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The past several decades constantly witnessed the noticeable growth in the quantity as 

well as the performance of compilers for high-level programming languages due to the 

high demand for increasingly intricate computer programs. 

The objective of this thesis is to explore the feasibility of adopting Low Level Virtual 

Machine (LLVM) framework which is a set of well-optimised, reusable tools for constructing 

modern compilers. Specifically, the thesis focuses on employing LLVM framework as the 

Intermediate Representation (IR) code generator and as the back-end compiler infrastruc-

ture to rapidly construct compilers. Along the way, this thesis depicts the fundamental 

structure of a modern compiler as well as the techniques to apply compiler theoretical con-

cepts into practice.  

In order to achieve the goal of demonstrating those concepts, practices and the effective-

ness of LLVM framework, the thesis project was to design and implement a compiler for a 

simple, imperative programming language known as Tiger. During the process of develop-

ing this compiler, several commonly used libraries for building compiler including Lex, Yacc 

were leveraged to solve domain specific problems. 

The final outcome of the project is a compiler written in a strongly-typed, general purpose, 

functional programming language known as Objective Categorical Abstract Machine 

Language (OCaml). This compiler can translate the Tiger programming language to LLVM 
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IR and subsequently to any architecture-dependent native code supported by LLVM. As a 

result, the project analyzes and emphasizes the robustness and effectiveness of LLVM 

framework in the process of constructing compilers. Additionally, the operational compiler 

serves as concrete examples as well as proofs for the correctness of the theories and 

skills discussed in this thesis. 
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1 Introduction 

Compiler development is an interesting computer science field that empowers count-

less modern technological advancements in information technology industry. As the de-

mand for robust, complex computations in various IT fields is booming, the increasing 

number of new programming languages such as Swift, Go, Rust and Elixir have quickly 

emerged in the last few decades. In fact, the process of constructing the compiler often 

requires the equal understandings from both computation theories and programming 

practices. As a result, developing compilers not only strengthens programmers' theoret-

ical foundation of computer science but also boosts their problem-solving, programing 

skills. More importantly, the process of implementing compilers often provides the in-

sights into how popular programming languages operates behind the scenes. Indeed, 

the curiosity about the underlying implementation of modern programming languages is 

the biggest motivation behind this project. 

Tiger is a simple, general-purpose, statically-typed and procedural programming lan-

guage designed by Andrew Appel in his book "Modern Compiler Implementation" [1, p. 

2]. It has been commonly used for teaching compiler design principles at many univer-

sities such as Princeton, Columbia. As a result, there are many existing implementa-

tions of Tiger back-end compilers, each of which targets merely a single architecture 

either MIPS, x86 or ARM. However, this project employs the power of LLVM Intermedi-

ate Representation (IR) and its industrial-strength static compiler LLC to target multiple 

computer architectures at once. In fact, LLVM infrastructure is selected for this project 

because of its wide adoptions by many recent compiler projects either to create new 

programming languages such as Swift, Rust, Julia or to enhance the development pro-

cess of the existing ones such as Glasgow Haskell Compiler (GHC) [2]. 

The purposes of this thesis were to give an overview of modern compiler development 

process and to analyze the benefits of using LLVM framework. Those two goals were 

achieved by constructing the compiler’s front-end components that collaboratively 

translate the Tiger language to LLVM IR code before adopting LLVM back-end infra-

structure to produce architecture-dependent, decently optimized native code. 

1.1 Definitions  
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1.1.1 Computer programming languages 

A computer program is a set of instructions following rules of a specific programming 

language. Once a program is executed, it instructs the computer to perform actions and 

achieve outcome. In order to construct executable software, programmers are required 

to use specific vocabularies and to follow a set of grammatical rules which are formu-

lated in programming languages specifications. [3, p. 42] 

Programming languages can be categorized into two groups: low-level languages and 

high-level languages.  

Machine languages are the lowest level programming languages as they can be di-

rectly executed by processors. Those languages can be used directly to build software 

yet the development process is usually inconvenient, time-consuming and error-prone. 

Moreover, machine languages are architecture-dependent since different processors 

requires different types of machine code. [4, p. 9] 

On the contrary, high-level programming languages are human-readable thanks to their 

high abstractions that prioritize the easiness of expression and readability [4, p. 9]. As a 

matter of fact, the use of high-level programming languages noticeably eases the pain 

of building software as they give programmers the ability to express complicated ideas 

with more concise, readable instructions. In fact, instructions in high-level languages 

are relatively similar to English, which brings the easiness when translating human's 

ideas into code. Additionally, compilers for high-level languages are often more intelli-

gent in detecting programming errors and they also give programmers more informa-

tive error messages. As a result, it is easier to spot the mistakes and correct them dur-

ing the software development process. [5, p. 1] 

1.1.2 Compiler software 

Implementing software in high-level programming languages is apparently more pro-

ductive compared to programming in raw machine code. However, computers can not 

directly execute instructions written in high-level programming languages. As a result, 

code in high-level languages must be translated to machine languages before being 
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processed by the processors. This translation procedure is often time-consuming, re-

petitive; yet it can fortunately be automated by translation software known as compiler. 

[6, p. 1] 

Formally, a compiler is a software that is responsible for translating a sequence of in-

structions written in one language (source language) to the corresponding version writ-

ten in another language (target language). Usually, the source language tends to be a 

high-level language while the target language is low-level one. During the course of 

compiling, overly apparent programming defects are often detected and reported [5, p. 

1]. 

1.2 Technologies 

1.2.1 Tiger programming language 

Tiger is a simple, statically-typed, procedural programming language of the Algo family. 

Tiger has 4 main types: integer, string, array and record. The language has support for 

control flow with if statement, while loop, for loop, functions and nested functions. The 

syntaxes of Tiger are similar to languages in Meta-language (ML) family. [7, p2] 

The sample program in Tiger language is shown in Figure 1: 

 

Figure 1. Sample program in Tiger 
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1.2.2 OCaml programming language 

OCaml is a statically typed, general purpose, and functional programming language 

that has been in the industry for more than 20 years [8]. It is a strongly typed language 

with support for polymorphic type checking which gives flexibility to the type checking 

mechanism. Another innovative functionality is type inference, which exempts program-

mers from explicitly declaring types for every single variable and function-parameters 

as long as those missing types are automatically deductable from the context. As a re-

sult, this functionality allows programmers to write more concise, reusable code since 

the compiler can usually infer the types from programming context. [8] 

In addition, OCaml promotes functional programming principles with full support for 

mathematical lambda functions, immutable data structure, recursion tail-call optimiza-

tion, algebraic data structures and pattern matching. Nonetheless, due to the require-

ment of expressing idea easily in some specific programming tasks, the language also 

supports imperative paradigm, mutable data types such as array, hash table and a 

complex exception handling system. [8] 

In particular, OCaml provides automatic memory management which mitigates the risk 

of memory corruption. In fact, this feature allows programmers to focus solely on the 

structure of data computation, rather than the manual memory deallocation process [8]. 

Therefore, implementing compilers in OCaml is more convenient compared to using 

languages without garbage collector such as C or C++. 

Finally, OCaml offers well-supported tools for writing compilers, such as Lexical Ana-

lyzer Generator (Lex), Yet Another Compiler-Compiler (Yacc) and LLVM bindings that 

interact with C++ API of LLVM. As a result, the pain of writing this compiler is eased 

significantly thanks to those toolkits. 

1.2.3 LLVM compiler framework 

LLVM is a compiler toolkit implemented in C++ that offers a rich set of commonly used 

modules and reusable toolchains for constructing modern compilers in a timely man-

ner. In fact, LLVM provides developers tools to programmatically generate instructions 

in LLVM IR - a statically typed, architecture independent abstraction of assembly code. 

LLVM IR bitcode can further be optimized in a sequence of phrases and consequently 
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compiled into native machine code in various target architectures such as MIPS, x86, 

ARM. As a result, this advantage boosts the portability of the source languages to mul-

tiple machine platforms. In addition, LLVM can also perform Just-In-Time (JIT) compila-

tion on the IR code in the context of another program as an interpreter. [2] 

Initially, LLVM was a created by Chris Latter, who is also the father of Swift program-

ming language, as a research project at the University of Illinois in 2000. In fact, LLVM 

framework was created because other existing open source C compilers such as GNU 

Compiler Collection (GCC) had become stagnated. [2] 

Indeed, GCC aging codebase often poses a steep learning curve for new developers. 

GCC was implemented in a monolithic mindset which means that every component is 

tightly coupled with each other causing the poor reusability when integrating with other 

software. Furthermore, GCC did not provide support for modern compiling techniques 

such as JIT code generation, cross-file optimization at that time. [9] 

As a result, LLVM took a completely different approach by employing a modular, reusa-

ble architecture in which each compiler component is constructed following the single 

responsibility principle and they are a loosely coupled. Therefore, those components 

can be composed together in order to build a full compiler. Furthermore, the implemen-

tation of LLVM involves best known modern techniques such as Single Static Assign-

ment (SSA) compilation mechanism with the ability of supporting both static and run-

time compilation of any programming languages with high performance. [2] [10] 

Over the last two decades, LLVM project has significantly gained its popularity in the 

field of compiler development since the framework is not only useful for developing new 

programming languages but also for extending and enforcing the back-end develop-

ment process of the existing ones. Hence, the adoptions of LLVM tools are visible in 

multiple industrial-strength projects including Apple's Swift programming language, 

Rust programming language, Clang compiler, Glasgow Haskell Compiler (GHC), Kotlin 

native, and WebAssembly. [2] 

1.3 Structure of the implementation process 
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The process of constructing a compiler is conventionally separated into two parts 

(front-end and back-end) in order to boost the modularity and reusability of each part 

[5, p. 2]. 

In practice, the front-end part of the compiler consists of several phases: lexical analy-

sis, syntax analysis, semantic analysis, and Intermediate Representation (IR) transla-

tion [5, p. 3]. In details, the lexical analysis phase is responsible for deconstructing the 

input program written in source language into a sequence of valid words. The next 

phase is syntax analysis, in which the structure of the source program is analyzed and 

programmatically captured by the data structure known as Abstract Syntax Tree (AST). 

Next, the semantic analysis stage mainly conducts type-checking and determines vari-

ables scoping. The last front-end step is to transform abstract syntax tree to an Inter-

mediate Representation (IR) code that acts as a bridge connecting front-end and back-

end. [11, p. 6] 

On the other hand, the main task of back-end is to efficiently map the generated IR 

code to the corresponding set of instructions in target language. In fact, the compiler 

back-end usually consists of several phrases: instruction selection, control flow analy-

sis, dataflow analysis and code emission. During the process, the back-end also per-

forms optimization by eliminating redundant computations. [11, p. 6] 

In practice, if a compiler is developed from scratch without using any framework, the 

compiler development process tends to follow a sequence of steps starting from lexical 

analysis to linking phrase as can be seen in Figure 2. In that linear process, each 

phase consumes the outcome of the previous step and computes the output which can 

be used by the next step [5, p. 2]. However, this project takes a shortcut path by build-

ing the front-end part of the compiler and then leveraging tools provided by LLVM back-

end infrastructure to do the heavy-lifting back-end work. By taking this approach, the 

project can rapidly produce a decently optimized, multiple-target-oriented compiler 

within a short period of time. 

In detail, the thesis project implements all front-end parts of the compiler including lexi-

cal analysis, syntax analysis, semantic analysis and IR translation. Once the IR code is 

generated by the front-end compiler, this project simply leverages the LLVM static 

back-end compiler (LLC) which takes LLVM IR as the input and subsequently emits 

assembly code for the specified architecture as the output [12]. After that, the 



7 

 

generated assembly code are processed by the assember and the linker in order to 

yield the executable binary code [12]. Furthermore, the design of this project boosts the 

extensibility of the Tiger language by allowing the Tiger programs to call native C 

functions. As a result, those associated C functions must also be compiled and linked 

to the compiled code of the Tiger program. Fortunately, this step could simply be 

performed by using the C compiler (Clang) which is one of the most popular tools 

based on LLVM framework. Specifically, Clang compiler is the C languages family (C, 

C++, Objective-C) front-end compiler that is built on top of the LLVM back-end 

infrastructure [9]. It is responsible for translating programs written in C languages family 

into LLVM IR code before using LLVM back-end compiler to further compile the 

generated IR code to assembly. Finally, the compiled assembly of the C functions is 

linked to the assembly version of Tiger program before the executable binary is yield. 

  

Figure 2. Compiler development flow [11, p.4] 
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2 Lexical analysis 

Lexical analysis is a phrase in which string input is partitioned into a set of individual 

valid words which are often refered to as lexical tokens. Each lexical token is tradition-

ally regarded as a unit constructing the grammar of that programming language. They 

are commonly divided into several types such as keywords (IF, THEN, WHILE), varia-

ble names (foo, bar), numbers (1, 2), and strings ("foo", "bar"). In fact, input stream is 

scanned one character at a time from left to right order. During the process of scan-

ning, the lexical analyzer accomplishes two tasks. Its first task is to perform omission of 

white spaces, new line symbols and comments so as to minimize the responsibility of 

the subsequent stage - syntax analysis. In fact, this task is one of the primary reasons 

why lexical analysis should be separated into a different stage from syntax analysis. 

The second task of the lexer is to group sequences of characters into tokens by pat-

tern-matching them against a collection of predefined token rules. Finally, those 

matched tokens are sent to syntax analysis phase for processing. [5, p. 10] [11, p. 16] 

In order to specify rules of lexical tokens, a formal algebraic language known as Regu-

lar Expression is commonly used to describe the pattern of tokens. 

2.1 Regular expression 

A language is constructed from a collection of words in which each individual letter is 

taken from a set of characters. For instance, integers can be represented by a set of 

digits from 0 to 9 while variable names (identifiers) often consists of letters, digits and 

several special characters such as star, underscore. [5, p.10] 

Regular expression (Regex) is an algebraic, human readable notation that can be em-

ployed to provide specifications for languages [5, p.10]. A regex is constructed by 2 

parts. The first component is the set of all valid characters in the languages; for exam-

ple, all alphabet characters, digits, special characters. The second component is a set 

of Regular expression operators which are often known as meta characters. For exam-

ple, |, (, ), *, + . Each meta character has a special meaning described in Table 1. 
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One important characteristic of regular expression is composability. This means that 

regular expression fractions that specify patterns for simple strings can be combined 

together into a larger expression that describes a more complicated set of strings. [5, p. 

10] 

Table 1. Common regular expressions and meanings 

Regular 

expres-

sion 

Formal description Example Meaning 

a A simple alphabet character a 
single letter 

string ‘a' 

E Empty string "" empty string 

M|N 

Alternation expression composed of expres-

sion M and N. This expression matches 

strings that satisfy either expression M or N 

a | b 
Matched string 

is either ‘a’ or ‘b' 

M . N or 

MN 

Concatenation expression composed of ex-

pression M and N. This expression matches 

strings that is the concatenation of 2 sub 

strings a and b with a satisfies M constraints 

and b satisfies N constraints 

a.b 
Matched string 

is “ab" 

M* 
Concatenation of non-negative occurence of 

string that satisfy expression M 
a* 

Matched string 

is  

‘’, ‘a' or 

“aaaaaa..." 

M+ 
Concatenation of non-zero occurence of 

string that satisfies expression M 
a+ 

Matched string 

is ‘a' or “a..." 
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M? 
Optional expression that indicates that the oc-

currence of M is either 0 or 1 
a? 

Matched string 

is '' or 'a' 

[a-zA-Z] Any single character in the set [ab] 
Matched string 

is ‘a' or ‘b' 

. Any single character except new line .+ 
Any character 

that is not “\n” 

"a+*." 
Quotation, string between 2 quotes literally 

describe itself 

"literal 

string" 

Matched string 

is literally “literal 

string" 

However, there are situations where one string can match multiple tokens. For in-

stance, string “ifabc" can be recognized as if abc or variable name ifabc. As a result, 

rules for resolving ambiguities should be applied in those cases. In practice, when a 

string matches multiple tokens, the longest matching token is usually selected. 

Therefore, “ifabc” is recognized as variable's name ifabc in the previous example. Fur-

thermore, if there are more than one longest matching tokens, the scanner should se-

lect the one that is specified first in token list. Thus, the order of specified rules of to-

kens plays an important part in resolving conflicts. [11, p. 20] 

Regular expression is a useful specification language for lexical analysis. However, to 

programmatically implement regular expressions, the concept of finite state machine 

(finite automata) needs to be explored. [11, p. 20] 

2.2 Finite automata 

2.2.1 Deterministic finite automata (DFA) 

Formally speaking, a finite automaton is an abstracted machine that consists of a lim-

ited number of states (nodes) and a set of transitions (edges) leading from one state to 

another. In addition, a symbol is usually assigned to each edge. [5, p.16] 
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Finite automata can be utilized to verify the validity of the input string in a language. In 

practice, finite automaton starts from one node regarded as starting state. From start-

ing state, the scanner reads one input character at a time then it compares this charac-

ter against the symbol of each edge coming from that current state. If the scanned 

character matches the label of an edge X, the scanner follows that edge X to navigate 

to the next state. This process repeats until all input characters are read. Finally, the 

last state is checked if it belongs to a group of accepted states (final states). If the last 

state is accepted, the input string is considered as valid token of the specified language 

[5, p.16]. In contrast, if the last state is not accepted or if there is no matched transition 

to follow at any point during the process, the automaton simply marks the input as inva-

lid [5, p.22]. 

Figure 3 depicts the simple automata for a language that consists of tokens IF, INTE-

GER, REAL and ID. Each state is illustrated by a circle, and it is often numbered for the 

easiness of identification. The starting state has the label 1 and it is usually the target 

of an arrow without any label starting from outside of the DFA. Nodes with double cir-

cles are accepted states or final states. The arrows connecting two states denotes tran-

sitions from one state to another. Additionally, edges with multiple characters are in-

deed used to concisely illustrate a group of parallel transitions. 

 

Figure 3. Visualization of deterministic finite automata [11, p.22] 

One example is to use the finite automaton in Figure 3 to recognize input string “if”. 

Starting from State 1, the character ‘i' is scanned and compared with all the labels of 
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edges coming out from State 1. Apparently, the character 'i' matches the label of Edge 

1-2 which means that the scanner follows the Edge 1-2 to navigate from State 1 to 

State 2. Next, the same process is executed with the character 'f' and the lexer moves 

from State 2 to State 3 this time. At this point, the finite automaton checks if the current 

state (State 3) is the final state since all the input characters were scanned. Fortu-

nately, State 3 is accepted which means that the input string “if" is valid and token “IF" 

is returned. Another example is when running the same algorithm against the input 

string “ifabc”, the result State is 4 thus “ifabc" is recognized as token ID (variable 

name). In contrast, if the input string is “a}”, the execution is stuck at 4 since there is 

no edge whose label is “}” coming out of State 4. Hence, “a}” is not an acceptable to-

ken in this language. 

This finite automaton is categorized as deterministic finite automaton (DFA) since it sat-

isfies two conditions. Firstly, at any state in the DFA, a single input character navigates 

the program from one state to at most one new state. Secondly, there is no empty-la-

beled transition (epsilon edge) in the graph. [5, p. 22] 

DFA characteristic ensures that there is at most one edge to follow from State A with 

the given input character k. This nature prevents the situation when computers have to 

decide which path to follow from a given state. However, the process of converting reg-

ular expression to DFA directly is usually more complicated than translating regular ex-

pressions to another type of finite automata known as nondeterministic finite automata 

(NFA) and subsequently convert NFA to DFA. [5, p.18] [11, p.25] 

2.2.2 Nonedeterministic finite automata (NFA) 

Nondeterministic finite automata is a type of automata that allows multiple transitions 

coming from a state to share the same character label or empty character label. This 

means that at some particular states, computers might have to decide which path to 

follow out of multiple paths with the same label or it may follow epsilon transition with-

out consuming any input character at all. Hence, computers cannot always rely on the 

current state and the given input character when selecting the new state. In reality, not 

all selectable transitions from one state lead to an accepted state. Due to this nondeter-

ministic characteristic, an input string is regarded as valid token in NFA if there exists at 

least one possible path from starting state to an accepting state when following its 

characters [5, p.16]. An example of NFA is illustrated in Figure 4.  
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Figure 4. Visualization of nondeterministic finite automata [11, p.27] 

An example of NFA, constructed from the regular expression a*(a|b), is illustrated in 

Figure 5. In this case, starting state is labeled 1 and accepting state has label 3. The 

edge from State 1 to State 2 is epsilon edge which means that it does not consume any 

input character. Given the input string "aab", one possible path that accepts this input is 

1-2-1-2-1-3. In contrast, if the program takes path 1-2-3, process is stuck at State 3 

when the remaining input character is still {a, b}. As mentioned in the previous para-

graph, any accepting path that begins from starting state and ends at final state is suffi-

cient to consider string "aab" as a valid token according specification of regex a*(a|b). 

 

Figure 5. NFA of regular expression a*(a|b) 

It is obvious that NFA closely resembles regular expression, which brings the conven-

ience in the translation process from regular expression to NFA. However, employing 

NFA as an implementation for regular expression might not be an efficient approach 

since this solution requires examining the all possible paths or perform back-tracking 
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until one accepting path is found. Therefore, NFA, which is translated from Regex, 

needs to be subsequently converted to DFA for efficient execution. [5, p.18] 

2.2.3 Translation algorithm from NFA to DFA 

In short, the algorithm converts NFA to DFA by grouping a set of NFA states into an 

equivalent DFA state. Then it adds the transitions between DFA states. Finally, the al-

gorithm assigns a valid token to be recognized to each newly created DFA state. 

To formally define algorithm that translates NFA to DFA, several notations have to be 

used: 

• S is a set of states {s1, s2, s3,...} 

• edge(s, c) is a set of all NFA states that can be reached by following only the 

character 'c' from State s 

• e-closure or closure(S) is a set of all possible states that are reachable from 

each State s1, s2, s3... in set S by following only epsilon transitions. Take Fig-

ure 4 for example, if S1 = { 1 }, closure(S1) = { 1, 4, 9, 14 }. Similarly if S2 = { 5 
}, closure(S2) = { 5, 8, 6 }. As a result, if S3 = S1 U S2 = { 1, 5 }, closure(S3) = 

{ 1, 4, 9, 14, 5, 8, 6 }. Formal definition of closure(S):  

• DFAedge(S, c) is a set of all possible NFA states that are reachable from each 

State s1, s2, s3 in set S by following either character 'c' or epsilon transitions. 

For instance, if S1 = { 1 } then DFAedge(S1, 'i') = { 1, 2, 4, 9, 14 }. Another in-

teresting example is when S2 = {4}, DFAedge(S2, 'a') = { 4, 5, 8, 6 }. Notice 

that closure({5})  is also a sub set of DFAedge(S2, a) because State 8 is reach-

able from State 5 without consuming any character. Formal definition of 

DFAedge(S, c) is as follows: 
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• Σ is the set of all valid characters  

The implementation of this algorithm is shown in Figure 6 and it requires usage of two 

lists. Firstly, the list states is used to store created DFA states. Secondly, the list trans 

is a two-dimensional list used for storing DFA edges.  

 

Figure 6. Pseudo instructions of algorithm that converts NFA to DFA [11, p.29] 

Once the complete DFA is constructed, each DFA state needs to be assigned with a 

token following the priority rule. This rule specifies that the algorithm scans through 

every token corresponding to each NFA node member of a DFA state and choose the 

one with the lowest index in the list of specified tokens. Finally, the result produced by 

this algorithm is visualized in Figure 7: 

 

Figure 7. Visualization of the result DFA [11, p.29] 
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Once the scanner successfully partitions input string into a set of valid tokens, it sends 

those tokens together with their associated information such as values, positions in the 

source file to the next phrase - syntax analysis. 

2.3 Lexing implementation 

2.3.1 OCamllex 

OCamllex is a tool to conduct lexical analysis in this project. Its task is to scan the 

stream of input character from the given file and recognize individual tokens based on 

regular expressions that are specified in file lexer.mll. Once a sequence of consecutive 

input characters matches a regular expression, Ocamllex executes the corresponding 

Ocaml code associated with that regular expression. This executed piece of code 

yields the type of token together with its associated value. Once the project is com-

piled, Ocamllex implicitly translates code in lexer.mll to a native Ocaml source file 

lexer.ml. Finally, the file lexer.ml is compiled and linked to the production binary. [13, 

p.1] 

Ocamllex file is constructed by 4 parts: header, definitions, rules and trailer section. 

They are divided into mandatory category (header, rules) and optional one (definitions 

and trailer) [13, p.4]. The structure of file lexer.mll is illustrated in Figure 8: 

 

Figure 8. Structure of OCamllex file [13, p.4] 
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a. Header section. The header usually contains OCaml code to import from other mod-

ules, libraries. In addition, helper functions are usually defined in this section. When 

generating output file lexer.ml, this header section is copied to the beginning of the out-

put file first. Similarly, trailer section also contains native OCaml code. However, this 

part is appended to the end of the output file only after all other parts of file lexer.mll 

have been processed. [13, p.4] 

b. Definitions section. The definitions section is not compulsory since it is the place 

where regular expressions are given alias if needed. Those aliases can be used in rule 

section as compact substitutions for their corresponding regular expressions. 

c. Rules section. The rules section is the most essential part since it contains a set of 

rules that specify the language's tokens. Each rule in this section has the form shown 

in Figure 9. In fact, token rules defined in this part are converted to native OCaml func-

tions in the output file. [13, p.4] 

 

Figure 9. Format of token rule [13, p.4] 

The translated OCaml function that corresponds to entrypoint rule is depicted in Figure 

10: 

 

Figure 10. Native OCaml function corresponding to entrypoint [13, p.10] 

where lexbuf is the parameter for input stream. 

Each rule consists of a sequence of patterns and their associated action in the 

following form: 
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where patterns are the placeholders for either regular expressions or their aliases. On 

the right-hand side of a pattern is an action section wrapped in curly braces. This action 

is the place for OCaml code that is executed when its corresponding pattern is 

matched.  

2.3.2 Tiger tokens handling 

a. Regular expressions of tokens: 

Basic regular expressions for Tiger tokens are summarized in Table 2: 

Table 2. Common regular expressions for Tiger's tokens 

Regular expression pattern Meaning 

‘“’ Starting/ Ending character of a Tiger string 

‘\n’ New line character 

_ Any character 

eof End of file 

“function” Literal string for the keyword “function” 

['0'-'9']+ Integer token 

['a'-'z' 'A'-'Z']+(['a'-'z' 'A'-'Z'] | ['0'-'9'] | ‘_’)* ID (variable name, type name) 

“/*” Starting comment 

“*/” Ending comment 

“>=” Greater than or equal operator 

One observation is that all keywords of Tiger language (“function”, “type”, “if”, etc...) are 

specified using string literal regex. Another interesting token is ID token which contains 

a set of alphabet characters, digits and underscore character. However, the first char-

acter of ID token has to be an alphabet character. 

b. Action: 
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Once a pattern is matched, the action code next to that pattern is executed as a result. 

In lexer.mll, most normal actions only return Tokens types, defined in Parser module, 

and their associated values. For instance, item | "if"  { P.IF } returns IF token defined in 

Parser module P. Another interesting example is item | id as value { P.ID(value) } re-

turns ID token which also contains a string value. This means that once the input string 

“variable_name” matches Regex of ID, a token P.ID(“variable_name”) is returned. In 

fact, most tokens in Tiger do not contain any value except for ID(string), INT(integer), 

String(string). The list of tokens defined in Parser are shown in Figure 11: 

 

Figure 11. Tiger's token declarations 

c. White spaces and comments: 

As discussed in theory part, the first responsibility of scanner is to eliminate white 

spaces and comments. Therefore, the actions corresponding to whitespace and com-

ment patterns do not return any token. In practice, once the lexer encounters a white 

space character, it just ignores that character and jump to the next one. This could be 

simply implemented by recursively calling function token(lexbuf) to move to the next 

character when a white space character is matched. For instance, by calling function 

token(lexbuf) with the given input string " if", the parser receives token IF. This is be-

cause character ' ' is matched in the first place but its own action recursively calls to-
ken(lexbuf) one more time which yields the IF token. 

Comments in Tiger are enclosed between "/*" and "*/". However, one comment can be 

nested inside another. For instance, /* outer comment /* inner comment */ */  is valid in 
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Tiger. In addition, all characters in comments are discarded, which means that they do 

not yield any result token. This could be implemented using finite automata in Figure 

12. 

 

Figure 12.  Finite automata to handle comments 

Initially, the parser calls function Lexer.token() to scan for the next input token. In func-

tion token(), if '/*' is matched, its action code is executed. This action calls function 

comment() which is a new rule defined in rule section. At this point, the scanner 

changes its state from 'token' to 'comment' by following edge '/*'. In order to implement 

nested comment, a stack-based solution is used to keep track of the current nested 

level of comment. In fact, when function comment() is called within the body of function 

token(), the comment's nested level is initialized to 0 and passed to function com-

ment(). Once the scanner is in comment state, every time that it encounters '/*', the 

nested level of comment is incremented by one. On the other hand, the scanner de-

creases the nested level of comment by one when '*/' is matched. Once the comment 

level reaches zero, function token() is called to escape from comment state. Apart from 

'/*' and '*/', every other pattern encountered in comment rule is simply ignored. If the 

scanner reaches EOF character while the nested level is not 0, this means that the 

comment state does not escape thus an error exception needs to be raised. 

In general, each rule (function) declared in the rule section of lexer.mll can represent a 

distinct DFA state. The transition from State A to State B is performed by calling the 

function B() when a certain regular expression pattern in State A is matched. 

Similar to comment processing approach, the scanner enters state string when it 

matches character " and escapes this state by matching the same character. There-
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fore, a similar rule (state/ function) string is added to the set of rules in order to pro-

cess string. Unlike comment handling approach, once the scanner escapes string 
mode, it has to return token STRING(value) containing the whole scanned string. As a 

result, every character scanned in string mode has to be stored and finally returned on 

this state's transition. 

Another special pattern in every state is new line character. In this project, every time a 

\n character is scanned, the function incr_linenum() is called to increase the line num-

ber and save the start position of the current line. In practice, those data are useful 

when producing informative error messages. 

At the end of the process, the rule section of lexer.mll contains 3 rules: comment, string 

and token. Rule token is the main entrypoint of the lexer that is exposed directly to the 

Parser. This mean that function token() is called whenever Parser needs to scan for the 

next token in the input stream. The interaction between Parser and lexer was made by 

calling function Parser.prog() in the file parse.ml:  

In fact, the type definition of Parser.prog is 

Parser.prog: (Lexing.lexbuf -> token) -> Lexing.lexbuf -> AST_value 

This means that function Parser.prog() takes 2 arguments: the function closure 

Lexer.token from lexer.mll and lexbuf. The first argument Lexer.token is the entry func-

tion of Lexer module while the second argument is the stream of input characters.  
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3 Syntax analysis 

As discussed in the previous chapter, the result of the lexical analysis phrase is a list of 

valid words specified in the language. However, the definition of a language is more 

than just words. Similar to natural languages, programming languages are constructed 

from a set of words (tokens) put together to form meaningful instructions by following a 

set of rules called grammars. Defining those grammatical rules is the core task of syn-

tax analysis (Parsing) phase in compiler development process. Specifically, parsing is 

a procedure that transforms a linear list of tokens produced by the lexer into a hierar-

chical and meaningful data structure named Syntax tree for the future analysis. [5, 

p.54] [11, p.40] 

3.1 Context-free grammar (CFG) 

The grammar that is used to defines a programming language is called context-free 

grammar (CFG). It is a collection of rules that describe the hierarchical structure of a 

programming language. Each rule of CFG can be described in a form: 

A -> aBdc... 

The section on the left hand side of the '->' character is refered to as the head of the 

production. The head section of a CFG production contains at most one character. This 

character is in uppercase and also known as non-terminal symbol. 

In contrast, the tail of the production is on the right-hand side of the arrow symbol. This 

part contains zero or more symbols. Each symbol in the tail of the production is either a 

terminal symbol (lowercase character) or non-terminal symbol (uppercase character). 

In practice, terminal symbols are the language's tokens returned by the scanner. Addi-

tionally, a special non-terminal symbol S is usually used as the starting symbol of the 

grammar [11, p.40]. One real example of CFG is  

S -> if T then E else E 

T -> true | false 

E -> 1 | 0 
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In this example, S denotes the starting symbol of the grammar. Tokens if, then, else, 
true, false, 1, 0 are terminal symbols. T, E, S are non-terminal symbols. Another inter-

esting example that illustrates the recursive expressiveness of CFG is 

S -> aS 

S -> b 

This grammar can equivalently express the regular expression a*b. The appearance of 

non-terminal symbol S in the tail of the first rule shows the recursive power of CFG. 

This means that the matched string could be "ab", "aab", "aaa...b". 

By using the set of grammatical rules (CFG) for programming language, the parser can 

determine if a sentence is a valid sentence in that language. This process is called der-

ivation which can be implemented by starting at the start symbol of CFG and repeat-

edly substituting any nonterminal symbol X with the tail of the production X->tail. Deri-

vation can be represented as a sequence of products or as a parse tree. For instance, 

given the input string num * num + num and the grammar of an arithmetic expressions 

is: 

S -> E 

E -> num 

E -> E * E 

E -> E + E 

One possible way to generating the string using this grammar is to start with the start-

ing symbol S. First, S is replaced with its tail E. Next, E is expanded to E + E before the 

first E is consequently substituted with E * E. Finally, the expansion process is termi-

nated by replacing all E symbols in the current result with num. The representation of 

this derivation in sequence: 

S  

-> E  

-> E + E 

-> E * E + E  

-> num * num + num (This is the input string) 
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Alternatively, this derivation can be represented by syntax tree in Figure 13: 

 

Figure 13. Derivation tree 

3.2 Syntax tree 

The syntax tree has several attributes. Firstly, its root node has the label S which is the 

starting symbol of the grammar. Secondly, each leaf of the tree is a terminal symbol 

which is a token return by the lexer. Another interesting characteristic of the syntax tree 

is that the sequence, generated by in-order traversing leaf nodes, is actually the origi-

nal input string [5, p.60]. Finally, the syntax tree adds the association of operation to 

the derived string. 

From the observation, an input string is grammatically correct if there exists at least 

one CFG derivation tree that yields the exact same string when performing in-order 

traversing on its leaf nodes. [5, p.60] 

However, some grammar rules can produce more than one parse tree for a given input 

string. The grammar that produces those parse trees is ambiguous grammar [11, p.42]. 

In fact, some ambiguities are trivial as they do not adversely affect the parsing result 

while others might yield different results for compiling process. Thus, those adversely 

ambiguous grammars must be resolved appropriately. For instance, given the input 

string 1+ 2 * 3 and the grammar: 
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S -> E 

E -> num 

E -> E * E 

E -> E + E 

can yield two syntax tree shown in Figure 14. Each syntax tree produce different result 

when being evaluated: the left tree yields 9 while the right tree yields 7. Therefore, this 

grammar is adversely ambiguous.  

 

Figure 14. Two derivation trees caused by ambiguous grammar [11, p.43] 

However, the primary objective of syntax analysis stage in compiler development is not 

checking the validity of a sentence in the given language. Instead, the goal of the 

parsing phrase is to build a syntax tree from the given sequence of input tokens and 

grammars of a language. [5, p.60] 

3.3 Parsing algorithms 

This part of the thesis demonstrates the implementation of the LR(1) algorithm. 

However, the two algorithms NULLABLE and FIRST have to be explored first since 

they are used in LR(1) algorithm. 

3.3.1 NULLABLE, FIRST algorithms 

NULLABLE is a function that take a string X and returns true if there exists at least one 

empty string derived from X 

FIRST is a function that takes a string input and returns the set of all possible terminal 

symbols that can potentially appear as the first character in any output string derived 

from that input. [5, p.48] 
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For instance, given a set of grammar rules:  

S -> aAb 

A -> Bc 

B -> '' | d 

D -> Ef 

E -> eG 

G -> g 

Obviously, FIRST (S) = {a} because 'a' is the first terminal character that appears in 

any string, derived from 'aAb', such as 'acb'. Another interestingly different case is 

when the non-terminal symbol B appears as the first character in the tail of the second 

rule. In this case, nullable(B) = true since B could derive either an empty string or token 

d. Therefore, those two cases need to be taken into consideration. In case that B = '', 

FIRST(A) = {c} because B is empty thus ignored. In contrast, the case B = d yields the 

result FIRST(A) = FIRST(B) = {d}. Hence, FIRST(A) = {c, d} as it is the result of com-

bining the previous two cases. 

Pseudo code of this algorithm is depicted in Figure 15: 

 

Figure 15. Pseudocode of the algorithm computing FIRST [11, p.48] 

3.3.2 LR(1) algorithm 

Parsing algorithms can be categorized into two groups based on their parsing 

philosophies. The first group is top-down parsing algorithms which generates the parse 

tree from the starting symbol down to the leaves of the tree. In contrast, the bottom up 

parsing algorithms construct the parse tree by starting at the leaves and gradually 
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merge sub-trees into the bigger tree. In fact, the bottom up parsing techniques are 

more powerful than the former one since more types of grammar can be successfully 

parsed using bottom-up parsing algorithms [5, p.88]. The scope of this thesis focuses 

only on the bottom-up approach by examining the fundamental concepts and imple-

mentation of LR(1) algorithm. 

LR(1) stands for left-to-right, rightmost-derivation, one-token lookahead algorithm. Fun-

damentally, LR(1) algorithm employs the power of deterministic finite automata (DFA) 

to construct its parsing table and uses stack to parse the input string. Each DFA state 

contains a set of grammar rules in the form of A -> a.B, N. Specifically, each 

production in a DFA state consists of 2 parts separated by a comma: grammar rule  

A -> a.B and the set N of lookup characters. The dot character in grammar part  

A -> a.B indicates the current processing position of the parser. This means that char-

acter 'a' is already processed and pushed to the stack while B has not been processed 

yet [5, p.63]. In addition, the character $ is used to represent End-Of-File character. 

Shifting $ means that the parser stops the parsing process successfully. [11, pp.55-56] 

There are 2 main types of operations in LR(1): shift and reduce. Shift action pushes the 

input token to the top of the stack. Reduce action selects reducible grammar rule based 

on the tokens on top the stack, discards tokens in the tail of that rule from top of the 

stack and pushs the head token of that rule to the stack.  

For instance, the grammar below is used to demonstrate the fundamental concept of 

this algorithm: 

S -> AA 

A -> aA | b 

The first step of the algorithm is to add an augmented production S' -> .S, $ to the ini-

tial DFA State I0. Next, the algorithm computes Closure(I) - set of all grammar produc-

tions that belongs to a DFA State I and corresponding look-ahead symbols. The 

algorithm to compute the Closure(I) is shown in Figure 16: 
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Figure 16.  Algorithms to compute Closure and Goto [11, p.63] 

At this point, the algorithm yields the following result (State I0 of DFA) 

S' -> .S, $ 

S -> .AA, $ 

A -> .aA | b, a/b 

Then, the algorithm uses function GOTO(I, X) to compute new states of DFA by mov-

ing the dot pass the following symbol X in every production of State I0 and computing 

the closure of the new states. 

The result DFA at this point is shown in Figure 17: 

 

Figure 17.  Current DFA states  
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This process is repeated until the algorithm reaches all final states in which all the dots 

are at the final position in the tail of each production. The final result is depicted in 

Figure 18: 

 

Figure 18.  The complete DFA 

Using this DFA, the parsing table that describes the transitions between DFA states 

can be seen in Table 3. In the parsing table, LR(1) uses information of the current state 

(row) and symbol (column) to look for correct actions to perform. There are several 

kinds of action in the table. Firstly, s + <new state number> denotes shift action that 

instructs the program to scan the next terminal character input and move to new state. 

Secondly, g + <new state number> denotes GOTO action which tells the program to 

follow non-terminal symbol X in order to reach new state. Thirdly, r + <rule number> 

means that the program should reduce the rule with that number. One crucial observa-

tion is that the reduced actions are only placed in final states (State 4, 5, 7, 8, 9) and 

only under the columns of their look-ahead symbols. For instance, reduce action r1 is 

placed in State I5 under $ column because the item S -> AA., $ is reduced. Finally, ac-

cept action indicates the successful termination of the parsing process. [5, p.89] 
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Table 3. The LR(1) parsing table computed from DFA 

State\Symbol a b $ S A 

0 s3 s4 
 

g1 g2 

1 
  

accept 
  

2 s6 s7 
  

g5 

3 s3 s4 
  

g8 

4 r3 r3 
   

5 
  

r1 
  

6 s6 s7 
  

g9 

7 
  

r3 
  

8 r2 r2 
   

9 
  

r2 
  

The next step is to use this parsing table and a stack to parse the input. For the con-

venience of demonstrating, the information about the current input token is not saved 

on the demo stack. This means that the stack in this example needs to store only the 

DFA state instead of the combination of DFA state and token as in some 

implementation. For instance, given the input string "bab", the result in each step when 

parsing the input string is shown in Table 4: 

Table 4. Inputs, actions perform in each LR(1) parsing step  

Step The remaining in-

put at the 

beginning of each 

step 

DFA state stack 

(bottom -> top) 

Rule reduced in 

previous step 

Action to 

perform in 

each step 

1 bab$ 0 
 

s4 

2 ab$ 0-4 
 

r3 



31 

 

3 ab$ 0 A -> b g2  

4 ab$ 0-2 
 

s6 

5 b$ 0-2-6 
 

s7 

6 $ 0-2-6-7 
 

r3 

7 $ 0-2-6 A -> b g9 

8 $ 0-2-6-9 
 

r2 

9 $ 0-2 A -> aA g5 

10 $ 0-2-5 
 

r1 

11 $ 0 S -> AA  g1 

12 $ 0-1 
 

accept 

In each step of the parsing process, LR(1) algorithm usually uses the state on the top 

of the stack and the first character of the remaining input to perform a lookup in the 

parsing table. Based on the result of the lookup, LR(1) conducts shift/reduce action 

with that input character. Each time the algorithm conducts shift action, it consumes an 

input character and push the new state onto the stack. When performing a reduce ac-

tion, N states on the top of the stack are removed with N equals to the number of to-

kens in the tail of the reduced grammar rule. For example, the rule A -> aA is reduced 

in step 8 causing the removals of two States 6 and 9 on the stack as can be seen in 

step 9. Simultaneously, parts of the parse tree are also constructed as a result of re-

duce actions in step 2-6-8-10. Right after each reduction, the program moves to the 

new state by performing lookup using state from the top of the current stack and the 

non-terminal symbol on the left-hand side of the reduced rule. For example, in step 9, 

the program moves to State 5 by using lookup information in the parsing table of State 

2 and symbol A. Finally, the program successfully parses the string “bab” after 12 steps 

by performing accept action. Snapshots of the parse tree after each reduction are de-

picted in Figure 19: 
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Figure 19. Snapshots of the syntax tree after each reduce action 

Resolve conflicts: 

Unfortunately, there are situations in which one cell of the parsing table contains more 

than one action [5, p.94]. For instance, it may contain 2 reduce actions (reduce-reduce 

conflicts) or a shift and a reduce action at once (shift-reduce conflicts). Those cases 

are usually the result of parsing ambiguous grammars. In order to yield correct output, 

the parser needs to devise strategy for choosing which action to perform in such situa-

tions. One technique is using rule of precedence to resolve trivial conflicts. One exam-

ple is when parsing string "3 * 4 + 5", the program certainly reaches the position 

"3*4.+5" at some points. At that point, the parser faces shift-reduce conflict, in which it 

has to choose whether to reduce 3*4 or shift state with character '+'. In fact, Shifting 

and reducing produces 2 different parse trees in this case. As a result, reducing yields 

17 as an evaluated result while shift action produces 27. Therefore, the parser needs to 

specify that the character * has higher priority than the character + thus it prefers re-

ducing 3*4 over shifting. Another common case when parsing the grammar of a 

programming language is the If-then-else statements: 

S -> if E then E 

S -> If E then E else E 

In this case, the parser should give the token else higher precedence so as to perform 

shift action instead of reduce action. [5, p.97] 

3.4 Abstract syntax tree (AST) 
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As discussed previously, each terminal input token is represented by a leaf node in the 

syntax tree. While some terminal tokens such as parentheses are useful in the parsing 

process since they convey special meanings, the corresponding nodes of those tokens 

are completely redundant for the analyses in other upcoming phrases. Therefore, those 

irrelevant nodes should be eliminated in the syntax tree. Such tree is called Abstract 

Syntax Tree (AST). In fact, Abstract syntax tree is a refined concrete syntax tree that 

contains only useful information for other future phrases in compiling process. [5, p.99] 

For instance, parsing input 3 * (4 +5) yields the concrete syntax tree in Figure 20. Then 

this syntax tree can be converted to the equivalent abstract syntax tree in the same fig-

ure without losing any important semantic meaning in the future analyses.  

 

Figure 20. Concrete Syntax Tree and equivalent Abstract Syntax Tree 

3.5 Parser implementation 

3.5.1 Menhir 

The process of parsing is actually tedious and repetitive. Fortunately, this process can 

be simply automated by using parser generator such as YACC or BISON [14][15]. This 

project uses Menhir - a successor parser tool of Ocamlyacc. Menhir employs LR(1) al-

gorithm as its core parsing algorithm. [16, p.4] 

The logic of the parser is specified in the file parser.mly. This file contains 3 parts: 

header, tokens and rules as shown in Figure 21: 
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Figure 21. Structure of file parser.mly 

Header. The header section of Menhir is enclosed between %{ and %}. This section 

has the similar responsibility as the header of Ocamllex since both of them contains na-

tive OCaml code which imports dependencies and declares utility functions, local varia-

bles. [16, p.7] 

Token. The token section is constructed from 3 parts: a set of token declarations and a 

set of tokens' priorities - associativity rules and the starting symbol declaration shown in 

Figure 22: 

 

Figure 22. Token declarations of Tiger 
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In the token declarations part, each token declaration has the following format:  

%token <ocaml_type> token_name,  

where <ocaml_type> denotes the type of the semantic value carried by token to-

ken_name. For instance, %token <int> INT means that the token INT contains an inte-

ger value. If the token does not contain any value, <ocaml_type> can be omitted. [16, 

p.9] 

Tokens' priority rules define the level of precedence and associativity for tokens. This 

information is useful when resolving simple shift/reduce conflicts. The template for this 

section is: 

%nonassoc  A  B ... 

%left  C  D ... 

%right  E ..., 

where %left X indicates that operation on token X is left associative (reduce prefer-

ence) while %right X means that X is right associative (shift preference). For example, 

the parser certainly faces shift-reduce conflicts when parsing ambiguous expression 5 - 
4 - 3. In fact, this expression can be interpreted as (5 - 4) - 3 if %left MINUS is declared 

since %left MINUS prefers reducing to shifting. In contrast, if %right MINUS is in use, 

the evaluated result would be 5 - (4 - 3) since %right MINUS prefers shift action over 

reduce action. In addition, %nonassoc X is used to indicate that there is no associa-

tion in the grammar exp X exp X exp. For instance, applying %nonassoc ASSIGN 

throws syntax error when parsing expression a := b := 5. 

Nevertheless, even if %left PLUS MULTIPLY is defined on the same line, the parser 

still could not decide whether to shift or reduce when parsing the expression 5 * 4 + 3. 

In fact, the shifting on character ‘+’ yields the result of 35 while 23 is the result of reduc-

ing on character ‘*’. Therefore, Menhir provides a way to set the priority values of to-

kens by the order of priority declaration. In the example above, token C and D have 

higher priority value than token A or B since rules of A, B are declared prior to the rule 

declarations of C and D. Thus, the declarations 

%left PLUS 

%left MULTIPLY 
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give MULTIPLY token higher priority compared to PLUS. When rules of two tokens are 

declared on the same line, they have equal priority values. For example, the rule decla-

ration %left PLUS MULTIPLY gives PLUS and MULTIPLY the same priority value. 

The last part of token section is to define the starting symbol of the parser. The 

declaration %start < OCaml type > entrypoint specifies the entrypoint function of the 

parser (starting symbol) which is called outside Parser module in order to generate the 

Abstract Syntax Tree. In this project, %start <Absyn.exp> prog is used to specify that 

function prog() is exposed to other modules and this function call returns AST node of 

type Absyn.exp. As discussed in implementation of lexical analysis, the type definition 

of function prog() in the output file:  

Parser.prog: (Lexing.lexbuf -> token) -> Lexing.lexbuf -> Absyn.exp 

Rules section. The rules section is surrounded by % characters and it is the most im-

portant parts in file parser.mly. In general, the anatomy of this section resembles the 

rule section in lexical analysis. This section is constructed from a set of rules, each of 

which is a group of all Context-free grammar productions for a given non-terminal sym-

bol. Next to each production is the corresponding semantic action. This action is exe-

cuted once the grammar production is reduced into the non-terminal symbol in its head. 

In fact, the OCaml semantic action of one production can have access to the computed 

semantic values of symbols in its production's tail. Semantic value of symbol X can be 

accessed using the query $<index of symbol X in production’s tail> [16, p.11]. One ex-

ample of a parser rule is: 

 

In the semantic action of the first production, $1 is the reference to the semantic value 

of token INT returned by the lexer. In fact, when symbol INT is reduced into non-termi-

nal symbol exp, its semantic value Absyn.IntExp($1) is returned. Similarly, the seman-

tic values of two exp symbols in the second production can be extracted by using key-

words $1 and $3. Actually, 1 and 3 are the indexes of the first and second symbol exp 

respectively in the tail of the second production. In addition, $startofs returns the start 

position of the first symbol on the right-hand side of production. This position is useful 
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when generating error messages in the following phases of compiler. From the obser-

vation of this example, the returned value of the second semantic action can be con-

structed by combining some semantic values of its matched symbols.  

Specifically, the sole responsibility of the rule section in parser.mly is to construct the 

AST tree from CFG. This could be implemented by mapping each grammar production 

to its corresponding AST node. Therefore, the returned values of most semantic ac-

tions in this project are indeed AST tree nodes. Once the starting production  

prog -> exp EOF is reduced, the root node of the complete AST is returned.  

To understand the mapping logic between Tiger's grammars and the data structures of 

Tiger's Abstract Syntax Tree, those two subjects have to be examined. 

3.5.2 Context-free grammar of Tiger 

CFG of Tiger is shown in Figure 23, in which dec+ means that non-terminal symbol dec 

repeats at least once. Additionally, exp*; denotes that exp repeats zero or moretime, 

and each repetition of exp is immediately followed by semicolon character.  

 



38 

 

Figure 23. Context-free grammar of Tiger programming language [1, p.1] 

3.5.3 Abstract syntax tree of Tiger 

Figure 24 depicts the data types for Tiger’s AST specified in file absyn.ml. 

 

Figure 24.  Data structures for Tiger's Abstract Syntax Tree [17] 

In details,  

• VarExp is data structure of AST node for any variable in Tiger. There are three 

kinds of variable in Tiger: SimpleVar (variable x), FieldVar (object.field) and 

SubscriptVar (array[index]). Notice that the first argument of FieldVar and Sub-

scriptVar is also a var due to the recursive nature of this data structure, which 

allows a chain of data extraction from record and array. For example, The 
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expression object.array[0].field is converted to  

 

• CallExp is AST node for function call. This node contains the function’s name 

and a list of argument expressions. For instance, sum(1, 2) is translated to

 

• OpExp is AST for arithmetic operator between two expressions such as 1 + 2 or 

comparison operator such as 1 < 2.  

• RecordExp contains a list of expression fields declared in that record and their 

types.  

• SeqExp contains a list of expressions. 

• AssignExp contains two expressions: left-hand side expression of the assign-

ment (VarExp) and a value expression on the right-hand side of the assignment 
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• IfExp contains a condition expression, a then expression and an optional else 

expression. For instance, if (1 < 2) then 1 is translated to  

 

• ArrayExp contains the type of the array’s elements, the size of the array and the 

initial value of all array’s elements.  

• LetExp is special since it contains a list of variable declarations (VarDec), func-

tion declarations (FunctionDec) and type declarations (TypeDec). Interestingly, 

functions declared adjacent to each other are treated as mutually recursive 

functions in Tiger. This means that one function in the set of mutually recursive 

functions can call any other function within that set regardless of their declara-

tion's order. For instance, given the program 

 
Function a() and b() are mutually recursive when function b() is callable in the 

body of function a() even though function b() is declared after the declaration of 

function a.  

In order to support mutual recursion, FunctionDec has to contains a list of con-

secutive function declarations instead of a single function. Similarly, TypeDec 

also contains a list of consecutive type declarations to support mutually recur-

sive type declarations. One such example is 
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Additionally, exp1 OR exp2 is translated to if exp1 then exp2 else 0. Similarly, exp1 

AND exp2 is translated to if exp1 then 1 else exp2. 

Moreover, almost all AST nodes has field 'pos' containing their approximate positions 

in the original source file. This is because position information is useful when generat-

ing informative error messages in other upcoming phrases of the compiler (tiger 93) 

Once having the understanding about data structure of AST nodes, the challenge is to 

map each production to its corresponding AST node. 

3.5.4 Tiger mapping logic between CFG and AST 

The implementation of most productions in the file parse.ml are fairly straight forward; 

each semantic action returns an AST node. One such example are semantic actions in 

the example x. However, there are cases where semantic action returns function in-

stead. For example, this grammar rule that parses three types of variable in Tiger 

known as SimpleVar, FieldVar and SubscriptVar: 

 

where each semantic action of lvaluetail returns a chain of lambda functions. Each 

function in the chain takes an AST node Absyn.var as argument. The function in in the 

first production returns the same Absyn.var node. In the second or third production of 

lvaluetail, the returned function returns AST node FieldVar or SubscriptVar that wraps 
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its parameter Absyn.var node. Finally, once the chain is called in the semantic action of 

lvalue, the complete AST subtrees are built. 

In addition, there are also semantic actions that returns list as value. For example, the 

rules in Figure 25 are used to parse the arguments of Tiger functions. The result of 

parsing arguments of a function is a list of corresponding AST nodes. 

 

Figure 25. Rules to parse the arguments of Tiger functions 

In summary, the syntax analysis phrase is a process that take a stream of input tokens, 

perform parsing based on context-free grammar rules to produce a complete Abstract 

syntax tree. This syntax tree abstractedly represents the structure of the original source 

program; thus, it can be used for the further analysis in future phases of compiling pro-

cess. 
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4 Semantic analysis 

Previously, the syntax analysis phase detects syntactical errors and yields an abstract 
syntax tree. However, the error checking mechanism in syntax analysis has its own lim-

itation since Context-free grammars cannot naturally handle semantic errors [11, p.76]. 

For instance, the following Java program is syntactically correct: 

int a = 1; 

String b = "foobar";  

int c = a - b; 

However, this program raises a semantic error as the type of variable a is integer and 
variable b has type string while “-” operator only accepts numerical types.  

As a result, an additional phase known as semantic analysis is conducted on the 

parsed AST tree to detect semantic errors during compile time. One responsibility of 

this process is to ensure that a variable is only used within its scope - a portion of the 

program (AST sub-tree) in which that variable is accessible. Additionally, semantic 

analysis also performs type-checking on expressions and subsequently calls other 

modules to generate intermediate code. In practice, semantic analysis can be con-

ducted when pre-orderly traversing the AST tree from root node to leaves. [11, p.103] 

4.1 Rules of variable scope in Tiger 

Variables, types and functions in Tiger are declared in the D section of the expression 

let D in body end 

One example of Tiger declarations is shown in Figure 26: 
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Figure 26. Let expression in Tiger 

In Figure 26, the variable a, declared on line number 2, is accessible in any subsequent 

declarations, expressions until the end of the let expression's body on line 19. Hence, 

the scope of variable a is between line 2 and line 19. Similarly, the scope of variable d 

is 13-19. 

Besides that, the argument variable b of a function f() can only be accessed within the 

body of that function. For instance, variable b can only be used from line 5 to line 11. 

Interestingly, Tiger has support for nested function declarations, which means that the 

body of a nested function has access to the variables previously declared in the outer 

environment [11, p.117]. For instance, the body of the nested function g() on line 7 can 

access variable c declared in the body of function f(), and variable a declared in the 

outer scope. 

4.2 Symbol table 

Generally, scoping rules can be implemented using symbol mapping table known as 
bindings environment. This table is a key-value based data structure that maps the 

names of variables to their corresponding values. First, the algorithm traverses the AST 

tree from root node to leaf nodes, if it encounters an AST node VarDec("x", ...) which 

represents variable declaration var x := value, it adds the binding x -> value to the 

value bindings environment v_env. Similarly, the program also adds the argument 

bindings x -> value to the environment v_env if the AST node FunctionDec, 

representing function declaration f(x,...), is detected. During the course of traversing, if 
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the AST node SimpleVar(x) is detected, meaning that variable x is used, the algorithm 

looks for the value of x in table v_env. If value of x is not found in the lookup table, this 

means that variable x has not been declared or it is used outside of its scope; thus, the 

algorithm throws an error exception. [5, p.114] 

However, the mapping x -> value must be discarded from the binding environment after 
its scope ends to ensure that variable x can not be used outside of its scope. In Tiger, if 

a variable x is declared in the D section of the expression let D in body end, the scope 

of x terminates after evaluating body expression. Additionally, if x is the argument vari-

able in function f(x, …) = body , the mapping of x has to be cleared after evaluating the 

body of function f(). There are two practical implementations of the binding environ-

ment: imperative hash table and functional map. [11, p.106] 

4.2.1 Imperative hash table 

In an imperative implementation, the compiler often uses a chaining hash table to store 
the mapping between a variable and its value [11, p.106]. In fact, when the mapping  

x -> value is added to the table, a hash function takes string “x” and generates the cor-

responding index i in the bucket array. Then the value of x is added to the head of the 

linked list at bucket ith in the array while the remaining nodes of the linked list is kept 

intact. Similarly, the same hashing process occurs when retrieving value of variable x 

from the hash table. However, the function search(x) only returns the first matched 

value of variable x that it finds when scanning the linked list from head to tail. This 

search functionality allows variables declared in the inner scopes to shadow their previ-

ous declaration in outer scopes [5, p.114]. When the scope of the variable x ends, the 

program search for only the first occurrence of x in the hash table and remove this 

value from the linked list. For instance, consider the program shown in Figure 27: 

 

Figure 27.  Variable, function declarations in Tiger 

The scoping hash table implementation of the program in Figure 27 is illustrated in Fig-

ure 28: 
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Figure 28. Example of scoping hash table implementation 

In Figure 28, the binding a -> 5 is added to the head of the linked list at array's bucket 
0th once the program executes the declaration of variable a in line 2. Then, the let ex-

pression in the body of function f() is evaluated on line 3 which adds the binding a -> 6 

to the head of the old linked list while the mapping a -> 5 is still untouched. After evalu-

ating the body of the let expression in the body of function f(), the binding a -> 6 is re-

moved from the head of the linked list. As a consequence, variable a is evaluated to 5 

from line 4 to line 7. 

In order to remember which variable mappings must be removed from the hash table 
when a scope exits, a helper stack is used to keep track of the added variables of that 

scope. In practice, a special marker is pushed to the top of the stack so as to mark the 

beginning of a new scope. Then, the algorithm adds the variables declared in that new 

scope to the top of the stack. After the scope has ended, the algorithm pops every vari-

able off the stack until it removes the starting marker of that scope. Simultaneously, all 

the popped variables are discarded from the hash table so as to restore the state of the 

scoping table as it was before entering that scope. Therefore, the variables declared 

within inner scopes are not accessible in outer scopes. [5, p.115] 

4.2.2 Functional map 
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In functional approach, when the program enters a new scope with the declaration for 
variable x, a binding x -> value is also added to the binding environment X. However, a 

new binding environment X' = X + (x -> value) is created while X is not mutated [11, 

p.107]. As a result, the environment X' can then be used to perform scope-checking 

until the current scope terminates. Because the original environment X of the outer 

scope remains intact, the program does not need to perform table restoration as it does 

in the imperative implementation when exiting a scope. One efficient implementation of 

this immutable data structure is to use a self-balanced binary search tree such as red-

black tree that can perform insertion and search with average time complexity of  

O(log n) [11, p.108]. One simple example of this immutable data structure is demon-

strated in Figure 29:  

 

Figure 29. Immutable map 

Initial, the program points to the root node f -> "foo" of the binary tree. When a binding  
j -> 100 is added to the environment, the algorithm compares the key j with the key of 

the root node f. If the value of key j is greater than that of key f, the binding j -> 100 is 

certainly added to the right subtree, which means that the right subtree has to be re-

constructed. As all the nodes of the original tree are immutable, a new root node  

f -> "foo" must be created and this newly cloned node shares the same left-child node 

with the original root node. This means that the whole original left subtree is reused in 

the new tree as this part remains unchanged during the whole insertion process. On 

the contrary, the right part of the subtree needs to be reconstructed and the function 

traverse to the right child node of the original root node. It then compares the key j with 

the key of the right child node j. Fortunately, they are equal this time; thus, the program 

has found the right place to add the new binding j -> 100. As a consequence, the new 
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node j -> 100 is created sharing the children with the original node j -> 10. Finally, the 

new tree which contains the binding j -> 100 is created and the function returns the root 

node of the newly created tree. From the observation, if the updated node is at depth d 

from the root, d new nodes along the traverse path are created in the new tree, thus 

the algorithm can achieve an average time complexity of O(log n) if the tree of n nodes 

is balanced. In addition, the new tree can potentially share a part of its subtree with the 

original tree as shown in the same figure. This mechanism allows the algorithm to effi-

ciently reduce the memory that the new tree occupies. [11, p.108] 

The semantic analysis phase of this project leverages the functional map implementa-

tion to handle the scoping rules of variables, functions and types declaration. 

4.3 Type system in Tiger 

There are 4 basic types in Tiger: INT, STRING, RECORD and ARRAY. Those basic 

types can be composed together to construct more complex types [17]. In details, type 

RECORD contains a list of pair name-type of its fields. Additionally, each type REC-

ORD also contains a unique id which is generated on its declaration. This unique id is 

used to distinguish each RECORD type when performing type checking. For example, 

given the Tiger program in Figure 30:  

 

Figure 30. Record declaration in Tiger 

Despite the fact that types record_a and record_b carries similar fields, they are not 

equal since the unique id of record_a is different from the unique id of record_b. In con-

trast, record_c is an alias type of type record_a, thus type record_c and record_a are 

equal. In addition, the expression with type NIL can be assigned to any RECORD type 

[17]. 
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In addition, type ARRAY contains the type of its element and a unique id for each Array 
type declaration. The unique id of ARRAY type works exactly the same way as that of 

RECORD type.  

Similar to variables, types in Tiger also have a scope. Therefore, the program needs to 
maintain a separate type bindings environment t_env in order to check for the scope of 

types. In fact, each type declaration adds the binding t -> type to the type binding envi-

ronment t_env. However, Tiger types system has support for type forwarding as dis-

cussed in syntax analysis chapter. Therefore, the algorithm scans for a list of types de-

clared adjacent to each other and adds the dummy type NAME(type_name, muta-

ble_real_type) to the environment before evaluating the right hand side of each type 

declaration. For instance, given the program in Figure 31: 

 

Figure 31. Type forwarding declarations in Tiger 

Firstly, the type checker scans for a list of adjacent type declarations [a, b, c] and adds 
dummy bindings: 

a->NAME("a",None) 

b->NAME("b",None) 

c->NAME("c",None) 

to the type binding environment t_env. Next, the type cheker uses the updated t_env to 

evaluate the right-hand side of each declaration. As a result, those dummy bindings  

b -> NAME("b", None) and c -> NAME("c", None) are already available in the environ-

ment t_env before evaluating any type on the right-hand side. This approach prevents 

the type checker from throwing any unnecessary type scoping error. Once the type 

checker finishes evaluating the right-hand side of type c, the binding c -> INT is added 

to the environment while a, b still maps to dummy types. Thus, the program uses new 

environment t_env' and loops through all type declarations in the list again to resolve 

dummy types. Finally, the type binding environment t_env contains the bindings: 

a -> INT, b -> INT, c -> INT. 



50 

 

Regarding recursive type declaration, consider the type declaration: 

type node = { data: int, next: node } 

After the type evaluation, the type binding environment contains the mapping: 

node -> RECORD([ (“data”, INT), (“next”, NAME(“node”, None) ) ], unique_id) 

The next step is to add the real type to the dummy type NAME(“node”, None) to turn it 

into NAME(“node”, RECORD(...)). The type NAME is still kept at this point as it has a 

special meaning in the upcoming phase - IR translation. 

In addition, circular type declaration such as a -> b -> c -> a must be rejected by the 

type checker. 

4.4 Functions in Tiger 

Unlike type declarations which require a different binding environment t_env, function 

declaration mappings are added to the same binding environment v_env as variable 

declaration. Thus, the environment v_venv stores 2 distinct types of value: VarEntry for 

variable declarations and FunEntry for function declarations. 

On the other hand, Tiger also has support for mutually recursive function declarations 

as discussed in syntax analysis chapter. Therefore, the type checker handles mutual 

recursive function declarations in the similar approach as adjacent type declarations. In 

fact, the type checker adds header bindings  

f -> FunEntry(parameter_types, result_type)  

to the environment v_env for all functions f() declared next to each other before evalu-

ating the body of each function f(). This design allows the Tiger program to call function 

g() within the body of function f() even though function g() has not been declared during 

the declaration of function f(). 

4.5 Type checking implementation 

Type checking in Tiger mostly happens in: variable declarations, function call, assign 

expression, arithmetic operation, if expression, loop expressions, record and array cre-

ations. 

The logic of the type checker in this project can be found in the module semant.ml. 
This implementation consists of three mutually recursive OCaml functions shown in 
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Figure 32. Those three functions recursively traverse the AST tree from root node to 

leaves to perform type-checking and scope-checking: 

 

Figure 32. Three main functions that performs semantic analysis in semant.ml 

4.5.1 Tiger declarations 

In the implementation of semantic analysis phase, the responsibility of function 

transDec() is to add variable, function, type bindings to the existing environment. This 

function takes the current value bindings environment v_env, type binding environment 

t_env and a list of AST node Absyn.dec which can either be FunctionDec, VarDec or 

TypeDec. The returned value of this function is a pair of new binding environemt 

v_env' and t_env' containing new bindings of declarations caused by the list of the 

AST nodes Absyn.dec. The function transDec() handles the AST node Absyn.dec dif-

ferently based on its concrete type FunctionDec, VarDec or TypeDec. In details: 

• FunctionDec(adjacent_fundec_list) node contains a list of adjacent function 
declarations that should be treated as mutually recursive functions. As dis-

cussed in the previous section, a set of mapping  

f -> FunEntry(param_types, result_type) is added to v_env before the program 

evaluates the body of each function. If the result_type is not found, type NIL is 

added to the mapping instead. In addition, before the body of function f(a) is 

evaluated, parameter variable mappings a -> VarEntry(...) are added to v_env 

so that the use of variable a within the body does not throw scoping error. 

• TypeDec(adjacent_typedec_list) is handled by adding a list of dummy types 

NAME to the type bindings environment t_env before evaluating the right-hand 

side of each type declaration. Finally, the type checker replaces those NAME 

types with their actual types. 

• VarDec({name, type, ...}) adds the binding name -> VarEntry(type) to the value 

bindings environment v_env. 

4.5.2 Tiger variables 
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Function transVar() checks for the inapropriate use of variables in Tiger. This function 
takes a value binding environment v_env, a type binding environment t_env and an 

AST node Absyn.var (SimpleVar/ FieldVar/ SubscriptVar) as its arguments.  

• For SimpleVar(“x”) node, the type checker looks for the declaration of variable 
x in the value binding environment v_env. If the lookup result is not found, the 

type checker throws an error exception since variable x has not been declared 

previously. In contrast, if the binding x -> VarEntry(type) is available in v_env, 

the program returns the associated type of variable x. 

• For FieldVar(record, field_name, pos) node, the function transVar() recur-
sively calls itself with transVar(v_env, t_env, record). If the result returned by 

that function call is equal to type RECORD(name_type_field_list), the type 

checker looks for the type associated with name “field_name” in 

name_type_field_list and returns this type. 

• SubscriptVar(array, index) is handled similarly as FieldVar. However, the 

function call transVar(v_env, t_env, rec) is expected to return type  

ARRAY(element_type,...). In addition, index expression must be an integer; 

thus, the function call transExp(v_env, t_env, index) must return type INT 

4.5.3 Tiger expressions 

Function transExp() is responsible for checking types of other expressions in Tiger. 

Similar to transVar(), this function also takes v_env, t_env as the first two arguments 

and returns a Tiger type. However, the third argument is an AST node Absyn.exp. 

Based on the type of Absyn.exp, the function transExp() returns the corresponding 

Tiger type: 

• VarExp(var) is handled by calling function transVar(v_env, t_enc, var) and re-

turning the result type of that function call  

• NilExp is handled by returning type NIL 

• IntExp is handled by returning type INT 

• StringExp is handled by returning type STRING 

• CallExp({ function_name; arguments; ... }) is handled by first looking for the 

declaration of function "function_name" in v_env. If the lookup result is  
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FunEntry({param_types; result_type}), the type checker compares the type of 

each argument expressions against the each type of param_types. Then this 

function returns the result_type from the lookup result. If the lookup result is not 

FunEntry or it is not found, the type checker throws error exception. 

• OpExp(left_exp, operator, right_exp) represents arithmetic operator(plus, mi-
nus, divide, multiply), comparison operator(equal, less than, etc) or boolean op-

erator (and, or) in Tiger. In all three cases, both function call  

transExp(v_env, t_env, left_exp) and transExp(v_env, t_env, right_exp) are ex-

pected to return INT. As a result, the returned type of the whole operation must 

also be INT.  

• RecordExp({fields; type; ...}) represents Tiger record creation which contains 
a list of fields expressions and type's name of the record. Firstly, the type 

checker searches for the type of record in environment t_env using the name of 

its type Secondly, the type checker checks if the type in the lookup result is 

equal to type RECORD([(field_name, field_type), ...]). Then the type of each 

field expression in the AST node RecordExp({fields;...}) is computed by calling 

transExp(v_env, t_env, exp) and subsequently compared to the corresponding 

field_type in type RECORD([(field_name, field_type), ...]). If the type checker 

does not detect any type error, this function returns type RECORD. 

• ArrayExp({type; size_exp; init_exp; …}) is first checked by looking up the 

type of array in t_env and the lookup result must be type  

ARRAY(element_type). Next, the type of size_exp must be evaluated and com-

pared against type INT. The next step is to compute the type of init_exp before 

comparing this type with the type of array’s element. Finally, type  

ARRAY(element_type) is returned  

• SeqExp([exp,..., last_exp]) represents a sequence of Tiger expressions sepa-

rated by the character “;”. The type of each expression in the expression list is 

evaluated by calling transExp(v_env, t_env, exp). However, only the type of the 

last expression last_exp in the sequence is returned as the final type for the 

entire sequence SeqExp([exp,...]). 

• AssignExp({var; exp; ...}) represents an assignment expression with VarExp 
on the left side of character “:=” and exp on the right. The type checker calls 

function transVar(v_env, t_env, var) to compute the type of the left-side VarExp. 
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Next, the computed result is compared against the returned type of  

transExp(v_env, t_env, exp) 

• IfExp({test_exp; then_exp; else_exp}) is type checked by computing type of 
test_exp, then_exp and else_exp. The computed type of test_exp must be INT 

as the number 0 represents false value while other numbers represent true 

value in Tiger. Next, the type checker checks if else_exp is available. If the 

IfExp contains else clause, the type checker evaluates types of then_exp and 

else_exp. In fact, the evaluated types of then_exp and else_exp must be equal 

and this type is the type of the whole IfExp. If the expression IfExp has no else 

clause, the function simply returns type NIL as the final type of the whole IfExp. 

• WhileExp({test_exp; body_exp; ...) is evaluated similarly to IfExp. In the AST 
node WhileExp, the type of test_exp must be INT, body_exp can have any type 

since WhileExp does not return any value. Hence, the returned type of 

WhileExp is always NIL 

• ForExp({var; low; high; body; ...}) is handled by evaluating type of var, low, 

high expression and the computed results must be equal to type INT. Then the 

type of the body is evaluated before being discarded since ForExp does not re-

turn any value. 

• BreakExp returns type NIL since BreakExp does not have any useful semantic 

meaning 

• LetExp({declarations; body; …}) is the most special expression in semantic 

analysis phase since the type checkers computes new environments v_env' 

and t_env' by calling transDec(v_env, t_env, declaration) for each declaration in 

the chain of declarations. The evaluated result of the whole list of declarations 

is the pair of new value environment v_env’ and the new type environment 

t_env’ that contain all mappings declaration in letExp. Finally, the program com-

putes the type of the body by calling transExp(v_env’, t_env’, body) and returns 

this type. 
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5 Activation record 

This chapter briefly covers the storage organization aspect of programming languages 

during the execution process. In fact, the execution process of a program involves 

different types of memory allocations: stack allocation, register allocation, heap 

allocation. 

5.1 Stack frames 

During the execution process of a program, each time a function is called, a chunk of 

memory is reversed by the computer for saving execution data such as local variables, 

return address of that function. This piece of data is often known as function's frame or 

record [11, p.116]. Once the function returns, its data frame is automatically 

deallocated. 

In fact, a function may call itself or call other functions before exiting. As a conse-

quence, multiple frames of the called functions can exist simultaneously at run time. 

The computers leverage stack data structure to store the data frames of those func-

tions' calls. Stack data structure is selected for this task due to the Last-In-First-Out na-

ture of function calls, in which a function call can return only after all of the called func-

tions in its body exit. [11, p.116] 

Specifically, the frame stack has two main operations: push and pop [11, p.118]. In or-

der to illustrate the working mechanism behind the frame stack, the execution process 

of the program in Figure 33 is analyzed. 

 

Figure 33. Simple function calls in Tiger program 

When this program is executed, the state of the frame stack in each step is illustrated 
in Figure 34:  
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Figure 34. Visualization of frame stack during execution of program in Figure 33 

In details, the frame of function f() is pushed on top of the stack once the function f() is 

called. In contrast, that frame is popped off the stack after function f() has returned. In 

the middle of the process, as the function f() calls function g() in its body, the frame of 

function f() is kept on hold while the frame of function g() is put on top of it. After func-

tion g() has returned, the frame of g() is removed from the stack, making the frame of 

function f() active again. However, there is no other execution in the body of function f() 

at this point. Hence, the function f() returns, its frame is eliminated and the whole pro-

gram terminates. 

5.2 Registers 

The main task of the processor is to process data. Apparently, the processor can gen-

erate load and save instructions to access and modify data allocated in stack frame. 

However, loading data from memory and saving data to memory can significantly de-

crease the computational speed of the processor. In order to speed up the computa-

tions, the short-lived data such as short-lived variables, arguments of functions and 

temporary values tend to be saved in a finite set of registers, which is the short-term, 

smallest and fastest memory unit built-in in the CPU [11, p.120]. Nevertheless, due to 

the limited number of registers in the processor and the high demand for quick varia-

bles access, the compiler has to occasionally spill data from the registers to the frame 

stacks and load the data back when necessary. 

5.3 Frame layout 

In general, the stack frame of a function is used to store local variables, function’s argu-
ments and return addresses. The frames of all function calls usually share the common 

layout [5, p.210]. However, this frame structure may differ depending on the calling 
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convention specified by the producer of the machine [11, p.118]. By following the same 

calling convention, a program written in one language can call functions written in oth-

ers. The general layout of a frame is illustrated in Figure 35:  

 

Figure 35. General frame layout in MIPS function call convention 

To understand the frame layout of a function call, there are several concepts that need 

to be explored: stack pointer, frame pointer, return address, local variables, arguments 

of function calls, and static link. 

5.3.1 Stack pointer 

Stack pointer (SP) is a pointer that always point at the top of the frame stack. When a 

function f() is called, the size of the stack grows by the same volume as the frame’s 

size of function f(). This is to ensure that the frame can sufficiently store necessary data 

of function f() [11, p.118]. Therefore, each time a function f() is called, the stack pointer 

must be recalculated following the formula: 

SP = SP + <frame’s size of function f()> 
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Similarly, the size of the stack frame declines by the same amount when function f() re-
turns. Any data stored by the program at addresses beyond the stack pointer is treated 

as garbage data which needs to be collected [11, p.118].  

5.3.2 Frame pointer 

Stack pointer always points to the top of the stack, which means that the stack pointer 
address might increase as the size of the stack grows. As a result, accessing local vari-

able using offset from the stack pointer can become tricky, confusing and error-prone 

[11, p.120]. For example, a variable x was allocated at the offset -8 from the stack 

pointer at one point in the process. However, when the stack pointer address increases 

by the size of 4, the exact same variable x has to be accessed at the offset -12 from 

the stack pointer. Therefore, several assembly implementations leverage frame pointer 

to easily access frame-allocated variables. 

Frame pointer (FP) is a pointer that points to the start of the active frame on the stack. 
Hence, the frame pointer address does not change during the time the frame of func-

tion f() is active. In the implementation using the frame pointer, when the function f() 

calls function g(), the current location of the frame pointer is saved to the stack frame of 

function f(). Next, the frame pointer points to the same location as the stack pointer 

before the stack pointer address is increased by the size of frame g(). In order to ac-

cess variable x allocated on the frame of function g() when the its frame is active, the 

program adds the offset of variable x to the current frame pointer address and uses this 

calculated address to load x. When the function g() exits, the stack pointer points to the 

same location as the frame pointer. Next, the previously saved frame pointer address is 

loaded from the frame back to the current frame pointer. Therefore, the locations of 

frame pointer and stack pointer are restored as they were before the function g() was 

called. [11, p.120] 

5.3.3 Return addresses 

The return address of a function call is the location in the program where the execution 

continues right after that function call has returned [11, p.123]. For instance, when 

function f() calls function g(), the call to function g() assigns the location of the next in-

struction in the body of f() to the current return address. Therefore, the previous return 

address has to be saved in the frame of function f() before it is changed. Once the 

function g() has return, the program jumps back to the return address of the function 
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g(), which is a location in the body of function f(), and continue executing the following 

instruction. Finally, the previously back-up return address of function f() is restored. 

5.3.4 Static links 

Tiger supports nested function declarations. This means that if a function g() is defined 

in the body of function f(), function g() can have access to variables previously declared 

in the scope of function f(). An example of nested function declarations can be seen 

Figure 36: 

 

Figure 36. Nested function declarations in Tiger 

In this program, function g() and function h() are declared nested in the body of function 

f() after the declaration of variable a. As a result, function g() and h() can access varia-

ble a. However, Tiger does not provide support for function closure mechanism which 

allows function to be treated as first-class object, to be passed around or to be returned 

like any other values. Therefore, a function in Tiger can only be called within its scope. 

[11, p.125] 

In order to support nested function declarations, the frame pointer of function f() is 

passed as the first argument to the every nested function call g() and h(). The passed 

frame pointer is often refered to as static link. Once having access to the frame 

pointer address of function f(), the body of g() and h() can use this static link and the 

offsets of variables to access frame-allocated variables declared in f(). As a result, the 

frame pointer address of outer function f() needs to be saved on the stack frame of g() 

and h() at a known offset from the frame pointer for easy access. [11, p.131] 
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Interestingly, when function g() is called within the body of function h(), the program 
must pass the frame pointer of function f() instead of the frame pointer of function h(). 

This is because function g() is declared inside the body of function f() rather than the 

body of function h(). At this point, the frame of function h() is active; thus, the program 

uses the static link value saved in the frame of h() to obtain the frame pointer address 

of its parent function. Luckily, the function f() is the shared parent function of both func-

tion h() and function g(). As a result, the frame pointer address of function f() is passed 

as the first argument to the function call of g(). However, there are cases where parent 

function of function h() is not the direct parent of function g(). In those cases, the pro-

gram repeats the process of following static links until it reaches the frame of the parent 

of function g(). [11, p.126] 

5.3.5 Local variables 

Short-lived local variables of a function are preferably stored in processor's registers for 
quick access. Typically, those variables are the ones that are not accessed by any 

nested functions (unescaped variables) or they do not out-live the frame of the func-

tions that they are directly declared within. [11, p.124] 

However, there exists exceptional cases where short-lived, unescaped variables are 
saved to the stack frame. One such example is when the size of a variable exceeds the 

capacity of a single register; thus, it has to be saved into stack-frame instead. In addi-

tion, if the number of local variables exceeds the number of available registers, some 

variables have to be spilled in the frame. [11, p.124] 

In order to access the frame-resident variable x located at the offset X from the frame 
pointer, the compiler calculates the address of x by adding the offset X to the frame 

pointer address and uses the calculated result to load x. If a frame-allocated variable is 

accessed within nested functions, the program follows the static-link until it reaches the 

frame pointer address of function f() where x is declared and load variable x using 

offset X. 

5.3.6 Function arguments 

There are many conventions defining how argument values are passed into a function 

when that function is called. One such convention is MIPS function call standard which 

is demonstrated by examining the program in Figure 37: 
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Figure 37. Function call in Tiger 

In this example, function g() is invoked in the body of function f(). Hence, function f() is 
refered to as a caller while function g() is refered to as a callee. When function f() calls 

functions g(), the first 4 arguments a, b, c, d of the function g() are passed via registers 

while the rest (e, f) are saved at the end of the caller function f() 's frame[11, p.121]. 

Figure 38 shows the stack frame when function g() is called: 

 

Figure 38. Snapshot of frame stack when function g() is called 

Despite the fact that the values for the first 4 arguments of g() are passed via registers, 

function f() still reserves 4 empty slots in its frame for those arguments in case function 

g() needs to save those values [11, p.123]. Additionally, function f() saves the values 5, 

6 for arguments e, z in its frame. Those frame-allocated arguments e, z can be ac-

cessed inside function g() by substracting the frame pointer address with arguments' 

offsets. 

5.4 Heap allocations 
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Obviously, frame-resident variables are allocated on the entry of the function and deal-
located when that function returns. As a result, the program can not save variables 

such as array or record in the stack frame as they might outlive the frame of the func-

tion that they are defined in [5, p.259]. For example, given the program in Figure 39: 

 

Figure 39. Tiger array that outlives the frame 

In this program, the array, created in the body of function create_array(), has to be 

returned and used after the frame of that function is removed from the stack. Therefore, 

this array can not be allocated in stack frame of function create_array(). 

In practice, Tiger arrays and records are allocated in heap which is a part of computer's 

memory that might require manual memory management from programmers or auto-

matic memory management by garbage collectors [5, p.259]. In C programming lan-

guage, native functions such as malloc() and calloc() can be called to allocate data to 

the heap while function free() can be used to deallocate obsolete heap-allocated mem-

ories [5, p.260]. If obsolete heap memory is not efficiently released, the program may 

run into memory leak problem. 

5.5 Implementation 

As this project leverages LLVM IR and LLVM compiler (LLC) to implement the back-
end of the compiler, the project does not directly implement the frame stack from 

scratch or perform registers allocations. However, the emulation of frame pointer has to 

be implemented to support nested function declarations in LLVM IR. In fact, local varia-

bles of a Tiger function are separated into 2 categories: escaped and un-escaped vari-

ables. Un-escaped variables are either allocated in registers or in the stack frames. 

They usually do not require any special treatment from the compiler. On the other 

hand, escaped variables are the ones that are declared in the parent functions and ac-

cessed within the bodies of the children functions. Those escaped variables have to be 

allocated at the offset X from the frame pointer of the function frame as they have to be 
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accessed within the nested functions using static links. As a result, the compiler has to 

detect those escaped variables at compile time so as to handle them differently. 

The process of detecting escaped variables are implemented in the file escape.ml. 
The structure of this module is summarized in Figure 40: 

 

Figure 40. Structure of file escape.ml 

Similar to type checking, the entry function find_escape() of module escape.ml takes 
the root node of the AST tree as its input. Next, function find_escape() recursively 

traverses the AST tree from root to every leaves in order to detect the uses of escaped 

variables within the nested functions bodies. In practice, this process could be imple-

mented by calling function trans_var(), trans_exp() and traverseDec() in the similar 

fashion as type-checking in module semant.ml. 

In addition, the AST node of variable declaration Absyn.Vardec is extended to contain 
a new field escape which is a boolean value marking the escaping status of that de-

clared variable. Similarly, boolean escape property is also added to the AST node 

Absyn.field which represents function arguments. 

However, the value binding environment v_env and type binding environment t_env are 

unnecessary when detecting escaped variables. Instead, module escape.ml uses a 

new binding environment esc_env, which maps the name of variable to its correspond-

ing pair of declaration depth level and escaping status. The process of detecting 

escaped variables goes as follow: 

Firstly, the compiler sets the initial declaration depth level to zero and traverses the 

AST tree from root to leaves. During the process of traversing, whenever the program 

encounters AST node FunDec representing function declarations, it creates the new 

depth level by incrementing the current level by one before adding the binding for each 

function's argument argument_name -> (new_level, false) to the environment 

esc_env. After that, the program uses the new depth level to traverse the body of that 
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function. Whenever the program processes the AST node VarDec("a", escape) 
representing variable declarations, it adds the mapping a -> (current_level, false) to 

the environment esc_env. Next, the program continues traversing the following nodes 

of the AST tree using the newly updated environment esc_env'. [17] 

If the program finds the AST node SimpleVar("a") at any point, it looks for the declara-
tion level of variable "a" in the esc_env and compares this result with the current depth 

level where variable "a" is used. If the used level of variable "a" exceeds its declaration 

level, this means that the variable "a" is used within a nested function. As a result, the 

escape field of AST node VarDec("a", escape) is set to true. It is essential that the 

process of detecting escaped variables must be conducted prior to the IR translation 

processes in the module semant.ml since IR translation need to use information 

regarding escaped variable. [17] 
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6 Intermediate Representation (IR) 

Compiler is a software that translates the program written in the source language to the 
target language. Target languages are usually low-level languages such as assembly. 

However, assembly instructions are dependent on the architectures of the processors 

which means that different architectures require different types of assembly [5, p.147]. 

Hence, a compiler needs to translate the program written in a source language to M 

different types of assembly code in order to target M different architectures. As a result, 

the process of directly translating N source languages to M types of assembly requires 

N x M implementations as shown in Figure 41 [11, p.136]. Thus, the direct translation 

from the source language to the target assembly usually results in poor reusability. 

 

Figure 41. Direct programming languages translation graph [11, p.137] 

 
 

In order to improve the portability, most compilers leverage an intermediate representa-

tion (IR) as a bridge language between the source language and the target machine 

language. In fact, IR is an abstracted, architecture-independent version of assembly 

language which usually contains more details than the source language and fewer de-

tails than the actual assembly language [11, p.136]. 

By using the IR as a middle layer, the compiling process can be divided into two 
separate parts: front-end and back-end. The task of the compiler front-end is to 

translate the source language to IR language. Once the IR code is available, the back-

end of the compiler is responsible for compiling this IR code to M distinct versions of 
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assembly in order to target M architectures. Fortunately, by using the common IR lan-

guage as an interface between front-end and back-end, the compilers for N source lan-

guages need to implement only N separate front-ends as they can reuse those M exist-

ing back-end implementations. As a result, the approach of sharing IR language be-

tween compilers enables the reduction in the total number of translations down to M + 
N when targeting M architectures for N source languages, as can be seen in Figure 42 

[5, p.148]. 

 

Figure 42. Indirect programming language compilation graph via IR [11, p.137] 

This thesis project uses LLVM IR as an interface between Tiger programming language 

and assembly code. 

6.1 LLVM IR 

LLVM IR is a low-level, assembly-like intermediate language with a strongly type sys-
tem. Unlike assembly, LLVM IR has infinite number of temporary registers. However, 

LLVM registers can only be assigned at most once since LLVM IR is a Static-single-as-

signment (SSA) based language [18]. The list of basic LLVM IR instructions can be 

observed in the Appendix 1. 

An LLVM program is a collection of LLVM compilation units known as Modules. Each 
module contains a set of global variables declarations, named type declarations and 

function declarations. Those modules can be linked together so that function definition 

can be merged, forward declarations are resolved. [18] 

6.1.1 Variables 
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Names of global variables in LLVM IR always starts with the character '@'. Global vari-
ables are treated as pointers. Therefore, a load instruction must be generated to load 

values of global variables while saving the values of global variables is performed by 

the store instruction. [19, p.9] 

On the other hand, names of local variables start with character '%'. There are 2 types 
of local variable in LLVM IR: stack-based variables and register-based variables. [19, 

p.9] 

Stack-based variables are allocated on the function's frame using the alloca instruc-

tion. The result of the alloca instruction is the pointer address to the frame location 

where that variable is allocated. Similar to global variable, the program must generate 

store instruction in order to save the value of the frame-allocated variable to its pointer 

address. In addition, a load instruction is needed to read the value of the frame-

allocated variable at its pointer address [19, p.9]. For instance, given then C program in 

Figure 43: 

 

Figure 43. Simple program written in C  

The equivalent LLVM IR translation of the program in Figure 43 is shown in Figure 44, 

in which the global variable a is represented as @a in LLVM IR while %b and %sum 

are the pointer addresses for the stack-allocated variables b and sum respectively. In 

order to obtain the values of variables a, b and sum, the load instructions are per-

formed. On the other hand, store instructions are used to save values of variable b, 

sum. 
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Figure 44. Unoptimized LLVM translation of the C program in Figure 43 

Register-based variables has the form of %<name> = <expression> in LLVM IR. For 
instance, %b, %sum, %1, %2, %3 in Figure 44's program are all register-based varia-

bles. In fact, register-based variables in LLVM IR must be assigned only once because 

LLVM IR are in SSA form. 

6.1.2 Static Single Assignment (SSA) 

LLVM variables has to follow SSA form meaning that a variable is statically assigned at 

most once in the entire program [19, p.24]. Therefore, the conventional program such 

as the one on the left side of Figure 45 must be converted to the program on the right 

side in order to conform to the requirements of SSA form. 

 

Figure 45. SSA transformation conducted on a straight-line program 

The transformation in Figure 45 could be performed by giving a unique name to each 

variable on the left-hand side of the assignment expression. For instance, variable a on 

the line 4 of the original program is renamed to a2 in the SSA form in order to be 

different from the variable a1. After renaming the variable on the left-hand side of each 
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assignment expression, the algorithm updates the name of each corresponding varia-

ble on the right-hand side of the assignment to the most recent updated name [11, 

p.400]. For instance, variable a in line 5 of the original program is renamed to a2 in the 

SSA form as a consequence of the variable renaming step in line 4. Finally, the trans-

formed program on the right side of Figure 45 meets the requirements of SSA form in 

which any variable is never assigned twice. 

In fact, IR implementation in SSA form can potentially simplify and aid various compiler 
optimizations [19, p.24]. One optimization that SSA enables in this example is constant 

propagation. Apparently, SSA form ensures that all variables are immutable. Hence, it 

is obvious that the variable b1 in line 60 in Figure 45 has never been changed since its 

declaration in line 2. On top of that, variable c1 and e1 has the same right hand side 

expression of pow(b1, 100). As a result, the optimizer can safely infer that e1 = c1 with-

out checking the code between line 3 and line 60. This inference means that the ex-

pression pow(b1, 100) is evaluated only once in line 3 and is reused in line 60. 

However, the complexity of the SSA transformation process is significantly increased 

due to the existence of conditional branches in the program. For instance, given the 

program in Figure 46: 

 

Figure 46. SSA transformation when the program contains conditional branches 

The variable a in line 5 of the left program should be renamed to either a1 or a2 based 

on the condition of the if expression. If the condition is false, the variable a should be 

renamed to a1, otherwise it should be renamed to a2. Fortunately, this problem is solv-

able by using phi function which selects value for a variable based on the predecessor 

blocks of the current block in the Control Flow Graph (CFG). For instance, the CFG of 

the program in Figure 46 is illustrated in Figure 47. 
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Figure 47. Control flow graph of the program in Figure 46 with phi node 

In Figure 47, the program assigns the a merge node Φ(a1, a2) to new variable a3 at 

the merge point of two blocks. This phi node can choose either the value of a1 or a2 to 

assign to a3 based on the previously executed block leading to the merge block. Fi-

nally, the variable a in line 5 is renamed to a3. 

6.1.3 LLVM Types 

LLVM is a strongly typed IR language which has integer types, floating types, pointer 

types, array types, structure types and function types. [18] 

• Integer types has the form of i<N>, in which N denotes the number of bits occu-

pied by the integer. The lower bound of N is 0 while its upper bound is  

n^23-1. For example, a 64-bit integer is shown as i64 in LLVM. [18] 

• Float types can be represented with float (32-bit float value), double (64-bit 

float value), fp128 (128-bit float value), x86_fp80 (80-bit float value) and ppc-
fp128 (128-bit float value). [18] 

• Pointer types can be seen in in the form of <type>*, where <type> is the type of 

value saved at the address of that pointer. For example, i8* represents a pointer 

address of the 8-bit integer. [18] 
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• Array types represent types for frame-allocated arrays. Array types can be seen 

in the form of [<size> <element_type>] in LLVM IR where <size> is the pre-de-

fined size of the array, and <element_type> is the type of the array’s elements. 

On the other hand, heap-allocated arrays in LLVM are usually represented by 

the pointer types. [18] 

• Structure types represent a composition of different member types [18]. Struc-

ture types in LLVM are in the form of {<type_1>, <type_2>, ....} where 

<type_1>, <type_2>, ... are types of that structure's members in the order of 

declarations. 

• Function types are the combination of the return types and argument types of 

LLVM functions. Function types can be seen in the format: 

<return_type> (<argument_type_1>, <argument_type_2>, …)  

6.1.4 Function definition and control flow 

Function definitions in LLVM IR has the basic format:  

define <return_type> @<function_name> (<argument_type1>, …) { <body> }, 

where the <body> section of functions is a sequence of basic blocks which construct 

the control flow of that function in LLVM [18]. Each basic block contains a list of instruc-

tions starting with a label and ending with a terminator which is either a branch instruc-

tion br or a return instruction ret [19, p.22]. In fact, the first block of the function is exe-

cuted immediately once the function is called. In addition, this entry block must not be 

the successor of any other blocks, which means that there is no branch instruction to 

this entry block [18]. One example of the factorial function is shown in Figure 48: 
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Figure 48. Factorial function in LLVM IR 

In Figure 48, the function factorial takes a 32-bit integer as a parameter input and re-

turns a 32-bit integer as a result. The body of this function consists of 4 blocks: entry, 

then, else, merge. As the block entry is the first block of the function, it is executed im-

mediately on the entry of the function factorial. At the end of the entry block is a condi-

tional branch with the format:  

br i1 <cond>, label <then_label>, label <else_label>, 

where if <cond> is evaluated to be true, the program jumps to the block whose label is 

<then_label>, otherwise it jumps to block labeled with <else-label>. 

On the other hand, br instruction can also perform unconditional jump to a single target 

block in the format br <label> [18]. For instance, unconditional br instructions at the 

end of the then and else block both instruct the program to jump to the same merge 

block. 

At the end of the merge block exists a return statement of the function factorial. This re-

turn instruction has the form ret <type> <value> if the function returns a value or  

ret void if the function has no return value [18]. 

Between the label and terminator of each block stands a sequence of zero or more in-

structions. Those instructions can be arithmetic operations such as add, sub, mul, sdiv 

etc or comparisons such as icmp eq, icmp slt. Besides that, those instructions can also 
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be a load, store instructions or function call such as the one in line 13. Last but not 

least is the appearance of the phi instruction that conditionally merges the value cre-

ated by the then block or the else block. This phi instruction has the general format:  

phi <type> [value1, label1], [value2, label2], … 

Where <type> is the type of the result value. On the right side of <type> stands a list of 

[value, label] pair which represents the value created by each predecessor block of the 

merge block. [18] 

6.2 Implementation 

Obviously, LLVM IR program can becomes relatively verbose as the complexity of the 

program grows. Therefore, a utility package named IR builder is leveraged in order to 

abstractedly and programmatically generate LLVM IR code. In fact, LLVM IR builder is 

written in C++ but it fortunately offers API bindings in many languages including 

OCaml. Specifically, the IR builder offers the ability to change the code insertion loca-

tion within a LLVM module. For example, the translation process can create functions, 

append basic blocks to the body of those functions, and freely jump between different 

blocks to emit code instructions at any time. Therefore, code instructions are not nec-

essarily generated in sequential order thanks to the IR builder insertion pointer. [20] 

The IR translation code can be found in file translate.ml. Firstly, the LLVM module for 

the program has to be created and given a name. This module will contain all the trans-

lated IR code including global variables declarations, named types declarations and 

functions declarations. Secondly, the LLVM IR builder object is instantiated to maintain 

the location of the insertion pointer within the global context. This builder object also 

contains build-in functions to generate LLVM instructions [20]. The code for this section 

is shown in Figure 49: 

 

Figure 49. LLVM IR builder bootstraping instructions 

The next step is to extend the function trans_var and trans_exp of the module 

semant.ml to return LLVM IR value along with the type of each AST node at the same 
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time. After the extenstion, the signatures of core functions in module semant.ml are 

shown in Figure 50: 

 

Figure 50. Types of core functions in semant.ml after the extenstion 

In fact, function trans_var and trans_exp returns the type of AST node and the LLVM 

value for that node simultaneously. This means that the type-checking process and IR 

translation process are conducted at the same time when traversing the AST tree from 

root node to leaves. 

6.2.1 Primitive value translations 

Integers in Tiger are translated to LLVM 32-bit integer constants in this project. The 

translation is done by calling the partial function const_int(i32_type)(number) provided 

by LLVM IR builder when traversing the AST node IntExp(number).  

Tiger strings can be represented by 8-bit integer pointer in LLVM IR. The compiler 

translates the AST node StringExp("foobar") to LLVM IR by calling the built-in function 

build_global_stringptr("foobar"). The result of this translation is a global string constant 

variable in LLVM IR. 

6.2.2 Records translations 

Tiger records are converted to literal struct pointer in LLVM IR by calling the function  

record_exp() of module translate.ml. An example of translating the Tiger record  

{ name = "foo", age = 1 } to LLVM IR can be used to demonstrate each step of the 

translation process: 

Firstly, a list of the record's fields' types (string, integer) must be translated to their 

corresponding LLVM types (i8*, i32). This type conversion logic is handled within the 

function get_llvm_type() in translate.ml. 
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Once the type conversion process has finished, the malloc({i8*, i32}) instruction is 

generated to allocate the record to the heap as discussed in the previous chapter. As a 

result, this malloc instruction returns a pointer address, whose type is {i8*, i32}*, to that 

heap-allocated struct. 

The next step is to save the value of each struct's field to their allocated addresses. In 

fact, the fields of LLVM struct do not possess any name [19, p.10]. This means that 

those fields must be accessed by their indices (starting from 0) within that LLVM struct. 

In order to compute the addresses of those fields, LLVM offers the instruction Get 

Element Pointer (GEP) which takes the struct's pointer address and then computes the 

memory address of a member element at index X [19, p.11]. After calculating the ad-

dresses of struct's fields (name, age), the program stores the value "foo", value 1 to 

the first element's address (index 0) and the second element's address (index 1) re-

spectively in allocated struct. Finally, the function record_exp() returns the pointer ad-

dress of the allocated LLVM struct. 

One crucial attribute of GEP instruction is that this instruction does not automatically 

perform memory dereferencing. For instance, consider the simple C program in Figure 

51:  
 

 

Figure 51. Simple C program 

The equivalent LLVM version of this C version is shown in Figure 52: 
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Figure 52. Translated LLVM IR version of the program in Figure 51 

In Figure 52, the instruction node -> data in C is translated to the LLVM instruction: 

getelementptr inbounds %struct.Node, %struct.Node* %3, i32 0, i32 0 

In fact, when C compiler executes the instruction node -> data, it assumes that the in-

dex of node is 0. As a result, the instruction node -> data is assumingly equivalent to 

node[0].data. Unfortunately, the same assumption cannot be made in LLVM IR since 

the LLVM IR instruction getelementptr explicitly requires 2 indices i32 0, i32 0 in order 

to access the data field of the struct Node [21]. In details, the first index 0 is the index 

of the first struct Node from the pointer address while the second one is the index of 

the field data within that struct Node. The result of the GEP instruction is the memory 

address of the field data within the struct Node. Finally, the value 1 is saved to the 

memory address returned by the GEP instruction. 

6.2.3 Array translations 

Similar to record, Tiger array is also heap-allocated as an array may outlive the frame 

of the function in which it is defined. It is also translated to LLVM structure type pointer  

{ i32, <array_element>* }*, where the first field of the struct stores the pre-defined 

length of the array while the second field stores the pointer address to the actual heap-

allocated array. An example of translating the Tiger array in Figure 53 can be used to 

analyze the translation process. 

 

Figure 53. Array initialization in Tiger 
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The translated LLVM of the program in Figure 53 is shown in Figure 54: 

 

Figure 54. Tiger array translation in LLVM IR 

Firstly, the pre-defined length of the Tiger array is converted to LLVM Integer constant 

by calling int_exp(length). Then the type of Tiger array's element is converted to equiv-

alent LLVM type by calling function get_llvm_type(). As a result, the struct pointer, 

representing the created array, has the type { i32, i32* }*. 

The next step is to generate malloc instruction to allocate the heap memory occupied 

by that array. The result of malloc function call is the pointer address %array_init of the 

heap-allocated array. Once the array is allocated, the translator fills all the slots in that 

array with the initial value. This step could be implemented by creating a loop with 3 

blocks (test, loop, end) in LLVM IR in order to iterate from index 0 to index length - 1. In 

the body of this loop exists a GEP instruction so as to compute the memory address of 

the array's element at the current index of the loop. Once the address of an array's ele-

ment has been calculated, the instruction store is executed to save the initial value to 

that address.  

After the program has exited the loop by jumping to the end block, the array wrapper 

struct %array_wrapper, containing the length and the pointer address of the array, is 
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saved to heap in the same fashion as discussed in the Record section. Finally the func-

tion array_exp() returns the pointer address to the wrapper struct.  

6.2.4 Variables 

The constraints, imposed by the SSA form of LLVM IR, might increase the complexity 

when implementing mutable variables in Tiger [20]. One common solution to tackle this 

problem is to allocate all variables to the stack frame with the instruction alloca. This 

alloca instruction returns the pointer address of the allocated variable, which could later 

be used to save the value with the store instruction or to read the value with the load 

instruction [19, p.9]. For instance, given the simple Tiger program in Figure 55: 

 

Figure 55. Simple use of variable in Tiger language 

The equivalent LLVM version of the Tiger program in Figure 55 is depicted in Figure 

56: 

 

Figure 56. Translated LLVM IR of the program in Figure 55 

The LLVM IR translation process of the Tiger program in Figure 55 involves several 

steps. First, an alloca instruction is generated to allocate frame-memory for variable a 

(left-hand value) before returning the allocated memory address. This memory address 

is then used to store the value of 5 with the instruction store. When the value of 

variable a (right-hand value) is used, a load instruction is created to load the value 



79 

 

from the frame-address of variable a. The diagram in Figure 57 illustrates this 

translation process: 

 

Figure 57. LLVM IR translation process of the program in Figure 55 

From the observation, if a variable stands on the left side of the assignment expression 

in Tiger (left-value), it is translated to the frame-allocated pointer address returned by 

the alloca instruction. On the other hand, if a variable is not the target of the 

assignment statement (right-value), it is translated by loading the value from its known 

pointer address with the load instruction. 

In fact, saving and loading unnecessary data to/from stack frames might adversely 

affect the computation speed of the compiled program. Fortunately, LLVM framework 

provides a built-in optimization pass mem2reg which efficiently converts the use of 

frame-allocated variables to register-allocated variables in SSA form. The only 

constrain that mem2reg imposes is that all the alloca instructions for frame-allocated 

variables in a function must happen in the entry block (first block) of that function. [22] 

Besides that, the AST node FieldVar representing a specific property of the Tiger 

record is translated by computing the allocated address of that property with 2 known 
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values: the pointer address of the whole record and the index of that property. This 

field's address computation can be performed using getelementptr instruction (GEP) 

as discussed in the Record translation section. Once the memory address of the 

record's field is computed, the program simply returns the pointer address of that field 

if FieldVar node appears to be left-value. On the other hand, the program returns the 

value loaded from that computed address if FieldVar node is right-value. The similar 

translation process also applies for SubscriptVar node which represents the element 

members of the Tiger arrays. 

6.2.5 Arithmetic and comparison expressions 

Tiger arithmetic operations (add, subtract, multiply, divide) can easily be translated to 

LLVM IR using OCaml IR builder functions (build_add, build_sub, build_mul, 

build_sdiv). For instance, the Tiger arithmetic operations a + 6, 6 - a, a * 6, 6 / a are 

correspondingly translated to the LLVM IR instructions shown in Figure 58 

 

Figure 58. Basic arithmetic instructions in LLVM IR 

Similarly, Tiger comparison operations (equal, not equal, less than, less than or equal, 

greater than, greater than or equal) are translated to LLVM instructions by calling IR 

builder function (Icmp.Eq, Icmp.Ne, Icmp.Slt, Icmp.Sle, Icmp.Sgt, Icmp.Sge). For in-

stance, the Tiger integer comparison operations a = 6, a <> 6, a < 6, a <= 6, a > 6,  

a >= 6 are respectively translated to the LLVM IR instructions shown in Figure 59: 

 

Figure 59. Comparison instructions in LLVM IR 
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However, the type of the results, returned by LLVM IR comparison instructions, is 1-bit 

integer (i1) while the default type of integers in the rest of this project is i32. This means 

that the compiler has to generate an additional instruction: zext i1 %result to i32  

to cast type i1 to i32. 

6.2.6 If expression 

Similar to assembly languages, control flow in LLVM IR can be constructed by navi-

gating from one basic block to another [19, p.22]. An example program in Figure 60 

could be used to illustrate how an If expression in Tiger is translated to LLVM IR: 

 

Figure 60. If expression in Tiger program 

The translated LLVM IR version of the program in Figure 60 can be seen in Figure 61: 

 

Figure 61. Translated version of the Tiger program in Figure 60 
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From the observation, the If expression in LLVM is implemented using 4 blocks: test, 

then, else, merge. 

Block test is optional since it is used only to enhance the readability of LLVM IR trans-

lation. In fact, the optimizer usually merges block test with block entry when the IR 

code is optimized. The block test contains instructions that evaluate the condition of the 

If expression [23]. In fact, the value 0 represents false in Tiger while other numbers are 

considered to be true. Therefore, the result value of the comparison expression a >= b 

has to be evaluated before being compared against the value 0 in the test block. If the 

evaluated value of the condition expression is equal to 0, the program jumps to block 

else, otherwise it jumps to block then. 

Block then contains instructions that are executed when the condition of the If expres-

sion is true. On the other hand, the program jumps from the block test to block else 

and executes instructions within block else if the condition is false. At the end of both 

blocks then and else exist the unconditional jumps to the same block merge which 

contains the Tiger instructions right after the if expression in the Tiger program. The 

visualization of this control flow graph is depicted in Figure 62: 

 

Figure 62. Control flow graph for the max function in Figure 60 
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In order to translate the AST node IfExp to LLVM IR using the IR builder, the function 

insertion_block() is called in order to get the current insertion block that the IR builder 

pointer is pointing at. Subsequently, the translator grabs the instance of the LLVM func-

tion that the current insertion block belongs to. The next step is to create and append 4 

blocks test, then, else, and merge to the instance of the grabbed function by calling 

the built-in function append_block(). [23] 

Next, the function build_br() is used to build the unconditional jump from current 

insertion block to the test block. After that, the insertion location is changed to the 

newly created test block before the program emits IR instructions for evaluating the 

condition expression of the IfExp node. The following step is to call function 

build_cond_br() in order to create the conditional jump instruction:  

br <cond> <true_block> <false_block>. The code section for creating, appending basic 

blocks and evalutating condition expression is shown in Figure 63: 

 

Figure 63. Translated version of the Tiger program in Figure 60 

Similarly, the IR builder pointer is set to point to the block then before emitting IR in-

structions for that block. Subsequently, the partial function: 

build_br(merge_block)(builder)  
is called to create the unconditional branch from the current block to the merge block. 

The same process occurs when generating instructions in the else block. Finally, the 

IR builder points to the merge block where other following instructions in the program 

are soon be inserted into. [23] 

6.2.7 Loops  
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There are 2 types of loop in Tiger: while loop and for loop. This project takes the 

approach of replacing the AST node ForExp with the AST node WhileExp nested 

inside LetExp. One example, in which the compiler implicitly replaces the AST node 

ForExp with WhileExp and LetExp, is shown in Figure 64: 

   

Figure 64. Conversion from ForExp to WhileExp in Tiger 

As a result, only the AST node WhileExp must be translated to LLVM IR to represent 

loop in Tiger. 

The while loop in Tiger is translated to LLVM IR by appending 3 basic blocks (test, 
loop, end) to the body of the function [23]. Next, an unconditional br label %test 
instruction is emitted to jump from the current block to test block. The test block 

contains instructions that evaluate the condition to enter the loop. Then, the conditional 

branch instruction is generated at the end of the test block so that if the condition value 

is different from 0, the compiled program jumps to the loop block otherwise it jumps to 

end block. Next, the IR builder points to loop block and emits instructions within the 

body of the loop. At the end of the block loop exists an unconditional jump instruction 

to the test block in order to repeat the process. The LLVM IR flow graph of the program 

in Figure 64 is shown in Figure 65: 
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Figure 65. LLVM IR flow graph of the Tiger while loop in Figure 64  

 

In order to implement the break statement (AST node BreakExp) in the body of the 

loop, the instance of the block end is passed down the AST tree as an argument to 

function trans_exp() when translating the body of the loop. Once the AST node 

BreakExp is encountered in the sub-tree that represents the body of the loop, it is 

translated to the unconditional jump instruction br label %end so that the compiled 

program can terminate the the execution of the loop early. 

6.2.8 Functions 

Function declaration in LLVM IR has the general format shown in Figure 66: 

 

Figure 66. General format of function declarations in LLVM IR 
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In Figure 66, the declaration section of a function starts with the keyword define. Next 

to the keyword define stands the return type of the function and the name of the 

function which always has the suffix ‘@’. On the right hand side of the function’s name 

is the list of zero or more arguments’ types enclosed between 2 parentheses. The body 

of the function is wrapped between 2 characters { and } in which the LLVM IR 

instructions are usually grouped into basic blocks. At the end of the function’s body 

section stands the return statement ret marking the end of the function’s body. One 

example LLVM IR function can be observed in Figure 67:  

 

Figure 67. Simple function declaration in LLVM IR 

In order to support mutually recursive function declarations (adjacent function 

declarations) in Tiger, the compiler first has to generate a list of LLVM function headers 

before emitting the body instructions for each adjacent function. Specifically, LLVM 

function header can be created with the IR builder by calling the built-in function:  

declare_function (function_name) (function_type) (module) 

The result of this function call is an IR function header in the format: 

declare <return_type> @<function_name>(argument_type1,…) 

Once the LLVM IR function’s headers of all mutually recursive functions are generated, 

the body of each function is translated to LLVM IR in sequential order. Firstly, the 

compiler looks for the defined function header using function name as a key. After the 

correct function header is found, the basic block entry is created and appended to that 

function. Then, the pointer to current insertion block is kept so that the IR builder can 

jump back to that block after finishing emiting code for the current function. This step is 

crucial to maintain the correct IR insertion point when translating nested functions. For 

instance, given the function inner() nested inside function outer() in Figure 68: 
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Figure 68. Nested function in Tiger 

Before the translation process of function inner() occurs, the IR builder points to block 

entry of function outer(). When translating the function inner(), the IR insertion point is 

changed to the block entry of function inner() in order to generate instructions for the 

body of that function. After the function inner() is translated, the insertion point of the IR 

builder is still in the block entry of function inner(). Therefore, the IR builder has to point 

back to its previous insertion location in the body of the function outer() before 

generating code for the instruction 5 + 6. 

During the process of translating each function body, the IR builder points to the block 

entry of that function and emits IR instructions for the body of that function. Finally, the 

return instruction ret is emitted to mark the end of the function’s body. 

6.2.9 Nested functions 

In fact, variables declared on the outer most level of the Tiger program are not actually 

translated to LLVM IR global variables in this project. In truth, they are mapped to the 

local variables of the LLVM function main() which is also the entry point of any LLVM 

program. This feature could be implemented by implicitly generating the LLVM IR 

function header and block entry for function main() before the AST tree is translated to 

LLVM IR. Next, the IR builder is set to point to the entry block of function main()before 

the IR instructions of the compiled Tiger program are inserted to that location. As a 

result, global” variables in Tiger are indeed translated to frame-allocated variables in 

the block entry of the LLVM function main(). Unfortunately, the concept of nested 

functions are unavailable in LLVM IR, meaning that local variables in one LLVM IR 

function are inaccessible in the bodies of other LLVM IR functions by default. For 

instance, the LLVM IR translation of the Tiger program in Figure 68 can be observed in 

Figure 69: 



88 

 

 

Figure 69. LLVM IR translation of program with nested functions 

In fact, the function inner() and function outer() are completely independent in the 

translated LLVM IR eventhough function inner() is the nested inside function outer in 

the original Tiger program in Figure 68. Therefore, local variables of function outer() 

can not be accessed within the body of function inner() in LLVM IR by default. 

One possible solution to this problem is to implicitly pass the addresses of the escaped 

variables of function outer() as arguments to function inner() when it is called within the 

body of function outer() [19, p.45]. For example, consider the Tiger program in Figure 

70: 

 

Figure 70. Tiger program with nested functions 

In order to make variable a accessible in the body of function inner(), function inner() is 

automatically extended to carry one argument variable of type i32*. This argument 

variable is reserved for passing the address of variable a to function inner(). In practice, 

the call expression inner() in the Tiger program is automatically translated to 

inner(address_of_a) as can bee noticed in Figure 71. As a result, variable a is 

accessible in the nested function inner(). 
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Figure 71. LLVM IR translation of the program in Figure 70 

However, there are certain cases where multiple variables of the function outer() are 

accessed in the body of function inner(). If every escaped variable reserves one 

argument variable of the function inner(), the generated IR code of that function would 

become increasingly confusing especially when function inner() also has some explicit 

arguments. Therefore, all escaped variables of the function outer() should be packed 

and allocated into one struct in order to emulate the frame pointer as mentioned in the 

Record activation chaper [19, p.45]. Subsequently, the address of this struct is always 

passed as the first argument to function inner() when it is called. 

The whole process of implementing nested function in LLVM IR can be divided into 3 

steps: extending function definitions, passing frame pointer address to function calls, 

and back tracing static link to access variables. 

a.   Extending function definitions: 

The objective of this step are to compute the type for the frame pointer struct of each 

function and to implicitly extend the LLVM IR function definitons so that frame pointer 

address of parent function can be passed to its children functions. 

In order to compute the type of the frame pointer struct, the type of each escaped 

variable of the function outer() are added to a list before the translation process for that 
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function’s declaration occurs. This computed list of types is then used to compute the 

type the frame pointer struct of the function outer(). In details, the structure of the frame 

pointer struct of a function has the following form:  

{ <frame pointer address of parent function>, <escaped variable>,… }, 

where the first element of the function’s frame pointer struct stores the frame pointer 

address of its parent function when that address is passed as the first argument to the 

function. For instance, the frame pointer address of function outer() is passed as the 

first argument to function inner() when function inner() is called. This address is then 

saved to the first element of the frame pointer struct of function inner(). Other followings 

element of the frame pointer structs contains the values of the function’s escaped 

variables. For example, the frame pointer address of function outer() in Figure 71 has 

type {void, i32}* while that of function inner() has type { {void, i32}* }* as shown in 

Figure 72: 

 

Figure 72. Frame pointer address passing for nested functions in Figure 70 

Another interesting Tiger program in Figure 73 can be used to analysed how nested 

functions are compiled to LLVM IR. 
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Figure 73. Tiger program with nested function 

Before the compiler starts generating code for the function grand_parent(), it scans the 

whole AST sub-tree representing the body of that function in order to collect the types 

of escaped variables. The result of the scanning process is the list of [i32, i8*, i32] as 

both variable a, b and c are used in the nested functions (uncle, parent, child). Besides 

that, the function main() has an empty frame pointer struct since there is no global 

variable in this program. This means that the frame pointer address of the function 

grand_parent() has the type {void, i32, i8*, i32}*. As a result, the function definitions of 

uncle() and parent() are implicitly extended to carry an extra argument of type  

{void, i32, i8*, i32}* so that the frame pointer of function grand_parent() can be passed 

via that extra argument to function uncle() and parent(). Thus, the function uncle() has 

type i32 ({ void, i32, i8*, i32 }*, i32) while the function parent() has type  

i32 ({ void, i32, i8*, i32 }*) at this point.  

Another interesting example is the translation process of function parent(), in which the 

compiler detects that the variable d is escaped. Hence, the frame pointer address of 

the function parent() has the type { { void, i32, i8*, i32 }*, i32 }* since the type of the 

struct’s first element is the frame pointer’s type of function grand_parent() while the 
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type of the second element is the type of variable d. The frame pointer passing process 

of the program in Figure 73 is shown in Figure 74: 

 

Figure 74. Frame pointer address passing for the program in Figure 73 

In order to implicitly extend each the function definition to accomodate an extra frame 

pointer’s address argument (the first argument), a stack data structure is used to store 

frame pointer’s type of the current function. In practice, the frame pointer’s type of a 

function is put on top of the stack when the body of that function is being translated. In 

constrast, that type is popped off the stack once the translation process for that 

function’s body finishes. Figure 75 depicts the states of the stack during the translation 

process of each function in Figure 73, where the type in the top frame of the stack at 

each stage is actually the frame pointer’s type of the function that are being generated 

at that point. 
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Figure 75. States of stack used for extending function definitions for the program in Figure 73 

Initially, the stack contains only the type void which is the frame pointer’s type of 

function main(). When the header of function grand_parent() is about to be generated, 

the compiler looks for the type on top of the current stack and uses this type as the first 

argument’s type of function grand_parent(). As a result, the type of function 

grand_parent() is i32 (void). Next, the frame pointer’s type of function grand_parent() is 

computed from the type void on top of the stack and the types of escaped variable a, b, 

c. Therefore, the frame pointer’s type of function grand_parent() is {void, i32, i8*, i32}* 

and this computed type is put on top of the stack so that it could be used as the type of 

the first argument for both function uncle() and parent(). When the header of function 

uncle() is generated, its frame pointer’s type { {void, i32, i8*, i32}* }* is put on top of the 

stack. Subsequently, this type is removed from the stack when translation process for 

function uncle() has terminated. The similar translation process occurs for function 

parent() and function child(). As a result, the frame pointer’s type of function parent() is  

{ { void, i32, i8*, i32 }*, i32 }* which is also the type of the first argument of function 

child(). After that, there is no other function to translate which means that the stack is 

cleared at this point. 

b.   Passing relevant frame pointer address to function call: 

The next problem to solve is how to programatically pass the correct frame pointer 

address as the first argument of the function call. Firstly, the static nested level of each 

function defintions are determined as illustrated in Figure 76 where level 0 is the body 

level of function main() and it is also the definition level of function grand_parent(). 
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Similarly, level 1 is the defintion level of function uncle() and function parent() while 

function child() is defined in level 2. 

 

Figure 76. Static nested level of the program in Figure 73  

The nested levels of the program in Figure 73 can be summarised in Table 5:  

Table 5. Nested levels of program in Figure 73 

Level Body level of function Definition level of function(s) 

0 main() grand_parent() 

1 grand_parent() uncle(), parent() 



95 

 

2 parent(), uncle() child() 

3 child()  

If a function is called in the same level as its definition level, the frame pointer address 

of the function, whose body corresponds to that level, is passed as the first argument to 

the callee function. For instance, function grand_parent() is both defined and called in 

level 0 which is the body’s level of function main(). As a result, the frame pointer of 

function main() is passed as the first argument to function grand_parent(). Similarly, as  

level 1 is both the definition level and called level of function parent(), the frame pointer 

of function grand_parent() is passed as first argument to the call.  

Interestingly, function uncle() is called in level 3 while its definition level is level 1 which 

is the body level of function grand_parent(). Therefore, the compiler needs to trace the 

static link from the body of function child() in order to obtain the frame pointer address 

of function grand_parent(). In fact, function uncle() is called in the body of function 

child() whose first argument variable is the frame pointer address of function parent(). 

As a result, the instructions:  

%grand_parent_fp_address_pointer = getelementpointer %parent_fp, i32 0, i32 0  

%grand_parent_fp_address = load %grand_parent_fp_address_pointer 

generated to get the first element in the frame pointer struct of function parent(). This 

first element is actually the frame pointer’s address of function grand_parent(). As a 

result, the tracing process terminates at this point and %grand_parent_fp_address is 

passed as first argument to the call of function uncle(). The tracing process can be 

observed in Figure 77: 
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Figure 77. Static link tracing for function call of the program in Figure 73  

c.   Back tracing static link to access variables defined in outer scopes: 

When variables, defined in the outer functions, are accessed within the nested 

functions, they are always allocated in the frame pointer structs of the outer functions. 

This means that at least one getelementptr instructions is needed to access those 

escaped variables. In practice, the static link is used in similar fashion, as described in 

the previous section, in order to obtain the address of frame pointer struct where those 

variables are stored. One solid example of this case is the variable a defined in the 

body of function grand_parent() and used in the body of function parent(). In order to 

access variable a, the frame pointer address of function grand_parent() must be 

obtained since variable a is allocated in the second element of that frame pointer struct. 

Once the correct frame pointer address is obtained, the compiler access the escaped 
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variable from the struct by generating the getelementptr instruction with the 

corresponding index.  

At this point, variables defineds in outer scopes become accessible in inner scopes 

thanks to this three-step stactic link implementation. 

6.2.10 External functions 

In fact, LLVM IR function headers (function definitions with empty bodies) are treated 

as placeholders for external functions. During the linking phrase, those functions’ 

headers are eventually linked to their associated implementations in other modules. As 

a result, this LLVM feature potentially brings the possibility in which the Tiger program 

can call C functions. For instance, one commonly-used external function in Tiger is 

function print(), which is actually an alias for the C function tig_print() defined in file 

bindings.c.  

In order to implement external functions for the Tiger language, the list of functions’ 

header mapping alias -> FunEntry({label = “external_function_name_in_C”, …}) are 

added to the value bindings environment v_env in the file env.ml at the beginning of 

the compilation process. As a result, those aliased functions are treated as global 

functions in Tiger since their mappings are available in the environment v_env from the 

beginning. For example, the function mapping: 

“print” -> FunEntry({ label = “tig_print”; formals=[T.STRING]; result=T.NIL }) 

is added to environment v_env before the Tiger program is type-checked. Therefore, 

when the function print() is called in that Tiger program, the lookup result with the key 

“print” is available from the environment v_env. [17] 

Similarly, the LLVM IR function headings for those external functions has to be created 

at the beginning of the translation process before the program is translated to LLVM IR. 

Finally, the generated LLVM IR file of the Tiger program is linked with the file 

bindings.c using clang compiler. As a result, external functions, writen in C such as 

tig_print(), tig_random(), size() and exit(), can be called within Tiger programs making 

Tiger language become extensible. [17] 

6.3 Optimizations 
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LLVM framework offer its built-int LLVM optimiser opt which reads the code from LLVM 

IR input file and sequentially performs various types of optimization known as LLVM 

asses [24]. LLVM IR code can be optimised using built-int optimisation passes with the 

command:  

opt  -f  -S  <input_file>.ll  -o  <output_file>.ll  -<pass_name> 

LLVM offers various built-in optimisation passes which are trivial to include in 

optimization script. However, this thesis briefly mentions only a few fundamental 

optimisation passes: mem2reg pass, constprop pass, die pass.  

6.3.1 Mem2reg Pass 

Many LLVM-based compilers implement mutable variables by storing and loading 

those variables from the stack frame in order to bypass the constrains imposed by SSA 

form [22]. As a result, this approach usually generates a huge number of store and load 

instructions which notoriously slows down the computation process. Therefore, those 

variables need to be allocated on LLVM temporary registers in order to speed up the 

execution by eliminating unnecessary store and load instructions. Moreover, register-

based variables must be in SSA form which enables multiple subsequent optimizations 

such as constant propagation. 

Mem2reg pass is one of the most crucial built-in optimizer that enables other LLVM 

passes in the optimisation process. It is responsible for detecting frame-allocated 

variables and converting them to register-allocated variables in SSA form using the 

iterated dominance frontier algorithm [22]. For example, Figure 78 depicts 2 LLVM IR 

versions of the same program. The version on the left side relies on frame allocation 

solution while the one on the right side is its mem2reg-optimised version. 

 

Figure 78. The LLVM IR program before and after running mem2reg pass 
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In fact, mem2reg pass can only detect the alloca instruction in the first block (entry 

block) of the function. Therefore, alloca instructions of the function must be available 

only in the first block of the function so as to leverage the power of mem2reg pass. [22] 

6.3.2 Constant propagation Pass 

Constprop is an optimisation pass that performs simple constant propagation. In this 

optimisation, arithmetic instructions, which involves constants, are replaced by their 

evaluated constant results at compile time [24]. For instance, when the constprop 

optimizer detects the arithmetic instruction %a = mul nsw i32 5000, 200, it replaces 

that instruction with the instruction %a = 100000 at compile-time. As a result, the 

compiled program can directly use the evaluated value 100000 at run-time without 

having to compute the original multiply instruction. Therefore, this constant propagation 

optimisation can boost the run-time performance of the compiled program. 

6.3.3 Dead instruction elimination Pass 

This dead instruction elimication (die) pass is responsible for removing instructions that 

are apparently unreachable in the LLVM IR program. For example, consider the Tiger 

program and its optimised translation in Figure 79: 

 

Figure 79. Tiger program and its dead-code eliminated LLVM translation 

In fact, this optimization pass detects that the condition of the If expression in Figure 79 

is always false. This means that the instructions inside the then clause is never 

executed at run time. Therefore, the optimiser simply discards the unreachable 

instructions in the compiled program. As a matter of fact, eliminating dead code does 

not necessarily increase the execution speed of the compiled program. Nevertheless, it 

can reduce the size of the compiled program. [24] 

6.4 Assembly emission and linking 
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Once the LLVM IR translation process of the Tiger program has ended, the LLVM IR 

file <file_name>.ll is generated. Then, the LLVM optimizer opt performs analyses and 

optimisations on the generated file <file_name>.ll in order to produce an optimized 

LLVM IR file <file_name>-opt.ll. The next step is to instruct LLVM back-end compiler 

LLC to generate assembly code from LLVM IR file <file_name>-opt.ll. 

Apparently, the power of LLVM framework lies in its industrial-strength back-end 

compilers which takes valid LLVM IR programs as input and generates well-optimised 

assembly code. As a result, the process of constructing compiler can be cut in half as 

the LLVM back-end compiler LLC does all the back-end heavy lifting tasks such as 

assembly instruction selection, controll flow analysis, data flow analysis and register 

allocation out of the box. The LLVM compiler LLC can be used to compile LLVM IR 

program to assembly with the command:  

llc <file_name>.ll 

The result of executing that command is an assembly file <file_name>.s based on the 

architecture of the computer that runs the command. Finally, the assembly output file is 

linked with the file bindings.c which contains the C functions that can be called in the 

Tiger program. This linking step could easily be achieved by running the command: 

clang <file_name>.s  bindings.c -o <program_name> 

The output of which is the native compiled program <program_name> which can be 

executed directly on computers. Hence, the compilation process of the Tiger program 

successfully terminates at this point. 

7 Evaluations 

This short chapter reflects the strength as well as the drawbacks of this project’s 

implementation. 

7.1 Strength 

Obviously, the implementation of this compiler relies heavily on automated toolings 

such as Lex for scanning, Yacc for parsing and LLVM compiler LLC for compiling IR 
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code to assembly. As a result, the development process was eased significantly since 

the most complicated tasks are handled out of the box by those well-design, industrial-

strength tools. In fact, this approach allows programmers to concentrate solely on the 

operations involving Abstract syntax tree such as semantic analysis and IR translation. 

Therefore, the narrow scope and the level of difficulty of this project are well-suited for 

the scope of the bachelor thesis. 

Specifically, LLVM IR is a well-design, well-supported and popular intermediate 

representation language. In fact, since LLVM IR is a strongly typed low-level language 

that abstracts assembly, it has both the strong power of low-level language as well as 

the expressiveness of high-level language at the same time. Hence, the process of 

debugging, analysing the translated program was more pleasant than conducting the 

same tasks over raw assembly code. In addition, the Clang compiler can emit LLVM IR 

code for C programs which depicts the internal implementations of C programming 

language’s features. Therefore, those internal implementations could be used as a 

references when implementing similar features for the compiled language. For 

instance, the implementations of array, record in Tiger could be similar to the 

counterpart in C. As a result, the LLVM IR program that implements array, struct in C 

could be used as references when implementing array, record in Tiger. 

In addition, LLVM built-in optimisations and static back-end compiler (LLC) are perfor 

mant, reliable tools which are responsible for the most complicated tasks in 

constructing compiler. By relying on these tools, a decent compiler that targets broad 

range of computer architectures can be rapidly constructed. 

7.2 Drawbacks 

As every coin has two sides, the implementation, which is dependent on readily-made 

tools, has its drawbacks. Firstly, some of the most challenging yet rewarding parts of 

compiler programming such as register allocation, assembly emission and optimisation 

are automatically taken care of by LLVM. While this approach might significantly 

shorten the development time of the working compiler, it also takes away the back-end 

customizablity from the programmers at the same time. 

Additionally, the design of the semantic analysis and IR translation phrase in this 

project was originally meant for translating Tiger to a dynamically typed IR language 
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which closely resembles assembly. Therefore, the process of emitting strongly typed 

LLVM IR code and maintaining the insertion point of the IR builder require several 

tricky modifications in the existing implementation of semantic analysis. These 

unexpected changes added the complexity to the code making it less functional and 

less clear. 

However, the advantages, which LLVM brings to this project, clearly outweight its 

shortcommings. Thus, using LLVM framework as the back-end compiler infrastructure 

is a decent option for rapid compiler development. 
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8 Conclusion 

The first goal of this paper, which is to give an overview over the compiler development 

process, was achieved by introducing, analysing and implementing multiple 

computational concepts in each stage of the compiling process. Most importantly, the 

second goal of the paper, which is to explore the possibility of using LLVM framework 

as a back-end compiler infrastructure, was also attained when the operational compiler 

was successfully created in the thesis project. As a result, this paper not only covers 

the theoretical aspects of creating the front-end compiler but also gives solid examples 

on how those theoretical concepts are used in the real implementation. 

By and large, LLVM framework has both strengths and weaknesses. Nevertheless, this 

framework inevitably plays an important role in reducing the scope of compiler 

development from the full process, involving both front-end and back-end compiling, 

down to barely front-end compiling. As a result, the efficient use of LLVM framework in 

constructing compilers could remarkably cut the compiler development time while the 

output compiler can still be reasonably performant. 
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Appendix 1. List of basic LLVM IR instructions 

a. Instructions to load and store global variables: 

@global_var = global i32 2  

define i32 @main() { 

  %1 = load i32, i32* @global_var ; load global variable’s value 

  store i32 1, i32* @global_var ; store 1 to global variable 

  ret i32 %1 ; return %1  

}  

b. Instruction to allocate and store stack-allocated local variables: 

define i32 @main() { 
  %a = alloca i32; allocate variable a on stack  

  store i32 1, i32* %a; store value 1 to address %a 
  ret i32 1 

}  

c. Arithmetic instructions: 

define i32 @main() { 

  %1 = alloca i32 

  store i32 1, i32* %1 

  %a = load i32, i32* %1 

  %sum = add i32 %a, 6; add instruction 

  %sub = sub i32 6, %a; subtract instruction 

  %product = mul i32 %a, 6; multiply instruction 

  %division = sdiv i32 6, %a; division instruction 

  ret i32 1 

} 
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d. Comparison instructions: 

  define i32 @main() { 

  %1 = alloca i32 

  store i32 1, i32* %1 

  %a = load i32, i32* %1 

  %equal = icmp eq i32 %a, 6 

  %not_equal = icmp ne i32 %a, 6 

  %less_than = icmp slt i32 %a, 6 

  %less_than_or_equal = icmp sle i32 %a, 6 

  %greater_than = icmp sgt i32 %a, 6 

  %greater_than_or_equal = icmp sge i32 %a, 6 

  ret i32 1  

} 

e. Branching instructions: 
define i32 @max(i32 %a, i32 %b) { 

entry: 

  %0 = icmp sgt i32 %a, %b ; compare %a and %b 

  br i1 %0, label %true_block, label %false_block ; conditional branching 

  
true_block: ; preds = %entry 

  br label %merge_block ; unconditional branching 

   

false_block: ; preds = %entry 

  br label %merge_block ; unconditional branching 

   

merge_block: ; preds = %true_block, %false_block 

  ; phi instruction selects return_val based on the previously executed block in 
the control flow 
  %return_val = phi i32 [%a, %true_block], [%b, %false_block] 
  ret i32 %1 

} 
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f. Function call instruction: 

define i32 @main() { 
  %result = call i32 @do_nothing(i32 1) ; call function do_nothing() with value 1  

  ret i32 %result 

} 

  
define i32 @do_nothing (i32 %a) { 

  ret i32 %a 

}  

g. Struct related instructions: 
%Foo_struct = type { i32, i32 } ; %Foo_struct = {a: int, b: int} 

  
declare i8* @malloc(i32) ; external function to allocate heap memory 

  
define %Foo_struct* @create_foo() nounwind { 

  ; allocate heap memory for Foo_struct  

  %foo_address = call i8* @malloc(i32 8) 

  %foo = bitcast i8* %foo_address to %Foo_struct* 

   

  ; Compute the address of the first element of %Foo_struct with instruction 

getelementptr then save value 3 to that address 

  %a = getelementptr %Foo_struct* %foo, i32 0, i32 0 

  store i32 3, i32* %a 

   

  ; Compute the address of the second element of %Foo_struct with instruction 

getelementptr then save value 4 to that address 

  %b = getelementptr %Foo_struct* %foo, i32 0, i32 0 

  store i32 4, i32* %b 

   

  ; Load values of the first and second element of struct from their addresses 

  %a_val = load i32, i32* %a, align 4 

  %b_val = load i32, i32* %b, align 4 

  %sum = add i32 %a_val, %b_val 

  ret %foo 

} 

 

 



Appendix 1 

  4 (4) 

 

 

 

h. Array related instructions: 

declare i8* @malloc(i32) ; external function to allocate on heap  
define i32* @create_array() nounwind { 

  ; allocate heap memory for array of size 3 

  %array_address = call i8* @malloc(i32 12) 

  %array = bitcast i8* %array_address to i32* 

   

  ; Compute the address of the second element of the array and save value 3 to 

that address 

  %a = getelementptr i32* %array, i32 1 

  store i32 3, i32* %a 

   

  ; Compute the address of the third element of the array and save value 4 to that 

address 

  %b = getelementptr i32* %array, i32 2 

  store i32 4, i32* %b 

   

  ; Load values of the second and third element of struct from their addresses 

  %a_val = load i32, i32* %a, align 4 

  %b_val = load i32, i32* %b, align 4 

  %sum = add i32 %a_val, %b_val 

  ret %array 

} 

 

 


