LITERATURE REVIEW ON CENTRALIZED & DECENTRAL-
IZED APPLICATION

In this chapter, first, I am going to perform a general analysis of the core components of

both web applications and decentralized applications. Secondly explain in detail some of

those components. Lastly, present the most common security vulnerabilities in web ap-

plications that lead to data breaches and the possible ways to detect and prevent them.

2.1 The core components of web apps and DApps and the inter-
action between them.

Almost every Web-based database application existing on the internet has at least three

major components, namely a client-side, a server-side and a database server. DApps differ

11

from Web apps in the server-side where smart contracts and Blockchain are used instead

Table 1).

Table 1 A comparison between the client-side in both web apps and DApps

 Web-app DApp

Client-side The client side is simply everything that the end-user or the client sees and interacts

with (Jadeja, Y. and Modi, K., 2012). There are a variety of technologies that can be

used for Web development. However, CSS, HTML, and JavaScript are the most com-

monly used ones.

JavaScript, the world's most common

scripting language, has a multitude of

frameworks and libraries including:

• AngularJS (Supported by
Google)

• ReactJS ((Supported by Face-
book)

• VueJS
• Meteor
• Aurelia
• Backbone.js
• Ember.js

Most of them are meant for Web devel-

opment. Each library/framework has

advantages, disadvantages and a com-

munity standing behind.

A decentralized application or a DApp can

have its client side written in any scripting

language that makes use of API calls to its

server side. However, there are a number of

libraries and frameworks that are commonly

preferred such as

• ReactJS (There are many ReactJS

truffle boxes available to DApp de-

velopers allowing them to easily build

DApps)

• Meteor (Meteor is considered to be a

complete framework that includes all

the tools, necessary for development.

In addition, Fabian Vogelsteller, a

key member of Ethereum Foundation

wrote a book about it and recom-

mends using it for building Ethereum

DApps

• EmbarkJS (EmbarkJS is a framework

that facilitate building and deploying

DApps. Embark has several ad-

vantages over other libraries and

12

frameworks, since it allows DApp de-

veloper to smoothly perform a wide

variety of tasks such as automatically

deploy smart contracts (and redeploy

if necessary), deploy the entire app to

Swarm or IPFS, integrate Embark

with any other technologies, pipelines

and tools such as ReactJS, grunt,

webpack and gulp, etc. (github/em-

bark, 2019)

One of the major differences between Web applications and DApps is the database that

can be used in both of them, and therefore, it is necessary to bring to light some examples

of those databases (Table 2).

Table 2 Examples of databases that can be used in Web application and DApps

Database There are a wide variety of databases that are

used for Web applications such as relational

databases (the most commonly used one),

distributed database, centralized database,

distributed database, OOD (stands for object-

oriented database) NoSQL database, private

database. etc.

Alongside Blockchain which is de-

scribed as a public digitalized ledger

that is distributed and decentralized,

there are a group of decentralized data-

bases (decentralized hosting) that can

be used including but not limited to

• IPFS (stands for InterPlanetary

File System)

• Swarm which is “a distributed

storage platform and content

distribution service” (swarm-

guide.readthedocs.io, 2019)

• BigChainDB (stands for Inter-

Planetary DataBase),

13

• Distributed file storage, etc.

(Dmitry Kochin, 2017)

Due to the difference in server-side technology used in both Web applications and DApps,

the communication techniques followed for facilitating the interaction between the

server-side and the client-side are different. The table below gives information on some

of those techniques (Table 3).

Table 3 A comparison between the interaction between the client-side and the server-side in both Web apps and DApps

The inter-
action be-
tween the
client side
and the
server side

Web API: APIs stands for application pro-

gramming interfaces and they are constructs

made ready in programming languages with

a view to facilitating developers’ employ-

ment. (developer.mozilla.org, 2019)

APIs in client-side JS go under two classes

third party APIs and Browser APIs.

HTTP: HTTP is defined as an application-

level protocol with the agility, resiliency and

rapidity indispensable for distributed, collab-

orative, hypermedia data systems. (Berners-

Lee, Tim, et el.).

HTTP has a set of properties that make it

more preferable to other communications

protocol, for instance, it complies with the

standard client-server model, it is stateless

(which means that each transaction carried

out via HTTP is separate and not associated

with any other transactions, so the transaction

is gone the moment that the transaction

ends.), etc.

Decentralized application has no cen-

tral server but decentralized ones which

means that every user of the Ethereum

dApp either uses his own blockchain

node (as a server) or another person's

blockchain node from the network.

All nodes are generally arranged into

P2P network and for the client-side to

interact with those nodes an Ethereum

JavaScript API known as “web3” is

most frequently used.

14

REST: REST (stands for Representational

State Transfer) is described as an architec-

tural style or a design concept for exchanging

information in well-defined formats so as to

enhance interoperability.

HTTP is the most frequently used communi-

cation protocol in RESTful Web services.

REST adds decidedly no particular function-

ality to HTTP.

All REST services are considered to be APIs,

not vice versa.

The table below summarizes the differences between the web application server and the

decentralized application server (Table 4).

Table 4 A comparison between the server-side in both Web apps and DApps

Server-
side

Server-side programming language is a

language designed to run on a Web server.

For instance,

• PHP (PHP is known as the most
frequently used scripting language
on the server-side)

• Node.js
• Python
• Java
• C++
• ASP.NET

There are many (blockchain) program-

ming languages that can be used for writ-

ing smart contacts on Ethereum Block-

chain that includes a number of the tradi-

tional server-side programming languages

such as Java, Python and C++. In addition,

• Solidity (A high-level and object-
oriented programming language)

• Simplicity (A low-level language)
• Rholang (A fresh programming

language for coding smart con-
tracts)

15

2.2 Web application

A web-application is defined as a conceptually centralized application program which is

maintained on a remote server allowing clients all over the world to access through the

internet, by using a web browser of their choice.

All Web-applications have three fundamental components, namely a web server, a client-

side and a database.

2.2.1 Web server:

In a technological sense, a web server is well described as a computer program, a some-

what distinct computer, in a sense that it is meant to serve other computers. Servers are

commonly connected either to a personal network known as an intranet which is limitedly

accessible to an association's staff, or the internet; accordingly, client computers have to

be connected to the same network as server computers and simplified vision of how the

communication between them occurs would be:

A user types a specific URL into a web browser, which in turn, splits the URL into its

basic components, namely scheme (either http: or https), domain name, and path, and

construes the domain name to an IP Address with the help of DNS (Domain Name Sys-

tem), the IP Address is then used to make a connection to the targeted server by sending

an HTTP using the right request method such as GET, POST, DELETE, etc. the serve

handle the request and sends back a response to the request with a particular status code,

and a response header which provides a more exhaustive context of the response.

Servers interact with other servers every now and then, for instance, the web servers at a

company like Google will communicate to the servers at Arcada (University of applied

sciences) to get data that lets google searches to find Arcada programmes and admissions,

while client computers scarcely interact with one another without passing through a web

server.

There are multiple types of connections to servers, for instance,

16

• FTP means file transfer protocol is well termed as a standard network protocol

that allows files to be transmitted between servers and clients or heterogeneous

computer systems via the internet. (Gien, M., 1978)

• SSH secure shell), is a protocol used for secure authenticated and encrypted net-

work activities such as secure remote login through a secure network. (Ylonen, T.

and Lonvick, C., 2005.)

• SFTP means SSH file transfer protocol a network protocol “that provides file ac-

cess, file transfer, and file management” through any dependable information

stream. (Wikipedia, 2019)

2.2.2 Database

A database is defined as a collection of data, which is chiefly structured for making a

number of data-processing operations such as searching, retrieving or inserting further

data series, easy and more efficient. The information maintained in databases can be al-

tered, retrieved and erased as necessary. Database can be accessed in diverse ways; How-

ever, a more common way is through the internet.

There are many types of databases, each of which has its own perks, and its own ad-

vantages.

• Centralized database: It defined as a collection of data/information, maintained

in computerized form in one location. (Árnason, V., 2004.). Data is stored and

altered from that specific location only and commonly. This type of database is

usually used by organizations such as universities, banks etc. Carrying out data-

processing-related operations, in case of using DPs (decentralized databases) can

vastly be done through distributed parallel computations.

• Distributed database: It can be described as a system that makes use of sharding

and more likely replication to enhance efficacy and augment dependability. Dis-

tributed database is made up of a single rational database that is divided into a set

of fragments each of which is maintained on one or more physical places on the

same network or on completely distinct networks.

There are two traditional ways of partitioning, namely horizontal partitioning and

vertical partitioning.

17

Horizontal partitioning referred to as “sharding” and it is a type of partitioning

where developers work on splitting the different rows into different tables.

Vertical partitioning is the second type of partitioning where developers tend to

split the columns instead of rows and they are required to assemble and reassem-

ble the data in order to able to read and write it

• NoSQL database: The term 'NoSQL database', suitably, is the substitutional to

the classic relational databases where data is set in tables and also data schema is

accurately planned beforehand, before even building the database. NoSQL data-

bases are able to maintain structured, semi structured or unstructured data. (Mo-

hamed, M.A., et el, 2014)

• Relational database: The term ' relational database ', appropriately, is a set of

abilities that improve requisite database operations for business purposes. A rela-

tional database maintains data in an organized format known as a schema to make

sure the integrity of the information. Relational database is an efficacious way of

arranging data with respect to storage utilized

2.2.3 Client-side JavaScript framework

Comprehending what precisely JavaScript is and how the web browser deal with it, gives

a better eye at how things are going under the hood. Each webpage available on the in-

ternet comprises of a combination of CSS, HTML and JavaScript.

JavaScript or the language of the browser has always been considered as one of the most

widespread programming or scripting language on the Internet for it being a dynamic,

responsive, flexible, lightweight, easy-to-learn language. In addition, JavaScript is also

categorized as a high-level, object-oriented object-based, interpreted and weakly typed

language.

High-level language indicates that the instructions come in a way that is more flexible,

understandable, readable and natural to humans, the object-oriented feature is a practical

and beneficial programming methodology which mainly supports modularity in design

and software reuse. (Snyder, A., 1986) and object-based means that the language does not

have classes but objects (Thiemann, P., 2005) and relies on prototype objects to model

18

inherence, weekly typed implies that distinct forms of data can be handled inter-change-

ably with one another, while the feature interpreted comes from the fact that at runtime it

is automatically interpreted by the web browser. However, one may argue that any pro-

gramming language can be classified as either compiled or interpreted depending more

on the implementation of the developer itself, meaning that it is not a specification of the

language.

Scripting with JavaScript can be either on the server side or on the client side. However,

it is most ordinarily utilized on the client side. Client-side scripting occurs in the web

browser or at any rate on the client computer

JavaScript was mainly designed to run on an assortment of web browsers. Today, almost

all modern web browsers come with a built-in ECMA Script Engine for interpreting Ja-

vaScript code line by line or even more accurately byte by byte and executing it.

2.3 Decentralized Application (DApp)

Bitcoin's white paper was introduced by Satoshi Nakamoto describing Bitcoin as “a Peer-

to-Peer Electronic Cash System” (Nakamoto, S., 2008) making it possible for online pay-

ments to be performed without a central point of control or middleman.

DApp is short for decentralized application and it is an open source application that has

its server-side code running on a decentralized P2P network such as Ethereum while all

the records of the applications processes are maintained on Ethereum blockchain. (Figure

1)

Being an open source application signifies that the code is accessible to everyone and can

be enhanced by anyone. For the end-users, decentralized applications might not look any

different than other applications they use today.

19

Figure 1 IPFS DApp (friendlyuser.github)

2.3.1 Client-side React

A declarative, dynamic and functional JavaScript library which is managed by Facebook

and widely used by web developers to build interactive UIs (stands for user interfaces).

(reactjs.org, 2019) React has introduced the concept of Virtual DOM to web application.

Virtual DOM is described as a programming concept in which a hypothetical example of

the user interface is maintained in memory and synced with the actual DOM. Virtual

DOM is implemented in one of the libraries provided by ReactJS, React DOM, which

handles the process of updating the DOM in order to be consistent with the React ele-

ments. (reactjs.org, 2019)

The prime advantages of ReactJS are the following:

• ReactJS is often described as an easy-to-learn and easy-to-use library. It uses a

private syntax named JSX that is described as a kind of unrivalled mixture of both

20

HTML and JavaScript, and hence a web developer with knowledge in program-

ming will comprehend ReactJS rather straightforwardly

• ReactJS allows developers to smoothly build Single Page Application (SPA). A

Single Page Application is a web application or web site that loads an individual

HTML page, and then works inside the web browser. Single Page Applications

instead of reloading an entire Webpage as a result of user interaction, they dynam-

ically update that Webpage and therefore, they communicate with the server only

in a very limited sense

• React supports code reusability and responsive design, making it quite easy to

create Android, IOS and web application from a similar code base.

2.3.2 IPFS

IPFS (InterPlanetary File System) is described as a P2P hypermedia protocol, file sharing

distributed system. IPFS endeavors to supersede Hypertext Transfer Protocol (HTTP).

(ipfs.io, 2019)

InterPlanetary File System mainly aims to subrogate the traditional way of accessing re-

sources using a web browser. The connotation of content-based addressing was intro-

duced for the first time by IPFS which means and contrary to what has been ordinary, a

resource existing on the internet can be reached by its content instead of its fixed location

(“addressing hosts”). One of the main qualities that is associated with IPFS is “the speed

of data transfers” which has been enhanced a lot though IPFS (Cisneros, J.L.B., et al.,

2018.)

2.3.3 Smart contract

Smart contracts are ordinary contracts written into lines of code, that is designed to be

automatically self-executed precisely as previously programmed and stored across (on

top of) a public, distributed, digitized decentralized, blockchain network. (Karafiloski, E.

and Mishev, A., 2017)

Smart contracts are “irreversible and immutable” (Luu, L., et el., 2016), which means that

after parties concerned come to an agreement on the terms and the contract gets deployed

21

on blockchain, it is impossible afterwards for the smart cataract to be mutated. Block-

chain-related coding is a comparatively considered as a new practice, with limited docu-

mentation, guidelines, or security standards to follow.

In August 2014, a new programming language influenced by C++, Python and JavaScript

called solidity was initially proposed by a programmer named Gavin James Wood.

Solidity is a “contract-oriented and high-level” programming language that smoothed the

way for writing smart contracts. (solidity.readthedocs.io, 2019)

2.3.4 Web3.js

Web3.js is a variety of libraries, holding particular functionalities that facilitate the inter-

action process with a local or a remote Ethereum node using one of the following com-

munication techniques, HTTP or Inter-process communication (IPC). (Prusty, N., 2017)

(official documentation on web3js.readthedocs.io)

2.3.5 Ganache

Ganache is a private blockchain with the objective of facilitating a number of Ethereum

development related activities such as deploying contracts, developing decentralized ap-

plications, and running tests.

Truffle Suite provides two different versions of Ganache, the first version is a visual in-

terface, commonly known as Ganache GUI, while the second is a command line tool for

those who are interested in doing development with the command line. (truffleframe-

work.com, 2019).

My choice went for Ganache GUI for being easy-to-install and easy-to-use. GUI auto-

matically generates 10 accounts, each of which comes laden with 100 (spurious) ethers

(With no actual value on the prime Ethereum network). (Figure 2)

Those accounts can readily be exported from Ganache to MetaMask for development

purposes by simply clicking on the key icon on the right side, copying the private key and

pasting it to MetaMask (Under: My Accounts à Import Account à Paste your private

22

key string here:). Performing transactions will alter the amount of Ether available and the

remaining balance will automatically show up under “Balance”.

Figure 2 A screenshot of my Ganache GUI

23

2.3.6 Metamask-extension

MetaMask, which is a web browser extension, built by use of web technology, is des-

tined particularly for use with an overt distributed decentralized blockchain-based net-

work that is known by the name of Ethereum network. MetaMask extension/ add-on is

available on a variety of browsers such as Opera, Chrome, Firefox, etc.

(metamask.io, 2019)

Installing MetaMask onto one of the supported web browsers, will

transform that browser into an Ethereum one. With the help of Meta-

Mask, webpages will able to retrieve in-formation from the block-

chain, and users will be able to securely superintend identities and sub-

scribe transactions.

After the first installation of MetaMask, and to get MetaMask con-

nected to Ganache, there is a need to switch from the default network

“Test Network” to HTTP://127.0.0.1:7545(http://localhost:7545), the

local server where the blockchain runs. The name of network existing

at the top will then appear as "private Network".

MetaMask allows creating numerous accounts and to do so, the user needs to press on the

round icon, in the top-right corner, and then click on “Create account” or “Import Ac-

count”.

Ganache provides 10 accounts with fake 100.00 ETH for development purposes, each of

which can be used in creating a new MetaMask account. Each account can be named and

renamed at any time and will possess its own unique public and private keys. Each of the

created account-wide storages is encrypted with the public key associated with the ac-

count and internally stowed within the web browser, Metamask is installed on. The data

stored in the account vault won’t be shared with any third party including the server of

Meta-mask. MetaMask makes it possible for its users to send and receive ether as any

ordinary wallet application. (Figure 3)

24

Figure 3 Screenshots of Metamask for Chrome

2.3.7 Truffle framework

Truffle is a potent framework which is commonly described as an integrated environment

that enable Ethereum developers to build, develop, test and deploy their decentralized

applications on Ethereum network using the EVM (stands for Ethereum Virtual Machine)

and smart contracts.

2.4 Applications and security

Data theft and data breaches influence hundreds of millions of people across the world

and is on the rise. Numerous companies have undergone a large data breach giving rise

to layoffs, lawsuits and deceit once these cyber criminals have our private information.

Data breach can also conduce to identity theft permitting someone else to misuse other’

credit cards, names and probably ruining the history of the credit card. Data breaches can

some-times be conducive to extortion if the targeted individuals are members of a suspi-

cious web-site or have information, they wish to keep private.

Below some of the popular security vulnerabilities in traditional applications are intro-

duced, namely Cross Site Scripting (XSS), SQL injection and insufficient auditing in da-

tabase.

25

2.4.1 Cross Site Scripting

XSS attacks (Cross Site Scripting) is defined as a virulent form of injection in which

pernicious scripts are injected into reliable and benign website which even could be safe-

guarded by a trusty firewall and encrypts all the communication between the client and

the server.

Cross Site Scripting has turned into one of the most widespread security vulnerability of

numerous web sites and web applications. (Galán, E., et el, 2010) and the biggest menace

on web applications today. (Bisht, P. and Venkata krishnan, V.N., 2008) (Parvez, M., et

el., 2015)

XSS attacks are also used by cybercriminals to imitative actual websites and deceive in-

dividuals into providing confidential data. Cross-site Scripting starts when a cybercrimi-

nal detects and takes advantage of potential security vulnerabilities in a specific web ap-

plication and injects and executes pernicious code into it, which in turn sends that mali-

cious code to another other end user. It can simply happen because of erroneous, inaccu-

rate or lack of sanitization of user inputs, which in turn ends up in plentiful issues for web

application users and server applications. (Hydara, I., Sultan, A.B.M., et el, 2015)

An efficacious way that helps in preventing XSS attacks on the server side, is to validate

or filtere each and every place where user- input fields are shown. (Cook, S. (2003) (Bisht,

P. and Venkatakrishnan, V.N., 2008)

Following is a very simple JavaScript snippet that demonstrates an XSS attack, that aims

to purloin the cookies maintained on the victim's computer.

<script>window.location='https://myownwebsite.net/?cookie='+doc

ment.cookie</script>

A cookie is data maintained in either an individual file or multiple small-sized ones de-

pending on the web browser used while visiting a web site.

Reflected XSS, Persistent XSS and DOM-based XSS are the three most common types

of cross-site scripting attacks. (Gupta, S. and Gupta, B.B., 2016)

• Reflected XSS is vastly labelled as the most recurrent sort of XSS attack so far

detected in the wilderness. Non-persistent XSS, reflected XSS or type 1 XSS all

26

refer to the same thing which is a type of attack in which malicious script code is

reflected off a specific web server to the targeted victim's web browser.

The attack begins when a hacker injects a pernicious script code as a parameter

in-to an URL and dispatches it to a particular victim or even to a set of them.

A Reflected XSS can look like this:

<script>window.location='http://www.aboualywebpage.com/?vic-

timcookie='+document.cookie</script>.

The URL is usually sent to the victim in various ways, however sending it via the

e-mail is the most common way, and once the targeted person decides to pursue

that infected URL to the web site, the page will be loaded in the web browser

which allows the attacker to gather all maintained cookies on the client’s computer

by the client's browser for any victim.

This type of XSS attack happens when the web server does not appropriately scour

the output server to a visiting client’ computer. (Sharma, P., et el., 2012)

• Sorted or persistent XSS, takes place when a sly script code is inserted directly

into a vulnerable web site or web application with a view to being maintained in

that webpage on a long-term basis, and therefore, all the website visitors will be

automatically infected. Out of all the other types of XSS attacks, Persistent XSS

is the most threatening one (Wang, Y., et el, 2011), since it is more dangerous

than the other forms of XSS attacks (Chen, J.F., et el., 2012)

• DOM-based XSS also known as type 0 XSS, as the name suggests, is a type of

XXS attack that mainly targets manipulating the DOM (stands for document ob-

ject model), environment on client-side in lieu of dispatching the malicious

script to web server, and therefore the server has no chance to verify the pay-

load. (Baranwal, A.K., 2012)

DOM based XSS attack takes place when a client provides malicious data in Ja-

vaScript with the help of a number of methods such as document.write, eval(),

etc. (Nagar, N., et el, 2016)

Þ Non-persistent XSS, persistent XSS and DOM-based XSS all are different tech-

niques for getting a malicious script code to show up on a vulnerable site.

27

Þ These three types of attacks differ from each other in the way they are carried out

and warded off.

2.4.2 SQL Injection

SQL Injection is a very common technique to attack a website, that actually should have

been scotched and should not work any longer but unfortunately it still does.

SQL (Structured Query Language) is the standard programming language for creating,

manipulating, and querying data maintained in relational databases.

In that connection, and for facilitating the process of data manipulation (DM), SQL comes

with a set of commands, namely, CREATE DATABASE, CREATE TABLE, DELETE,

ALTER DATABASE, INSERT INTO, DELETE, UPDATE and SELECT

All the aforementioned SQL commands can be illicitly misused to manipulate data stored

in a database using a type of mechanism that attacks web-based applications called SQL

Injection

SQL injection attacks constitutes one of the most critical threats to web apps, as they

enable cybercriminals to get absolute access to the databases underlying the applications

and to probably the critical data these databases include. (Halfond, W.G., et el, 2006)

This type of attack takes place when some unreliable content is banded together with SQL

code prior the SQL code is made ready.

That mischievous content is not necessarily derived from a user but could be also mistak-

enly generated, while it turns into malicious when an attacker dispatches some values to

an application with a view to infixing it into a SQL string, which provides him/her with

the means to rig the output of queries, perusing data or even illicitly mutating the main-

tained data.

As an example: imagine a webpage that lets a customer to input Customer ID and gets

back user data.

28

So, if a customer types the 'CustomerID' as 10 or 1=1, the SQL would get interpreted to

SELECT * FROM Customers WHERE CustomerID = 10 or 1=1.

The aforementioned SQL query would fetch all rows from the Customers table where

1=1 is true.

Cybercriminals use various methods in order to run an SQL injection attack. However,

Blind SQL Injection, Error Based SQL Injection and Union-Based SQL Injection are the

most frequently used ones.

• Blind SQL injection is a type of SQL injection attack wherein a cybercriminal

attempts to do guesswork using query string.

• Error Based SQL Injection is described as a mechanism in which a hacker defines

potential system vulnerabilities by intentionally bringing about a SQL database to

extrude errors onto the UI (stands for user interface)

• Union-Based SQL Injection as the name implies, it is a type of SQL Injection that

relies on either the operator UNION or UNION ALL with a view to extending the

outputs reverted by the original query.

There are several techniques that are used in traditional Web applications to avoid and

deter SQL Injection vulnerabilities, for instance,

• Averting creating SQL queries through user input by maintaining all the dynamic

input values detached from SQL queries.

• Detecting tries at SQL injection instantly by keeping an eye on query logs

• Escaping all the dynamic inputs before inserting them into any SQL string.

2.4.3 Insufficient auditing in database

An audit trail is fairly defined as a security-pertinent logbook, that gives graphical demon-

stration of the concatenation of processes which have affected at any time a particular

step, action, or procedure. ("Audit trail," Wikipedia,)

29

Due to the lack of having a scanty or at least an efficient auditing framework, the system

might experience or end up with heavy losses with respect to data stored in the database

by system vulnerabilities profiteering cyber criminals, and therefore, the importance of

audit tracking brings out as a preventive of cyber-attacks.

2.5 Mitigating security vulnerabilities

ReactJS and Blockchain can be an effective solution to tackle SS attacks, SQL injection

attacks and insufficient auditing in traditional database.

2.5.1 React:

ReactJS automatically escapes variables, which in turn, plays an important role in ward-

ing off cross-site scripting injection through string HTML with pernicious JavaScript

code. Here is a user input example form ReactJS

constructor(props){
 super(props);
 this.state = {
 user : {
 id: "",
 ownerFullName: "",
 carMake:"",
 carModel: "",
 extraDes:"",
 photos:[],
 },

 errors:{
 ownerFullNameError: "",
 carMakeError: "",
 carModelError: "",
 extraDesError: "",
 photosError: "",
 }}}

 const { classes } = this.props;
 const {ownerFullName} = this.state.user;
 const {carModel} = this.state.user;
 const {carMake} = this.state.user;
 const {extraDes} = this.state.user;

render() {
 return (
 <div>{ ownerFullName }</div>
);

30

}
This is simple code snippet from my project which represents a form that receives user

input. The variable “ownerFullName” was placed in the render function to demonstrate

that whatever value that variable holds it will be automatically escaped and presented as

a string.

ReactJS guarantees that using markup can be carried out through the render functions. In

other words, With ReactJS it became a way harder for markup to be let in, unless the

elements were coded by the application developer himself/herself in the render function.

On the other hand, ReactJS has some disadvantages with respect to XSS attacks, for in-

stance a malicious script can be passed and executed via some properties that are pro-

vides by React for instance, <iframe src="{ } />, , dangerous-
lySetInnerHTML etc.

2.5.2 The security issues that are tackled with Blockchain technology

Blockchain technology guarantees to its users a large number of qualities that differenti-

ates itself from different dominant traditional types of databases obtainable in the market.

Here are the most eminent of them considering PoW-based BCs:

• High level of security, assurance and integrity: Blockchain is simply a chain of

blocks maintained on the hard drives of a large number of miners distributed all

over the world. Each block of the blockchain has a cryptographic hash of current

block as well as the previous block in the blockchain.

• All the data stored on block-chain is publicly available and can easily be tracked

by any one on the network. Nothing can be approved without a consensus by the

majority of the network participants.

• Blockchain technology provides a high level of diaphaneity, since it is accessible

by any individual with relative ease.

• Blockchain technology annihilates a lot of unduly labored in operational activities

by automating several of them.

• Blockchain technology is not perishable, for the reason that the data stored in the

network can be only be modified or added by mutual consensus.

31

• Blockchain technology is classified as an unbackable, in other words, a cyber-

criminal would need to overcome the network by at least 51% which is not possi-

ble anyhow.

3 DAPP IMPLEMENTATION

I decided to implement a simple Proof of Concept decentralized application for a car gal-

lery using ReactJS, Truffle framework, web3js, MetaMask, Solidity, and Ganache. The

DApp allows any user to add his/her full name, car make, car model, additional in-for-

mational as well as unlimited number of images of the car. The user can afterwards edit,

update or delete his profile (Figure 4).

Figure 4 A screenshot of my DApp (client-side-ReactJs)

3.1 Web3.js

I have followed the following steps in order to get web3 installed, configured and inte-

grated with my application. (Manoj P R, 2018)

1. install web3 using npm install web3 via command line/terminal

2. import web3 into the application

32

import * as Web3 from "web3";

3. initialize the web3.js object using the provider object
web3 = new Web3(web3.currentProvider);

1. Set a provider (HttpProvider) for the instance of web3 in order to access the
Ethereum local node
web3 =new Web3(new Web3.providers.HttpProvider('http://lo-
calhost:7545'));

2. Verify the running providers to confirm that no overwriting, for the running
MetaMask provider, occurs
if (typeof web3 !== "undefined") {

 web3 = new Web3(web3.currentProvider);

 console.log("Web3 is detected ");
 resolve(web3);

 } else {
 web3 =new Web3(new Web3.provid-
ers.HttpProvider('http://localhost:7545'));
 console.log("Cannot find web3");
 resolve(web3);
 }

3.2 Truffle

Truffle can be installed using the following command via command line/terminal

npm install -g truffle

(truffleframework.com, 2019)

3.3 Ganache

Ganache GUI can easily be installed, launched and used by non-technical individuals.

When starting Ganache GUI for the first time after installation a click on its icon is enough

to get launched.

In order to get a smart contract deployed on Ganache, the following two commands are

needed:

truffle compile

truffle migrate

33

The common way to execute queries to a deployed Ethereum contract is through the

Ethereum JavaScript API (web3.js library)

import MyCustomerContract from '../build/contracts/CustomerContract';
import initWeb3 from "./initWeb3";
import truffleContract from "truffle-contract";
const contract = (async ()=> {
 const web3 = await initWeb3;
 const Contract = truffleContract(MyCustomerContract);
 Contract.setProvider(web3.currentProvider);
 const instance = await Contract.deployed();

 return instance;

})();
export default contract;

3.4 Smart contract:

I coded a smart contract that allows the DApp users to add their names and their car

specifications, with the ability to update or delete their profiles afterwards. The smart

contract was written using solidity programming language.

Here are the main properties of each customer

struct Customer {

 uint256 id;
 string ownerFullName;
 string carMake;
 string carModel;
 string extraDe;
 string[] photos;
 bool exist;

 }
Here are two functions, while the first is meant to add photos at the time of creating a new

profile, the second is to update the profile with some other photos.

// adding some photos while creating the progile
function addCustomerPhotos(uint256 index, string carImage) public { cus-
tomers[index].photos.push(carImage);}
 // updating an image by index
function updateCustomerPhotos(uint256 index, uint256 _index, string
_carImg) public { customers[index].photos[_index] = _carImg;}

Here is a function that allows updating customer data

34

//Updating customers by index
function updateCustomer(uint256 index, string _fullName,string _car-
Make,string _carModel,string _extraDe) public {
 // A shorter way to update a customer
 // Customer memory updatedCustomer = Customer(index, _fullName,
_carMake, _carModel, _extraDe, false);
 if(!isCustomer(index)) revert();
 customers[index].ownerFullName = _fullName;
 customers[index].carMake = _carMake;
 customers[index].carModel = _carModel;
 customers[index].extraDe = _extraDe;
 customers[index].exist = false;

 }

And finally, a function that makes it possible to delete a specific customer, actually it

doesn’t delete anything since it is not possible to delete anything from Blockchain, but it

resets the customer values to default values.

function deleteCustomer(uint256 index) public returns(bool success) {
 if(!isCustomer(index)) revert();
 delete customers[index].photos;
 delete customers[index];
 delete customerIndex[index];
 //customerIndex.length--;
 return true;
 }

4 RESULT

There are a great number of Web application vulnerabilities. However, cross-site script-

ing (XSS) and SQL injection are categorized as the biggest threat to Web applications for

the time being due to their popularity and seriousness. The table below gives information

on the main types of XSS attacks, native JavaScript is vulnerable to, and on the other

hand, analyzes successes and failures in dealing with XSS attacks in ReactJS (Table 5).

Table 5 Analysis of XSS attacks in native JavaScript and ReactJS

 JavaScript ReactJS

XSS

attack

Although, XSS attacks are po-

tential in several scripting lan-

guages they are most popular

ReactJS seems to be secure against most of XSS attacks,

thanks to, the way it generates DOM nodes and its ability

to automatically escape passed string values via user input.

Main drawbacks:

35

in JS. XSS attacks fall into

three types:

• Stored XSS, where

the pernicious script

ensues from the in-

fected server's data-

base.

• Non-persistent XSS,

where the pernicious

script ensues from the

victim's request on the

client-side.

• Type-0 XSS, where

vulnerability mainly

exists on the client-

side.

• Data passed into props, is not automatically es-

caped before it gets rendered into React DOM.

• There are many properties available in ReactJS that

still allow XSS attacks, including, but not limited

to, and .

Accordingly, a classical cross-site scripting attack

using a URL that contains a malicious script, like
Button

will still work in ReactJS, as follows

ReactDOM.render(<a href=“JavaScript:
alert(1)">Button,document.getEle-
mentById('root'));

Once the button is clicked, the embedded script into

the href attribute will get executed

There are many methods that are used by cybercriminals to attack a Web application.

However, there is one, known as SQL injection, that is specially achieved by targeting

the backend database by executing sly SQL statements with a view to getting the appli-

cation to unpredictably behave for the benefit of the cybercriminal.

On the other hand, there is another database vulnerability that is considered as a severe

threat to Web applications, known as, insufficient auditing. Auditing is the observing and

registering of chosen user database actions. Insufficient auditing is one of the security

vulnerabilities that deeply bother Web applications while this security vulnerability was

efficiently overcome in DApps using consensus mechanisms, e.g. proof-of-stake (PoS)

or proof-of-work (PoW).

In Proof-of-work (PoW) the network participants use supercomputers, which in turn, use

a lot of power to do some work that is considered to be mathematically intense but, on

the other hand, very easy for the other network participants to verify. Taking Bitcoin as

36

an example where a large number of miners across the world vie to decode intricate math-

ematical puzzles created from sets of transactions, recognized as blocks, each of which is

verified before it gets added to the network. Bitcoin miners are first required to find out

the “nonce”, a random 32-bit number used to commence creating a hash.

As an alternative and to tackle the ingrained problems in proof-of-work, e.g. the high

amount of electricity required for implementing proof-of-work, proof-of-stake, another

consensus algorithm, is used to achieve distributed consensus.

The table below summarizes the difference between SQL Injection attacks on Web appli-

cations and decentralized applications and also talks about insufficient auditing vulnera-

bility in traditional databases and how this issue was tackled in Blockchain (Table 6).

Table 6 Analysis of security vulnerabilities in both traditional databases and Blockchain

 Traditional Databases Blockchain

SQL-

injection

SQL injection, as the name sug-

gests, is a type of attack that

mainly targets Web-based appli-

cation's database server with per-

nicious SQL statements. In this

types of attack, malicious SQL

statements are injected and exe-

cuted with a view to

• Accessing and manipulat-

ing data

• Closing down the My

SQL server

• Destroying a database.

Databases that deals with SQL,

including, but not limited to,

MySQL, MS SQL Server, IBM

DB2, Oracle and Microsoft Ac-

cess are definitely much more

There might be some claims that SQL can be used

with Blockchain and therefor it is subject to SQL in-

jection attacks. However, here are some facts about

blockchain that make SQL injection attacks ineffec-

tive.

• Blockchain is public digitized ledger man-

aged by a massive number of computers dis-

tributed around the world which makes it im-

possible for any attack to occur on Block-

chain network without that getting observed

during a very short period of time.

• Blockchain relies on a very essential concept

which is called “Proof of work or pow for

short”. Proof of work mainly guarantees that

a cybercrime is not eligible to alter the former

disbursed coins and transactions without

cracking the current and preceding computa-

tional power applied since the beginning of

37

vulnerable to SQL injection at-

tack compared with Non-SQL

databases that don’t need to

worry about such vulnerability.

The reason behind this security

vulnerability is due to calls made

from the server-side to the data-

base and not the database itself.

hashing the Blockchain until the actual block

he chooses to hit the chain on and therefore

neither data maintained in each block can be

modified nor a block can be deleted without

affecting and changing subsequent blocks.

Insuffi-

cient au-

diting

Inadequate auditing in traditional

databases can have disastrous re-

sults on individuals and a consid-

erable number of businesses.

• A change that takes place on the blockchain

network can easily be tracked, and for a

change to occur, consensus with overwhelm-

ing majority of networks participants must be

reached.

• Blockchain provides a high level of transpar-

ency, while the identity of each client is hid-

den using powerful cryptography, all data

stored are accessible to the public.

5 DISCUSSION

In this thesis I have examined the use of ReactJS and DApps for mitigating the inherent

existence of common security vulnerabilities in traditional web apps. The research ques-

tions posed for this thesis aimed at elaborating the aim. Below follows a discussion re-

garding each research question:

5.1 The main components of centralized & decentralized appli-
cations.

Almost every Web application existing on the internet comprises of three fundamental

components, namely a client, a server and a database server.

38

Decentralized applications can use the same technologies as Web applications for devel-

oping their client-side. In other words, any scripting language that makes use of API calls

to its server side can be used for building the client-side of any decentralized application.

However, the server-side in decentralized applications differs from its counterpart in web

application and that's because, well, the main idea behind decentralized applications is to

be totally out of central control.

Decentralized applications use self-executing smart contracts stored on distributed ledg-

ers known as blockchains.

5.2 The main difference between the server-side in traditional
Web applications and its counterpart in decentralized appli-
cations.

Web-based applications have mainly central servers while decentralized applications run

on P2P network of a great number of computers distributed all over the world.

There are a large number of programming languages that can be used to program the

server-side in traditional Web applications, while in DApps some traditional server-side

programming languages, e.g. Java, Python and C++ and a wide range of blockchain pro-

gramming language, e.g. Solidity and Simplicity can be used as well to write smart con-

tracts

5.3 The way the client-side interact with the server in both the
traditional Web application and the decentralized applica-
tion cases and the most common techniques used to
achieve the interaction.

A decentralized application has decentralized nodes (servers) arranged into P2P network,

and for the client-side code to communicate with the server-side code, a library like

web3.js is used whilst in the case of web applications, a client interacts a server using

HTTP.

39

5.4 The three most common security vulnerabilities in Web ap-
plications and the way they are handled in decentralized ap-
plications

Cross Site Scripting (XSS), SQL injection and insufficient auditing in database are con-

sidered to be most common security vulnerabilities in Web applications.

ReactJS and Blockchain can be an effective solution to tackle those three security vulner-

abilities.

5.4.1 ReactJS

ReactJS is a splendid library that makes it possible for developers to build elaborate and

interactive user interfaces (UIs). One of the strengths of ReactJS is that it is supported by

Facebook and a huge community of experienced developers.

ReactJS is a client-side library that handles the view layer and neither deal with data stor-

age on the server nor have any functions in the core code concerning SQL, and therefore

ReactJS does not provide any security with regards to SQL injection, since it is the server-

side processes that are required to take care of SQL injection,

ReactJS is reasonably secure against most XSS attacks and has gone a long way in that

direction, so a traditional attack will not simply work with ReactJS. However, there are

still some other ways to get around this to get a malicious code injected and executed into

a reliable Web-page that uses ReactJS on the client-side.

5.4.2 Blockchain

On the other hand, decentralized applications are one of the most essential inventions in

the recent years for its significant influence on a vast number of individuals and their

businesses. Decentralized applications and blockchain seem to have a lot of uses for the

time being and in the future.

40

Generally speaking – security with regards to decentralized applications is seen to be

significantly attained by exposure instead of by mystery- all the data maintained in block-

chain is overtly recognized and therefore, it is extremely hard for even a small piece of

data to be tampered without that getting observed by someone on the network.

6 CONCLUSION

Both ReactJS and decentralized applications are considered to be immune to a large num-

ber of widespread cyber security attacks thanks to the key technologies underlying both

of them.

However, nothing is totally secure. ReactJS perfectly escapes html to string which can be

seen as a pretty big endeavor in an attempt to avert cross-site scripting but there are still

other props (properties) that let XSS attacks to get through.

On the other hand, Blockchain technology is based on cryptography. The implementation

of blockchain seems to be steely but it cannot be securer than the cryptographic algo-

rithms it leans to and their implementation.

Throughout history there have been many potent shatterproof algorithms been broken,

and many faulty executions of crypto-code have been experienced.

ReactJS and decentralized applications are substantially secure but there are and always

will be attempts to get them both subjugated and surrendered.

REFERENCES

DANNEN, C. (2017). Introducing Ethereum and Solidity: foundations of cryptocurrency

and blockchain programming for beginners.

Retrieved March 13, 2019, from https://friendlyuser.github.io/project/ipfs-dapp/fea-

tured.png

CROCKFORD, D. (2008). Javascript: the good parts. Beijing, O'Reilly.

HAVERBEKE, M. (2015). Eloquent JavaScript: a modern introduction to programming

IPFS. Retrieved April 23, 2019, from https://ipfs.io/

Retrieved April 23, 2019, from https://metamask.io/

Web3js. Retrieved April 23, 2019, from https://web3js.readthedocs.io/en/1.0/

Introduction to web APIs. Retrieved April 23, 2019, from https://devel-

oper.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction

Baranwal, A.K., 2012. Approaches to detect SQL injection and XSS in web applications.

EECE 571b, Term Survey paper.

Cook, S. (2003). A Web developers guide to cross-site scripting.

Berners-Lee, T. (1989). Tim berners-lee.

Nagar, N. and Suman, U., 2016. Analyzing virtualization vulnerabilities and design a se-

cure cloud environment to prevent from XSS attack. International Journal of Cloud Ap-

plications and Computing (IJCAC), 6(1), pp.1-14.

Mohamed, M.A., Altrafi, O.G. and Ismail, M.O., 2014. Relational vs. nosql databases: A

survey. International Journal of Computer and Information Technology, 3(03), pp.598-

601.

Hider, P., 2004. The bibliographic advantages of a centralised union catalogue for ILL

and resource sharing. Interlending & Document Supply, 32(1), pp.17-29.

Árnason, V., 2004. Coding and consent: moral challenges of the database project in Ice-

land. Bioethics, 18(1), pp.27-49.

A brief history of CSS until 2016. 17 December 2016, Bert Bos, Style Activity Lead |

Colophon https://www.w3.org/Style/CSS20/history.html

Wikipedia contributors. (2019, January 2). Cascading Style Sheets. In Wikipedia, The

Free Encyclopedia. Retrieved 01:56, January 3, 2019, from https://en.wikipedia.org/w/in-

dex.php?title=Cascading_Style_Sheets&oldid=876431447

Pilgrim, M., 2010. HTML5: up and running: dive into the future of web development. "

O'Reilly Media, Inc.".

Wikipedia contributors. (2018, December 23). HTML. In Wikipedia, The Free Encyclo-

pedia. Retrieved 21:22, December 28, 2018, from https://en.wikipedia.org/w/in-

dex.php?title=HTML&oldid=874990638

Wikipedia contributors. (2018, December 19). History of the web browser. In Wikipedia,

The Free Encyclopedia. Retrieved 21:36, December 28, 2018, from https://en.wikipe-

dia.org/w/index.php?title=History_of_the_web_browser&oldid=874501618

Kurilova, D., 2012. The Beautiful World Wide Web or the Current State of CSS.

FENIX.CASH "What is the difference between smart contracts and dapps?" Quora.

https://www.quora.com/What-is-the-difference-between-smart-contracts-and-dapps

Khatwani,Sudhir. "What are DApps (Decentralized Applications)? – The Beginner’s

Guide". https://coinsutra.com/dapps-decentralized-applications/ . 2/02/2018

Snyder, A., 1986, June. Encapsulation and inheritance in object-oriented programming

languages. In ACM Sigplan Notices (Vol. 21, No. 11, pp. 38-45). ACM.

"What is the technical history of web develop-

ment?".Quora.https://www.quora.com/What-is-the-technical-history-of-web-develop-

ment Nov 28 2017 "What Are Dapps? The New Decentralized Future" https://block-

geeks.com/guides/dapps/.

Rajivjc"Let’s get started with your first Ethereum DApp!". Medium..https://me-

dium.com/@rajiv.cheriyan/lets-get-started-with-your-first-ethereum-dapp-

f09feb59dd78 . Jun 8, 2017

Materzok, M., 2016. Certified Desugaring of Javascript Programs using Coq.

Wium Lie, H., 2017, March. CSS and User-Adapted Web Presentations. In Proceedings

of the 2017 Conference on Conference Human Information Interaction and Retrieval (pp.

5-5). ACM.

Luu, L., Chu, D.H., Olickel, H., Saxena, P. and Hobor, A., 2016, October. Making smart

contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security (pp. 254-269). ACM.

Halfond, W.G., Viegas, J. and Orso, A., 2006, March. A classification of SQL-injection

attacks and countermeasures. In Proceedings of the IEEE International Symposium on

Secure Software Engineering (Vol. 1, pp. 13-15). IEEE.

Wikipedia contributors. "HTML5." Wikipedia, The Free Encyclopedia. Wikipedia, The

Free Encyclopedia, 12 Jan. 2019. Web. 17 Jan. 2019.

Prusty, N., 2017. Building Blockchain Projects. Packt Publishing Ltd.

Sharma, P., Johari, R. and Sarma, S.S., 2012. Integrated approach to prevent SQL injec-

tion attack and reflected cross site scripting attack. International Journal of System As-

surance Engineering and Management, 3(4), pp.343-351.

Thiemann, P., 2005, April. Towards a type system for analyzing javascript programs. In

European Symposium On Programming (pp. 408-422). Springer, Berlin, Heidelberg.

Manoj P R, 2018. Ethereum Cookbook: Over 100 recipes covering Ethereum-based to-

kens, games, wallets, smart contracts, protocols, and Dapps. Packt Publishing Ltd.

Carlozo, L., 2017. What is blockchain?. Journal of Accountancy, 224(1), p.29.

Lie, H.W., 2000, September. Abstraction levels in Web document formats. In Interna-

tional Workshop on Principles of Digital Document Processing (pp. 120-127). Springer,

Berlin, Heidelberg.

Galán, E., Alcaide, A., Orfila, A. and Blasco, J., 2010, November. A multi-agent scanner

to detect stored-XSS vulnerabilities. In 2010 International Conference for Internet Tech-

nology and Secured Transactions (pp. 1-6). IEEE.

White, B., 1996. The World Wide Web (WWW). In HTML and the Art of Authoring for

the World Wide Web (pp. 13-20). Springer, Boston, MA.

Sharma, T.N., Bhardwaj, P. and Bhardwaj, M., 2012. Difference Between HTML and

HTML 5. International Journal Of Computational Engineering Research, 2(5), pp.1430-

1437.

Cisneros, J.L.B., Aarestrup, F.M. and Lund, O., 2018. Public health surveillance using

decentralized technologies. Blockchain in Healthcare Today.

O'Neil, E.J., 2008, June. Object/relational mapping 2008: hibernate and the entity data

model (edm). In Proceedings of the 2008 ACM SIGMOD international conference on

Management of data (pp. 1351-1356). ACM.

Bos, B., Lie, H.W., Lilley, C. and Jacobs, I., 1998. Cascading style sheets, level 2 CSS2

specification. Available via the World Wide Web at http://www. w3. org/TR/1998/REC-

CSS2-19980512, pp.1472-1473.

Buterin, V., 2014. A next-generation smart contract and decentralized application plat-

form. white paper.

Karafiloski, E. and Mishev, A., 2017, July. Blockchain solutions for big data challenges:

A literature review. In Smart Technologies, IEEE EUROCON 2017-17th International

Conference on (pp. 763-768). IEEE.

Raggett, Dave, A History of HTML, Chapter 2, Addison Wesley Longman, 1998,

http://www.w3.org/People/Raggett/book4/ch02.html

Grosskurth, A. and Godfrey, M.W., 2005, September. A reference architecture for web

browsers. In null (pp. 661-664). IEEE.

Bratt, S., 2007. Semantic web and other W3C technologies to watch. Talks at W3C, Jan-

uary.

Wang, Y., Li, Z. and Guo, T., 2011, August. Program slicing stored XSS bugs in web

application. In 2011 fifth international conference on theoretical aspects of software en-

gineering (pp. 191-194). IEEE.

Gupta, S. and Gupta, B.B., 2016. XSS-SAFE: a server-side approach to detect and miti-

gate cross-site scripting (XSS) attacks in JavaScript code. Arabian Journal for Science

and Engineering, 41(3), pp.897-920.

Retrieved March 3, 2019, from https://reactjs.org/docs/faq-internals.html

Retrieved March 15, 2019, from https://blog.ethereum.org/2014/07/22/launching-the-

ether-sale/

Bisht, P. and Venkatakrishnan, V.N., 2008, July. XSS-GUARD: precise dynamic preven-

tion of cross-site scripting attacks. In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment (pp. 23-43). Springer, Berlin, Heidelberg.

Wikipedia contributors, "Audit trail," Wikipedia, The Free Encyclopedia, https://en.wik-

ipedia.org/w/index.php?title=Audit_trail&oldid=889033450 (accessed March 26, 2019).

Hydara, I., Sultan, A.B.M., Zulzalil, H. and Admodisastro, N., 2015. Current state of re-

search on cross-site scripting (XSS)–A systematic literature review. Information and

Software Technology, 58, pp.170-186.'

Parvez, M., Zavarsky, P. and Khoury, N., 2015, December. Analysis of effectiveness of

black-box web application scanners in detection of stored SQL injection and stored XSS

vulnerabilities. In 2015 10th International Conference for Internet Technology and Se-

cured Transactions (ICITST) (pp. 186-191). IEEE.

CHEN, J.F., WANG, Y.D., ZHANG, Y.Q. and LIU, Q.X., 2012. Automatic generation

of attack vectors for stored-XSS. Journal of Graduate University of Chinese Academy of

Sciences, 29(6), p.8151820.

Buterin, V., 2017. White paper (2013).

https://ethereum.stackexchange.com/questions/4522/what-was-the-approximate-cost-of-

1-eth-during-pre-launch-aug-2014/4526

Leprohon, M.A., 2017. ECMAScript 6 and the evolution of JavaScript: A deeper look

into the language’s new features.

Boyd, S.W. and Keromytis, A.D., 2004, June. SQLrand: Preventing SQL injection at-

tacks. In International Conference on Applied Cryptography and Network Security (pp.

292-302). Springer, Berlin, Heidelberg.

Westerlund, M. and Kratzke, N., 2018, July. Towards Distributed Clouds: A Review

About the Evolution of Centralized Cloud Computing, Distributed Ledger Technologies,

and A Foresight on Unifying Opportunities and Security Implications. In 2018 Interna-

tional Conference on High Performance Computing & Simulation (HPCS) (pp. 655-663).

IEEE.

Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system.

Wikipedia contributors, "JavaScript," Wikipedia, The Free Encyclopedia, https://en.wik-

ipedia.org/w/index.php?title=JavaScript&oldid=892991120 (accessed April 23, 2019).

Wikipedia contributors. (2019, March 13). HTML. In Wikipedia, The Free Encyclopedia.

Retrieved 09:49, April 23, 2019, from https://en.wikipedia.org/w/index.php?ti-

tle=HTML&oldid=887642352

Wikipedia contributors. (2019, April 20). Cascading Style Sheets. In Wikipedia, The Free

Encyclopedia. Retrieved 09:50, April 23, 2019, from https://en.wikipedia.org/w/in-

dex.php?title=Cascading_Style_Sheets&oldid=893264882

Wikipedia contributors. (2019, March 30). InterPlanetary File System. In Wikipedia, The

Free Encyclopedia. Retrieved 09:50, April 23, 2019, from https://en.wikipedia.org/w/in-

dex.php?title=InterPlanetary_File_System&oldid=890112808

Wikipedia contributors. (2019, April 10). Ethereum. In Wikipedia, The Free Encyclope-

dia. Retrieved 09:51, April 23, 2019, from https://en.wikipedia.org/w/index.php?ti-

tle=Ethereum&oldid=891804112

Wikipedia contributors. (2019, April 21). Blockchain. In Wikipedia, The Free Encyclo-

pedia. Retrieved 09:51, April 23, 2019, from https://en.wikipedia.org/w/index.php?ti-

tle=Blockchain&oldid=893385950

Ganache. Retrieved April 23, 2019, from https://truffleframework.com/docs/ga-

nache/quickstart

Solidity. Retrieved 09:51, April 23, 2019, from https://solidity.readthedocs.io/en/v0.4.24/

What is Swarm. Retrieved April 23, 2019, from https://swarm-

guide.readthedocs.io/en/latest/

