
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Waltteri Hyvönen 

 

Custom Mobile Game Analytics Imple-
mentation 

 
 
 

Bachelor’s thesis 
Information Technology / Game Programming 

 

 
2018 

 



 

Tekijä/Tekijät 
 

Tutkinto 
 

Aika 
 

Waltteri Hyvönen Insinööri (AMK) Joulukuu 2018 

Opinnäytetyön nimi 
 
Kustomoidun pelianalytiikkaratkaisun toteutus mobiilille 

40 sivua  
2 liitesivua 

Toimeksiantaja 
 
Nitro Games Oyj 

Ohjaaja 
 
Niina Mässeli 

Tiivistelmä 
 
Tämä opinnäytetyö on dokumentti kustomoidun palvelinpuolen pelianalytiikkasysteemin to-
teutuksesta ja sen vaiheista. Analytiikkaratkaisun tarkoituksena oli luoda helposti muokatta-
vissa ja jatkettavissa oleva pohjarakenne ilmaismoninpeliin nimeltä Medals of War, joka 
korvaisi nykyisen kolmannen osapuolen liitännäisen.  
 
Tämän dokumentin on samalla tarkoitus toimia oppaana geneerisen tapahtumapohjaisen 
analytiikkaratkaisun toteutukselle. Asianmukaisen ymmärryksen takaamiseksi tärkeimmät 
vaiheet on käsitelty syvällisesti sekä pohjattu funktionaalisiin vaatimuksiin. 
 
Opinnäytetyötä lähestyttiin toteutuspainotteisesti. Google BigQueryn ja Singularin yhteis-
käyttö palvelinpuolen analytiikkaratkaisun kanssa oli kaikille osallisille uusi aihe. Koska ai-
heesta oli vain vähän edeltävää tietoa, suuri osa toteutuksesta koostui kokeilemisesta ja 
epäonnistumisesta. Opinnäytetyön edetessä monia verkkoviestinnän ja asynkronisen pro-
sessoinnin aiheita tutkittiin ja hyödynnettiin. 
 
Käyttäjän puolen koodin toteutukseen käytettiin Unity-pelimoottoria, palvelinpuolen toteutus 
rakennettiin olemassaolevan Node.js-palvelimen päälle. Tapahtumien rakenne toteutettiin 
ohjelmistovaatimuksien ja datan määrittelyjen mukaisesti. Erityisesti huomiota kiinnitettiin 
geneerisen datanlähetysputken kehittämiseen, sen ollessa koko järjestelmän ydinominai-
suus. Käyttäjän ja palvelimen väliseen viestintään käytettiin HTTP REST -ohjelmointiraja-
pintaa, ja samalla käyttettiin hyväksi projektin valmiita ominaisuuksia. 
 
Työn aikana kehitetty toimiva geneerinen pelianalytiikkaratkaisu, joka soveltuu hyvin jatko-
kehitykseen. Analytiikkaratkaisu on helposti tuotavissa muihin projekteihin sekä opinnäyte-
työn loppuvaiheessa joitain ominaisuuksia tuotiin jo muihin projekteihin. 
 

Asiasanat 
 
Unity, pelianalytiikka, BigQuery, verkkotyöskentely, Singular, Google, massadata, Node.js 



 
 

Author (authors) 
 

Degree 
 

Time 
 

Waltteri Hyvönen 
 

Bachelor of Engineer-
ing 

December 2018 
 

Thesis title 
 
Custom mobile game analytics implementation 

40 pages  
2 pages of appendices 

Commissioned by 
 
Nitro Games Plc 

Supervisor  
 
Niina Mässeli 

Abstract 
 
This thesis studies the implementation of a highly customisable event-based analytics 
framework for the mobile free-to-play online multiplayer game, Medals of War. The objec-
tive of this thesis was to provide a modifiable and extendable analytics system that could 
replace the current third-party plugin. This thesis was additionally intended to act as a 
guide for future implementations. In order to ensure proper understanding of the implemen-
tation process, crucial steps are examined in depth and based on the functional require-
ments.  
 
Developing a custom analytics framework in conjunction with Google BigQuery and Singu-
lar was a new topic for everyone involved in this thesis study. As the general knowledge of 
this topic was limited, development consisted of a great amount of trial and error. During 
development, various topics such as networking and asynchronous processing were stud-
ied extensively. 
 
Client-side development was conducted using a game development platform called Unity, 
while the backend part of the analytics system was built as part of a Node.js server. Special 
attention was given to the implementation of a generic event sending pipeline as it is the 
core feature of this custom analytics system. Communication between clients and the 
server was accomplished by utilizing a HTTP REST programming interface with pre-exist-
ing features. 
 
The finished product was a functional, extendable and generic game analytics system that 
can easily be implemented to other projects. The thesis study was deemed a success and 
provides an excellent basis for future development. 
 

Keywords 
 
Unity, game analytics, BigQuery, networking, Singular, Google, big data, Node.js 



 
SISÄLLYS 

 

1 INTRODUCTION .......................................................................................................... 7 

1.1 Purpose of this thesis ............................................................................................. 7 

1.2 Initial approach ....................................................................................................... 7 

1.3 Nitro Games Plc ...................................................................................................... 8 

1.4 Medals of War......................................................................................................... 8 

2 TOOLS AND BACKGROUND INFORMATION ............................................................ 9 

2.1 Event-based analytics ............................................................................................. 9 

2.2 BigQuery ................................................................................................................. 9 

2.3 Singular ................................................................................................................ 10 

2.4 Programming languages ....................................................................................... 10 

3 FUNCTIONAL REQUIREMENTS ............................................................................... 11 

3.1 Customisable events ............................................................................................ 11 

3.2 Analytics event placement .................................................................................... 12 

3.3 Mandatory analytics data ...................................................................................... 12 

3.4 Data validation ...................................................................................................... 13 

4 IMPLEMENTATION .................................................................................................... 14 

4.1 BigQuery project setup ......................................................................................... 14 

4.1.1 Creating a project ........................................................................................... 14 

4.1.2 API Credentials ............................................................................................... 17 

4.2 Backend implementation ...................................................................................... 18 

4.2.1 Authentication ................................................................................................. 18 

4.2.2 Creating an endpoint ...................................................................................... 19 

4.2.3 Processing event data .................................................................................... 22 

4.2.4 Singular events ............................................................................................... 27 

4.2.5 Server event placement .................................................................................. 29 

4.2.6 Event testing ................................................................................................... 30 

4.3 Frontend implementation ...................................................................................... 32 



 
4.3.1 Singular SDK .................................................................................................. 32 

4.3.2 Event queue .................................................................................................... 33 

5 CONCLUSIONS ......................................................................................................... 36 

REFERENCES .................................................................................................................. 38 

FIGURES ........................................................................................................................... 40 

ATTACHMENTS ................................................................................................................ 41 

 

  



 
ABBREVIATIONS 
 
 
  IAP   In-app purchase 
 
  API   Application Programming Interface 
 
  MoW   Medals of War 
   
  GCP   Google Cloud Platform 
 
  HTTP   Hypertext Transfer Protocol 
 
  REST   Representational State Transfer 
 
  SDK   Software Development Kit 
 
  URL   Uniform Resource Locator



7 

1 INTRODUCTION 

Moving into the era of mobile games where the so-called freemium business 

model reigns supreme, the importance of data analysis and player profiling is 

massive. These freemium games offer in-app purchases for players that grant 

some form of virtual goods, for example additional in-game resources. In-app 

purchases and advertisements are the main sources of income for a large 

amount of mobile games, especially ones with social aspects. Being able to 

analyse and deduct popular features and in-app purchases is the key to better 

retention and income rates.  

 

1.1 Purpose of this thesis 

This thesis aims to provide information on how to implement event-based cus-

tom game analytics for a mobile game using BigQuery. The game analytics 

implementation is done for a free-to-play mobile real-time strategy game 

called Medals of War that is developed and published by Nitro Games Plc.  

 

This thesis examines the theory behind the implementation process and rea-

sons for the selected approaches and methods used. The purpose is to de-

scribe the process of creating an easy-to-modify analytics system in the form 

of a comprehensive guide. The study should be easy to follow and its contents 

applicable to other similar projects if needed.  

 

The study introduces the tools used along with some necessary background 

information and theoretical framework. Also, the requirements of this analytics 

system and explanations for the selection of tools and methods are presented. 

The main focus of this thesis is on the implementation itself where the process 

is explained step by step. Finally, the whole process is reviewed to identify 

what still needs to be done and which aspects could be improved.  

 

1.2 Initial approach 

With no previous experience or knowledge of backend programming, the im-

plementation was approached carefully. A lot of time went into studying and 

asking questions from more experienced colleagues, but most of the imple-

mentation process consisted of experimenting with trial and error. 



8 

 

One of the key goals was to eventually remove the old analytics system and 

replace it with a better and more customisable one. A similar analytics imple-

mentation already existed at the time of starting this thesis which served as a 

basis for this implementation. Many parts of the base analytics framework had 

to be changed to match the requirements of this thesis. Ways to implement 

features and properties are compared when possible, and decisions are made 

after considering various approaches. 

 

1.3 Nitro Games Plc 

Nitro Games Plc is a Finnish mobile game developer and publisher. Nitro 

Games was founded in 2007 and their headquarters is in Kotka, Finland. Nitro 

Games converted to a publicly listed company on Nasdaq First North Stock-

holm on the 16th of June 2017. (Nitro Games Plc 2018.) 

 

The company focuses on developing free-to-play competitive multiplayer 

games for mobile devices, even though it started out as a PC-game develop-

ment company. The goal of this thesis is to improve the online strategy game 

Medals of War by developing a more flexible game analytics framework. (Nitro 

Games Plc 2018.) 

 

1.4 Medals of War 

Medals of War is a real-time competitive multiplayer strategy game developed 

and published by Nitro Games. The game follows the freemium business 

model. All content in the game can be accessed for free, but the players are 

offered additional resources in the form of IAP’s. (Nitro Games Plc 2018.) 

 

Medals of War is a card collecting game where players construct battle decks 

to use in battle against other players in a World War 2 fantasy setting. Battle 

decks are built around Officers with special abilities, using various units and 

commands. There are many social features included such as companies, live-

events, challenges and leaderboards. Players can compete in a solo and/or 

group environment in the effort to climb the rankings. (Nitro Games Plc 2018.) 

 



9 

2 TOOLS AND BACKGROUND INFORMATION 

This chapter contains some necessary background information and infor-

mation about the tools used for the implementation. As the subject of this the-

sis is very broad, the theory in this chapter only portrays the knowledge re-

quired for this specific project.  

 

2.1 Event-based analytics 

Event-based analytics is a data tracking method based on user behaviour. 

Events are recorded data of an instance of user behaviour and are tied to that 

user’s identity. The most important aspects are to identify who did something, 

what they did and under what circumstances it occurred. Based on context 

and continuously gathering data linked to a user, different kinds of conclusions 

can be drawn. Event data can be used to track user progress in a certain se-

quence, for example a game tutorial or a shopping cart checkout. (Egan 

2016.) 

 

Event-based analytics is at the core of any modern business in the gaming in-

dustry. Massive amounts of gathered data are irreplaceable in improving user 

experience and revenues through structured analysis. The power of gathering 

data from events is that it provides the possibility for real-time analysis and a 

specific context for each piece of data. (RoboMQ n.d.) The environment and 

minds of customers in the gaming industry are known to be volatile and ever 

changing. Event-based analytics provides an effective solution for recording 

and reacting to any changes in player behaviour. It enables the business to 

predict emerging trends, minimise risks and enforce popular features. 

(Datamatics n.d.)  

 

2.2 BigQuery 

Google BigQuery is a serverless data warehouse that offers highly scalable 

storage and data analysis. Data can be either sent as batches or streamed 

through powerful streaming ingestion. Analysis can be extended with various 

advanced machine learning algorithms if deemed necessary to obtain even 

more information out of gathered data. BigQuery’s fast streaming insertion API 



10 

enables real-time analytics that is extremely helpful for event-based analytics 

in games. (Google 2018.) 

 

Data is queried using standard SQL, and usage is priced per amount of data 

scanned. Flexible pricing also affects other Google Cloud services, thus the 

user is only charged for what they use. Permissions can be set with data and 

role-based configurations through Cloud IAM to keep data on a need-to-know 

basis. (Google 2018.) Google additionally offers extensive documentation on 

how to implement these services into a project in various programming lan-

guages to help with initial implementation.  

 

2.3 Singular 

Singular is a popular marketing intelligence and analytics platform used to rec-

ord marketing related data such as purchases made by users. The platform in-

cludes a fraud detection system to quickly spot suspicious user behavior and 

react to it. Most importantly for this thesis, Singular supports custom in-app 

events and metrics. Receipts from all IAP’s are sent to the Singular dashboard 

for analysis via their HTTP REST API. (Singular 2018.) 

 

Singular enables player grouping and profiling for targeted content offers. The 

dashboard offers various utilities and visualizations for gathered data, includ-

ing custom metrics and group tagging. (Singular 2018.) For this thesis, the use 

Singular is limited to communicating with their Web API. The Singular dash-

board and metrics are not covered as they are beyond the scope of this the-

sis. 

 

2.4 Programming languages 

Two main programming languages are used in the implementation of the ana-

lytics system, C# for frontend code and Node.js for backend code. These lan-

guages were not chosen for any specific reason apart from the fact that the 

game has already been written with C# and Node.js. Due to Node.js being 

based on JavaScript, which is fairly similar to C#, having limited previous 

knowledge was not a large problem and learning was quick.  

 



11 

The game client uses Unity3D as its game engine. Unity supports C# and 

UnityScript, a JavaScript-like language, but started the deprecation process 

for UnityScript in 2017 (Fine 2017). In addition to Unity deprecating the other 

available programming language, C# is simply more widely used. This means 

finding other programmers with knowledge of the language and the ability to 

help with specific problems is much more likely. Node.js is a widely used 

language for server-side programming as well. It is an open-source, cross-

platform environment used to run JavaScript on a server machine. 

Traditionally, JavaScript is run on a client browser, but Node.js makes it 

possible to process content before being sent to the user’s client. From a real-

time multiplayer game point of view, Node.js offers great capabilities for 

asynchronous operations necessary for real-time communication. (Orsini 

2013.) 

 

3 FUNCTIONAL REQUIREMENTS 

Analytics implementations are heavily tied to the projects they are made for 

and their requirements change drastically depending on various needs. Each 

project requires its own type of analytics solution and for MoW, a combination 

of client and server triggered events was found appropriate.   

 

It is important to keep in mind that an analytics system might never be com-

plete as it can be extended almost endlessly. Due to this, there will be no strict 

specifications for the final product. It is still necessary to have general func-

tional requirements since they will guide the implementation in a right direc-

tion. This chapter examines the functional requirements for MoW and provides 

a general description of the key elements in event-based game analytics. 

 

3.1 Customisable events 

For an event-based analytics system, being able to customise event structure 

and content is immensely important. The structure of customisable events is 

defined with a schema that includes information of the data included. Sche-

mas contain fields of data, each with a specified name and data type. Event 

and field names are used later to query data for analysis so they must be set 

as clearly and descriptively as possible.  

 



12 

For this thesis, all events are sent under the same table in the event dataset. 

The schema for this table contains all common data as separate fields and 

one JSON field for additional event parameters. This field can contain any 

data as their own data fields and, therefore, can be modified without needing 

to change the schema itself. Without having to change the structure, changes 

to the sent data can be made on the fly. It can be difficult to analyse additional 

parameters as they need to be extracted separately resulting in slower perfor-

mance. BigQuery charges customers based on the amount of scanned data, 

causing costs to increase as well. (Cooladata 2017.) In this thesis, a third-

party company will be fetching data from BigQuery and processing it for 

analysis and visualising the data through a customised application. 

 

3.2 Analytics event placement 

This analytics implementation for MoW consists mainly of server triggered an-

alytics events with a few exceptions. Most events are sent when the server 

recognises that something happened, the rest are requested by the client. 

Previously, all events were triggered and sent directly to the analytics platform 

from clients, which made it easier for skillful players to modify the sent data. In 

order to prevent receiving incorrect analytics data, as many events are set up 

server-side as possible. Sending events from the server minimizes the possi-

bility of lost data due to client crashes as well. 

 

Correct event placement is mandatory for data analytics. Incorrect event 

placement will result in skewed or completely false data which causes prob-

lems when doing analysis. Before implementing an event, its location must be 

considered carefully. First, where the event is placed, client-side or server-

side, and reasons to do so must be considered. Every event that can be 

placed in the server code should be placed there, especially since in most 

cases the necessary data is already being processed. Sending an additional 

request to send an event is simply pointless if the same result can be 

achieved without it. 

 

3.3 Mandatory analytics data 

Some information must be included in every single event that is sent to 

BigQuery. Mandatory data includes fields that can be used to identify the 



13 

player, specific event and device the player is using. All events must be tied to 

a player ID and have a unique event ID, so that all data belongs to someone 

and every event has a unique identifier. Additionally, an event timestamp and 

some data about the player and client device are required. For deeper analy-

sis on player behaviour and grouping, factors such as player progression and 

currency, operating system, location and device model are tracked. This kind 

of data can be used to e.g. target special offers for players using an iOS or 

Android device.  

 

Mandatory analytics data is updated every time a player launches the game 

by sending a network request to the server. The server should then create or 

update a database document for that player with the required data received in 

the request. Player progression data should not be saved under this docu-

ment, but instead fetched separately as it often changes. The database docu-

ment should include data that is needed for every event and does not fre-

quently change. By doing this, the data does not need to be provided by the 

client all the time, and fully server-side events are made possible. 

 

3.4 Data validation 

When doing data analysis, it is of upmost importance that the data is correct 

and reliable. Relevant and meaningful analysis cannot be done if the gathered 

data is incomplete or corrupted. In a worst-case scenario, analysing bad data 

can have a severe impact on the company itself. Data validation is a vital step 

in data analytics and ensures that all sent data is clean and useful. (McCulloch 

2016.) 

 

Due to this game analytics implementation being heavily server-sided, there is 

very little need for additional data validation. Nearly all data that is sent to the 

BigQuery data warehouse is fetched directly from the database, leaving the 

responsibility for correct data to the one implementing events. Event 

structures are configured in code, and data is validated using these 

configurations whenever something is sent. All unnecessary data fields are 

stripped from the event data, and structures that do not match a specific 

configuration are rejected.  

 



14 

4 IMPLEMENTATION 

Developing an analytics system may be considered an endless project. There 

is always something to improve on and more data to track. The implementa-

tion described in this chapter is not by any means complete and has much 

room for expansion. It should be noted that analytics solutions are heavily tied 

to a particular project and each implementation should be viewed as such. 

This chapter is divided into various subchapters that describe different areas 

of the implementation. Subchapters are presented in the order of implementa-

tion and can be used as a guide for future applications. 

 

All events should be sent to the analytics platform from the server but trigger-

ing some of them on the server can prove to be impossible. When an event 

must be triggered on the client, it is not sent directly to the analytics platform. 

Instead, the event data is constructed into a JSON object and added to a 

queue. An event queue then takes up to a set maximum amount of event ob-

jects, combines them into a single bundle that is sent to the server as the body 

of a POST-request.  

 

4.1 BigQuery project setup 

In order to start off the analytics implementation, a BigQuery project must be 

set up. BigQuery projects are managed on the Google Cloud Platform (GCP) 

website. A google sign-in is required to access the console and the services it 

has to offer. BigQuery is the analytics platform and data warehouse that is re-

sponsible for storing the analytics data and providing means to query that 

data. For this thesis, other data management services, for example machine 

learning algorithms, are not required. The BigQuery project, datasets and 

tables are the basic building blocks of BigQuery analytics required to store 

and query data. The following subchapters describe the process of creating 

these necessary elements. 

 

4.1.1 Creating a project 

The first step is to sign in to GCP and create the BigQuery project. The project 

is given a name and an organization to which it belongs. It must be noted that 

the given name is not the same as the project ID which cannot be changed 



15 

later as shown in Figure 1. The creator will be given the role of owner, grant-

ing access to everything under that project.  

 

 

Figure 1 Creating the BigQuery project 

 

A project has now been created, but to be able to store any actual data in the 

BigQuery data warehouse, datasets and tables need to be created. Datasets 

are data containers used to organise data and control access to the tables. 

Datasets can be created by selecting the project and clicking “Create Dataset” 

shown in Figure 2. During creation, a dataset is given a name, geographic lo-

cation that cannot be changed later and the default table lifetime as seen in 

Figure 3. When querying data, all referenced tables must belong to datasets 

located in the same place. For this reason, all datasets in this project are co-

located.  

 

 

Figure 2 BigQuery project view 



16 

 

Figure 3 Creating a BigQuery dataset 

 

Now the project and the first dataset are ready, but a table is still needed to 

contain the actual data. The maximum number of tables a dataset can hold is 

unlimited, but close to 50,000 tables will cause slower performance (Google 

2018.) There should be no worries of ever exceeding, or even coming close to 

this number as events are not stored in their own tables but in environment 

specific tables. Tables must be defined a schema, the data structure of that 

table. Schemas contain all wanted field names and their data types, and 

inserting data containing fields that do not exist in the schema will result in an 

error. Fields and their types in the schema are defined when creating a table 

but can be edited later if necessary. As shown in Figure 4, the table is also 

given a name, destination project and dataset. For development purposes, a 

table named “development” is created under the “events” dataset. Figure 4 

shows declaring fields in the schema, which for this project include data such 

as user ID, a unique event ID, timestamp and name of the event and a field for 

event specific properties. 

 



17 

 

Figure 4 Creating a BigQuery data table 

 

4.1.2 API Credentials 

In order to insert any data into the created tables, authentication is required. 

Authentication can be done via a Google service account that is specifically 

created to access Google API’s. A service account is a Google account tied to 

the application itself rather than a real user, and its identity is used to authenti-

cate the application. Permissions for a service account are set in the same 

way as any other Google account with preferably the minimum required set-

tings. (Google 2018.)  

 

Service accounts can be created from the IAM & admin section of the GCP. 

Once the service account has been given a name and role, a service account 

key must be downloaded as seen in Figure 5. This service account key holds 



18 

the credentials of the service account used to authenticate the application. 

The key can be downloaded as a JSON file which is then saved in a location 

that is accessible to the application.  

 

 

Figure 5 Downloading a service account key 

 

4.2 Backend implementation 

The core of this analytics implementation and the focus of this thesis is the 

backend implementation. As mentioned before, there are multiple reasons 

why it is desirable to have the system built server-side. When writing code for 

a system that is heavily influenced by current circumstances, it is important to 

remember that the environment changes. In an environment like this, code 

must be kept generic and extendable to avoid having to rework the whole sys-

tem when something unexpected happens. In order to keep the code neat and 

organised, every event processed by the server follows the same single pipe-

line. Each event has their own configuration which is used to apply needed 

operations during processing.  

 

4.2.1 Authentication 

As previously mentioned, Google BigQuery requires authentication to access 

their API’s. The server uses the service account key JSON file as credentials 

for authentication. Singular, the marketing intelligence platform, also requires 

authentication. As opposed to BigQuery, Singular does not need more than an 

API key on the server, which can be acquired from the Singular dashboard. 

 



19 

The server is authenticated by reading the server environment variable 

GOOGLE_APPLICATION_CREDENTIALS that should contain the file path of 

the downloaded service account key. It should be noted that this environment 

variable is only applied to the current session. Because it is reset if a new 

shell session is opened, setting the environment variable is tied to launching 

the server. During testing on a Windows machine, the command 

$env:GOOGLE_APPLICATION_CREDENTIALS="[PATH]" is run for the cur-

rent shell session. The actual server, on the other hand, is a Linux machine 

which means the variable can be set in the server start-up script using Envi-

ronment=GOOGLE_APPLICATION_CREDENTIALS=[PATH]. Singular re-

quests only require the API key and service URL. Singular authentication data 

is stored in the base event configuration so it is automatically set when con-

structing an event. The API key is added as a field to the data object in the 

HTTP request to provide authentication. 

 

4.2.2 Creating an endpoint 

Clients need to be able to send requests for events that require data not avail-

able on the server. Not many events need to be sent this way, but it is still 

best to create a single endpoint to handle all client event requests. API end-

points are communication channels that clients can call to access server re-

sources. MoW implements a REST API that uses HTTP requests to transport 

data. REST includes four HTTP verbs to distinguish request types (GET, 

POST, PUT and DELETE), but only GET and POST are used for analytics. 

Data included in POST requests are sent in JSON format for quick and easy 

data handling on the server. The API is built around Express, a popular web 

application framework for Node.js. 

 

REST API requests call predefined URL paths or routes to execute wanted 

operations. As seen in Figure 6, routes consist of three parts: a URL path, a 

HTTP verb and a handler function. In order to ensure as much backwards 

compatibility as possible, the Express router is used to separate routes based 

on the client version number. Separating functionality based on client version 

also enables creating code in advance and merely activating it by changing 

the version number when needed. The endpoint in Figure 6 is a POST action 

that takes an object containing event data, applies required processing and 



20 

sends the results to BigQuery. URL for the endpoint is combined from a prefix 

from the router and the given parameter “/events”.  

 

 

Figure 6 API route for events sent by a client 

 

Before executing any operation, the sending user is authenticated by compar-

ing the device ID, player ID and token headers against database values. If a 

valid token is not found for the user, the authentication fails, and a response is 

sent immediately (Figure 7). As soon as a valid token is found, next() is called 

to skip the rest of the function and continue to execute the main function of 

that route.  

 



21 

 

Figure 7 Player token authentication function 

 

In addition to the general endpoint for client events, another endpoint was cre-

ated for  updating some mandatory player data. When a player launches the 

game, the client will call this endpoint and send some information about the 

used device, client version and platform. This information is passed to a han-

dler function that locates the player’s IP-address using the “geoip-lite” node 

module and saves the data as a database document (Figure 8). An entirely 

new document is created if one cannot be found with the supplied player ID. If 

one already exists, it is overwritten with new data. 



22 

 

Figure 8 Mandatory analytics handler function 

 

4.2.3 Processing event data 

All data that is sent to BigQuery has to meet some structural requirements. 

Events that do not match the pre-set format are declined and will not be 

saved. For this implementation, all events follow the same format as men-

tioned when creating the BigQuery table. The main reason and advantage for 

using a single event schema inside BigQuery is that event structures can be 

better customised and modified on the fly. Events can be configured sepa-

rately in backend code even though they all have the same base structure.  

 

Event structures are configured under their own file seen in Figure 8. The con-

figuration specifies which fields of the source data should be included in the 

event data. Because all events are configured in the same location, modifying 

their structure is effortless. In case someone wanted to exclude “cardRarity” 

from the “cardGained” event in Figure 9, all that needs to be done is to re-

move that line from the schema. Apart from common data that is included in 

every event, anything that is not specified here is not added to the event. The 

event configuration does not search for data that is missing from the source, it 

is only used to exclude all unnecessary fields. Whoever calls to send an event 

is responsible for providing enough source data for processing.  



23 

 

 

Figure 9 Event schema configuration 

 

Event requests sent from the client go through a slightly different process than 

ones sent directly from the server. Separate handling is necessary due to the 

client-side implementation of the analytics system. It is made possible for the 

client to send event requests that contain multiple events in bulk. Because the 

request data might contain data for more than one event, the sent events must 

be first extracted from a bundle. Found event data is looped through and then 

constructed in the same way as all others. The “processAndSend” function 

takes the data sent by a client and prepares it for sending. The data bundle 

first has its structure validated to make sure it can be properly handled. Then 

the events included in the bundle are looped through recursively and each one 

is passed on to the “constructAndSend” function. All is done asynchronously 

since the client does not need to know if the events were sent or not. If any er-

rors occur during the process, they are logged into the console. (Figure 10.) 



24 

 

Figure 10 processAndSend function 

 

Analytics events that are sent directly from the server do not go through this 

separation and directly call “constructAndSend”. “ConstructAndSend” is a 

wrapper function used to construct events based on their configuration and 

send them to BigQuery. The caller of this function is responsible for providing 

appropriate data for construction. As seen in Figure 11, the function takes in 

three arguments: a data bundle, name of the event and player ID. PlayerId is 

added to the data bundle which is then given to the construction function 

along with the given event name.  

 

Figure 11 constructAndSend function 



25 

Once the event data has been constructed, it is passed over to the ”send-

Events” function with the target destination table name. For testing purposes, 

if the current server environment value is “LOCAL”, the target destination table 

name is manually set. (Figure 11.) The target table name is configured via the 

server environment variable to keep testing, development and production data 

separate.  

 

 

Figure 12 constructEvent function 

 

Before sending an event, one must be constructed using the given data. Con-

structing an event can be divided into three sections: fetching common event 

data, adding mandatory data and adding event specific data. Figure 12 

demonstrates how an event is constructed using the source data and the 

event name. Lines 197 through 204 contain the first section; fetching common 

event data. Any additional data that needs to be included in all events can be 



26 

added to the list of Promises to return here. After gathering all wanted data, 

the data is passed to the next function in which the promises are extracted 

into their own objects. A base event object is created from the gathered data 

using “eventMandatoryData”. This function searches the database for some 

important player specific data and uses it with the previously fetched data to 

create an event object. Finally, the event configuration is used to loop through 

the events fields. Bundle fields that have a matching name are added to the 

event object, everything else is ignored. Lastly, the event object is converted 

into a JSON string format ready to be sent to BigQuery and returned to the 

wrapper function. (Figure 12.) 

 

 

Figure 13 sendEvents function 

 

Events that are returned and ready to be sent are passed to the “sendEvents” 

function seen in Figure 13. Event data is given as separate rows to be in-

serted to BigQuery with their target destination table name. The function uti-

lises Google’s own library to insert rows into a table and returns errors found 

during the process. Some logging was added to provide a clear understanding 

of what is being inserted and where. 

 



27 

4.2.4 Singular events 

Singular is used to track purchases made by players inside the game and 

other events that could be useful in player profiling. Player profiling enables 

the use of targeted special offers with content that is interesting and relevant 

for the player. All Singular events are paired with a normal analytics event as 

purchase data has interest in analysis elsewhere as well.  

 

Like normal analytics, Singular events are also sent from the server. A few 

events are sent directly from the client and unlike normal analytics, they do not 

pass through the backend server but use the Singular Unity SDK instead. 

Server-side events are sent via a REST API provided by Singular for server to 

server integration. Events use a specific GET endpoint at https://s2s.singu-

lar.net/api/v1/evt? to record any custom events needed (Singular 2018). Sin-

gular events have many required parameters that must be included in the pa-

rameters object sent to the endpoint. Some parameters are optional, but the 

events cannot be fully customised in terms of fields. Details about the re-

quired/optional parameters can be seen in Appendix 1.  

 

In order to make sure Singular events have all required parameters assigned, 

they are built from a set base event configuration. Figure 14 describes the 

construction of a server-side singular event. Mandatory analytics data is 

fetched from the database as with normal analytics, but the data is assigned 

to required parameters. Additional event data can be provided to the funtion to 

be added as an optional field seen on line 35. After the simple construction, 

the event is sent to the Singular endpoint using axios, a node module for 

HTTP requests (Figure 15). 



28 

 

 

Figure 14 Singular event construction function 

 

 

Figure 15 Singular event send function 

 

Revenue events sent to Singular have some additional requirements to them. 

Revenue events use the same API endpoint as other events but must be 



29 

named correctly and include a few of the earlier optional parameters. Pur-

chase events have their own construction method with slightly changed func-

tionality. Additional event data is not added as a parameter in contrast to nor-

mal Singular events. The event must have the name “__IAP__”, an ISO 4217 

currency code and the currency amount. This data is added under the fields 

“n”, “cur” and “amt” respectively. (Singular 2018.) 

 

4.2.5 Server event placement 

Once the basic event construction and sending framework is implemented, the 

events themselves must be placed. As mentioned before, all events call the 

same construction function with different parameters. All that needs to be 

done is create a configuration for the event, gather all the data it requires and 

provide it to the constructing function. Implementing new events is very fast 

and straightforward due to building a generic framework.  

 

 

Figure 16 Implementation of "cardGained" event 

 

Figure 16 displays an implementation of the “cardGained” event that is called 

when a player receives cards as rewards from a chest. Analytics is added to 

the section where the player has received the card on lines 892 through 904. 

First, a helper function is called to fetch information about the given card and 

create a base bundle for the analytics function. A few extra fields are the 

added to the data and on line 901, the construction function is called. Any er-

rors that would occur are caught and logged. Event implementations can be 



30 

much simpler than this example as well, only consisting of a couple lines of 

code. The complexity of the implementation completely depends on the 

amount and way to find the data required. Regardless of implementation, the 

core is always the same, calling the construction function with a data bundle, 

event name and player ID. 

 

4.2.6 Event testing 

After writing the implementation for all different events, they need to be tested. 

Testing must be systematic to ensure that all necessary data is coming 

through. During planning, an Excel sheet was created with all information re-

lated to event parameters, names and placement. Two checkboxes were also 

added to the sheet for every event to keep track of implementation and test-

ing. The implemented checkbox would be checked once the event was pre-

sumably done and ready to be tested, the tested checkbox is then checked 

when confirmed.  

 

As opposite to the original plan of reserving a separate time for testing the im-

plemented events, events were tested upon implementation, one at a time. 

Testing a single event at a time whenever one is implemented provides flexi-

bility and confirmation that no events are left incomplete. Events are tested by 

doing unit tests for the backend code and checking the correctness of data 

from the BigQuery console. After the unit tests have passed, the events are 

then finally tested in an actual environment by triggering the event in game. 

Figure 17 shows an example unit test for a server-side event. In the unit test 

shown below, the “chai” testing library is used to create test functions that are 

run in a loop. All test functions that are added to the utility array are executed 

when testing is run. Test functions are executed in order and as soon as the 

previous one returns, the next one is called.  



31 

 

 

Figure 17 Server-side event unit test 

 

In addition to server-side events, events sent from clients need to be tested. 

Figure 18 demonstrates a test function for an event that would be sent from 

the client. Again, the “chai” test library is used to mock a POST request with 

specific data and headers. For this test, a manual timeout must be set so that 

the test is not marked complete before the event is sent to BigQuery. Without 

a timeout, this test would be considered done as soon as the request re-

sponse is processed. Due to the event sending implementation being asyn-

chronous, clients not needing information in the response and the response 

being sent before the events are fully processed, a delay must be set manu-

ally. In contrast, the test function shown in Figure 17 does not implement a 



32 

manual wait because it waits for the “constructAndSend” function to return a 

Promise before being marked complete.  

 

 

Figure 18 Client event request test function 

 

4.3 Frontend implementation 

This game analytics implementation focuses on handling everything in the 

backend, but that does not make the frontend implementation any less im-

portant. Client-side code processes mostly the sending of user and device 

data to the database and the triggering of some specific events. Events are 

processed and sent using an event queue that stores and sends events as a 

batch instead of sending events immediately. Storing events helps in having 

control over when event requests are sent to the server. 

 

4.3.1 Singular SDK 

In order to send events relevant to marketing from the client, the Singular 

Unity SDK is used. Singular provides a software development kit for Unity de-

velopers as a Unity package. The Unity package can be imported to the pro-

ject by downloading and opening the file from Singular’s website. To set up 

the SDK, an object is created into the main scene and the “SingularSDK” 

script is attached to it. In order to connect to the correct Singular project, an 

API Key and API Secret are set in the inspector. The SDK will initialise itself 

using the provided data when the game is started if the “Initialize On Awake” 



33 

is checked. Some additional steps are required for iOS and Android setup, 

which can be found in the SDK documentation. (Singular 2018.) 

 

For this thesis, no custom client-side events are implemented for Singular as it 

is beyond the scope of this thesis. Singular is used to track user sessions and 

to register users for revenue tracking. Revenue tracking itself is done via 

backend code, therefore no additional actions are required on the client. For 

data privacy reasons, Singular offers a way to stop tracking a user and disable 

the SDK. Tracking can later be resumed with the user’s consent. (Singular 

2018.) 

 

4.3.2 Event queue 

Client-side events utilize an event queue to control sending event requests to 

the server. When an event is triggered, a method is called to record the event 

by adding event data into the queue (Figure 19). Event data is stored in JSON 

format to keep the queue processing simple. Sending events and removing 

them from the queue occurs on a set interval and sends up to a set maximum 

number of events at a time. Limiting the maximum number of sent events 

keeps the packet size small to avoid large network spikes.  

 

 

Figure 19 Queue event method 

 

Initially, the goal was to keep the event queue running as a coroutine, but that 

would require a MonoBehaviour object in the scene at all times. Having a ded-

icated object to process event sending is not desirable as the manager script 

requires an instance and running the coroutine on another object could cause 



34 

problems. So, instead of using a coroutine, a plugin called UniRx is used. 

UniRx offers a solution to running methods on an interval without linking them 

to an object. As seen in Figure 20, a “CompositeDisposable” and an “Observ-

able” are used to solve the problem. An “Observable” provides a notification 

by calling a method on all observers that have subscribed to it when a certain 

condition is met (Microsoft 2017). A “CompositeDisposable” acts as an ob-

server that subscribes to the provider and defining the method to call upon re-

ceiving a notification. In this case, whenever the interval condition in “Obsera-

ble.IntervalFrame” is met, “EventSender()” is called and executed because 

“disposable” has subscribed to the observable with that method. Because the 

game runs at 30 frames per second, the interval is set to 30 times the set 

number of seconds.  

 

 

Figure 20 Event queue sender subscription 

 

Before events can be sent, the data must be prepared for the request. All 

events that are sent to the server as a request must contain the player ID, 

event name and the event data. Every event that is going to be sent on an in-

terval is packed into a single JSONObject and passed on to the sending 

method. (Figure 21.) 

 



35 

 

Figure 21 PrepareData method 

 

Once the data has been prepared for sending, it is passed on to the ”Send-

Events” method that removes the sent events from the queue and calls “Net-

workRequestManager” to send the HTTP request. The response callback is 

set to be empty since the client does not need to know what happens after the 

event is sent. (Figure 22.) 



36 

 

Figure 22 Event sender methods 

 

5 CONCLUSIONS 

The purpose of this thesis was to describe the implementation process of a 

highly customisable backend analytics framework. It provides an insight to the 

implementation steps and processes that must be considered when develop-

ing an analytics system using BigQuery. The resulting product can be deemed 

a success as a modified version of this thesis is in development for another 

project.  

 

The documentation of this game analytics implementation can be used as a 

guide on how to develop a server-side event-based analytics solution in con-

junction with BigQuery. Even though analytics solutions are always project 

specific and this project is no different, the documentation was presented in as 

general terms as possible. Creating and setting up a BigQuery project, event 

sending pipeline, client event requests and event testing are separated into 

their own sections. The steps required to implement a customisable analytics 

framework are explained in order of implementation to make it easy to follow.  

 

At the start of this thesis, with no prior experience or knowledge of backend 

code, Node.js or BigQuery, productivity was quite slow. Working effectiveness 

kept increasing gradually as new aspects were learned and applied into use. 



37 

Invaluable experience from both game analytics and server-side code was 

gained in the making of the analytics system that will surely prove useful in the 

future. During this thesis, many conversations were had that proved extremely 

useful and teaching. Senior programmers at Nitro Games provided constant 

support in learning and developing the system according to requirements.  

 

Creating a general framework for processing and sending analytics events 

was important as it could then be used in future projects. The system can be 

copied over and reconfigured to fit another environment with ease, thus saving 

time for core game development. Much has been learned during development 

that can be used to further develop the analytics system in terms of scalability 

and optimisation. 

  



38 

REFERENCES 

Cooladata, 2017. Building an Event-Based Data Model for Analyzing Online 
Data. [Online]  
Available at: https://www.cooladata.com/building-event-based-data-model-
analyzing-online-data/ 
[Accessed 11 10 2018]. 
 

Datamatics, n.d. Fear and Proactive Thinking: The main driver for Event-
based Analytics. [Online]  
Available at: https://www.datamatics.com/articles/fear-and-proactive-thinking-
main-driver-event-based-analytics 
[Accessed 16 10 2018]. 
 

Egan, W., 2016. What Is Event Based Marketing. [Online]  
Available at: https://www.willegan.com/what-is-event-based-marketing/ 
[Accessed 16 10 2018]. 
 

Fine, R., 2017. UnityScript’s long ride off into the sunset. [Online]  
Available at: https://blogs.unity3d.com/2017/08/11/unityscripts-long-ride-off-
into-the-sunset/ 
[Accessed 13 11 2018]. 
 

Google, 2018. Google BigQuery. [Online]  
Available at: https://cloud.google.com/bigquery/ 
[Accessed 16 10 2018]. 
 

Google, 2018. Quotas & Limits. [Online]  
Available at: https://cloud.google.com/bigquery/quotas#dataset_limits 
[Accessed 18 10 2018]. 
 

Google, 2018. Understanding Service Accounts. [Online]  
Available at: https://cloud.google.com/iam/docs/understanding-service-
accounts 
[Accessed 19 10 2018]. 
 

McCulloch, L., 2016. The Importance of Data Validation. [Online]  
Available at: https://deltadna.com/blog/importance-data-validation/ 
[Accessed 13 11 2018]. 
 

Microsoft, 2017. Observer Design Pattern. [Online]  
Available at: https://docs.microsoft.com/en-
us/dotnet/standard/events/observer-design-pattern 
[Accessed 21 11 2018]. 
 

Nitro Games Plc, 2018. Medals of War. [Online]  
Available at: https://www.medalsofwargame.com/ 
[Accessed 3 10 2018]. 



39 

Nitro Games Plc, 2018. Nitro Games Investors. [Online]  
Available at: https://www.nitrogames.com/investors/ 
[Accessed 13 11 2018]. 
 

Orsini, L., 2013. What You Need To Know About Node.js. [Online]  
Available at: https://readwrite.com/2013/11/07/what-you-need-to-know-about-
nodejs/ 
[Accessed 13 11 2018]. 
 

RoboMQ, n.d. Event Driven Analytics. [Online]  
Available at: https://www.robomq.io/products/eventdrivenanalytics.html 
[Accessed 16 10 2018]. 
 

Singular, 2018. Accurate Attribution For Mobile App Activities. [Online]  
Available at: https://www.singular.net/advanced-mobile-
attribution/#integrations 
[Accessed 13 11 2018]. 
 

Singular, 2018. Server to Server Integration. [Online]  
Available at: https://developers.singular.net/docs/server-to-server-integration 
[Accessed 01 11 2018]. 
 

Singular, 2018. Singular Unity SDK. [Online]  
Available at: https://developers.singular.net/docs/unity-sdk 
[Accessed 21 11 2018]. 
 

 

  



40 

FIGURES 

 

Figure 1 Creating the BigQuery project 

Figure 2 BigQuery project view 

Figure 3 Creating a BigQuery dataset 

Figure 4 Creating a BigQuery data table 

Figure 5 Downloading a service account key 

Figure 6 API route for events sent by a client 

Figure 7 Player token authentication function 

Figure 8 Mandatory analytics handler function 

Figure 9 Event schema configuration 

Figure 10 processAndSend function 

Figure 11 constructAndSend function 

Figure 12 constructEvent function 

Figure 13 sendEvents function 

Figure 14 Singular event construction function 

Figure 15 Singular event send function 

Figure 16 Implementation of "cardGained" event 

Figure 17 Server-side event unit test 

Figure 18 Client event request test function 

Figure 19 Queue event method 

Figure 20 Event queue sender subscription 

Figure 21 PrepareData method 

Figure 22 Event sender methods 

 

  



41 

ATTACHMENTS 

 

 

Attachment 1/1 



42 

   

 

 

Attachment 1/2 


