

Mikko Jaaksola

Software testing failures through the history and
how to prepare for them

Information Technology

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

4 December 2018

 Abstract

Author(s)
Title

Number of Pages
Date

Mikko Jaaksola

54 pages
4 December 2018

Degree Master´s degree

Degree Programme Master´s degree in Information Technology

Instructors

Harri Airaksinen, Director
Ville Jääskeläinen, Principal Lecturel

Since the day when first software development projects started there has been both suc-
cessful and unsuccessful project outcomes. From the 50´s to today, IT projects has become
more and more complex and project timetables more and more stricter. This has introduced
new challenges to software testing. When the testing is not at the required level, the conse-
quences may be catastrophic.

This study reveals some of the biggest software failures in the history. These cases were
picked from different centuries, starting from 50´s. Each case stands as an example of how
software testing was not at required level. The idea was to pinpoint the main reasons why
these projects have failed and to find the solutions how the failure could have been avoided.
This study focused to solve how the software testing and software errors are studied and
documented. How much the software errors may cost if they are not noticed during the soft-
ware project and these errors are found out later after the project has gone online. Also, how
much software bugs cost to solve during a project was taken into investigation.

Main purpose of this study was to point out the importance of software testing and how much
money may be lost in badly planned and failed IT/IS projects. The original scope was to
focus only in software testing and how that has been documented. Based on that idea a
testing framework was created that could improve software testing. After a short description
about how failed testing cases were documented the scope moved to focus on how much
losses were badly tested IT/IS projects causing. Keeping the original scope in mind some
testing related main roles, testing processes and tools are presented.

The results of the study show that failed software projects picked to this thesis caused over
474 milliard euros losses. This included 57 projects from 1962 to year 2018. Project cancel-
lation percent in these cases was 29,8%. Study also shows that when talking about software
testing and project planning, the same issues seems to be on the table today that were
already noticed 50 years ago.

Keywords Software testing, failure, software bug, cost, losses

Contents

Abstract

Table of Contents

Abbreviations/Acronyms

1 Introduction 1

2 Fundamentals of Software Testing and Research Plan 3

2.1 Background 4

2.2 Problem 6

2.3 Method and Scope 9

3 Case Studies 11

3.1 Case Study 60´s – The Mariner 1 Spacecraft (NASA) 11

3.2 Case Study 70´s – Undetected Hole in The Ozone layer (NASA) 13

3.3 Case Study 80´s – Therac-25 14

3.4 Case Study 90´s – Ariane 5, Flight 501 (ESA) 17

3.5 Case Study 2000´s – National Cancer Institute, Panama City 20

3.6 Case Study 2010´s – Stock Market Mistake (KCG) 22

3.7 Case Study 2017 – VR Ticketing System 24

4 History of Software Testing 28

4.1 The Debugging-Oriented Period 28

4.2 The Demonstration-Oriented Period 29

4.3 The Destruction-Oriented Period 30

4.4 The Evaluation-Oriented Period 30

4.5 The Prevention-Oriented Period 30

4.6 Period From 2000 to Today 33

5 How to Improve Testing 35

5.1 Roles and Responsibilities 36

5.2 Test Plan 42

6 Financial Losses of Software Projects 46

6.1 Analysis 46

6.2 Findings 47

6.3 Correlations to Other Studies 49

7 Summary 52

References

Abbreviations/Acronyms

5GL Fifth-generation programming languages

AECL Atomic Energy of Canada Limited. Company that manufac-

tured Therac-25 radiation therapy machines

ASM Also known as Assembly. It is a low-level programming lan-

guage for a computer or other programmable device

CLR Common Language Runtime. The virtual machine compo-

nent of Microsoft’s .NET framework manages the execution

of .NET programs

COCOMO Constructive Cost Model. It is a procedural software cost es-

timation model

CSS Cascading Style Sheets. Language used for describing

the presentation of a document written in a mark-up lan-

guage

DBCS Double-byte Character Set. Character encoding in which ei-

ther all characters (including control characters) are encoded

in two bytes, or merely every graphic character not represent-

able by an accompanying single-byte character set (SBCS) is

encoded in two bytes

ERB Earth Radiation Budget. Balance between incoming energy

from the sun and the outgoing longwave and reflected

shortwave energy from the Earth

ESA European Space Agency. Intergovernmental organisation of

22-member states dedicated to the exploration of space

https://en.wikipedia.org/wiki/Presentation_semantics

GDP Gross domestic product. Is a monetary measure of the mar-

ket value of all final goods and services produced in a period

of time

INS Inertial Navigation System. A navigation aid that uses a com-

puter, motion sensors (accelerometers), rotation sensors (gy-

roscopes), and occasionally magnetic sensors (magnetome-

ters), to continuously calculate via dead reckoning the posi-

tion, orientation, and velocity (direction and speed of move-

ment) of a moving object without the need for external refer-

ences

ITIL Information Technology Infrastructure Library, is a set of de-

tailed practices for IT Service management (ITSM) that fo-

cuses on aligning IT services with the needs of business

ITK method Methodology to evaluate complexity and cost of developing

and maintaining application software for creating information

systems (also known as Method CETIN). It is an algorithmic

model assessment value software, developed by consortium

of Kazakh IT companies

LOC Lines of Code. Method to estimate the size of software pro-

ject. Sometimes also called SLOC (Source Lines of Code)

NASA National Aeronautics and Space Administration. USA space

program

PL/I Programming Language One. It is a procedural, imperative

computer programming language designed for scientific, en-

gineering, business and system programming uses

PRICE It is generally acknowledged as the earliest software for par-

ametric cost estimation developed in the 1970´s

https://en.wikipedia.org/wiki/Navigation
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Gyroscope
https://en.wikipedia.org/wiki/Gyroscope
https://en.wikipedia.org/wiki/Magnetometer
https://en.wikipedia.org/wiki/Magnetometer
https://en.wikipedia.org/wiki/Dead_reckoning
https://en.wikipedia.org/wiki/Velocity

SBUV Solar Backscatter Ultraviolet. Method that measure ozone

layer concentrations over globe

SLIM Software Lifecycle Management. It is an empirical software

effort estimation model published in 1978

SQL Structured Query Language. Special-purpose programming

language designed for managing data held in a relational da-

tabase management system, or for stream processing in a re-

lational data stream management system

TOMS Total Ozone Mapping Spectrometer. Instrument that detects

ozone

UI User Interface. The space where interactions between hu-

mans and machines occur

VV&T Verification, Validation and Testing. Independent procedures

that are used to together for checking that a product, service

or system meets the requirements that are described to fulfil

its purpose

1 (54)

1 Introduction

The scope of this thesis is to study the importance of software testing. How software

testing has changed through the history and what could be consequences if testing fails.

For this purpose, testing cases were taken into deeper investigation and examined what

have happened and if possible, how that could have been prevented.

Need for the study came from my previous job experiences. I was in a role of project

management in a continuous delivery and a continuous service side in big IT company.

Small and bigger software changes were daily tasks and testing was in a big role of that.

Through the years I had cases were testing was done perfectly and in some cases the

quality was far from perfect. I noticed an unpleasant trend that when the timetable was

strict, almost always testing was the phase were time was spared. Of course, there are

cases where testing requires only a very small amount of work and can be quickly done,

but there are also cases where a small software change, that seemed to be easily tested,

could have had unplanned effects to the functionality of the product. For that reason, I

got interested of studying how the importance of testing has been documented and how

the lack of proper testing has been documented.

The main purpose of this study is to find out how much money is wasted in failed IT/IS

projects annually. How many cases are software testing related and what have went

wrong in these cases. Idea is to bring awareness in the field of IT, why good planning

and testing is so important and what could be the consequences if these are not taken

into consideration. One mission is also to give some advices and answers on how to

avoid making mistakes and how to improve testing in general.

Structure of the Thesis

Chapter 2 includes fundamentals of software testing and research plan. In this chapter,

the background, main problem and scope of the thesis is presented. Chapter 3 includes

investigated software projects. In this chapter, the selected case studies and what went

wrong and why, from the testing point of view is explained. Their financial losses have

been investigated and presented. Chapter 4 includes theoretical background. In this

chapter, the history of software testing is investigated. Different periods are introduced

2 (54)

and how the testing has changed through the history. Chapter 5 includes tips about how

to improve testing. In this chapter, the necessary roles regarding software testing and

what are the main responsibilities of these roles is outlined. Chapter 6 includes data

analysis and findings. In this chapter, the analysis of data gathered IT projects is re-

vealed. Key findings are also presented in this chapter. Chapter 7 includes thesis sum-

mary. In this chapter, the results from the study is concluded. Chapter 8 includes the

complete list of references used in this thesis.

3 (54)

2 Fundamentals of Software Testing and Research Plan

The testing of software is the most important phase of software development, when talk-

ing about software quality. Testing typically consumes 40-50 % of development efforts

and consumes more effort for systems that require higher levels of reliability, it is a sig-

nificant part of the software engineering, wrote J.J. Marciniak in year 1994. (Marciniak,

1994). With the development of programming languages and stricter implementation pro-

ject schedules, testing process raises to be even more important in the future. The

amount of software in a device doubles roughly every 18 months. As a result, there are

more and more pieces of software functioning within the same system, requiring more

and more careful study and testing to ensure that the entire system functions success-

fully. New additions to a system always have the potential to cause more problems than

they solve. Now even with the evolution of Fifth-generation languages (5GL) the imple-

mentation processes have speed up and got more efficient.

“While fourth-generation programming languages are designed to build specific pro-

grams, fifth-generations languages are designed to make the computer solve the prob-

lem for you. This way, the programmer only needs to worry about what problems need

to be solved and what conditions need to be met, without worrying about how to imple-

ment a routine or algorithm to solve them.” (Godse & Godse, 2007)

Test automation has brought lots of solutions to how to improve testing process. At the

same moment it has also brought its own challenges of how to use it efficient and at the

required level of quality. Proper use of test automation in case like extensive low-level

interface regression testing, could save companies lots of time and money compared to

a situation where it is done manually. For some methodologies like Scrum, Lean or

DevOps test automation has become critical part of process. To achieve quality enough

continuous delivery and continuous testing, automation is highly recommended.

Based on studies, almost 40 to 50 percent of total cost of software development comes

from reworking defective requirements, code and design (Jones & Capers, 1986.). In

1988, B.W. Boehm and P.N. Papaccio wrote the book Understanding and Controlling

Software Costs. In that book they presented the theory about time spent on detect pre-

vention will decrease the time spent for repair. Theory was that every hour used on pro-

active work will decrease the reactive repair time from three to ten hours. If the software

4 (54)

is already in operation, a simple software requirement error and fixing it could cost 50 to

200 times more, than what it would take to fix in the requirements stage (Boehm & Pa-

paccio, 1988). When putting this to context, it is easier to understand. At first one simple

one row of requirement could spread to pages of design documents, then into many

hundreds of lines of code and into multiple pages of user documentation and finally tens

of test cases. The original one row of requirement is much easier to investigate and

correct than after all of the above have been added to it.

Software testing and software quality is widely researched subject even today, not to

mention the oldest studies, starting from the late 70´s (Myers, 1979). Almost seems that

everything related to that has been already studied and documented. Then, how could it

be that still today same issues are still on the table? Based on studies the annual cost of

software failures was at least 40 – 65 milliard euros in 2002. Which is more than the GDP

of Luxembourg. (Tassey, 2002)

2.1 Background

When talking about software testing, companies are usually using some specific

govenance model, which is based on some best practises used in IT field. In soft-

ware development the process is mainly based on ITIL chance management

framework. Example of simple software development is shown in Figure 1. This

process only describes the five main stages of software development.

5 (54)

Figure 1. Example of software development process model.

However, there are also situations when testing does not follow any written or de-

scribed testing process. This might be because of programming and testing are

made by same person and step by step testing process is felt to be too slow or

stiff. One reason might be that the project timetable is too busy and usually testing

is the phase which is saved in a hurry. There are also some other reasons which

are going to be presented later in the study.

Compared to simple software development process as shown above, there are

also more complex and specific process models. For example, Microsoft SureStep

(Figure 2) is methodology model made by Microsoft and is widely used in Microsoft

ERP product portfolio implementation projects. It is flexible framework and can be

used in Traditional and Agile Project models as well.

6 (54)

Figure 2. SureStep methodology made by Microsoft.

For more specific, like any other Software Process, SureStep tells about Who is

Responsible for what and Who shall do What in Which order. SureStep defines

process phases, milestones roles, artefacts, cross-phase-processes and addi-

tional processes for project management. SureStep supports a broad range of

products: Dynamics AX, Dynamics NAV, Dynamics GP, Dynamics SL and Dynam-

ics CRM. And different project types: Rapid Implementation, Full Implementation,

Optimization and Upgrade. Products and project types can be combined.

2.2 Problem

Testing and software quality is one part of the overall quality and needs also take into

deeper investigation. Main problem about the subject is that the specified testing process

is sometimes lacking, or it is not strictly followed. This may cause problems during the

software development process or after the project has “completed”. More than often lack

of testing during the development project causes problem later. In these cases, costs of

7 (54)

fixing the problems later could raise multiple time higher than what proper testing during

project would have cost. There are many studies that indicates different kind of cost

estimates in which phase of project the effect is noticed.

Figure 3. Cost to fixing bug from Ron Patton´s book Software Testing (2nd edition) (2005)

Ron Patton (2005) estimates that software cost-to-fix is increased 10 times per project

phase. Oldest calculations seem to point out to year 1983. Back then Barry W. Boehm

wrote the book Software Engineering Economics, where he pointed out the first linear

cost estimates for fixing software defects (Figure 4) (Boehm, 1983).

8 (54)

Figure 4. Cost estimate based on Barry W. Boehm study (1983).

Even today these analyses are true in most cases because it generally is harder to find

an error once the project approaches it´s development cycle end. For example, bugs that

are created in the design phase and not noticed or fixed during that stage of development

most likely cost more to fix later because they can have wider impact and are most likely

more complex to fix. Also changes made to fix the bug may affect the solution´s func-

tionality. In that case it will also require more time to make all the changes, which will

add the cost, effort and time. What is missing in from these charts above is at what phase

the defects were introduced. First estimates based on what phase defect is introduced

made Steven McConnell as we can see in chart below.

9 (54)

Figure 5. Cost of fixing defects from Steven McConnell’s book Code Complete, Second

Edition (2004)

” A table (Figure 5) in Steven McConnell’s book Code Complete, Second Edition, shows

the average cost of fixing defects, based on when they are introduced and detected. For

example, a defect that is introduced in the architecture phase costs 10 times as much to

fix if it is detected in the construction phase, 15 times as much if it is detected during the

system test, and 25 to 100 times as much if it is detected post release.”

2.3 Method and Scope

The main target of the study is to research software related cases through the

history, which have failed for some reason. Idea is to focus and find out the root

causes for the failure or catastrophe and is that somehow connected to testing.

These root causes are then going to be presented and analysed. After analysing,

solutions of “how the failure could have been prevented” are introduced into the

selected cases. These failures are also examined from a cost perspective and how

10 (54)

much have the failures cost for the company or individual. For this thesis the stud-

ied timeline is set to be from the late of 50´s, when the software testing is said to

have started and the end date is year 2017.

The secondary target is to study and gather data on how the software errors or big

software failures have changed the testing policy or have there been any influence

and is there any cost related context between failed cases.

The study follows quantitative research process. Source data is gathered and then

presented into mathematical models, which are then further analysed and based

on that some hypothesis are introduced. This process is shown in the above (Fig-

ure 6).

Figure 6. Research plan

11 (54)

3 Case Studies

Through the history there has been situations where software development or quality of

testing has not reached the targets as well as planned. In this thesis, one or more histor-

ical cases are presented from different decades. These cases are then inspected from

the perspective of what went wrong, what was the main issue, how it could have been

prevented and how much that fail cost.

One purpose of the thesis is to research biggest or most appeared issues/bugs in soft-

ware development, which are related to testing. These issues are then listed and in-

spected more specific. When the required data of testing related issues are gathered,

idea is to study and compare if these issues still exist on today. If so, is there something

that could be done to prevent these issues not to appear today or in the future.

3.1 Case Study 60´s – The Mariner 1 Spacecraft (NASA)

In 1962 NASA announced that Mariner 1 Spacecraft is going to be launched on July 22

to space with a plan to fly-by Venus and collect a variety of scientific data about Venus,

like atmosphere, magnetic field, charged particle environment and mass. Mariner 1 was

the first spacecraft in the American Mariner program. Until this day the program included

ten Mariner probes.

“The vehicle was destroyed by the Range Safety Officer 293 seconds after launch at

09:26:16 UT when it veered off course. The booster had performed satisfactorily until an

unscheduled yaw-lift (northeast) manoeuvre was detected by the range safety officer.

Faulty application of the guidance commands made steering impossible and were direct-

ing the spacecraft towards a crash, possibly in the North Atlantic shipping lanes or in an

inhabited area. The destruct command was sent 6 seconds before separation, after

which the launch vehicle could not have been destroyed. The radio transponder contin-

ued to transmit signals for 64 seconds after the destruct command had been sent.

The failure was apparently caused by a combination of two factors. Improper operation

of the Atlas airborne beacon equipment resulted in a loss of the rate signal from the

vehicle for a prolonged period. The airborne beacon used for obtaining rate data was

inoperative for four periods ranging from 1.5 to 61 seconds in duration. Additionally, the

12 (54)

Mariner 1 Post Flight Review Board determined that the omission of a hyphen in coded

computer instructions in the data-editing program allowed transmission of incorrect guid-

ance signals to the spacecraft. During the periods the airborne beacon was inoperative

the omission of the hyphen in the data-editing program caused the computer to incor-

rectly accept the sweep frequency of the ground receiver as it sought the vehicle beacon

signal and combined this data with the tracking data sent to the remaining guidance

computation. This caused the computer to swing automatically into a series of unneces-

sary course corrections with erroneous steering commands which finally threw the

spacecraft off course.” (NASA, 2017)

Root Causes

NASA has reported that the cost of software failure was 18.5 million dollars, which is

around 135 million dollars when converted into today´s economy. It has said to be most

expensive hyphen in the history. Later on, the error was corrected to missing superscript

bar (overline) not hyphen.

” The bar was left out of the hand-written guidance equations. Then during launch the

on-board Rate System hardware failed. That in itself should not have jeopardized the

mission, as the Track System radar was working and could have handled the ascent.

But because of the missing bar in the guidance equations, the computer was processing

the track data incorrectly.” (Ceruzzi, 1989)

What Was Learned

How could it have been prevented? One speculated reason to error was strict timetable.

In 1960´s there was hectic Space Race between Soviet Union and United States of

America. Soviets had already made multiple attempts to fly by Venus in the early 1960´s.

Even if the error is due to a hardware and software failure combined the software bug

still managed to pass tests. Of course, during that time software testing was not some-

thing like today. Code was made by using punch cards. Typos or incorrect commands

was not possible to caught by simply looking at what was typed on computer screen.

13 (54)

3.2 Case Study 70´s – Undetected Hole in The Ozone layer (NASA)

It was year 1975 when U.S Congress ordered NASA to develop a complex program to

monitor and research a weather effect which occur in the upper atmosphere. This phe-

nomenon was called ozone layer and Congress was eager to found out the health of it.

Three years later, in 1978 a Nimbus-7 satellite was designed to measure the Earth Ra-

diation Budget (ERB), but for the extra the satellite also included two new sensors from

NASA which were planned to measure the total amount of ozone over the entire globe,

in a given area of atmosphere. These sensors were called the Solar Backscatter Ultra-

violet (SBUV) sensor and the Total Ozone Mapping Spectrometer (TOMS). Sensors

which are sensitive to radiant energy, especially in the ultraviolet area of the spectrum

uses the technic that molecules and aerosol particles reflect specific wavelengths of UV

rays while on the other hand ozone absorbs UV rays at different levels in the atmosphere.

The amount of reflected ultraviolet energy up to the spacecraft, researchers could ana-

lyse and produce estimate profiles about how thin or thick the ozone was at different

locations and altitudes.

It took more than eight years until in 1985 British scientist team found a substantial re-

duction in ozone layer over Antarctica. Team was using a ground-based ozone spectro-

photometer called Dobson and noticed that the amount of ozone in stratospheric layer

over Antarctica was actually 40 percent less than it had been in the previous year. This

finding was a total surprise to the science community. Scientist were expecting that the

anthropogenic ozone exhaustion would first happen in the upper levels of stratosphere,

around 30 to 50 km high. Due that they expected that the signal from the sensors over a

total column of ozone to be weaker. After the finding, NASA researchers quickly checked

the TOMS data and shockingly notices that it had also detected an extensive loss of

ozone all over of Antarctica. How come, that they had not noticed this discovery earlier?

(NASA, 2001)

Root Causes

Data analysis software for TOMS data had been programmed to notice (flag) and put

aside data points that diverged widely from the expected measurement data. This meant

14 (54)

that initial measurements should had set off the alarm, but they were just simply forgot-

ten. So, the team failed to notice the issue in time because it was way more serious than

experts and scientists have expected.

Scientist´s assumptions led to a situation where ozone layer hole was discovered only

after seven years. If the software would had been programmed in the way that all the

deviated measurement data would gave the alarm, problem would had been noticed

earlier and it could had been reacted sooner.

What Was Learned

After discovering the ozone layer reduction, both NASA and ESA started to monitor

ozone levels. These levels continued to decrease over Antarctica for upcoming years,

so action was required. Finally, it only took 2 years to react these alarming measurement

results. In 1987, 43 nations signed the “Montreal protocol” in which they agreed to reduce

the CFC´s, which is up to 200 times more efficient than carbon dioxide, by 50 percent by

the year 2000. One simple human mistake and years of environmental or atmospheric

problems were left unnoticed by everyone.

Lesson to be learned in this case is, never make assumption how something should go.

By limiting the alarm level to single value and not the values bigger than that, like in this

case led the system to work incorrectly.

3.3 Case Study 80´s – Therac-25

The Therac-25 was a radiation therapy machine produced by Atomic Energy of Canada

Limited (AECL) in 1982. It was used in treatment of cancer. Therac-25 was the third-

generation version of radiation therapy machines and the first two versions (Therac-6

and Therac-20) were partnership project with Compagnie General Radiographique

(CGR) of France.

More and more are computers displayed to be a part of safety-critical systems and due

to that, had been involved into accidents. Maybe most of the well-known software and

computer related accident happened to a computerized radiation therapy machine,

15 (54)

which is called the Therac-25. Accidents happened between 1985 and 1987, when six

people suffered from massive overdoses of radiation using Therac-25 machine. These

overdoses led to a deaths and serious injuries. These accidents have been portrayed to

be the worst radiation disasters in the medical history. (J.A. Rawlinson, 1987)

What was causing the accidents was the reason that instead of low power beam, the

high-power electron beam activated without the protective spreader plates to rotating

into their right places. The previous model was relying on hardware interlocks to prevent

these kinds of situations, but new Therac-25 was using software-based safety interlocks.

Sadly, in this situation software interlock was failing due to the counter issue. One-byte

counter in the software testing rote was often overflowing. If the person how operated

the machine put the instructions at the precise moment when the counter overflowed the

interlock would fail.

When the high-powered electron beam activated it hit the patients almost 100 times

amount of radiation than it should had and causing the patients possibly lethal amount

of beta radiation. A few days later first symptoms of radiation poisoning, the burns ap-

peared. For three patients the overdose was too strong they died because of the poison-

ing. (Leveson & Turner, 1993)

What can be learned from the Therac-25 case, is that safe system cannot be made by

concentrating on specific software bugs. Basically, every complex software system is

possible to code in the way that it might behave unexpected in under the wrong condi-

tions. In this case some basic mistakes led to a bad software development practises and

to a machine that was built to use software only for safe operations. However, one par-

ticular software error does not make difference if the whole system design is inadequate.

(Bowen & Hinchey, 1999)

Root Causes

Investigations pin pointed four main causes or faults that made the accidents possible.

These were:

1. Management was inadequate and there were no clear procedures about how to

follow through the reported incidents

16 (54)

2. Arrogance behaviour toward software and removal of safety hardware mecha-

nism

3. Presumably not even above the mark software development practises

4. Unrealistic estimation of risks and lowering attitude toward the results obtained

To open the points one by one. Firstly, reported incidents was given to the user by notice

“MALFUNCTION” followed by number 1-64. In user manual there were no clear guide

how to act in any given incident. Also, user had the opportunity to reject or override the

incident by pressing letter P to continue the operation despite the notification.

Secondly, overconfidence in software led to a situation where safety interlocks were re-

moved from the hardware and then software was a single point of failure. This type of

design is risky even if the hardware is the single point of failure, not to mention the soft-

ware. Software was also reused from the previous version where the hardware interlocks

still exists. Further investigations also showed that the “bug” that allowed the radiation

levels to rise was also found in the previous version Therac-20 where the hardware in-

terlocks were preventing this to happen. The first safety analysis on the Therac-25 did

not include software, even nearly full responsibility for safety rested on it.

Thirdly, software engineering practises were pointed to be incomplete or inadequate.

Software was not fully tested with the hardware during development but when the equip-

ment was already installed to hospitals. Also, user interface testing was inadequate. At

least one of the accident was reason due to race condition which caused by user inter-

face timing and software misinterpretation.

Lastly, after the first accident happened and was reported back to the AECL, the manu-

facturer company did not even start to investigate the reposted issue. Based on their risk

assessment reports the safety class has improved by five levels because of the new

microswitch repair and because of that the failure of this switch could had not been

caused the radiation burns to the victim. It did not help, that the original hazard analyses

had passed the software totally. Due that they had no insight about the code and they

started to assume that every software error was equally likely. Gained probabilistic risk

assessment reports created unreasonable confidence about the machine and its func-

tionality. Because the software was not included in the beginning, they could not handle

the feedback rationally.

17 (54)

What Was Learned

This case indeed was the watershed moment, that revealed the consequences of how

things can go seriously wrong if the life-critical system is using the code which is not

properly tested and designed. After accidents FDA declared the machine to be “defec-

tive”. AECL issued software patches and hardware updates which eventually allowed the

machine to return to service. Lessons to be learned:

• In life-critical systems, do not use single point of failure solution

• Critical software errors should not be able to override just by pushing any key

3.4 Case Study 90´s – Ariane 5, Flight 501 (ESA)

On Tuesday 4th of June in 1996, the Ariane 5 launcher was waiting to start it´s maiden

flight. All was set, and the launch started. Only after 40 second has past from the initia-

tion, everything went wrong. Launcher has reached about an altitude of 3700 m when it

started to veer off from it´s flight path and finally broke up and exploded. (European

Space Agency, 1996)

Launch took, place from the Kourou in French Guiana, where the Europe´s Spaceport,

Guiana Space Centre is. Purpose of the launch was to carry four European Space

Agency´s (ESA) cluster satellites. These satellites were designed to research the Earth´s

magnetosphere and how it interacts with the solar winds. All were identical, and they

were supposed to fly in the formation which allow them to take measurements at the

same time to provide the best detailed three-dimensional research of Earth and Sun

interactions and what happens in the close to Earth space.

Launcher´s self-destruction activated automatically due to a huge aerodynamic force,

which were tearing the rocket boosters off. The rupture of spacecraft had started a mo-

ment before, when it started to turn away from the original course. This was caused the

pressure of three powerful jets in the boosters and in main engine. The spacecraft was

doing a sudden course alteration, something that was not required. The rocket thought

it had to compensate because of the wrong turn that had not happened. The on-board

computer, which was controlling the steering, got signals from the inertial navigation sys-

tem (INS) to change the course. The INS use accelerometers and gyroscopes to monitor

18 (54)

motion. The data that was coming from the INS looked almost like real data, but the data

was actually error message coming from the diagnostic system. In fact, the whole navi-

gation system had gone to offline. (Gleick, 1996)

Software error caused the explosion and ESA has reported that the total costs of this

failure was up to 370 million dollars. Some estimates are even higher and take account

the whole Ariane project which took 7 years and approximately 7 billion dollars.

Root Causes

After the investigations the whole chain of events was clear, starting with the reason of

what caused the destruction of the rocket and what was the primary cause that started

the disaster. Main problems were the flight control and guidance system. More detailed

technical explanations are given in the report, which concludes:

" The failure of Ariane 501 was caused by the complete loss of guidance and attitude

information 37 seconds after start of the main engine ignition sequence (30 seconds after

lift-off). This loss of information was due to specification and design errors in the software

of the inertial reference system. The extensive reviews and tests carried out during the

Ariane 5 development programme did not include adequate analysis and testing of the

inertial reference system or of the complete flight control system, which could have de-

tected the potential failure." (European Space Agency, 1996)

So, what went wrong? Immediate reason for the problem was software error. What made

this possible was design failures in the system and project management problems. Soft-

ware error took place when the system tried to convert a 64-bit floating number of data

to a specified 16-bit integer, which made the number of data to overflow. When the nav-

igation system went offline, the identical unnecessary backup unit took the control. This

unit was designed to jump in the situation like this, but the backup unit had also failed in

the identical way just a couple of milliseconds before it was actually running the same

software.

This was caused by greater horizontal acceleration due to more powerful solid boosters.

Compared to Ariane 4 this was five times more rapid launch. Ariane 5´s inertial reference

19 (54)

system was the same as in earlier version. Because there were no reported issued with

Ariane 4 they did not expected to have any issues with Ariane 5.

What Was Learned

Different roles and groups were interviewed and here are the interpretations from their

point of view.

Programmers:

The whole disaster is obviously the result of a program defect. Wrongly managed soft-

ware exceptions caused by a data conversion (64-bit -> 16-bit). Better programming

practice would have prevented this failure from occurring. (Bashar, 1997)

Designers:

It was obviously result of design error. The design specification for the system accounted

only for the random hardware failures and due that the exception handling mechanism

was inefficient to revive from a random software bug. As a result, a properly functioning

processor in the INS was terminated and after that the backup processor failed similarly.

Simply a better design like a system that mediate software exceptions from stopping

hardware devices which were working properly and would have stopped the issue.

(Bashar, 1997)

Requirements engineers:

It was obviously result of faulty analysis of changing requirements. The requirements for

the new spacecraft Ariane 5 were different what was in the earlier models. Still, the single

section of alignment code that caused the failure of launcher was not even actually

needed after lift-off, like it had been on older versions of Ariane. The function stayed

operational in new model Ariane 5, even it did not fill any actual requirement. This failure

could have been prevented if the traceability and requirement analysis would have been

better. This point of view was supported by software maintenance studies. Based on

requirements engineers the whole disaster was possible due to the “if it ain´t broke, don´t

fix it” approach by maintenance team.

(Bashar, 1997)

20 (54)

Test Engineers:

The whole catastrophe is clearly the outcome of insufficient verification and validation,

review and testing. Like the original disaster report notes that there was no actual test

that would have checked if the INS would act correctly in real like situation. Necessary

tests that could have been performed during acceptance testing by suppliers, would have

possible revealed the failure. (Bashar, 1997)

Project managers:

The whole catastrophe is clearly the outcome of inefficient project management and pro-

ject development processes. For instance, the whole development review process for

spacecraft was incompetent. When the specifications, rationale documents and code

was inspected there were no any external persons included in the project. Also, the code

and the code related documentation were often illogical. To prevent or expose the issue,

processes for the project management and cooperation with engineers should have been

better and more closely facilitated. (Bashar, 1997)

.

All these comments above are right interpretations. One software error could have been

noticed if the overall project management or process would have been better. What have

learned from this case could be summarized to these points

1. Only run software project in safety critical systems when it is really required

2. Always remember to test both what the system should do and what it should not

do

3. Never plan a system that uses system shut-down as a default exception pro-

cessing response when it does not even have fail-safe state

4. When doing critical calculations, always try to restore best values even in the

situation where definitely right values are not possible to compute

5. When doing testing, always try to use real equipment instead of simulations

6. To develop the software review process, incorporate outside participants and ver-

ify all suppositions created in the code

3.5 Case Study 2000´s – National Cancer Institute, Panama City

21 (54)

When talking about software failures that causes human casualties, one can speak of a

catastrophic mistake. One of that kind is a case of National Cancer Institute that hap-

pened in 2000. U.S based company, Multidata Systems International, created the cancer

treatment software that unfortunately miscalculated the right amount of radiation for the

patients that was going under treatment.

The software was designed so that the radiation therapist could draw “blocks” on the

computer screen. These blocks were metal shields that protects healthy tissue for not

getting the radiation. Total of 28 patients that were getting treatment for prostate, colon

and cervical cancer, were overexposed to radiation at the Panama National Institute of

Oncology. Number of overexposures varied from 20 to 100 percent from what was the

given dose. From those 28 patients, 9 of them have died based on reports. In five cases

the direct cause of dead was radiation overexposure. Based on those reports from 2017

the researchers estimated that many of the patients that suffered from radiation overex-

posures will most likely suffer from radiation related complications. (FDA report, 2017)

Root Causes

Software allowed the technicians to use four shielding blocks for healthy tissue, but the

doctors wanted to use five instead. After a while the doctors noticed that there is loophole

in the software. They were able to draw a one single huge block and left a hole in the

middle. This one block was then size of five blocks. What the doctors did not knew was

that the software calculated different treatment dosage depending how they draw the

hole. When the hole was drawn correctly the dose was also correct but when it was

drawn wrongly the calculated dosage could be more than twice.

When examining the case reports, following factors were considered to be the reason of

overexposures:

• Panama National Institute of Ontology did not had the proper verification for treat-

ment plan

• The process of how the beam block data was entered into the software

• The way the Multidata software was understanding the data that was handling

the beam block

22 (54)

What Was Learned

Most important lesson was that do not use the solution in a way it is not meant to use. In

this case users should had contacted the supplier for needed changes or what would

happen if they use it against standard process. Software supplier made the assumption

that the solution is used correctly and with the quality assurance procedures, so they did

not tested cases were procedures was not followed. The physicians, who were legally

required to double-check the computer’s calculations by hand, are indicted for murder.

3.6 Case Study 2010´s – Stock Market Mistake (KCG)

An American company, called Knight Capital Group, which operates in global financial

market. More specific electronic execution and institutional sales and trading. In the year

of 2012 KCG was the biggest trader in US equities, market share of around 17%. It´s

trading division Knight´s Electronic Trading Group, handled daily more than 3.3 billion

trades, which converted to money equal over 21 billion dollars.

The New York Stock Exchange (NYSE) was planning to take into action a new Retail

Liquidity Program. This program was meant to offer improved pricing to retail investors

with the aid of retail brokers and the launch date was set to August 1, 2012. To prepare

for this operation, KCG updated their high-speed, automated algorithmic router. This

router was designed to send orders for execution into the market. This trading algorithm

was called SMARS and one of it core function was to receive orders from KCG´s other

systems which uses the same trading platform. It was coded to function in the way, that

when it receives big orders from the trading platform, it simply divided them into smaller

orders. Idea was to find buyer or seller that would match for the number of same shares.

So basically, the bigger the “parent” order, the more “child” orders it would have created.

The reason for the SMARS update came from need to replace the old system. This old

and unused code was called “Power Peg” and in this point it has not been used in 8-

years. When the new code was updated it has a function that should recreate an old and

unused “flag” that was formerly used to activate functionality of Power Peg. The new

code had completed the tests and seemed to work reliably and correct.

23 (54)

Root Causes

This new software was manually deployed between July 27 and July 31 in 2012. One by

one the servers received the new update, in the end eight servers had been updated.

This is what the SEC report indicated about the deployment process.

 “During the deployment of the new code, however, one of Knight’s technicians did not

copy the new code to one of the eight SMARS computer servers. Knight did not have a

second technician review this deployment and no one at Knight realized that the Power

Peg code had not been removed from the eighth server, nor the new RLP code added.

Knight had no written procedures that required such a review.”

(SEC Filing, 2013).

On Wednesday 1st of August in 2012, the markets opened in the morning. This day

started like an average Wednesday. KCG´s trading platform started to process orders

from broker-dealers and handle them for the new Retail Liquidity Program. Even in this

point everything went smoothly. The problems started when the seven correctly working

servers had operated their orders and it was eighth server turn. When the orders arrived

at this server the new code activated the old “flag” even it was meant to overrate the old

purpose, but it went the other way around and it woke up the old Power Peg to alive. To

understand why this was so catastrophic, the purpose of the old code needs to take into

deeper review. Old code counted the shares which was sold and bought against a parent

orders every time child orders were completed. So, this means that Power Peg kept a

record of child orders and stop them as soon as the parent order was ready. When the

eighth server “flag” was activated the operation started to route child orders but was not

keeping track about the number of shares of parent orders, like a never-ending loop.

In the morning people started to notice that something was wrong. In the Wall Street

people were holding their breath for a couple of minutes and started to quickly wonder

how this could be possible and why it was still continuing. In the fast trading world these

minutes welt like hours. Within the disaster KCG´s trading executions created more than

half of the total daily trading amount. Due to that, some stocks rise over their value and

due to that other stocks dropped in their value to scale the error.

Whole disaster took 45 minutes. During that time KCG tried to stop these trades several

times. Sadly, there were no kill-switch or any documented info about how to react in this

24 (54)

kind of situation. This led to a situation where they had to diagnose and solve the issue

in live production environment and at the same time almost 10 million shares were traded

in every minute. After a while they noticed that they can´t solve the issue what was af-

fecting the false orders. What happened next only made the situation worse, they started

to uninstall the new code from the servers that was actually deployed correctly. So, in

the panic they erased the working code and left the damaged code into servers. Now

instead of one server all the eight servers were activating the old Power Peg function.

Finally, after 45-minutes of trading they managed to stop the system. Harm had already

done, during the time servers were online they processed 212 parent orders and these

orders SMARS converted to millions of child orders. As a result, these child orders con-

verted into 4 million transactions which equals almost 400 million shares. When all was

over, company suffered $460 million losses and almost had to close the doors for good.

What Was Learned

What happened in August 1, 2012 is a book example for every development team about

how not to operate. Even the software has been writing and tested well it is not enough

if it is not delivered properly to market. Not only one person could be blamed for this

case. Company had not thought about the deployment process in the level required for

the risk there were. Basically, process was only built counting on human actions and

without any safety backups. Mistake could happen so easily in this kind of process, it

could be just misunderstanding of instructions which cause wrong execution. To prevent

these kinds of disasters, couple of points should take into consideration.

• An automated deployment system

• Better configuration and test automation

When deploying software, it should be a reliable and repeatable process. Also, consider

that automate as much as is moderate and as much as the situation allows.

3.7 Case Study 2017 – VR Ticketing System

Finnish state railways (VR) started the new ticketing system project in 2008. It was the

largest IT project in VR´s history. The reform of the million euros Sales system was finally

25 (54)

almost ready. The ticket machines and the conductor handheld machines have been

replaced and the old network service has been updated to become more modern.

Actually, the reform was supposed to be ready in the winter, but the timetable had dou-

bled twice because the software and hardware had been unfinished. The publication was

first transferred from March to June and then to September 14. Train traveling on the

new ticketing system was a side thing, the bigger news was the train ticket pricing reform.

The train ticket would get a discount if it would buy it in advance. The crowd rush was

expected, so the VR had played it safe. The experts had designed a system that could

withstand even the toughest visitor peaks. Capacity of computer system was raised even

over the expert recommendation.

People were swarming in the Railway station project rooms all the night at 14th of Sep-

tember, when 40 experts were monitoring and guiding the deployment. Old systems were

shut down and traffic was moved to new system. First ticketing machine was opened at

5 o´clock in sales office in Turku. Seven in the morning statistic started to raise when

people started to wake up. One hour later the traffic was already lively. Between eight

and nine the number of visitors broke all previous records, including the security clear-

ance that the system was designed. Soon, some of the customers could no longer ac-

cess the service, and even those who got there had to wait for the download of the pages

at worst tens of seconds. The situation got worse when the noon approached. Next to

the headquarters of VR in the main ticket sales office of railway station, customers

started to get nervous. Equipment for customer service became increasingly slower, and

the new cheerful green ticket sales machines started to get jammed all over Finland.

(TiVi, 2011)

Root Causes

All train tickets are sold through the same booking system, which is why the customer

service provided by the online service also hindered the purchase of paper tickets. Even-

tually the tickets were only sold by the conductors. However, only the number of visitors

did not explain all the problems, there was something else wrong in the system.

26 (54)

The new service was designed to withstand the greatest ever-experienced number of

visitors, the 420 000-download record during the umbilical crack. At the first day, down-

loads were 1.2 million. In the computer world queue is not known, but all the e-commerce

visitors are pushing for a virtual ticket booth at the same time. All customers on the web

service will receive poor service if their devices run out of service. Slow issues began to

be solved in many different directions, as the reservation system was built in co-operation

with subcontractors. Accenture had been responsible for building the system, but its sub-

contractor Enfo had provided ticker machines and conductor equipment. Tieto was re-

sponsible for the data centers and servers running the system. In adding, seat reserva-

tion system legacy from the old ticket sales software, which was originally made by Log-

ica.

VR asked Tieto to triple the server capacity at the first day of project. This however did

not solve the issues. It was revealed that the servers worked unstable because their

software had a known, but unresolved bug. The problem was not revealed in the load

tests. Tickets are sold in machines, counters, online and on the train, and no load from

all direction could have been simulated in advance, realistic enough. It was also revealed

that the ticket machines had a problem that unnecessarily burdened the other booking

system. Ticket machines was using Oracle´s Weblogic product and more specific soft-

ware version 10. This version had known bug which affect memory handling, especially

when there were high usage numbers. Finally, this led to a situation where all the auto-

matic ticket machines were decided to close for repair. This took near two weeks.

After first days VR noticed that number of visitors is going to stay to high levels and will

not go back to what it was in the past. From the biggest rush the numbers stayed over

500 000 download which still was more than double from the previous one.

A feature that restricts the concurrent number of visitors was switched on in the online

store. There was a one problem with this limiter. Some customers no longer got a ticket,

even though they had already paid the ticket and money had disappeared from the ac-

count. An improperly operated limiter could kick the customer out of the service before

they could get their ticket. Even this problem had not been found in the tests. The feature

was not originally intended to never be used. (TiVi, 2011)

27 (54)

What Was Learned

Stress tests were planned based on previous user numbers. Even though it is hard to

predict what would be the real situation, there are no harm to run tests using oversized

values. In this case this would had revealed the bug that was on servers and hopefully it

would had been repaired. Second issue was known bug in ticket machine software. This

is something that supplier should had took care of during the project. Issue was repaired

easily when the Oracle gave the fix to Enfo, but it was costly to fix in the situation where

all systems were down, and customer get financial losses every minute.

This case could be summarized to these two guides.

• Always try to prepare for unknown. When planning the test cases use also values

that could sound exaggerated

• Take care of the known issues. Some bugs could be harmless but at least these

should be checked before it is safe to leave them as they are

28 (54)

4 History of Software Testing

This section explains the background about Testing and testing related methods and

processes. Software testing as a term is almost as old as the actual first rows of code.

Back in 1950´s John W. Backus created the first programming language FORTRAN and

it is staged that software testing also started on that time.

Back in 70´s G. Myers wrote that, Testing is a process of executing a program with intent

of finding an error (Myers, 1979). That book was called “Art of Software Testing”.

In different publications, the definition of testing varies according to the purpose, process,

and level of testing described. Miller gives a good description of testing in “Introduction

to Software Testing Technology,”

“The general aim of testing is to affirm the quality of software systems by

systematically exercising the software in carefully controlled circum-

stances.” (Miller, 1981)

Actually, Miller describes the testing as an activity of software quality insurance. Miller

claims that the most important purpose of testing should be finding errors. He defines

that when the test process has a high chance to find still not discovered error it is a good

test and when it finds still not discovered error it is a successful test. Of course, this

generic class of software testing operations is possible to further divide.

The concept of testing itself develop with time. What happened was that the evolution of

testing definition and targets of testing led to situation were testing techniques started to

evolve as well. For next the concept evolution of testing is taken into examination and

for that let´s use the testing process model that was proposed by Gelperin and Hetzel in

1988, in the book called “The Growth of Software Testing”. (Gelperin & Hetzel, 1988)

4.1 The Debugging-Oriented Period

The era that is called The Debugging-Oriented Period actually meant that testing was

not separated from debugging. In timeline this meant the time before year 1956.

29 (54)

It was year 1950 when Alan Turing published the well-known article called “Computing

Machinery and Intelligence”. That article is recognized to be the very first what comes to

program testing and in the article, Turing present the question about “How would we

know that a program exhibits intelligence?”. Noted in other way, if the starting point is to

build this kind of program, then how we would know if the program has fulfilled its re-

quirements? In the article Turing identifies operational testing scenario. In that scenario

software program and the reference system, in this case human should behave exactly

same way so that the tester itself cannot separate one from another. This method is

studied to be the original form of testing method known today as a functional testing. In

that time the terms program testing, checkout and debugging were not separated.

4.2 The Demonstration-Oriented Period

The era that is called The Demonstration-Oriented Period actually meant that testing was

making to verify that the software fulfils its specification. In timeline this meant the time

between 1957 and 1978.

Until 1957 testing, which was then called the program checkout at that time, was sepa-

rated from debugging. In the year 1957, Charles L. Baker commented that the program

checkout had two goals, to make sure that the program works and to make sure that the

program resolves the problem. (Baker, 1957)

The second goal was considered as the centre of testing, as “make sure” has often been

transposed into the test target for meeting the requirements. The difference between

testing and debugging was based on determining success. During this time, the defini-

tions emphasize that the purpose of the test is to prove the correctness. Based on that

the ideal test is therefore only possible when the program does not contain errors. In the

1970s, there was also a broad idea that software could be tested exhaustively. Due that

idea, many research was established that were studying the coverage of testing. This

was also mentioned in the Goodenough and Gerhart´s study, that exhaustive testing is

identified either in program paths or in the program input domain. (Goodenough & Ger-

hart, 1975).

30 (54)

4.3 The Destruction-Oriented Period

The era that is called The Destruction-Oriented Period actually meant that testing was

planned to detect implementation errors. In timeline this meant the time between 1979

and 1982.

This era was crucial, what comes to software testing. Testing process was actually exe-

cuted for the purpose of finding the errors. Test cases were actually more valuable if the

errors were found. This is the opposite way of thinking than what was in the demonstra-

tion-oriented period. Instead of picking the test cases that most likely do not find any

errors the testers chose cases which has the higher probability to find the errors. This

step led to early connection of other validation/verification activities with testing.

4.4 The Evaluation-Oriented Period

The era that is called The Evaluation-Oriented period meant that the purpose of testing

was to detect faults in requirements, design and implementation. In timeline this meant

the time between 1983 and 1987.

It was year 1983, when the Institute for Computer Sciences and Technology released

the Guideline for Lifecycle Validation, Verification, and Testing (VV&T). In this guideline

the methodology that combines analysis, review and test operations to offer product

evaluation within the software life cycle. For each stages of life cycle there are stage

related functions and products. These evaluation techniques are divided into three cat-

egories; basic, comprehensive and critical. These sets are cumulative in the way that

each one is included in its follower.

4.5 The Prevention-Oriented Period

The era that is called The Prevention-Oriented period meant that the purpose of testing

is to prevent faults in requirements, design, and implementation. In timeline this meant

the time since 1988.

31 (54)

In year 1983, Boris Beizer wrote the book called Software Testing Techniques, which

includes the widest list of testing techniques. In that book Beizer noted that planning the

test cases is actually maybe the most efficient bug inhibitor operation what is known.

This statement extended five years later to actual definition of error prevention testing.

(Beizer, 1983)

This definition led to a whole different way of thinking about how the testing should be

done and how important the early testing is. In 1990, Beizer continued to develop testing

process and introduced the four stages of thinking about testing. These stages were; 1)

make software work, 2) break the software, 3) reduce the risk and 4) state of mind, in

other words a worry about testing throughout the whole life cycle. One year later, Hetzel

introduced own definition about testing. The definition stated that “Testing is planning,

designing, building, maintaining and executing tests and test environments.” (Hetzel,

1991)

Both of these two, were huge innovators about how the testing is done more better and

at what phase of the project testing should be done and with what intensity. Even this

era is also focused to software requirements and design so that the implementation er-

rors are avoided, it still differs from the previous era by the mechanism. This means that

the prevention framework emphasizes the test planning, -analysis and -design opera-

tions, while the evaluation framework mostly counts on analysis and reviewing methods

other than testing.

How the Static testing differs from Dynamic testing? When talking about static testing,

the program is not performed as such. The real program code is examined manually or

with some software testing tools. In evaluation techniques it is considered to be verifica-

tion technique. Term “Code 10” testing is also referred to static testing. Code 10 comes

from the code 10 error, which is the error that causes device to crash and the device

won’t start. This means that during the testing different walkthroughs, document reviews,

inspections and feasibility analyses are performed. Developers usually runs static testing

first, and only after that any other type of testing, to discover any code breaks, undeclared

variables, syntactical errors and so on.

How about dynamic testing? Dynamic testing performs the program code with actual

selected test cases. This type of testing interplays with the actual system by submitting

an input value, then collecting the output value and finally crosschecking this value with

the expected result. This way it can find out the errors by interacting straight with the

32 (54)

system. This also allows to allocate a different team to perform the testing, because they

don´t need to know about how the implementation part of the system is working.

(Kaner, Falk & Hguyen, 1999)

Next box testing methods and techniques are introduced. Techniques are listed in (Table

1.) but these techniques have not been taken into deeper investigation. Only different

box approaches are explained.

Table 1. Box testing techniques

The box approach:

❖ White box. It is also called as open box testing, clear box testing, transparent box

testing, structural testing and glass box testing. To perform this type of testing the

tester should have the full knowledge of how the system implementation works.

White box method tests different data structures, system states, loops, paths and

decision points. Compared to black box testing, the white box testing can reveal

the defects fast and the coverage of test is also considered fully complete. Also,

if compared to black box testing, this method requires huge testing knowledge

with a knowledge of different testing tools, like source code analyzers and

different debuggers. (Sommerville, 2001)

Black box testing White box testing Grey Box testing

Functional & System

testing

Unit testing

Stress testing Error handling testing

Performance testing Desk checking

Usability testing Code walkthrough

Acceptance testing Code reviews and

inspection

Beta testing Code coverage testing

Ad hoc testing Statement / Path /

Integration testing

Regression testing Function testing

Intersystem testing Complexity testing

Parallel testing Mutation testing

Boundary value

Integration testing

Regression testing

33 (54)

❖ Black box. For this method the name is an omen. In black box method the tester

does not have knowledge about the system architecture, internal structure of the

system or how does it work. Usually even the source code is not available. So,

this means that the tester only knows about how the software is intended to work

and is unaware of how the software do the activity. Because the tester only knows

the system functionality and is unaware about the system implementation, this

situation is also called functional testing. The lack of info of the internal program

functionalities usually led to a longer testing times. (Sommerville, 2001)

❖ Gray box. This method is combination of white box and black box testing. Testers

usually have at least some sort of knowing of the internal functions of the system.

This required information has been usually received from architecture diagrams

and from detailed design documents. Test performance is executed at black box

level. Compared to other two the source code is also partly accessible. For an

example of this kind of testing is database table check by querying after perform-

ing some test. (Kaner, Bach & Pettichord, 2001)

Although focusing on the prevention or removal of errors in the early stage of develop-

ment cycle can be considered to be a critical activity, however it is still obviously not

enough. Developers and testers have plenty ways to deliver feedback for the application

when the coding have begun.

4.6 Period From 2000 to Today

The evolution of software testing in this millennium has changed more what comes to

different ways of doing and planning of testing. Maybe the biggest change happened in

year 2001, when 17 representatives from different development methodologies were

gathered in conference held in Utah and signed the Agile manifesto. Since then the

twelve principles of Agile software methodology have spread to worldwide and have

made big influence on software development and testing. In 2002, one of the well-known

certification for testing came in the picture. The International Testing Qualifications Board

also known as ISTQB was founded in Edinburgh in November 2002. To this day ISTQB

has administered over 740 000 exams and issued more than 530 000 certifications in

over 120 countries world-wide. Also, in 2002 the first version of popular bug tracking tool

JIRA was released by the Australian software company Atlassian Software. JIRA is

34 (54)

widely used also for its issue tracking and project management properties as well as bug

tracking. Today JIRA is the most popular issue management tool by over 75 000 cus-

tomers.

Later in the year 2004 automation testing technology field was introduced, when popular

web application tool Selenium was released. A year after that, in 2005, SoapUI is re-

leased to SourceForge. SourceForge is a web-based ware house for source codes. Its

purpose is to function as a centralized hub for open source and free software projects.

SourceForge was the first product that provide this service to free and open source pro-

jects. It might be best known for offering revision control systems, like SVN, Bazaar,

CVS, Mercurial and Git. It also provides centralized storage and project management

tools for project developers. When the SoapUI was released it became a popular tool for

the testing of web services. These are only a few milestones in the field of testing. New

and more innovative solutions are released one after another.

Software testing techniques and methods have change a lot in the last decade. Just by

moving from Waterfall method to Agile, not to mention adaptation of different testing

tools. Software testing has also changed in the business wise. Outsourcing of testing in

the market was a non-existent in 1998. This market grew to 8.5 milliard euros business

by 2010. It is also reported that testing industry in India has grown from zero to 3 milliard

euros at short notice and employing nearly 65 000 people. This trend seems to be even

growing in the future.

One trend that seems to be growing is increased adoption of DevOps. DevOps offers

programmers way to write software codes in small portions. These “portions” are then

combined, assessed, monitored and implemented in just a couple of hours. Compared

to traditional way of writing larger portions of code over weeks or months and then spend-

ing further weeks for testing.

DevOps helps programmers to reduce design time without losing quality. Then testers

or QA will gain benefits using hybrid testing model. Hybrid model including both manual

and automating testing. It basically takes advantage of both forms of testing approaches.

It helps to overcome challenges of testing complex test data in a variety of test cases in

a shorter period of time, without overlooking details.

35 (54)

5 How to Improve Testing

As mentioned earlier in Chapter 2, studies have shown that testing usually consumes

40-50 % from total development effort. This is known fact but how often this information

is practiced or utilized? Tools for estimating resource load or project phases has been

available since 1981. In the late 70´s Barry W. Boehm developed the constructive cost

model named COCOMO, which is maybe the best known and widely used model. This

model, also referred as COCOMO81, was published in Boehm´s 1981 book called “Soft-

ware Engineering Economics” as a model for estimating effort, cost and schedule for

software projects. This model was based on 63 projects at company named TRW Aero-

space, where Boehm was Director of Software Research and Technology. The study

examined projects ranging in size from 2 000 to 100 000 lines of code (LOC), and pro-

gramming languages from ASM to PL/I. These projects were based on Waterfall project

model which was the prevalent software development process in 1981. Later in year

1995 next version COCOMO 2.0 was developed and finally published in 2000 in the book

“Software Cost Estimation with COCOMO II” (Stutzke, 1996). There are also many other

tools for cost / resource estimation like PRICE, ITK method and SLIM.

What COCOMO offers is the tools to estimate development project schedule and work-

loads. In Figure 7 different project phases or lifecycle stages of the entire project are

presented. The schedule data that can be obtained from COCOMO divides stages into

percentage slots based on history data used in study. For better estimates also, company

specific history data should be also added to calculations.

36 (54)

Figure 7. Project effort stages based on COCOMO model

For example, the timetable can take 10 months from the project start date. The timetable

then includes all the stages of the project´s life cycle. The whole duration of the project

will then be divided into life cycle segments. To use the example of 10 months period, it

can be then divided as follows;

• Requirement Specs ~ 1.5 months (10 - 15%)

• Detailed design ~ 2 months (15 - 20%)

• Build and Unit Test ~ 4 months (35 - 40%)

• System and Integration Test ~ 2.5 months (25 - 30%)

5.1 Roles and Responsibilities

In this section different roles and responsibilities are taking deeper investigation and what

kind of roles are necessary and recommended for software testing parts of the develop-

ment process and generating a daily build that can be deployed to any environment.

Name of the roles can vary in different sources and companies.

37 (54)

Project Manager

This role is the one, that is liable of knowing these questions related to software project;

what, when, why, where and who. On a practical level, this means knowing the project

stakeholders and the ability to communicate effectively with everyone. Also, creating and

managing the project schedule and budget are project manager responsibilities. Some

processes also belong to project manager´s, like scope management, issues manage-

ment and risk management.

Project manager tasks:

• Create a project plan

• Choose the methodology used on the project

• Recruit project staff

• Run and manage the project team

• Submit tasks to project team members

• Ground a project schedule and define each phase

• Handle deliveries according to the plan

• Deliver regular updates to upper management

Analyst / Consultant

The Analyst / Consultant is responsible for taking and documenting the requirements of

business customers before the solution is developed and implemented. In some busi-

nesses this person can be called a Business-, Systems-, Business Systems-, Require-

ments- or Application Analyst / Consultant. Further in this thesis term Consultant is used

to describe this role.

Business analyst tasks:

• Assist in project definition

• Collect requirements from business units or users

• Gather business and technical requirements

• Ensure that project deliveries meet the requirements

38 (54)

• Test solutions to validate goals

Technical lead / Technical architect

This role interprets the business demands into a technical decision. Due to this respon-

sibility, it is useful to have the Technical Lead involved in the design phase to hear busi-

ness requirements from the client´s point of view and makes questions.

The Technical Lead is the team leader of the developer team and operates closely with

the developers to offer estimates and technical particulars for the proposed solution. The

Project Manager uses this information to create the work program and work breakdown

structure documentation for the software project. It is important for the success of the

project, that Technical Lead can efficiently report the situation of the software project to

the Project Manager to make sure that the possible issues can be resolved immediately.

This role is also responsible for creating and implementing practises and standards with

the development team.

Software developer / Programmer

The front-end and back-end Software Developer is responsible for creating timeline and

cost estimates based on technical requirements that are coming from the Technical Lead

or Analyst. This role communicates the situation of the software project to the Project

Manager or Technical Lead and is also responsible for making the deliverable packages.

To reduce the project risk and ensure the best possible chance for software project to

succeed, the other team members needs to efficiently communicate the technical re-

quirements to the Software Developer.

Software developer duties:

• Creating the required solution

39 (54)

Subject Matter Expert

The Subject Matter Expert (SME) has an excellent knowledge of a technology, discipline,

business process, product or entire business area.

Subject Matter Expert tasks:

• Review the requirements for the traceability matrix and ensure that the require-

ments have coverage

• Review test cases for integration testing related with the inventory management

system

• Perform code walkthrough for accounts payable interface to legacy system

• Establishing user requirements for payroll application

• Refine and determine the feasibility, completeness and correctness of end user´s

requirement

• Provides support associated with the design of the status quo application, its fea-

tures and its abilities

• Offers input for the construction and design of test cases and business scenarios

• Confirms executed test results

Test Manager / Test lead

The Test Manager or Test Lead must understand how the testing matches into the or-

ganizational structure. This means that the Test Manager has to well determine own role

inside the organization. This is often done by creating a mission statement or an identi-

fied testing mandate. The Test Manager needs to understand the discipline of testing

and how the testing process is carried out efficiently and still fulfilling the typical leader-

ship roles of a manager. The Test Manager must implement and master or preserve an

operative testing process. This includes the creation of a testing infrastructure that sup-

ports solid communication and a cost-effective test framework.

Test Manager duties:

• Defining and implementing the role testing plays within the organization

• Defining the scope of testing within the context of each release / delivery

40 (54)

• Deploying and managing the appropriate testing framework to meet the testing

mandate

• Implementing and evolving appropriate measurements and metrics

• Designing, deploying and managing the testing attempt for any given commit-

ment / release

• Managing and increasing the testing capabilities required for meeting the testing

mandate

• Retaining a qualified testing personnel

Software tester / Tester / Test engineer

The Software Testers make sure that the solution satisfies the business requirements

and that it is free of defects, errors and bugs. Software Testers have an important role in

the test planning and preparation phases. They should review and support to the test

plans, as well as analyse, review and monitor technical requirements and design meth-

ods. Software Testers are involved in identifying test conditions and in creating test mod-

els, test cases, test method specifications and test data, and can automate or help auto-

mate tests.

Software tester duties:

• Setting up the test environment or assisting doing so

• When the test execution starts, the work required to carry out the test environment
tests is started

• Execute and record tests, evaluate the results found and document problems

• Tracking the test and test environment, frequently using tools for testing and often
collecting performance data

• Throughout the testing life cycle, software testers review each other´s work, in-
cluding defect reports, test specification and test results

Here are also some optional roles that are recommended when talking about larger scale

development.

41 (54)

Now when the recommended roles are introduced, it is time to check how they can be

allocated to an example project. Project is the same 10 months project mentioned earlier.

Earlier different project stages where described and what is the usual workload in which

stage. In Table 2. these workloads are divided for different roles. For this example, total

resource effort is selected to be a 100-person months (PM). Table illustrates the typical

resource loading based on the percentage breakup of elapsed time.

Table 2. Resource loading chart

The percentage of time elapsed may not be exactly the same as the resource month

spent in particular life cycle stage. For example, the first project phase (Requirements)

could be 1.5 months (15 percent) elapsed time, but as shown in the table the actual

resource load spent in M1 and M2 could be only 8 (3+5) person months, which is 8

percent from the total project effort. Normally, the biggest person month effort is spent

during the Build and Unit Test phase, which is highlighted in orange. In this example, this

Testing related phase takes 52 person months, which is 52 percent of whole project time.

When doing resource loading in real project, it is good to keep in mind that it is a complex

operation and needs to be treated with care. Incorrect allocation of resources affects

project delivery periods and overall quality of outputs. Once the resource loading is done,

it is fairly easy to also use for project cost estimations. When total PM is calculated, rate

per hour, week or month can be inserted for each resource roles.

Resource M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Total PM

Project Manager 1 1 1 1 1 1 1 1 1 1 10

Business Consultant 2 3 4 4 2 2 2 2 2 2 25

Programmer 4 4 5 6 8 6 4 3 40

Technical Architect 1 1 1 1 1 5

Tester 3 4 4 4 3 2 20

Total effort 3 5 10 10 11 13 15 13 11 9 100

Resource loading chart
Months

42 (54)

5.2 Test Plan

Successful and comprehensive testing of system modifications and enhancements is

crucial to both customer acceptance and building customer confidence. System modifi-

cations will be tested several times during development and acceptance. Each succes-

sive testing step needs to have specific testing criteria and benchmarks defined, as well

as clearly defined passing criteria.

During the Analysis phase, test planning is launched to form the high-level plan for test-

ing and to form the universal standards and procedures which must be followed when

leading software testing and validation. It becomes a living document that is refined and

updated as more information is gained throughout the project. The plan should include

specific test cases or scenarios and the expected results. Ideally the plan will include test

scripts that document exactly how tests will be performed and what data will be used.

Separate testing criteria can be established for each proposed system modification or

enhancement.

Data used when testing system modifications or enhancements can come from numer-

ous sources. It can be derived from the customer’s daily operations, generated via SQL

Server scripts, or simply made up. The specific data source and the structure of the data

for testing need to be determined and documented to avoid confusion and delays when

the testing begins. This is especially true for any testing that is to be performed by the

customer. Inherent in this step is the determination of responsibility for deriving or cre-

ating the data used for testing. Once the data source has been decided, the team needs

to determine both the amount of data needed for testing the proposed system modifica-

tion or enhancement and responsibilities for deriving or creating the data needed for

testing.

It is important for the customer to understand the various types of testing activities that

will be performed and for them to commit appropriate time and resources to assist with

and perform testing where appropriate. Refer to the activity descriptions in the phases

for more information on each type of test.

The outcome of gathering Quality and Testing Standards will be the establishment of a

deliverable Test Plan that examines and defines the following areas:

43 (54)

➢ Test Objectives and Goals

➢ Test Approach and Assumptions

➢ Testing Responsibilities

➢ Quality and Testing Scope

➢ Expected Testing Results

➢ Testing Tasks and Deliverables

➢ Defining Interactions with other Organizations

➢ Testing Procedures and Walkthrough

➢ Test Status Tracking and Reporting

➢ Test Environment and Resource Requirements

➢ Testing Schedules

➢ Definition of Test Specification (Script) Template

At a minimum, determination of the Quality and Testing Requirements Scope should

address the following test scenarios:

➢ Function Testing – Independent testing of the system modification (custom code),

executed during Development by the Customer and the Consultants.

➢ Feature Testing – Independent testing of the system configuration, executed during

Configuration by the Application Consultants.

➢ Unit Testing – Independent testing of the system modification (custom code), exe-

cuted during Development, by the Application Consultants / Tester.

➢ Process Testing – Complete testing of related functions and features that make up

a defined business process, executed during Development by the customer and the

consultants.

➢ Sub-Process Testing –Testing the relevant properties of the specified business pro-

cess, executed during Configuration by the Customer and the Application Consult-

ants.

➢ Data Acceptance Testing (DAT) – Testing steps executed by Data Owners and Key

Users in the Development phase before Integration Testing. During DAT, the cus-

tomer not only checks the data migrated but also confirms that the data may be in-

quired upon, processed upon and reported upon.

44 (54)

➢ Performance Testing – Testing of business processes and integration, focusing on

achieving high transaction volume that is expected during peak times so as to vali-

date that the system performance meets the business requirements. Executed by

the implementation project team, typically using test automation software.

➢ Integration Testing – Integrated testing of business processes executed by the Key

Users before system sign-off. Focuses on end-to-end business processes such as

development, interfaces, reports, and integrations to external systems.

➢ User Acceptance Testing (UAT) – Final testing executed by the Key Users before

system sign-off. The End Users selected to execute the UAT must have received

appropriate training before the start of the UAT.

All the Testing described above will follow a typical process described in the flowchart

(Figure 8.) at the end of this section.

Testing can encompass Business Processes, Workflows, and Reports, which should be

reviewed with the customer. It should be communicated to the customer that written test

cases/scripts will need to be developed to support the testing efforts. It should not be

the Application Consultant's responsibility to define and document these test

cases. These test cases should be developed by the Customer, or at least with the

Customer’s assistance. The Application Consultant should drive and manage the exe-

cution of the testing efforts.

45 (54)

Figure 8. Test life cycle flowchart

46 (54)

6 Financial Losses of Software Projects

For this thesis, 57 different software related public and private sector cases were studied.

The cases were selected based on the availability of cost data. Some of these cases are

already presented in more detail in Chapter 3. Case studies. These cases were exam-

ined from the point of view of how much financial losses they caused. To achieve losses,

estimated budgets were removed from total project costs (total cost – budget = loss).

There were also three cases were losses were measured in human lives.

Selected cases used in this thesis are also compared with previously published studies.

Comparisons have been made to achieve possible correlations regarding cost, time or

software testing.

6.1 Analysis

Cases which were studied were all around the world. In Table 3. shows how they were
divided.

Table 3. Cases by country

Most of cases were from USA due to fact that most of them were public sector projects

which were public information to study. Also, many of private sector cases were easy to

study due to high media awareness back in days, which has brought the facts of the case

to anyone to be investigated.

Total financial losses of these 57 cases was 474 milliard euros, which is more than twice

the GDP of Finland, based on 2017 statistics. Biggest single loss was around 430 milliard

Country Amount Percentage %

Canada 3 5%

Finland 11 19%

France 1 2%

Sweden 2 4%

Denmark 1 2%

UK 11 19%

USA 28 49%

Total 57 100%

47 (54)

euros, which happened in 1987. This event was called Black Monday and it was stock

related catastrophe. During that one-day stock markets around the world crashed. It was

a combination of automated stock trading system and human mass panic, which caused

fast and widely spread effects. The exact amount of losses is not fully known, but some

calculations estimates losses to be around 430 milliard euros.

From Finland there were 11 cases included in the study and 8 of them were from the

public sector. All of them are between 2006 and 2018. The total losses of these cases

were 259 million euros, which is 23,55 million euros per case. Budget of these cases

ranged from 1 million to 200 million euros.

6.2 Findings

Cases were picked between 1962 – 2018. In Table 4. all cases are listed based on their

appearing year and what are the costs. If multiple cases in same year, they are listed in

separate rows.

48 (54)

€ 15.70

€ 86.00
€ 52.00

0
€ 6.60

€ 194.00
€ 135.00

€ 51.00
€ 491.00

€ 409.00

€ 100.00
€ 65.00
€ 17.00

€ 271.00
€ 41.50
€ 34.50

€ 550.00
€ 125.00

€ 94.00

€ 81.80
€ 139.00

€ 903.00
€ 44.60

€ 131.00
€ 27.20

€ 9.00
€ 16.00

€ 6.00
€ 180.00

€ 985.50
€ 79.40

€ 15.00
€ 81.50

€ 58.50
€ 918.00

€ 380.00
€ 111.00

€ 17.00
€ 2.00

€ 840.00
€ 30.00

€ 29.00
€ 167.00

€ 5.20
€ 15.00

€ 70.00
€ 2.50

€ 25.00

€ - € 100.00 € 200.00 € 300.00 € 400.00 € 500.00 € 600.00 € 700.00 € 800.00 € 900.00 € 1,000.00

1961

1985

1988

1991

1992

1993

1994

1996

1996

1997

1998

1999

1999

2000

2002

2004

2005

2006

2008

2010

2011

2011

2012

2013

2014

2014

2014

2017

2017

2019

Losses (Millions of euros)

€ 430 400.00

€ 430 400.00€ 430 400.00€ 430 400.00

€ 2 609.00

€ 1 120.00

€ 2 000.00

€ 3 270.00

€ 6 025.00
€ 20 870.00

Table 4. Financial losses per project year

As seen from the table the trend was been same since 1962. Amount of bigger financial

loss cases, above 1 000 million euros, still occurs today. Seems like nothing was been

learned from the history. In 1995 author of the Standish Group report wrote, “When a

bridge falls down, it is investigated and a report is written on the cause of the failure. This

is not so in the computer industry where failures are covered up, ignored, and/or ration-

alised. As a result, we keep making the same mistakes over and over again.” Maybe this

49 (54)

trend won´t change until IT projects are handled like bridge building projects. From those

57 cases, 17 of them were cancelled which is 29.8%. There are total of 21 cases from

the 2010 to 2018 and 9 (42.9%) of them were cancelled during the project.

6.3 Correlations to Other Studies

In 2008, Dr John McManus and Dr Trevor Wood-Harper published a study, were 214

Information System projects were examined within European Union (McManus & Wood-

Harper, 2008). Purpose of this study was to examine project failure. Failure was de-

scribed in those projects that did not met the original time, cost and quality requirements

criteria. Study revealed that only one in eight (12.5%) information technology projects

can be considered truly successful. In other terms, it means that even 87.5% of IT pro-

jects fail.

Project values of these projects ranged from 1 to 80 million euros. Most of them, 87

cases (40,6 %) were between 10 to 20 million euros. Second biggest group was project

s under 1 million euro, which was 23,8 %. Actually, 96% of cases were between 1 to 20

million euros. So average IT/IS project in Europe does not cost more than 20 million

euros, based on the study of McManus and Wood-Harper. Earlier there was mention

about project losses in Finland, which was 23,55 million euros per case, based on 11

example cases which were studied. This means that only in Finland the costs or losses

were more, than what was the average project value of one IT/IS project.

In McManus and Wood-Harper´s study, projects were examined at which point or phase

of project cancellation or overruns happened. Project overruns were determined based

on schedule or budget. In Table 5. project phases are listed based on Waterfall project

method. Table also shows what was the amount of completed project after different

phases.

50 (54)

Table 5. Project completions, cancellations and overruns based on McManus and Wood

Harper´s study in 2008.

For example, after Feasibility stage no project were cancelled, which is only logical, but

after the next stage when project requirements were described 3 projects were cancelled

out of 214 and so on. Total cancellation percentage based on their study was 23.8%.

Earlier in this thesis a cancellation percentage results were introduced, based on the 57

global project which were studied in this thesis. This result was 29.8%, which is in line

compared to McManus and Wood-Harper´s study. This 6% difference can be explained

due to smaller sampling for which this Master´s thesis work has been selected.

What is also interested based on the table above, only 4 out of 168 projects were can-

celled at or after the Testing phase. Most critical stages are Design and Code, which led

to almost all, 43 out of 51 cancellations investigated in the study. Also, these two stages

led the most number of project overruns, 57 out of 69 which is 82.6% of all overruns.

Testing caused 12 projects to went overrun, budget or time.

Other studies also confirm that actual success ratio of IT project is quite low. Standish

Group – Chaos report in 2015 indicates that 29% of projects are successful, based on

projects on budget, of cost and with expected functionality. Study made by Oxford Uni-

versity in 2003 shows that only 16% of IT projects are successful.

Waterfall method

lifecycle stage

Number of

projects

canceled

Number of

projects

completed

Number of

projects overrun

(schedule and/or

cost)

Feasibility None 214 None

Requirements

analysis
3 211 None

Design 28 183 32

Code 15 168 57

Testing 4 164 57

Implementation 1 163 69

Handover None 163 69

Percentages 23.80% 76.20% 32.20%

51 (54)

The exact amount of IT projects globally in one year is hard to estimate. Despite that,

studies indicate that software project failures costs even 1.45 trillion euros, annually.

(Tricentis, 2016)

52 (54)

7 Summary

Myers wrote the book,” Art of software testing” in the 70´s. By this day this book manage

to hit the nerve of current time software developing. Even today there are same problems

taking considered of than back in the 70´s. In the 3rd Edition of Art of Software Testing

Myers describes,

At the time this book was first published, in 1979, it was a well-known rule

of thumb that in a typical programming project approximately 50 percent of

the elapsed time and more than 50 percent of the total cost were expended

in testing the program or system being developed. Today, a third of a cen-

tury and two book updates later, the same holds true. There are new de-

velopment systems, languages with built-in tools, and programmers who

are used to developing more on the fly. But testing continues to play an

important part in any software development project. Given these facts, you

might expect that by this time program testing would have been refined into

an exact science. This is far from the case. In fact, less seems to be known

about software testing than about any other aspect of software develop-

ment (Myers, 2011).

Today there are more articles and books about software testing than back in the 70´s.

Still it seems that importance of testing is hard to explain or point out based on studied

publications.

Reason for the study came from own experiences in the field of IT. Need for better un-

derstanding about how the software testing could be done, plan and develop better.

Original scope of this thesis was to examine the software testing, and what impact poor

testing may cause, cost and time. Also, how the bad testing is documented and studied.

Based on that information, plan was to create and publish step-by-step guideline about

how testing could or should done, to achieve better project success ratio. When gather-

ing the data for the case studies started, it was notable that this data was not so easy to

find. Like mentioned earlier about differences of bridge falling and software project fall-

ing, software project is usually left without further investigation and documentation about

what went wrong. Due that, scope moved to more in the direction on what costs, poorly

53 (54)

designed or failure IT project will cause globally and locally. Despite the reason was it

software testing related or not.

Suggestion for the software testing improvement was done based on COCOMO II project

schedule and resource workload estimation model. Before that recommended project

roles were introduced. These roles are gathered from different testing and project man-

agement related frameworks, like Waterfall, Agile, Prince and Scrum. COCOMO recom-

mends that build and testing phase should be allocated to at least 40% resource load,

which is the same that J.J Marciniak also introduced in 1994.

Data research for the IT cases was done investigating old news report, blog posts and

project final reports. Some public-sector projects also provided more specific final state-

ments about the reasons why projects went wrong. When the information was gathered,

idea was to analyze statistics and compare them to other studies to notice if there were

any correlations to those.

Results of this thesis were that studied 57 cases affected 474 milliard euros losses. Exact

number of how many IT projects failed annually is hard to estimate, but studies have

implicated that annually failed projects could cost as much as 1.45 trillion euros. From

those 57 cases 17 (29,8%) were cancelled during project. When compared to other stud-

ies it was clear that project cancellation percent was in line with other studies, like

McManus and Wood-Harper´s which was 23,8 %.

There are plenty of publications about defect costs, bad requirement analyzing or bad

management. These are also the main reasons behind McManus and Wood-Harper´s

study when failures were examined. When talking about project failure, studies shows

that bad management is one the main reason. On other hand, sentence by project stake-

holders about the comparative success or failure of projects propensity to be made early

in the software projects life cycle. This has caused the phenomenon were many project

managers tend to plan for a certain failure rather than success. This was noticed by

McManus and Wood-harper, when project stage reports were examined. When com-

plexity of risk that is associated to software project delivery is taken into consider, it is

not surprising that only small number of projects are carried out with the original time,

cost and quality requirements. Also, when the statistics lean on to that idea that it is more

than 70% change that it fails, how can you prepare to something else than failure. One

54 (54)

solution could be developing an alternative methodology for project management based

on leadership, stakeholder and risk management. This may lead to a better understand-

ing of management issues and could lead to a more successful delivery of IT projects.

When thinking about future of testing. One big possibility and possible game changer is

AI. Artificial Intelligence or Singularity could change the whole idea of testing and how it

is done. So far, software development teams are using AI for improving the efficiency of

development teams and overall product quality. For now, we can only wait and see what

the future will bring

References

Beizer, B. (1983) “Software Testing Techniques,” Second Edition, Van Nostrand Rein-

hold Company Limited, 1990, ISBN 0-442-20672-0

Bowen, Jonathan P. and Hinchey, Michael G. (1999) High-Integrity System Specification

and Design, London, UK

Ceruzzi, Paul. (1989). “Beyond the Limits – Flight Enters the Computer Age, p.203

European Space Agency. (1996) No 33-1996: Ariane 501 – Presentation of inquiry board

report. Retrieved November 14, 2017 from (http://www.esa.int/For_Media/Press_Re-

leases/Ariane_501_-_Presentation_of_Inquiry_Board_report

Gelperin, D. and Hetzel, B. (1988). “The Growth of Software Testing”, Communications

of the ACM, Volume 31 Issue 6, pp. 687-695

Gleick, James. (1996) “A Bug and a Crash”. Retrieved November 14, 2017 from

(https://a̶̶̶̶round.com/ariane.html

Godse, D.A, Godse, A.P. (2007).” Fundamentals of programming”, Pune, India

Goodenough, J.B. and Gerhart, S.L. (1975). “Toward a Theory of Test Data Selection,”

IEEE Transactions on Software Engineering, pp. 156-173

Jones, Capers, (1986). ed. Tutorial: Programming Productivity: Issues for the Eighties,

2nd Ed. (Los Angeles: IEEE Computer Society Press)

Kaner, C., Bach, J., & Pettichord, B. (2001). Lessons Learned in Software Testing. John

Wiley & Sons, Inc., New York, NY, USA.

Kaner, C., Falk, J. & Hguyen, H. (1999). Testing Computer Software, 2nd edition, John

Wiley & Sons, New York, pp. 124.

http://www.esa.int/For_Media/Press_Releases/Ariane_501_-_Presentation_of_Inquiry_Board_report
http://www.esa.int/For_Media/Press_Releases/Ariane_501_-_Presentation_of_Inquiry_Board_report
https://around.com/ariane.html

Korhonen, Suvi. TiVi. (2011). VR myöntää: it-ongelmat olisi pitänyt tunnistaa etukäteen.

Retrieved May 6, 2018 from https://www.tivi.fi/CIO/2011-10-05/VR-

my%C3%B6nt%C3%A4%C3%A4-it-ongelmat-olisi-pit%C3%A4nyt-tunnistaa-

etuk%C3%A4teen-3187161.html

Leveson, N. G. and Turner, C. S. (1993) An Investigation of the Therac-25 Accidents.

IEEE Computer, 26, 7 (July 1993) pages 18-41. Retrieved November 14, 2017 from

https://web.stanford.edu/class/cs240/old/sp2014/readings/therac-25.pdf

Marciniak, J. J. (1994). “Encyclopedia of software engineering”, Volume 2, New York,

NY: Wiley, pp. 1327-1358

McManus, John and Wood-Harper, Trevor. (2008). “A Study in project failure”. Retrieved

May 5, 2018 from (https://www.bcs.org/content/ConWebDoc/19584

Miller, E.F., “Introduction to Software Testing Technology,” Tutorial: Software Testing &

Validation Techniques, Second Edition, IEEE Catalog No. EHO 180-0, pp. 4-16

Myers, Glenford J., Sandler, Corey, Badgett, Tom. (2011). The Art of Software Testing

(3rd Edition). John Wiley & Sons, Inc., New York.

Myers, Glenford J. (1979). The Art of Software Testing. John Wiley & Sons, New York

NASA, (2017). Mariner 1. Retrieved November 7, 2017 from

https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1

NASA, (2001). Michael King and David Herring. Research satellites for atmospheric sci-

ences, 1978-present. Retrieved November 7, 2017 from https://earthobserva-

tory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php

Nuseibeh, Bashar, (1997). "Ariane 5: Who Dunnit?" IEEE Software, p.15–16.

Patton, Ron. (2005). Software Testing (2nd edition)

https://www.tivi.fi/CIO/2011-10-05/VR-my%C3%B6nt%C3%A4%C3%A4-it-ongelmat-olisi-pit%C3%A4nyt-tunnistaa-etuk%C3%A4teen-3187161.html
https://www.tivi.fi/CIO/2011-10-05/VR-my%C3%B6nt%C3%A4%C3%A4-it-ongelmat-olisi-pit%C3%A4nyt-tunnistaa-etuk%C3%A4teen-3187161.html
https://www.tivi.fi/CIO/2011-10-05/VR-my%C3%B6nt%C3%A4%C3%A4-it-ongelmat-olisi-pit%C3%A4nyt-tunnistaa-etuk%C3%A4teen-3187161.html
https://web.stanford.edu/class/cs240/old/sp2014/readings/therac-25.pdf
https://www.bcs.org/content/ConWebDoc/19584
https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MARIN1
https://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
https://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php

Rawlinson, J.A. (1987). “Report on the Therac-25.” OCTRF/OCI Physicists Meeting,

Kingston, Ontario, Canada.

SEC Filing. (2013). Release No. 70694. In the matter of Knight Capital Ameriacas LLC.

Retrieved December 16, 2017 from https://www.sec.gov/litigation/admin/2013/34-

70694.pdf

Sommerville, I. (2001). Software Engineering, 6th Edition, Addison-Wesley, 442-444.

Stutzke, Richard, (1996). "Software Estimating Technology: A Survey"

Tassey, Gregory. National Institute of Standards and Technology. (2002). “The Eco-

nomic Impacts of Inadequate Infrastructure for Software Testing”. Retrieved October 26,

2017 from https://www.nist.gov/sites/default/files/documents/director/planning/report02-

3.pdf

Tricentis. (2016). Software Fail Watch. Retrieved May 5, 2018 from https://www.tricen-

tis.com/software-fail-watch/

U.S. Food & Drug Administration. (2017) FDA Statement on Radiation Overexposures

in Panama. Retrieved December 16, 2017 from https://www.fda.gov/Radiation-Emit-

tingProducts/RadiationSafety/AlertsandNotices/ucm116533.htm

https://www.sec.gov/litigation/admin/2013/34-70694.pdf
https://www.sec.gov/litigation/admin/2013/34-70694.pdf
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf
https://www.tricentis.com/software-fail-watch/
https://www.tricentis.com/software-fail-watch/

